第二章电路的等效变换解析
合集下载
第二章 第2章 电路分析中的等效变换
(2)受控源存在时,控制量不能消失。
《电路分析基础》
P13-9
第2章 电路分析中的等效变变换
2.6 运算放大器
运算放大器(简称运放)广泛地应用于电子计算机、 自动控制系统和各种通信系统中,它是一种多功能有源多 端元件。它既可以用作放大器来放大信号,还能完成比例、 加法、积分、微分等各种运算,其名称即由此而来。它的 内部结构、工作原理将在“电子电路”等课程中讨论,作 为一个电路元件,在电路分析中通常只关注其外部特性及 其等效电路。 2.6.1 运算放大器的线性模型 在运放的电路符号中,有两个输入端a和b,一个输出 端o和一个公共端(接地端)。可见运算放大器是一个 VCVS。无反馈时的电压放大倍数,通常称为开环电压放 大倍数A,即 uo uo A ui ub ua
《电路分析基础》
P13-4 第2章 电路分析中的等效变变换
2.3 电阻星形联接与三角形联接的等效变换 这是三端网络的等效问题: 端子只有2个电流独立; 2个电压独立。 若N1与N2相应的 i1 , i2 ;u13 , u23间的关系完全相同,则 N1与N2等效 2.4 含独立电源网络的等效变换 2.4.1 独立源的串联和并联 * 独立电压源的串并联 * 独立电流源的串并联 * 独立电压源与电流源的串并联
ib 0
通常称为“虚断路”即a、b两个输入端相当于开路。
《电路分析基础》
P13-11 第2章 电路分析中的等效变变换
2. 由于A = ∞,而输出电压为有限值,故有
ui ub ua 0
即
ub ua
通常称为“虚短路”。a端和b端同电位,即a端和b端又相 当于短路。应该注意“虚断”和“虚短”是同时存在的。
无伴电源(理想电源):
电路分析基础课件第2章 电路分析中的等效变换
v
+
Seq
-
a+
v
-b a+ v -b
n
v v v v vSeq s1 s2 s3 sn vSk k 1
2 电压源的并联
只有电压相等且极性相同时, 电压源才能并联。
ai ++ + +
i
a +
+
v vS vS
vS
b
-
-
-
v vS b- -
3 电流源的并联
iS1 iS2
例8 求:I
I1 1
解: Δ—Y 转换 2.6 10
R1
R12 R13 R12 R13 R23
100 25
4
R2
R23R13 25
2
+ 9V
R2 22
4
R3
R23R12 25
2
-
b
R14 R1 (R2 R24 ) //( R3 R34 )
R110 5 R3
ia
ia
iSn
+
iS
++
v
vv
b
-b
n
i i i iS s1 s2 sn iSk k 1
4 电流源的串联
只有电流相等且参考方向相同时,
电流源才能串联。
iS iS ... iS
i
a+
v
-b
iS
i
a+ v -b
5 电压源与电流源的串联
a i+
N
第二章 等效变换
即 若 干 电 阻 串 联 等 效 于 一 个 电 阻 , Req=R1+R2+···+Rn
uk Rki Rk R eq u
—— 分压公式
2、 并联
电阻首尾分别相联, 处于同一电压下的连接方式, 称为并联
(图2-3a)。
VCR:
i i1 i 2 i n
u R1 u R2 u Rn
讨论:若要求电流 i1, i2, i3, 怎么办? 回到原电路来分析!
