桩基检测(自平衡检测) 检测报告
桩基检测自平衡
桩基检测自平衡
桩基检测自平衡技术是一项应用广泛的检测技术,它可以有效地提高施工质量和工程安全,受到了广大工程师的重视和好评。
桩基作为施工中不可或缺的基础工程,其承载能力和稳定性对工程质量和安全至关重要。
然而,由于很多因素的影响,如土壤结构、水文环境、施工工艺等,桩基的承载能力和稳定性存在不确定性。
如果在工程运行中未及时发现和处理这些问题,势必会给工程带来极大的风险和损失。
为了提高工程质量和安全,桩基检测自平衡技术应运而生。
这项技术是通过在桩基顶部安装高精度传感器,实时监测桩基的水平位置和倾斜角度,并对检测数据进行处理和分析,从而实现桩基自平衡的目的。
当桩基出现姿态偏差时,自平衡系统会自动采取调整措施,使桩基恢复到设计位置和姿态,保证其承载能力和稳定性。
桩基检测自平衡技术具有以下优点:一、实时性强。
传感器的高精度和自动化控制系统的快速响应,使系统具有极高的实时性和准确性;二、操作简便。
采用自动控制系统,无需专业技术人员进行操作和调整,降低了操作难度和成本;三、精度高。
采用高精度传感器并进行数据处理,能够达到极高的精度和稳定度;四、适用范围广。
该技术不仅适用于各种类型的桩基施工,也可用于桥梁、隧道、地铁等工程的检测和安全管理。
综上所述,桩基检测自平衡技术是一项具有广泛应用前景和重要意义的技术。
各行各业工程师应该加强对该技术的了解和应用,充分发挥其作用,为工程质量和安全保障作出积极贡献。
同时,我们也期待着这项技术在不断创新和完善的同时,能为我们的工程建设和社会进步带来更多的新机遇和前景。
桩基检测报告书范文
桩基检测报告书范文一、检测背景对于建筑工程中的桩基础,检测是非常重要的一项工作。
桩基础的安全性直接影响着建筑物的稳定性和使用寿命。
本次检测的目的是对建筑项目的桩基础进行全面的检测,确定其质量和稳定性。
二、检测范围本次检测范围涵盖了该建筑项目所有的桩基础,共计30根。
检测过程中,我们使用了动态荷载试验以及静载试验等多种方法,以确保结果的准确性和可靠性。
三、检测方法3.1动态荷载试验动态荷载试验是一种常用的桩基础检测方法,利用试验车辆在被检测桩基础上施加一定的冲击力,通过对振动信号的监测和分析,可以得出桩基础的承载能力和稳定性。
3.2静载试验静载试验是另一种常用的桩基础检测方法,它通过施加静态荷载来测试桩基础的变形和承载性能。
我们利用了静载试验仪器对每根桩基础进行了载荷监测和变形测试,得到了详细的数据。
四、检测结果4.1动态荷载试验结果根据动态荷载试验的结果,我们得出了每根桩基础的承载能力和变形情况。
其中,桩基础1-10承载能力在设计要求范围内,符合规定标准;桩基础11-20承载能力略低于设计要求,建议增加对应桩基础的承载能力;桩基础21-30承载能力超过设计要求,处于一种过度稳定的状态。
4.2静载试验结果通过静载试验得出的结果显示出与动态荷载试验一致的趋势。
其中,桩基础1-10的变形情况较小,基本符合设计要求;桩基础11-20的变形情况较大,说明承载能力不足;桩基础21-30的变形情况非常小,超过设计要求。
五、检测建议根据本次检测结果,我们提出以下建议:5.1对于承载能力低于设计要求的桩基础11-20,建议在施工过程中增加相应的加固措施,以提高其承载能力和稳定性。
5.2对于承载能力超过设计要求的桩基础21-30,建议重新评估项目的设计方案,以避免过度的稳定性造成的增加工程造价和浪费。
六、结论根据本次检测结果分析,该建筑项目的桩基础整体上承载能力较好,大多数桩基础符合设计要求。
然而,仍有少部分桩基础存在承载能力不足或过大的问题,建议在后续施工过程中进行相应的处理措施。
桩基检测报告
桩基检测报告一、检测目的。
本次检测旨在对XX工程项目的桩基进行全面、准确的检测,以评估桩基的质量和稳定性,为工程建设提供可靠的依据。
二、检测范围。
本次检测范围包括XX工程项目的全部桩基,共计XX根。
检测内容包括桩基的质量、深度、垂直度、水平位移等指标的检测。
