2018年成人高考《高等数学(一)》真题及答案
2018年成考数学真题及答案
绝密★启用前2018年成人高等学校招生全国统一考试数 学 (理工农医类)一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)函数24x y -=的定义域是(A )(—∞,0) (B )[0,2] (C )[—2,2] (D )(—∞,—2]∪[2,+∞] (2)已知向量a =(2,4),b =(m ,—1),且a ⊥b ,则实数m= (A )2 (B )1 (C )—1 (D )—2 (3)设角α是第二象限角,则(A )cos α<0,且tan α>0 (B )cos α<0,且tan α<0 (C )cos α>0,且tan α<0 (D )cos α>0,且tan α>0(4)一个小组共有4名男同学和3名女同学,4名男同学的平均身高为1.72m ,3名女同学的平均身高为1.61m ,则全组同学的平均身高约为(精确到0.01m ) (A )1.65m (B )1.66m (C )1.67m (D )1.68m(5)已知集合A={1,2,3,4},B={x ∣—1<x <3},则A ∩B=(A ){0,1,2} (B ){1,2} (C ){1,2,3} (D ){—1,0,1,2} (6)若直线l 与平面M 平行,则在平面M 内与l 垂直的直线 (A )有无数条 (B )只有一条 (C )只有两条 (D )不存在 (7)i 为虚数单位,若i (m —i )=1—2i ,则实数m= (A )2 (B )1 (C )—1 (D )—2(8)已知函数y=f(x)是奇函数,且f (—5)=3,则f (5)= (A )5 (B )3 (C )—3 (D )—5(9)若5)1(m =a,则=-ma2 (A )251 (B )52(C )10 (D )25 (10)21log 4= (A )2 (B )21 (C )21- (D )-2(11)已知25与实数m 的等比中项是1,则m= (A )251 (B )52(C )10 (D )25 (12)已知正三棱锥P-ABC 的体积为3,底面边长为32,则该三棱锥的高为(A )3 (B )3 (C )23 (D )33(13)曲线y=2x 2+3在点(—1,5)处切线的斜率是(A )4 (B )2 (C )—2 (D )—4 (14)函数21+=x y (x ≠—2)的反函数的图像经过点(A )),(241(B )),(9441 (C )),(614 (D )),(412 (15)下列函数中,既是偶函数,又在区间(0,3)为减函数的是 (A )y=cosx (B )y=log 2x (C )y=x 2—4 (D )x)31(y =(16)一位篮球运动员投篮两次,若两投全中得2分,若两投一中得1分,若两投全不中得0分.已知该运动员两投全中的概率为0.375,两投一中的概率为0.5,则他投篮两次得分的期望值是 (A )1.625 (B )1.5 (C )1.325 (D )1.25(17)已知A ,B 是抛物线y 2=8x 上两点,且此抛物线的焦点在线段AB 上,若A ,B 两点的横坐标之和为10,则∣AB ∣= (A )18 (B )14 (C )12 (D )10二、填空题:本大题共4小题,每小题4分,共16分。
2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)
2018年成人高等学校专升本招生全国统一考试高等数学(一)。
答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。
成人高考自考数学真题2018年成人高等学校高起点招生全国统一考试理科数学附答案解析
已知椭圆 C 的长轴长为 4,两焦点分别为 F1(- 3,0),F2( 3,0). (1)求 C 的标准方程.
(2)若 P 为 C 上一点,|PF1|-|PF2|=2,求 cos∠F1PF2.
2
2
【答案】题知 a=2,c= 3,所以 b= 2 − 2=1,所以椭圆方程为 + = 1
41
(2) | |
3
3
=22 −1
(2) = 22 −1=128=27
即 2k-1=7 ,得 k=4
23.(本小题满分 12 分)
在ΔABC 中,A=300,AB=2, BC= 3.求
(1)sinC
(2)AC
【答案】(1)根据正弦定理 =
有2 =
3300,解得
sinC=
3 3
.
(2) sinC= 3 ,sin600= 3 ,知∠C <600 ,得到∠B 为钝角.