u 4 R 4 i 4 15 V
i2 u 4 / R 2 2 .5 A
i1 u 4 / R1 5 A
i3 u 4 / R 3 7 . 5 A
3、电压源与电流源(或电阻)的并联
任何二端网络和电压源并联,从端口看,均等效作一个电压源。
''
②R
'' eq
R 2 R eq R 2 R 34
6
'
15 10 15 10
6
R eq R 1 R 2 //( R 3 R 4 ) R 1
R2 ( R3 R4 ) R2 R3 R4
15 ( 5 5 ) 15 5 5
12
小结:1、串联电路的特点: ①流过每个电阻的电流相同; ②总电压等于各电阻电压的代数和;
③端口总电阻等于所有串联电阻的和。 2 、并联的电路特点: ①u1=u2=u3=„„ = u ②i1+i2+i3+ „„ = i ③G= G1+G2+G3+ „„ 或:
1 R
1 R1
电路B-第二章 电阻电路的等效变换
i12
R31i1 R23i2 R12 R23 R31
u1 R31i1 R31i12 R31 (i1 i12 ) u2 R23i12 R23i2 R23 (i2 i12 )
将i12表达式
代入上两式, 得到
u1 u2
R31 R12
R12
(R12 R23 ) R23 R31 R23 R31 R23 R31
i1 i1
R23 R31 R12 R23 R31 R23 (R12 R31) R12 R23 R31
i2 i2
式(2-ll)和(2-12)分别表示电阻星形联接和三角形联 接网络的 VCR方程。如果要求它们等效,则要 VCR 方程完全相同,也就是两式的对应系数分别相等,即:
R1
R3
电阻的三角形联接:将三个电阻首尾相连,形成一 个三角形,三角形的三个顶点分别与外电路的三个 结点相连,就构成三角形联接,又称为Δ形联接, 如图(b)所示。
电阻三端网络的端口特性,可用联系这些电压和电 流的两个代数方程来表征。
对于电阻星形联接的三端网络,外加两个电流源i1 和i2。用2b方程求出端口电压u1和u2的表达式为:
i1
R2 R1+R2
i
i2
R1 R1+R2
i
例l-12 图(a)所 示电路为双电源直 流分压电路。试求 电位器滑动端移动
时,a点电位Va的
变化范围。
解:将两个电位用两个电压源替代,得到图(b)所示 电路。当电位器滑动端移到最下端时,a点的电位为
1k
Va
Ucd
12V
24V 12V 1k 10k 1k
第二章 电阻电路的等效变换
关于等效的概念: 对于线性时不变电路元件,有时我们只对电
电路基本分析第二章电阻电路的等效变换法
Chapter 2
方法二:将Y→△(如下图),自己练习。
1
2Ω
R12
2
1Ω 2Ω
1
2Ω
1Ω
2
1Ω
3
1
1
R12
R13 2 Ω
2
1Ω
2 1Ω
R23
3
1
R12
2
说明:使用△-Y 等效变换公式前,应先标出三个端头标 号,再套用公式计算。
Chapter 2
小结: 1 .一个内部不含独立电源的单口网络对外可以等效为一
电路对外可等效为一个理想电压源us和一个内阻Rs串 联的电压源模型。
Chapter 2
2. n个实际电流源并联:
isn
Gsn
i s2
is1
is3 Gs3
Gs2
i +a Gs1 u
-
b
i'
a
+
is
Gs
u'
-
b
由KCL得端口电压电流关系:
i i s 1 i s 2 i s 3 i s n G s 1 G s 2 G s 3 G s n u
解得:
i1
R1R2
R3u12 R2R3
R3R1
R1R2
R2u31 R2R3
R3R1
i2
R1R2
R1u23 R2R3
R3R1
R1R2
R3u12 R2R3
R3R1
i3
R1R2
R2u31 R2R3
R3R1
R1R2
R1u23 R2R3
R3R1
第二章 电路的等效变换与电路定理
2-2-1 电阻的串并联
一、电阻的串联
在串联电路中,流过每一个电阻的电流相同,根据KVL 和欧姆定律可知,当有n个电阻串联,其等效电阻为
U I ( R1 R2 Rn ) n R Rk I I k 1
若电压、电流取关联参考方向,则每个电阻上的电压为
U k I Rk Rk
3V - 1Ω + 2Ω 2U U - I 3/5Ω + 3/5V - + + I
U
-
图(a)
图(b)
解:设输入电压为U,输入电流为I,则可得其端口电压为
U 3 I 1 ( I 2U ) 2 3 3I 4U
3 3 U I 5 5
根据上式的伏安关系可得其等效电路为图(b)。
I I1 + 24V - 2Ω 8Ω 8Ω I3 I4 2Ω I2 4Ω 4Ω
8 1 I1 I 3 4 2A 88 2
4 1 I2 I 4 6 3A 44 2
I + 8Ω a I1 I 2 4Ω
图(b)
24V
I5