三、检测方法。
1. 钻孔法,采用钻孔法对桩基进行质量检测,通过对桩基周围土壤和岩石的取样分析,评估桩基的承载能力和抗压性能。
2. 静载试验,采用静载试验对桩基的承载能力进行检测,通过施加静载荷,观测桩基的变形和沉降情况,评估桩基的稳定性。
3. 动力触发法,采用动力触发法对桩基进行动力检测,通过对桩基施加冲击力,观测桩基的振动响应,评估桩基的垂直度和水平位移情况。
四、检测结果。
1. 桩基质量,经过钻孔法检测,桩基的质量良好,混凝土质地均匀,无空鼓、裂缝等质量问题。
2. 桩基深度,通过静载试验和动力触发法检测,桩基的深度符合设计要求,承载层良好,具有良好的承载能力。
3. 桩基垂直度,经过动力触发法检测,桩基的垂直度良好,未发现明显的倾斜和偏移情况。
4. 桩基水平位移,通过静载试验和动力触发法检测,桩基的水平位移在允许范围内,符合设计要求,稳定性良好。
五、结论。
经过全面的桩基检测,本次检测结果显示,XX工程项目的桩基质量良好,各项指标符合设计要求,具有良好的承载能力和稳定性,为工程建设提供了可靠的基础保障。
六、建议。
1. 建议在施工过程中加强对桩基的保护和监测,避免外界因素对桩基的影响。
2. 建议定期对桩基进行检测和维护,确保桩基的稳定性和安全性。
七、附图。
1. 桩基平面布置图。
2. 桩基静载试验曲线图。
3. 桩基动力触发响应曲线图。
以上为本次桩基检测报告的内容,希望能为工程建设提供有益的参考,谢谢!。
(整理)桩基检测报告范本
受控编号:检测报告(范本)编号(各检测机构自定)工程名称:委托单位:建设单位:设计单位:施工单位:监理单位:检测机构(章)年月日声明1、本检测报告无我单位检测专用章和计量认证专用章无效。
2、本检测报告无骑缝章无效。
3、本检测报告涂改、换页、漏页无效。
4、本检测报告无检测、审核、批准人签字无效。
5、对本检测报告若有异议或需要说明之处,应于收到报告之日起十五日内向我单位书面提出,本单位将给予及时的解释或答复。
检测机构:单位地址:邮政编码:联系电话:检测机构名称报告编号:工程名称工程地点委托单位建设单位勘察单位设计单位监理单位施工单位基础型式设计要求检测目的检测方法检测数量检测环境检测时间xx年xx月xx日至xx月xx日检测类别检测依据1、地基基础设计文件及相关施工技术资料;2、《建筑地基处理技术规范》JGJ79-2002;3、《建筑地基基础工程施工质量验收规范》GB50202-2002;4、《建筑基桩检测技术规范》JGJ106-2003;5、《建筑地基基础设计规范》GB50007-2002;6、《xx工程岩土工程勘察报告》;7、其它相关技术标准及通过鉴定的新检测方法或科研成果等等。
检测结论检测结论:1、该工程承载力是否满足设计要求。
2、桩身完整性检测,判定桩身完整性类别,注明各类桩的数量。
如有Ⅲ类桩时,应建议设计单位对此类桩的可用性进行复核。
(本页以下无正文)检测机构(章)年月日批准:审核:注册工程师:检测:检测报告一、工程概况(叙述工程名称、地址、结构类型、规模、基础型式、地基处理方式、设计桩长、桩径、桩身强度、复合地基设计置换率、地基承载力、成桩时间、委托单位、检测单位、工作内容、工作时间等基本内容。
)二、工程地质概况依据《xx工程岩土工程勘察报告》该工程建筑场地工程地质概况如下:对检测场地的工程地质情况进行简要的描述(内容包括土层分布、土层基本物理力学指标、地下水位及桩顶、桩端所在土层等。
)三、检测目的1、通过XX试验,检验XX承载力特征值能否满足设计要求;2、检测桩身缺陷的程度及位置,判定桩身完整性类别;3、其他检测目的。
自平衡法的桩基检测
自平衡法桩基检测实例一、前言市某改造工程,全线长918.76m。
主线高架标准宽度为25m。
一座半互通式立交。
高架桥根底采用大直径钻孔灌注桩,桩径为250cm、150cm、120cm、100cm四种,主要桩径为120cm。
受业主委托,我院于于2007年11月1日对整治工程1根试桩进展荷载箱预埋,整个预埋工作都在现场技术人员的指导监视下顺利进展,并于2007年11月28日~11月29日进展了静载荷试验现场测试工作。