A. 3/10
B. 1/5
C. 1/10
D.3/5
【答案】C 10.圆 x2+y2+2x-6y-6=0 的半径为( )
A. 10
B. 4
【答案】B
11.双曲线 3x2-4y2=12 的焦距为( )
C. 15
D.16
A. 2 7
B. 2 3
C. 4
D.2
【答案】A
12.已知抛物线 y2=6x 的焦点为 F,点 A(0,-1),则直线 AF 的斜率为( )
2018 年成人高等学校高起点招生全国统一考试
理科数学
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。满分 150 分。考试时间 150 分钟。
第 I 卷(选择题,共 85 分)
2018年成人高考数学真题(理工类)版(最新整理)
数学试题(理工农医类)
第Ⅰ卷(选择题,共 85 分) 一、选择题(本大题共 17 小题,每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是
符合题目要求的)
1.设集合 M {x -1 x 2}, N {x x 1}, 则 M N
(25)(本小题满分 12 分)设椭圆的焦点为 F1( 3,0), F2 ( 3,0) ,其长轴长为 4.
(1)求椭圆的方程;
(2)若直线 y 3 x m 与椭圆有两个不同的交点,求 m 的取值范围. 2
(22)(本小题满分 12 分)已知 ABC 中, A 60o , AB 5, AC 6, 求 BC .
(23)(本小题满分
12
分)已知数列 an的前 n
项和
sn
1
1 2n
,求‘
(1) an的前 3 项;
(2) an 的通项公式.
(24)(本小题满分 12 分)设函数 f (x) x3 3x2 9x .求 (1)函数 f (x) 的导数; (2)函数 f (x) 在区间[1,4]的最大值与最小值.
C . -2
D . -3
13 .每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为 0.6 ,甲、乙各自独立地射向目标,
则恰有一人击中的概率为
A . 0.44
B . 0.6
C . 0.8
D .1
14 .已知一个球的体积为 32 ,则它的表面积为 3
A . 4 B . 8 C .16
D . 24
B . y x-1 2
C . y 2x 1 D . y 1-2x
7 .若 a, b, c 为实数,且 a 0 。设甲: b2 4ac 0 ,乙: ax2 bx c 0 有实数根,则
2018年《高数》真题
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim 0()A.eB.2C.1D.02.设x y cos 1+=,则dy=()A.()dxx sin 1+ B.()dxx sin 1- C.xdxsin D.xdxsin -3.若函数()x x f 5=,则()='x f ()A.15-x B.15-x x C.5ln 5x D.x54.=-⎰dx x21()A.C x +-2ln B.Cx +--2ln C.()Cx +--221D.()Cx +-2215.()='⎰dx x f 2()A.()Cx f +221 B.()Cx f +2 C.()Cx f +22 D.()Cx f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11A.0B.2C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz()A.yxy 232++ B.yxy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是()A.柱面B.球面C.旋转抛物面D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ()A.0B.1C.2D.410.微分方程1='y y 的通解为()A.Cx y +=2 B.Cx y +=221 C.Cxy =2 D.Cx y +=22二、填空题:11~20小题,每小题4分,共40分11.曲线43623++-=x x x y 的拐点为___________12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________14.若x e y 2=,则=dy ___________15.()=+⎰dx x 32___________16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________18.=∑∞=031n n___________19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim2231---→x x x x 23.设函数()()23ln 2++=x x x f ,求()0f ''24.求23sin lim x tdt xx ⎰→25.求⎰xdxx cos 26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdyy x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】010cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -=3.