- 2Ω I3 8Ω 4Ω b c I4 2Ω
R
k 1
n
U
k
Hale Waihona Puke 串联电路分压公式上式表明在串联电路中若总电压一定,电阻越大,分压越多。 利用串联电路这一性质,可以非常方便的对电压的大小进行控 制,以得到实际所需的电压。
二、电阻的并联
并联电路的特点是每个电阻上的电压相同,同样根据KCL和 欧姆定律可知,当有n个电阻并联时,其等效电阻为
U U U R U I I 1 I 2 I n U U R1 R2 Rn 1 1 1 1 R1 R2 Rn
电路原理(邱关源)习题答案第二章电阻电路的等效变换练习分析解析
第二章电阻电路的等效变换
“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知
12100,2,8s u V R k R k 。
若:(1)38R k ;(2)处开路)33
(R R ;(3)处短路)33(0R R 。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻8
42R k ,。
第二章 电路分析的等效变换法
i3 Y u31Y R2 u23Y R1 R1 R2 R2 R3 R3 R1
R1R2 R2R3 R3R1 R12 R3 R1R2 R2R3 R3R1 R23 R1 R1R2 R2R3 R3R1 R31 R2
i1 =u12 /R12 – u31 /R31
+
+
5V
_
5V
_
_
2.3.2 电流源的串并联 并联: 可等效成一个理想电流源 i S º iS1 iS2 iSk º 串联: º 2A 2A 2A º º 电流相同的理想电流源 才能串联。但每个电流 iS
º iS= iSk (注意参考方向) º
源的端电压无法确定。 º
2. 3. 3 电压源与电流源的串并联 Is
º
º
º
º
º
º
º
º
º
º
º
º
2.3 电源的等效变换
2.3.1 电压源的串并联 + uS1 _ + uSn _ º
º + uS _
º
串联: uS= uSk ( 注意参考方向。一致, 取+;否则,取 - 。) 并联: 电压相同的电压源才 能并联。但每个电压 源的电流无法确定。 º
º I
º
I
º + 5V º
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 故可以直接用等效电阻计算并联电路“内部”的总功率。 (对照前面:“对外等效”,对内不一定等效。)
2.1.3 电阻的串并联 要求:弄清楚串、并联的概念。 计算举例: 例1.
4 º 2
3 Req = 4∥(2+3∥6) = 2
R1R2 R2R3 R3R1 R12 R3 R1R2 R2R3 R3R1 R23 R1 R1R2 R2R3 R3R1 R31 R2
i1 =u12 /R12 – u31 /R31
+
+
5V
_
5V
_
_
2.3.2 电流源的串并联 并联: 可等效成一个理想电流源 i S º iS1 iS2 iSk º 串联: º 2A 2A 2A º º 电流相同的理想电流源 才能串联。但每个电流 iS
º iS= iSk (注意参考方向) º
源的端电压无法确定。 º
2. 3. 3 电压源与电流源的串并联 Is
º
º
º
º
º
º
º
º
º
º
º
º
2.3 电源的等效变换
2.3.1 电压源的串并联 + uS1 _ + uSn _ º
º + uS _
º
串联: uS= uSk ( 注意参考方向。一致, 取+;否则,取 - 。) 并联: 电压相同的电压源才 能并联。但每个电压 源的电流无法确定。 º
º I
º
I
º + 5V º
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 故可以直接用等效电阻计算并联电路“内部”的总功率。 (对照前面:“对外等效”,对内不一定等效。)
2.1.3 电阻的串并联 要求:弄清楚串、并联的概念。 计算举例: 例1.
4 º 2
3 Req = 4∥(2+3∥6) = 2
(大学物理电路分析基础)第2章电路分析的等效变换
受控源的等效变换
总结词
受控源的等效变换是指将一个受控源用一个等效的理想受控源来表示。
详细描述
受控源是一种特殊的电源,其输出电压或电流受其他电路变量的控制。在电路分析中,受控源的等效 变换通常是将一个实际的受控源用一个等效的理想受控源来表示,以便于分析。这种变换的关键在于 理解受控源的控制关系,并正确地将其转换为相应的理想受控源。
电阻的并联等效变换
总结词
当两个或多个电阻以各自的一端相接时,它们形成一个并联 电路。并联电路的总电阻的倒数等于各电阻倒数之和。
详细描述