试验采用自平衡法,并用慢速维持荷载法加载,按预先制定的试验方案严格遵照测试规程进展,现场测试顺利。
二、工程地质概况根据场地岩土工程勘察报告,场地桩长围主要地层分布参见下表1,岩土主要物理力学特征详见地质勘察报告。
表1: 主要地层分布表(对应Z6孔)层号土层名称层底标高层厚桩周土摩阻桩端土承载三、试桩参数本段试验共进展3根试桩的静载试验。
其中1根采用自平衡深层静载荷试验方法,2根采用堆载法。
本次为1根〔SZ1〕,试验方法采用自平衡法。
有关试桩参数见表2:表2:SZ1试桩主要参数表四、试验方法、检测设备与执行标准〔一〕测试原理基桩自平衡深层静载荷试验是把荷载箱置于桩身预定深度,利用载荷箱上部桩侧摩阻做反力,进展端阻力、单桩竖向极限承载力检测,荷载箱提供向上、向下的力,从而使桩端阻力与桩侧阻力根本相等而到达平衡。
在试验加载过程中,根据规要求,记录逐级荷载及相应的桩身向上和向下的位移,得到荷载与位移关系曲线,根据规评价基桩的极限承载力、端阻力和侧阻力等参数。
〔二〕实验仪器设备本次基桩自平衡试验采用的设备有:荷载箱〔国家一级计量部门标定〕、电动油泵与压力表、百分表等。
加载采用荷载箱,通过高压油泵输油加载,加载力值由压力表测读,试桩的位移量测采用百分表人工测读,荷载箱加载时,共架设5只百分表,其中2只测量荷载箱向下位移,2只测量荷载箱向上位移,1只测量桩顶向上位移。
现场数据经整理分析后绘制成:荷载箱向下位移Q-s曲线和s-lgt曲线,荷载箱向上位移U-δ曲线和δ-lgt曲线,并可根据需要转换为与传统试桩方法等效的桩顶Q-s曲线。
工程施工桩基检测报告
工程施工桩基检测报告一、检测目的本次检测旨在对工程施工现场的桩基进行全面详细的检测,主要目的如下:1. 评估桩基施工的合理性和稳定性,确保工程质量;2. 检测桩基的质量和强度,以保证工程的安全可靠性;3. 发现桩基可能存在的问题并及时提出处理建议,以避免施工中的问题影响工程进度。
二、检测范围本次检测的工程施工现场为XX工程施工现场,共涉及XX根桩基的检测工作,主要检测内容包括但不限于以下几个方面:1. 桩基的尺寸和形状:检测桩基的长度、直径、形状等参数,以确认桩基符合设计要求;2. 桩基的质量和强度:通过对桩基质量和强度的检测,评估桩基的承载能力和稳定性;3. 桩基的垂直度:测量桩基的垂直度,并指出桩基是否存在倾斜或错位等问题;4. 桩基的深度和沉陷量:测量桩基的埋设深度和沉陷量,以确保桩基的安全性和稳定性。
三、检测方法本次检测采用了多种方法和技术,以确保检测结果的准确性和可靠性,具体包括但不限于以下几种方法:1. 钢丝绳法:通过拉钢丝绳来检测桩基的垂直度和形状,以发现桩基是否存在倾斜或形变等问题;2. 钻孔法:通过在桩基周围钻取孔洞,测量孔洞中土层的颗粒密度和含水量等信息,从而评估桩基的承载能力;3. 高频声波法:利用高频声波来探测桩基的质量和强度,以评估桩基的稳定性和可靠性;4. 静载试验:在桩基上施加静载,通过监测桩基的沉陷量和变形情况,评估桩基的承载能力。
四、检测结果根据上述多种方法和技术的检测,我们对本次工程施工现场的桩基进行了详细的检测和评估,得出以下几点结论:1. 桩基的尺寸和形状均符合设计要求,未发现明显的形状不规则或长度偏差等问题;2. 桩基的质量和强度较好,未出现明显的质量缺陷或强度不足等情况;3. 桩基的垂直度良好,未发现明显的倾斜或错位等问题;4. 桩基的深度和沉陷量在合理范围内,未达到超标的情况。
五、检测建议基于以上检测结果和结论,我们对工程施工现场的桩基提出以下几点建议:1. 加强对桩基的质量和强度监测,确保桩基的安全可靠性;2. 定期检测桩基的垂直度和形状,及时调整桩基位置,避免出现倾斜或错位等问题;3. 加强对桩基深度和沉陷量的监测和管理,确保桩基的稳定性和安全性。
桩基检测报告范文
桩基检测报告范文一、检测背景和目的桩基是土木工程中常用的基础形式之一,其负责承受房屋或结构物的重量,并将其传递到地下土层中。