【答案】C【解析】()()5ln 55x x x f ='='4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰221222126.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=22111.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6)12.【答案】3-e 【解析】()()[]()33311031lim 31lim --⋅-→→=-+=-e x x xx x x 13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111x x x x f +=+-='14.【答案】dxe x 22【解析】()x x e e y 222='=',则dx e dy x 22=15.【答案】C x x ++32【解析】()C x x dx x ++=+⎰332216.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x 17.【答案】2【解析】22cos 222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x 18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1【解析】10=-=∞+-+∞-⎰x x e dx e 20.【答案】xy4【解析】22y x z =,22xy x z =∂∂,xyyx z 42=∂∂∂21.【答案】()3sin 3limlim 00==--→→xxx f x x ()()aa x x f x x =+=++→→3lim lim 00且()af =0因为()0=x x f 在处连续所以()()()0lim lim 00f x f x f x x ==+-→→3=a 22.【答案】()1123lim1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim 11113lim2121=+++=+--++=→→x x x x x x x xx x 23.【答案】()()()22392332+-=''++='x x f x x f 故()490-=''f 24.【答案】202003cos 31lim 3sin lim xt x tdt x x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x 25.【答案】⎰⎰-=xdxx x xdx x sin sin cos Cx x x ++=cos sin 26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x ,当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数当1<x <0时,()0<x f ',此时()x f 为单调减少函数故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018年成人高考高数一真题及答案
29
6
27.这是个一阶线性非齐次微分方程。
P(x) = −
1
, Q(x) = 2lnx
1
1
故通解为y = ∫ .∫ 2 ∫ ; + C/ = x ∙ .2 ∫
dx + C/ = x,(lnx)2 + -
28.积分区域用极坐标可表示为:0 ≤ θ ≤ π,0 ≤ r ≤ 3,
三、解答题(21-28 题,共 70 分)
21.lim→0− () = limx→0−
3 sin
=3
lim () = lim+(3 + ) =
x→0+
x→0
且 f(x)=a
因为 f(x)在 x=0 处连续,所以.limx→0− () = limx→0+ () = (0)
23.设函数f(x) = 2x + ln(3x + 2),求f ′′ (0)
24.计算lim→0
∫0 sin 3
2
25.求∫ cos
1
1
26.求函数f(x) = 3 x 3 − 2 2 + 5 的极值
1
27.求微分方程y ′ − y = 2lnx的通解
28.设区域D = *(x, y)|x 2 + 2 ≤ 9, ≥ 0+,计算∬( 2 + 2 )。
D. 4
C.2
10.微分方程yy ′ = 1的通解为(
A. 2 = +
)
1
B. 2 2 = +
)
C. y 2 =
2018年成考数学真题及其答案
绝密★启用前2018年成人高等学校招生全国统一考试数 学一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)设集合M={x ∣-1≤x <2},N={x ∣x ≤1},则集合M ∩N=(A ){x ∣x >-1} (B ){x ∣x >1} (C ){x ∣-1≤x ≤1} (D ){x ∣1≤x ≤2}(2)函数y=51-x 的定义域为 (A )(-∞,5) (B )(-∞,+∞) (C )(5,+∞) (D )(-∞,5)∪(5,+∞)(3)函数y=2sin6x 的最小正周期为(A )3π (B )2π (C )π2 (D )π3 (4)下列函数为奇函数的是(A )y=log 2x (B )y=sinx (C )y=x 2 (D )y=3x(5)过点(2,1)且与直线y=x 垂直的直线方程为(A )y=x+2 (B )y=x-1 (C )y= -x+3 (D )y= -x+2(6)函数y=2x+1的反函数为(A )21+=x y (B )21-=x y (C )y=2x-1 (D )y=1-2x (7)若a,b,c 为实数,且a ≠0.