在并联等效变换中,我们将多个并联电阻视为一个整体,用 一个总电阻表示。总电阻的倒数等于所有并联电阻的倒数之 和。这种等效变换同样有助于简化电路分析,特别是在处理 复杂电路时,能够快速找到总电阻值。
电压源和电流源的等效变换
将电压源转换为电流源,或将电流源转换为电压源,以便 于分析含有电源的电路。
要点二
电源串并联等效变换
将多个电源串联或并联转换为单一的等效电源,简化电路 分析。
输入电阻的等效变换
输入电阻的定义
01
输入电阻是指在电路的输入端所呈现的电阻抗,用于衡量电路
对输入信号的阻碍作用。
输入电阻的计算
电阻的混联等效变换
总结词
在电路中,可能既有串联电阻也有并联电阻 ,这样的电路称为混联电路。混联等效变换 要求我们同时考虑串联和并联电阻的等效变 换,以简化电路。
详细描述
在混联等效变换中,我们需要综合考虑串联 和并联电阻的等效变换。首先对串联部分进 行等效变换,然后对并联部分进行等效变换 ,最后将两者结合起来得到简化后的电路结 构。这种等效变换要求我们熟练掌握串联和 并联的等效变换方法,以便在复杂的电路分
第02章 电阻电路的等效变换
u i is R0
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5
④
i5
② ①
③
i5
②
④
① i1
③
等效电阻 R = 1.5Ω
i5
②
④ ③
i = 2A
i1
①
×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3
②
*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5
④
i5
② ①
③
i5
②
④
① i1
③
等效电阻 R = 1.5Ω
i5
②
④ ③
i = 2A
i1
①
×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3
②
*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23
第2章电路的等效变换
重点
(1)电路等效的概念; (2)电阻的串、并联; (3)电压源和电流源的等效变换。
难点
(1)电路等效的概念和等效变换的条件; (2)含受控源电路输入电阻的求法。
返回本章 上 页 下 页
Ohm’s law states that the voltage v across a resistor is directly proportional to the current I flowing through the resistor.
返回本节 上 页 下 页
例3 求等效电阻R,及电流 I 和I3 。
I
I1
I2 1 I3
3V
3 6 2
解
I
I1
I3 1
3V
3
1
I1 1A
I
2
R=1.5
I 2A
3
1
I3 3 6 1 3 A
注意各电阻的串联、并联关系
3V
1.5
返回本节 上 页 下 页
并联
只有电压相等极性一致的电压源才能并联,且各电压 源中的电流不能确定。
返回本章 上 页 下 页
(2) 理想电流源的串联并联
并联 is is1 is2 isn isk
iS1 iS2
ºiS iSn
等效电路
º
iS
º
º
注意isk的正负号,其参考方向与is一致时取“+”,否则“-”
k 1
返回本章 上 页 下 页
串联电阻的分压
i
º
++
u
u-1 -
R1
_ u+2 R2
电路基础课件-第2章电路的等效变换
THANKS
感谢观看
总结词
降低成本。
详细描述
优化电源配置,提高电源利用率,可以减少对昂贵电源的 需求,从而降低整个电路的成本。
总结词
提升稳定性。
详细描述
合理的电源配置能够提升电路的稳定性,降低因电源问题 导致的故障风险。等效变换在此过程中起到关键作用。
测量仪表的误差分析
总结词
等效变换有助于分析测量仪表的误差来源。
详细描述
05
CATALOGUE
电路的等效变换应用实例
复杂电路的化简
总结词
通过等效变换,将复杂电路简化为简单电路,便于分析 。
详细描述
在复杂电路中,通过使用等效变换的方法,将电路中的 元件进行等效替代或合并,从而简化电路的结构,降低 分析难度。
总结词
提高分析效率。
详细描述
通过等效变换,可以将复杂的电路简化为简单的形式, 从而减少分析时间和计算量,提高分析效率。
电路基础课件-第2 章电路的等效变换
contents
目录
• 等效变换的基本概念 • 电阻电路的等效变换 • 含源一端口网络的等效变换 • 含源二端口网络的等效变换 • 电路的等效变换应用实例
01
CATALOGUE
等效变换的基本概念
等效的定义
等效是指两个电路在某点之前和之后的电流和电压保持不变,即对外电路等效。 等效电路是指一个电路可以代替另一个电路,而不会改变外电路的电流和电压。