为了确保桩基质量符合设计要求,我们进行了桩基检测。
本次检测的目的是评估桩基的稳定性、荷载传递能力以及桩身的质量情况,为后续工程提供可靠的依据。
二、检测方法和过程本次桩基检测采用了非破坏性检测方法,主要包括声波检测、静载试验和动力触探。
1.声波检测:通过发送地震波,观察波传播的速度和反射情况,以确定桩基的质量状况和桩顶混凝土的完整性。
2.静载试验:在选择的几根桩基上施加逐渐增加的静荷载,并测量桩身的沉降情况,以评估桩基的承载力。
3.动力触探:通过向桩基施加冲击波,观察桩身的反应和回弹情况,以确定桩体的连续性和桩端的阻力。
在实施检测时,我们按照设计要求选择了一定数量和不同类型的桩基进行检测,并记录了相应的数据。
三、检测结果和分析根据声波检测的结果,通过分析不同波速反射情况和波形特征,发现桩顶混凝土的质量良好,无明显缺陷或裂缝。
这为后续的施工提供了良好的基础。
静载试验显示,各根桩基在不同静荷载下的沉降情况符合设计规范要求。
经过计算和分析,桩基的承载力满足设计要求,保证了工程的安全性。
动力触探结果显示,桩身的连续性良好,整根桩体没有明显的异常情况。
桩端阻力逐渐增大,表明桩基与土壤的黏聚力较好,具备良好的承载能力。
四、结论和建议根据以上检测结果和分析,可以得出以下结论:1.桩顶混凝土质量良好,无明显缺陷。
2.桩基的承载力满足设计要求,具备良好的稳定性。
3.桩身的连续性良好,桩端具备良好的阻力。
综上所述,本次桩基检测结果良好,符合设计要求。
在后续的施工过程中,我们建议保持桩基的质量,并及时进行进一步检测,以确保工程的安全性和可靠性。
六、附录1.桩基声波检测数据表2.桩基静载试验记录表。
桩基检测报告2篇
桩基检测报告2篇第一篇:桩基检测报告一、基本情况本次桩基检测是针对某高层住宅小区的建设项目进行的,该项目地点位于某市某区。
小区总用地面积为xx平方米,总建筑面积为xx平方米,由5栋高层住宅组成。
本次检测针对其中一栋高层住宅进行。
二、勘察部分1. 公路、铁路以及地质崩塌堆积物等因素影响的程度该项目周边无公路、铁路等交通基础设施,也未发现任何地质崩塌、堆积物等影响地基的因素。
2. 桩基类型及其数量、直径该建筑采用的桩基类型为合肋钢管成桩,共计60根,桩直径为800mm。
3. 桩基的设计孔深和孔径桩基的设计孔深为20m,孔径为810mm。
4. 下部结构类型及其长度该建筑的下部结构采用矩形混凝土框架结构,高度为6层、总长度约80m。
三、检测数据与分析1. 单桩竖向力学性能分析本次检测共选取了6根桩进行竖向力学性能测试。
通过数据分析,得出以下结论:(1)各根桩的锚固长度符合设计要求。
(2)桩顶荷载试验测得的桩的单位侧阻力确定值均符合要求。
(3)各根桩的总侧阻力值符合设计要求。
2. 桩-土互作用分析本次检测对桩-土互作用进行了有限元模拟分析,并通过计算,得出以下结论:(1)桩身强度合格。
(2)桩桩之间的相互作用不大。
(3)桩与土体的互作用作用基本上符合设计要求。
四、结论本次桩基检测针对该建筑物的桩基进行了充分的测试和分析,对桩基的竖向力学性能、桩-土互作用等方面得出了准确的数据和结论。
根据检测结果,证明该建筑物的桩基质量上乘,符合设计要求。
建设单位可以放心开展后续的工程施工。
第二篇:桩基检测报告一、基本情况本次桩基检测是针对某大型商场项目进行的,该项目地点位于某市某区。
商场总用地面积为xx平方米,总建筑面积为xx平方米。
本次检测针对商场的整体桩基进行。
二、勘察部分1. 公路、铁路以及地质崩塌堆积物等因素影响的程度该项目附近有公路、铁路等交通基础设施,但是这些因素未对地基造成显著影响,而且商场地块本身位于某山坡上,土质厚度较大,稳定性较好。
基桩自平衡静载荷试验报告
受控编号:工程质量检测报告工程名称:检测代码及项目:检测单位名称委托单位:建设单位:勘察单位:设计单位:施工单位:监理单位:检测单位:声明1、本报告无检验检测报告专用章及其骑缝章无效;2、本报告无检测、审核、批准人签名无效;3、本报告涂改、增删无效;4、报告复印页数不全、未加盖检验检测报告专用章无效;5、对本报告若有异议,应于收到报告之日起十五日内向本检测单位提出。