设甲:b 2-4ac ≥0,乙:ax 2+bx+c=0有实数根,则(A )甲是乙的必要条件,但不是乙的充分条件(B )甲是乙的充分条件,但不是必要条件(C )甲既不是乙的充分条件,也不是乙的必要条件(D )甲是乙的充分必要条件(8)二次函数y=x 2+x-2的图像与x 轴的交点坐标为(A )(-2,0)和(1,0) (B )(-2,0)和(-1,0)(C )(2,0)和(1,0) (D )(2,0)和(-1,0)(9)设i z 31+=,i 是虚数单位,则=z1 (A )431i + (B )431i - (C )432i + (D )432i - (10)设a >b >1,则(A )a 4≤b 4 (B )log a 4>log b 4 (C )a -2<b -2 (D )4a <4b(11)已知平面向量a =(1,1),b =(1,-1),则两向量的夹角为(A )6π (B )4π (C )3π (D )2π (12))(x x 1-的展开式中的常数项为 (A )3 (B )2 (C )-2 (D )-3(13)每次射击时,甲击中目标的概率为0.8,乙击中目标的概率为0.6,甲、乙各自独立地射向目标,则恰有一人击中的概率为(A )0.44 (B )0.6 (C )0.8 (D )1(14)已知一个球的体积为π332,则它的表面积为 (A )4π (B )8π (C )16π (D )24π(15)在等腰三角形ABC 中,A 是顶角,且21=cosA -,则cosB= (A )23 (B )21 (C )21- (D )23- (16)四棱锥P-ABCD 的底面为矩形,且AB=4,BC=3,PD ⊥底面ABCD ,PD=5,则PB 与底面所成角为(A )30° (B )45° (C )60° (D )75°(17)将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为(A )101 (B )141 (C )201 (D )211 二、填空题:本大题共4小题,每小题4分,共16分。
2018成人高考高起点数学考试真题和答案解析
2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
2018年成人高考高数真题及答案解析
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim0( ) A.e B.2 C.1 D.0 2.设x y cos 1+=,则dy=( )A.()dx x sin 1+B.()dx x sin 1-C.xdx sinD.xdx sin - 3.若函数()x x f 5=,则()='x f ( ) A.15-x B.15-x x C.5ln 5x D.x 5 4.=-⎰dx x21( ) A.C x +-2ln B.C x +--2ln C.()C x +--221D.()C x +-2215.()='⎰dx x f 2( ) A.()Cx f +221B.()C x f +2C.()C x f +22D.()C x f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11 A.0 B.2 C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz( ) A.y xy 232++ B.y xy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是( ) A.柱面 B.球面 C.旋转抛物面 D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ( )A.0B.1C.2D.410.微分方程1='y y 的通解为( ) A.C x y +=2 B.Cx y +=221C.Cx y =2D.C x y +=22 二、填空题:11~20小题,每小题4分,共40分 11.曲线43623++-=x x x y 的拐点为___________ 12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________ 14.若x e y 2=,则=dy ___________ 15.()=+⎰dx x 32___________ 16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________ 18.=∑∞=031n n___________ 19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________ 三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim 2231---→x x x x23.设函数()()23ln 2++=x x x f ,求()0f '' 24.求23sin lim x tdt x x ⎰→25.