04
CATALOGUE
含源二端口网络的等效变换
二端口网络参数方程与等效电路
参数方程
由二端口网络的电压和电流关系,可 以推导出其参数方程,包括Y参数方 程和Z参数方程。
等效电路
第二章 电路的等效变换
返回 上页 下页
例1 桥 T 电路
1k
1k 1k
+
E
1k R
-
1/3k
+ E
-
1/3k
1/3k R
1k
1k
+ 3k
E
R
- 3k 3k
返回 上页 下页
例2 计算90电阻吸收的功率
①
1
10
1 +
20V
-
4 9 90 ③
1
9 9 ②
9
i
+
20V
-
i1 90
i
u
us
+
+
考虑内阻
uS_
u
0
i
RS
_
一个好的电压源要求 R S 0
注意 实际电压源也不允许短路。因其内阻小,
若短路,电流很大,可能烧毁电源。
返回 上页 下页
2. 实际电流源
+
iS
i
RS
u
_
伏安特性:
i
iS
u RS
u
is
0
i
考虑内阻
一个好的电流源要求 R S
注意 实际电流源也不允许开路。因其内阻大,
i3 + – i2Y –3 2 +
u23Y
i3Y + –3
接: 用电压表示电流 Y接: 用电流表示电压
i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 i3 =u31 /R31 – u23 /R23
u12Y=R1i1Y–R2i2Y
p1: p2 : : pn= R1 : R2 : :Rn p=Reqi2 = (R1+ R2+ …+Rn ) i2
例1 桥 T 电路
1k
1k 1k
+
E
1k R
-
1/3k
+ E
-
1/3k
1/3k R
1k
1k
+ 3k
E
R
- 3k 3k
返回 上页 下页
例2 计算90电阻吸收的功率
①
1
10
1 +
20V
-
4 9 90 ③
1
9 9 ②
9
i
+
20V
-
i1 90
i
u
us
+
+
考虑内阻
uS_
u
0
i
RS
_
一个好的电压源要求 R S 0
注意 实际电压源也不允许短路。因其内阻小,
若短路,电流很大,可能烧毁电源。
返回 上页 下页
2. 实际电流源
+
iS
i
RS
u
_
伏安特性:
i
iS
u RS
u
is
0
i
考虑内阻
一个好的电流源要求 R S
注意 实际电流源也不允许开路。因其内阻大,
i3 + – i2Y –3 2 +
u23Y
i3Y + –3
接: 用电压表示电流 Y接: 用电流表示电压
i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 i3 =u31 /R31 – u23 /R23
u12Y=R1i1Y–R2i2Y
p1: p2 : : pn= R1 : R2 : :Rn p=Reqi2 = (R1+ R2+ …+Rn ) i2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U
U2
3)等效电阻等于各电阻之和;
R2 R =R1+R2
4)串联电阻上电压的分配与电阻成正比。
I U
两电阻串联时的分压公式:
R
应U1用:R1
R1 R2
U
U2
R2 U R1 R2
降压、限流、调节电压等。
2. 电I 阻的并联:特 (1)点各:电阻联接在两个公共的结点之间;
I1 I2
(2)各电阻两端的电压相同;
第2章 电路的等效变换
Page21--28
2.1 等效变换 2.2 电阻串、并联联接的等效变换 2.3 电压源与电流源及其等效变换 2.4 输入电阻
2.1 等效变换
电路进行等效变换的目的 一、简化电路,便于分析。 二、便于对复杂电路的分析和计算。
2.1.1 二端网络概念
定义:任何具有两个输出端、并且流 经两端子的电流为同一电流的电路, 称两端电路,也称两端网络。
I U
+
E
E_
U
RL
O
I
特点: (1) 内阻R0 = 0
外特性曲线
(2) 输出电压是一定值,恒等于电动势。
对直流电压,有 U E。
(3) 恒压源中的电流由外电路决定。
例1:设 E = 10 V,接上RL 后,恒压源对外输出电流。 当 RL= 1 时, U = 10 V,I = 10A 当 RL = 10 时, U = 10 V,I = 1A
I +
电压源是由电动势 E
E
和内阻 R0 串联的电源的电路模型。
-
R0
U
RL
U 理想电压源
U0=E
电压源
电压源模型
由上图电路可得: U = E – IR0
O
I
E IS RO
若 R0 = 0 理想电压源 : U E
若 R0<< RL ,U E ,
电压源的外特性
可近似认为是理想电压源。
理想电压源(恒压源)
(d)
(c)
例3:试用电压源与电流源等效变换的方法计算图示 电路中1 电阻中的电流。 2