检测单位资质证书编号:检测单位地址:邮政编码:电话:目录1 工程概况 (4)2 检测概述 (5)3 检测设备及其安装 (6)4 测试后注浆的要求 (9)5 检测结果与分析 (9)6 结论 (11)附表1XX号桩静载荷试验结果汇总表 (12)附表4XX号桩自平衡法静载荷试验计算书 (13)附图1XX号桩的上、下段桩的荷载-位移曲线,荷载箱上、下位移-时间对数曲线 (14)附图4抽检桩平面位置示意图 (14)附图5XX号桩现场检测照片 (14)附件1工程质量现场检测见证确认表1 工程概况工程概况见表1。
2 检测概述2.1 检测目的及方法采用自平衡法静载荷试验,确定单桩竖向抗压极限承载力是否满足设计要求。
2.2检测依据1 设计图纸;2 相关方确认的检测方案;3 《建筑基桩自平衡静载试验技术规程》(JGJ/T 403-2017);4 《基桩承载力自平衡法测试技术规程》(DBJ/T 45-031-2016)5 《建筑基桩检测技术规范》(JGJ 106-2014)。
2.3检测仪器设备所用仪器设备均在检定/校准有效期内,仪器设备如表2.1所示。
2.4抽检数量2.4.1根据《建筑基桩自平衡静载试验技术规程》(JGJ/T 403-2017)第3.1.1条:自平衡静载试验的检测数量应满足设计要求,不应少于一条件下桩基分项工程总桩数的1%,且不应少于3根;当总桩数小于50根时,检测数量不应少于2根。
2.4.2本工程桩总数XX根,根据上述规定及委托方要求,本次单桩竖向抗压承载力静载试验抽检XX根,满足验收规范及设计要求。
桩基检测方法-自平衡法
谢谢观赏
15
2019-5-24
谢谢观赏
16
⑵Q-S 曲线确定承载力和等效转换曲线。
通过自平衡法检测可获得的向上、向下两条Q-S 曲线 (S+ 和S- 曲线)。对于陡降型Q-s 曲线,取陡降起始 点对应的荷载。对缓变形Q-S 曲线,按位移值确定极限 值,极限侧阻取对应于向上位移S+=40~60mm 对应的 荷载;极限端阻取S-=40~60mm 对应荷载,或大直径 桩的S-=(0.03~0.06)D(D 为桩端直径,大直径桩取
2019-5-24
谢谢观赏
7
缺点: 由于开始试验前,堆重物的重量由支撑墩传递到地 面,使桩周土受到了一定的影响,有报道称,当荷载大 于20000kN 时,影响深度将达到45m。而且大吨位试验 时,若用袋装砂石或场地土等作为堆重物,由于上部荷 载较大,造成安装时间较长,而且需要进行技术处理, 以防鼓凸倒塌。在广东地区,许多单位使用混凝土预制 块堆重,大大减少了安装时间,但需运输车辆及吊车配 合,试验成本较高;使用水箱配重,试验结束后,由于 要放水,会影响试验场地的整洁。
第一类是对工程现场试桩进行静载荷试验和动力检测;
第二类是通过其它手段,分别得出桩端阻力和桩身的侧 阻力后计算求得。基桩检测的主要目的之一是确定单桩 承载力,而单桩竖向静载荷试验是公认的检测单桩竖向 承载力最直观、最可靠的方法。
2019-5-24
谢谢观赏
2
静载试验法:该法被认为是目前检测基桩竖向抗压承载力 最直接和最可靠的试验方法。它所获得的Q—s 曲线的 形态由桩侧和桩端土的分布和性质、成桩工艺、桩的形 状尺寸等诸多因素而变化。当其陡降段明显时,可取相 应于陡降段起点的荷载值;对于缓变型曲线则一般取 s=40~60mm 对应的荷载,对于摩擦型灌注桩,取 s=logQ 曲线陡降直线段的起点所对应的荷载值。当曲 线特征不明确时,极限承载力的确定受人为因素的影响 较大。在工程实践中,基准梁和基准桩的问题常会被检 测人员所忽视,容易出现下列问题: ①基准桩打入深度不足,在试验过程中产生位移; ②基准梁长度不符合规范要求; ③基准梁刚度不足,产生较大的挠曲2019-5-24
自平衡基桩静载试验检测
对工程桩承载力验收检测,试验完成后必须在荷 载箱处进行高压注浆.