求⎰xdx x cos26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdy y x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】01cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -= 3.【答案】C【解析】()()5ln 55x x x f ='=' 4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰22122212 6.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=221 11.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6) 12.【答案】3-e【解析】()()[]()33310131lim 31lim --⋅-→→=-+=-e x x xx xx13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111xx x x f +=+-=' 14.【答案】dx e x 22【解析】()x x e e y 222='=',则dx e dy x 22= 15.【答案】C x x ++32 【解析】()C x x dx x ++=+⎰3322 16.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x17.【答案】2【解析】22cos222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1 【解析】100=-=∞+-+∞-⎰x x e dx e20.【答案】xy 4【解析】22y x z =,22xy xz =∂∂,xy y x z 42=∂∂∂ 21.【答案】()3sin 3limlim 00==--→→xxx f x x()()a a x x f x x =+=++→→3lim lim 0且()a f =0因为()0=x x f 在处连续 所以()()()0lim lim 00f x f x f x x ==+-→→3=a22.【答案】()1123lim 1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim11113lim2121=+++=+--++=→→x x x x x x x x x x23.【答案】()()()22392332+-=''++='x x f x x f故()490-=''f24.【答案】2002003cos 31lim 3sin lim xt x tdtx x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x25.【答案】⎰⎰-=xdx x x xdx x sin sin cos C x x x ++=cos sin26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x , 当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数 当1<x <0时,()0<x f ',此时()x f 为单调减少函数 故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x dx x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018成人高考数学真题
2018成人高考数学真题2018年成人高考数学考试一直备受考生们关注,考试难度如何?考察的内容有哪些?下面就让我们来看一下2018年成人高考数学的真题。
第一部分:选择题1.已知函数$f(x)=2x^2-5x-3$,则$f(-1)=$?A. -4B. 4C. 3D. -3答案:A. -42.若直线$y=kx+3$与抛物线$y=x^2-4x$相交于$(1,4)$,则$k=$?A. -1B. 0C. 1D. 2答案:C. 13.在平面直角坐标系中,点A$(2,3)$,点B$(-1,4)$,则$\angleAOB$的正切值为?(其中O为坐标原点)A. $\frac{7}{2}$B. $\frac{5}{3}$C. $\frac{7}{5}$D. $\frac{5}{7}$答案:B. $\frac{5}{3}$4.已知实数$a$,使得方程$x^2-2ax+0.25=0$有两个不相等的实根,则$a$的取值范围是?A. $a>0$B. $0<a<2$C. $a>1$D. $a>0.5$答案:B. $0<a<2$第二部分:填空题5.已知等差数列前$n$项和为$S_n=\frac{n(2a_1+(n-1)d)}{2}$,若$a_1=3$,$d=5$,$S_7=42$,则数列的第一个数$a_1=$ ?(填数字)答案:-46.设函数$y=f(x)=x^3-3x^2+x+2$,则$f'(x)=$ ?(填公式)答案:$f'(x)=3x^2-6x+1$第三部分:计算题7.已知集合$A=\{x | x=a^2,b^2,c^2,d^2\}$,$B=\{y |y=\sqrt{a},\sqrt{b},\sqrt{c},\sqrt{d}\}$,若$a=2$,$b=3$,$c=4$,$d=5$,求$A\cap B$。