+ 6V -
3
2A 6
4V+
I
-
4 1
解:统一电源形式
2
3
2A 2A
6 1A
4 1 I
2 2 4A 1A
4 I 1
解: 2
2
4A
1A
4 I 1
2
+ 8V
- 1A
2
4 I 1
I
2A1A1 Nhomakorabea3A
4
4
I 2 3A 2A 21
I R
+R1 _U1
I
I
IS
R I1
R1 IS
R
(a) b
(b) b
(c) b
解:(1)由电源的性质及电源的等效变换可得:
电流恒定,电压随负载变化。
三 电压源与电流源的等效变换
I
+
E
– R0
U
RL
I
U IS R0 R0 U RL
电压源 由图a: U = E- IR0
等效变换条件:
电流源
E = ISR0
E IS R0
由图b: U = ISR0 – IR0
E与IS的极性一致
注意事项:
① 电压源和电流源的等效关系只对外电路而言, 对电源内部则是不等效的。
例2: 试用电压源与电流源等效变换的方法计算2电阻 中的电流。(并联部分转换成电流源;串联部分化成电压源)
串联
1
解:
2A
– 1 1 2V
+
3 6
1
++
6V–
12V –
2
I
3
6
2A
2A
2 I
(b)
并联
(a)
–
+ +
–
由图(d)可得
2 2V
2 2V
I 8 2 A 1A 222
2 +
2
8V –
I
2 2 I 4A
理想电流源(恒流源)
I
U
IS
U
RL
O
I IS
特点: (1) 内阻R0 = ;
外特性曲线
(2) 输出电流是一定值,恒等于电流 IS ;
(3) 恒流源两端的电压 U 由外电路决定。
例1:设 IS = 10 A,接上RL 后,恒流源对外输出电流。 当 RL= 1 时, I = 10A ,U = 10 V 当 RL = 10 时, I = 10A ,U = 100V
两端网络
有源两端网络(含独立电源) 无源两端网络
*二端网络也称一端口电路或者单口电路 *端口中的电流和电压之分别称为:
端口电流和端口电压。 两者之间的关系可用端口伏安特性来表示。
外特性
2.1 电阻串并联联接的等效变换
1. 电阻的串联
I
特点:
U1
R1
1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流;
U R1 R2(3)等效电阻的倒数等于各电阻倒数之和; 11 1 R R1 R2
I U
(4)并联电阻上电流的分配与电阻成反比。
两电阻并联时的分流公式:
R
I1
R2 R1 R2
I
I2
R1 R1 R2
I
应用:
分流、调节电流等。
总目录 章目录 返回 上一页 下一页
2.3 电压源与电流源及其等效变换
一 电压源
电压恒定,电流随负载变化
二 电流源
I
电流源是由电流 IS 和内阻 R0 并联的电源的电路模型。
U
IS
R0 R0 U RL
U
理
U0=ISR0
想
电流源 电
- 电流源模型
流
由上图电路可得:
O
源
I IS
U I IS R0
电流源的外特性
若 R0 =
理想电流源 : I IS
若 R0 >>RL ,I IS ,可近似认为是理想电流源。
I 2 1
若改变求解问题
例3: 电路如图。U1=10V,IS=2A,R1=1Ω, R2=2Ω,R3=5 Ω ,R=1 Ω。(1) 求电阻R中的电流I; (2)计算理想电压源U1中的电流IU1和理想电流源IS两端 的电压UIS;(3)分析功率平衡。
IR1
a
a
a
R3
IU1
+_UR11URIS+_2
IS U
。 例:当RL= 时,电压源的内阻 R0 中不损耗功率,而电流源的内阻 R0 中则损耗功率
② 等效变换时,两电源的参考方向要一一对应。E、
IS极性要一致;
+a
E R0–
IS b
–
aE
R0
R+0
b
a
IS b
a
R0 b
③ 理想电压源与理想电流源之间无等效关系。
④ 任何一个电动势 E 和某个电阻 R 串联的电路, 都可化为一个电流为 IS 和这个电阻并联的电路。
5。对外电路而言,进行等效变换时, 可以断开与恒压源并联的支路或元件; 可以短接与恒流源串联的支路或元件, 不影响外电路的电量计算,但对电源 内部是有影响的。
若进行电源内部的分析计算,应恢复 原电路。
例1: 求下列各电路的等效电源
a
2
+ Uab 2
3 5V–
5A
(a)
解: a
a
3
Uab
b (b)
a
2 + 5V –
(a)
Uab 5A b
3
Uab
b (b)
a
2 +
+ 2V-
5V-
Uab b
(c)
a
+
5V –
Uab
b (c)
*注 意*
• 注意恒流源、恒压源等效计算
IS1
IS2
IS=IS1+IS2
若IS1>IS2
IS=IS1-IS2
恒压源的等效
E1 E=E1+E2
E2
若E1<E2
E=E2-E1