答案:$\{2,3,4,5\}$8.解方程组:$$\begin{cases} 2x+3y=11\\ x+y=5 \end{cases}$$答案:$x=2$,$y=3$第四部分:证明题9.已知$\triangle ABC$,$\angle A+\angle B+\angle C=180^\circ$,证明$AB+BC>AC$。
2018年全国成人高考高中起点数学试题答案
2018年成人高等学校招生全国统一考试数学(文史财经类)一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项的字母填涂在答题卡相应题号的信息点上。
1.设集合{}{}2,4,8,2,4,6,8,A B A B ==⋃=则(A )A .{}2,4,6,8B .{}2,4C .{}2,4,8D .{}6【解析】{}{}{}2,4,82,4,6,82,4,6,8A B ⋃=⋃= 2.不等式x 2-2x <0的解集为(C )A .{}02x x x <或>B .{}20x x -<<C .{}02x x <<D .{}20x x x -<或>【解析】()()2202020200202002x x x x x x x x x x x x x -<→-<-<->→<>>-<→<<即两因式和为异号,故有:①且解得且,无解或②且解得3.21y x=-曲线的对称中心是(D ) A .(-1,0) B .(0,1)C .(2,0)D .(1,0) 【解析】()()-2-2-2-20,011-1-1,0y y y y x x x x ====曲线的对称中心是原点,而曲线是由曲线向右平移个单位形成的,故曲线的对称中心是。
4.下列函数中,在区间(0,+∞)为增函数的是(B )A .y =x -1B .y =x 2C .y =sinxD .y =3-x 【解析】A 、D 两项在(0,+∞)上为减函数,C 项在(0,+∞)上不是单调函数.5.()tan(2)3f x x π=+函数的最小正周期是(A ) A .π/2B .2πC .πD .4π 【解析】 2ππω==最小正周期T 6.下列函数中,为偶函数的是(A )A.y =B .y 2x -= C .1y 1x -=-D .3y 1x -=+【解析】 ()()()y y f x f x f x ==-===,故7.函数y =log 2(x +2)的图像向上平移1个单位后,所得图像对应的函数为(D )A .y =log 2(x +1)B .y =log 2(x +3)C .y =log 2(x +2)-1D .y =log 2(x +2)+1【解析】222log 21-1log -02log 21y x y x y x +函数=(+)的图像向上平移个单位后,所得图像对应的函数为=(+),即=(+)8.在等差数列{a n }中,a 1=1,公差d ≠0,a 2,a 3,a 6成等比数列,则d =(C )A .1B .-1C .-2D .2 【解析】 {}()()()()()()n 1213161236236326232111a a 1d a a d a a 2d a a 5d a a a a a a a a a a a 2d a d a 5d d 0d 2.==⨯===-为等差数列,=,公差为,则有=+,=+,=+,又因,,成等比数列,则有,即,即有+++,解得舍去或9.从1,2,3,4,5中任取2个不同的数,这2个数都是偶数的概率为(C )A .3/10B .1/5C .1/10D .3/5【解析】22251210C P C ==这个数都是偶数的概率为10.圆x 2+y 2+2x -6y -6=0的半径为(B )AB .4 CD .16【解析】()()2222266013164x y x y x y ++-=圆++--=可以化为,故圆的半径为11.曲线3x 2-4y 2=12的焦距为(A )A .27B .23C .4D .2【解析】2222223412143,7,432x y x y a b c c -======-=可以化为,即,则则焦距12.已知抛物线,y 2=6x 的焦点为F ,点A (0,-1),则直线AF 的斜率为(D )A .3/2B .-3/2C .-2/3D .2/3 【解析】 ()201326,0,32302y x F AF K --⎛⎫== ⎪⎝⎭-抛物线=的焦点为则直线的斜率为13.若1名女生和3名男生排成一排,则该女生不在两端的不同排法共有(B )A .24种B .12种C .16种D .8种【解析】132312()A =该女生不在两端的不同排法有C 种14.已知平面向量a =(1,t ),b =(-1,2),若a +mb 平行于向量(-2,1),则(B )A .2t -3m +1=0B .2t +3m +1=0C .2t -3m -1=0D .2t +3m -1=0【解析】()()()()()()()1,1,21,2,2111222310a mb t m m t m a mb m t m t m +=+-=-++-⨯-=-⨯+又因平行于向量,,则,化简得:++=15.()()2cos 3333f x x ππ⎡⎤=--⎢⎥⎣⎦函数在区间,的最大值是(C ) A .0BC .2D .-1【解析】 ()()2cos 33 2.9x f x x π==-当时,函数取最大值,最大值为16.函数y =x 2-2x -3的图像与直线y =x +1交于A ,B 两点,则AB (D )A.B .4 CD. 【解析】()()214231,0,4,5,051x x y x x A B y y y x AB =-=⎧=--⎧⎧-⎨⎨⎨===+⎩⎩⎩=由得或,即则17.设甲:y =(x )的图像有对称轴;乙:y =f (x )是偶函数,则(D )A .甲是乙的充分条件但不是必要条件B .甲既不是乙的充分条件也不是乙的必要条件C .甲是乙的充要条件D .甲是乙的必要条件但不是充分条件【解析】图像有对称轴的不一定是偶函数,但偶函数的图像一定有对称轴 轴,故选D.二、填空题:18~21小题,每小题4分,共16分。
2018年成人高考高起点数学试题及答案
2018年成人高考数学试题1.已知集合A={2,4,8},B={2,4,6,8},则A∪B=()A.{6}B.{2,4}C.{2,4,8}D.{2,,4,6,8}2.不等式x²-2x<0的解集为()A.{x|0<x<2}B.{x|-2<x<0}C.{x|x<0或x>2}D.{x|x<-2或x>0}1.1.2.1y .A .62.D .C 2.B 4.A 3x 2tan x f .53y .D x y .C sinxy .B x y .A 04.) 1,0 ( D.)0,2 ( C.)0,1 ( B.)0,1- ( A.x-12y .3213x-21-+=-==+=+=====∞+=---x y D x y C y B x x的是()下列函数中,为偶函数πππππ()(函数)内为增函数的是(),下列函数中,在区间(曲线7.函数y=log ₂(x+2)的图像向上平移一个单位后,所得图像对应的函数为()A.y=log ₂(x+1)B.y=log ₂(x+2)+1C.y=log ₂(x+2)-1D.y=log ₂(x+3)8.在等差数列y=log ₂(x=2)的图像向上平移1个单位后,所得图像对应的函数为()A.-2B.-1C.1D.29.从1,2,3,4,5中任取2个不同的数,这2个数都是偶数的概率为()A.1/10 B.1/5 C.3/10 D.3/510.圆x²+y²+2x-6y-6=0的半径为()16.D 4.C 15.B 10.A 11.双曲线3x²-4y²=12的焦距为()72.D 4.C 32.B 2.A 12.已知抛物线y=6x 的焦点为F,点A (0,1),则直线AF 的斜率为()32-.D 23-.C 32.B 23.A 13.若1名女生和3名男生排成一排,则该女生不在两端的不同排法共有()A.24种B.16种C.12种D.8种14.已知平面向量a=(1,t),b=(-1,2)若a+mb 平行于向量(-2,1)则()A.2t-3m+1=0B.2t-3m-1=0C.2t+3m+1=0D.2t+3m-1=01-.D 0.C 3B.A.233-3-x 3cos 2x f .15的最大值是()π,π)在区间π()(函数⎥⎦⎤⎢⎣⎡=16.函数y=x²-2x-3的图像与直线y=x+1交于A,B 两点,则|AB|=()4.D 13.C 25.B 132.A 17.设甲:y=f(x)的图像有对称轴;乙:y=f(x)是偶函数,则()A 甲是乙的充分条件但不是必要条件B 甲是乙的必要条件但不是充分条件C 甲是乙的充要条件D 甲既不是乙的充分条件也不是乙的必要条件18.过点(1,-2)且与直线3x+y-1=0垂直的直线方程为_____.18.掷一枚硬币时,正面向上的概率为1/2,掷这枚硬币4次,则恰有2次正面向上的概率是_____.._____x 2sin x 53-sinx .20==为第四象限角,则,且已知._____)0,01e -x y .21x 2处的切线方程为在点(曲线+={}{}.128a 2a 1).14(32n a 12.(22k n n k S n n ,求)若(的通项公式;)求(项和的前已知数列分)本小题满分=-=23.(本小题满分12分)求,,中,在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1B. 2 C. 3 D. 4 解:
设 f x 4x ln 4 x 4 ln x k , x 0,.①
f x 4 4 ln3 x 4 4 x ln3 x 1
则
x
xx
.②
令 f x 0 ,得驻点 x 1.
因为当 x 0,1 时,f x 0 ,故 f x 在 x 0,1单调减少;而当 x 1,时,f x 0 故 f x
x
x
.
第 3 页 共 18 页
综合上述分析可画出 y f x的草图,易知交点个数为 2.
16.设
ln
f
t
cos t
,则
tf f
ttdt
(A)
A. t cost sin t C B. t sin t cost C
C. tcos t sin t C D. t sin t C
lim ln n 1 1 2 1 2 2 1 n 2 17. n n n n (B)
sin x dx
sin 2x dx
2.函数 y 8x 的反函数是(C). A. y 3log 2 x(x 0) ;B. y 8x ;
C.
y
1 3
log 2
x(x
0)
;D.
y
8 x
(x
0)
.
xn
1 n
,当n为奇数,
3.设
107 ,当n为偶数, 则(D)
A.
lim
n
xn
0
;B.
lim
n
xn
107 ;
0, n为奇数,
lim
n
2
2
C. 2 cos y D. 2 cos x
dy 解:因为 dx
1
1 2
cos
x
,所以
dx dy
1 dy dx
1
1 1 cos x 2
2. 2 cos x
11.曲线
y
x
sin 2t, cos t,
,在
t
4
处的法线方程为(A)
第 2 页 共 18 页
x A.
2 2 B. y 1C. y x 1 D. y x 1
x
n
C.
10
7
,
n为偶数.
D.
lim
n
x
nx
lim
x x0
f x lim
是 xx0
f
x
存在的(C)
A.充分条件但非必要条件;B.必要条件但非充分条件;
C.充分必要条件;D.既不是充分条件也不是必要条件. 5.若 x 是无穷小,下面说法错误的是(C)
A. x2 是无穷小;B. 2x 是无穷小;
在 x 1, 单调增加.所以 f 1 4 k 为最小值.
lim f x lim ln x ln3 x 4 4x k
又 x0
x0
,
1
lim
x
f
1
x
lim
x
ln x x
ln x x
3
x4
4 x3
4
1 x3
k
1 x4
0 ,故
lim f x lim ln x ln3 x 4 4x k
i ). n
1 n
2
1ln1
0
xdx
(令 t
1
x)
2
2
ln tdt
1
2
2
ln xdx
1
x f t 2 dt x3
2 1 f xdx
18.已知 1
,则 0
(C)
A.1B. 2 C. 3 D. 4
a 1 e x2 dx b 1 e1x2 dx
19.设 0
,
0
,则(C)
A. a b B. a b C. a b D.无法比较
1 A. 2 x B. x
C.
x 4x2
D.
2 3
3
x2
9.设
f
x
g x ,则
d dx
f
sin 2
x (D)
A. 2gxsin x f e x .e f x B. gxsin 2x
C. g sin 2 x D. g sin 2 x .sin 2x
d
解: dx
f
sin 2 x
14.若
f
x 在点 x
a 的邻域内有定义,且除去点 x
a 外恒有
f
x f a x a4
0 ,则以下结论正
确的是(D)
A. f x 在点 a 的邻域内单调增加 B. f x 在点 a 的邻域内单调减少
C. f a 为函数 f x 的极大值 D. f a 为函数 f x 的极小值
15.曲线 y 4 ln x kk 4与 y 4x ln 4 x 的交点个数为(D)
7. x0
xx
(A)
A. 1B.1C. 0 D.不存在
lim 解: x0
x sin
1 x
0 lim ; x0
1 x
.sin
x
1 ,所以
lim x0
x
sin
1 x
1 x
sin
x
0
1
1.
8.设函数 f x 具有 2012 阶导数,且 f 2010 x x ,则 f 2012 x (C)
f sin 2 x
sin 2 x
f
sin
2
x
2 sin
x.sin
x
f sin 2 x 2sin x.cos x f sin 2 x sin 2x g sin 2 x sin 2x .
10.设
y
x
1 2
sin
x ,则
dx dy
(D)
A.1 2 cos y B.1 2 cos x
2018 年成人高考《高等数学(一)》真题及答案
一、选择题(每小题 2 分,共 60 分) 在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号 涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
y sin3x
1.函数
4 的最小正周期是(C).
2
3
A. 2 ;B. 3 ;C. 3 ;D. 2 .
2 ln 2 xdx
2
2 ln xdx
A. 1
B. 1
C.
2
2 1
ln1
xdx
D.
2
1
ln
2
1
xdx
lim ln n 1 1 2 1 2 2 1 n 2 解: n n n n
2
lim
n
ln(1
1) n
ln(1
2) n
ln1
n n
.
1 n
2 lim n
n i 1
ln(1
12.点 0,1是曲线 y ax3 bx 2 c 的拐点,则有(B)
A. a 1,b 3, c 1B. a为任意值,b 0, c 1
C. a,b为任意值, c 1D. a 1,b 0, c为任意值
13.函数 f x x 2ex2 的极值点的个数是(C)
A.1B. 2 C. 3 D. 4
C. x 0.0001是无穷小;D. x 是无穷小. 6.下列极限中,值为 1 的是(C)
lim . sin x lim . sin x A. x 2 x B. x0 2 x
第 1 页 共 18 页
C.
lim
x 2
2
.
sin x
x
D.
lim
x
2
.
sin x
x
lim x sin 1 1 sin x