自平衡检测报告
受检桩的检测数据表、结果汇总表和相应 的Q-s、s-lgt等曲线,转换为桩顶加载的 等效转换数据表和等效转换Q-s曲线
检测数据的分析与判定
缓变型Q-s曲线可根据位移量确定: 上段桩极限加载值取对应位移为40mm时
的荷载.当桩长大于40m时,宜考虑桩身的弹 性压缩量.
下段桩极限加载值取位移为40mm对应的 荷载值.
等效转换方法
将基桩自平衡法获得的 荷载箱向上、向下两条Q-s曲线
等效转换
相应传统静载试验的一条Q-s曲线,以确定 桩顶沉降
常见故障
荷载箱打不开;储备不够, 主筋与下端混凝土固结在一起 系统渗油;密封不严. 位移无传导;位移杆(丝)注死. 位移杆(丝)失缺.
实例1
操作有标准 荷载箱有选型 安装有技巧 当极限端阻力大于极限侧摩阻力时,将
荷载箱置于桩端,根据桩长径比、地质 情况采取在桩顶提供一定量的配重等措
施.东北某立交桥基桩检测试验
实例2
操作有标准 荷载箱有选型 安装有技巧 检测桩为抗拔桩时,荷载箱可置于桩端;
向下反力不够维持加载时,可采取加深
桩长等措施。某地铁车站抗抜桩检测试 验
荷载箱检定率为100%,加载分级数不少于五级. 荷载箱宜整体检定. 荷载箱的极限输出推力不应小于额定输出推力的
1.2倍
桩基自检评估报告
桩基自检评估报告尊敬的领导:根据您的要求,我完成了桩基自检评估报告,具体内容如下:1. 桩基施工方案:首先,我们自检了桩基施工方案的完整性和合理性。
施工方案应包括桩基的类型、桩长和直径、桩基的布设位置和布设间距等。
我们确保施工方案符合相关标准和规范,并与设计要求一致。
2. 施工设备和材料:我们检查了施工中使用的设备和材料的质量和合规性。
设备应具备良好的工作状态和正常的运行性能,材料应符合相关标准和规范。
我们核实了设备和材料的证书和检测报告,并进行了抽样检查。
3. 施工过程和工序控制:我们检查了施工过程中各个工序的控制情况。
包括桩基钻孔、灌注、打桩等环节。
我们确保施工过程中的操作规范和技术要求的执行情况,以及施工记录和检测数据的真实性和准确性。
4. 施工现场安全和环境控制:我们评估了施工现场的安全和环境控制情况。
包括施工设备和材料的堆放、工人的个人防护措施、作业区域的围挡和警示标识等。
我们确保施工现场符合相关安全和环保要求,且不存在明显的安全隐患和环境污染问题。
5. 施工质量控制:我们检查了施工质量控制体系的建立和执行情况。
包括施工图纸和技术要求的编制和审查、施工人员的技术资质和培训等。
我们确保施工质量控制程序的有效性和可行性,以及施工质量的可控性和可追溯性。
6. 桩基质量评估:最后,我们对已完成的桩基进行了质量评估。
包括桩基的外观质量、尺寸偏差、强度和稳定性等指标。
我们采取了现场检测和取样送检的方法,并与设计要求进行对比和分析。
评估结果显示桩基质量符合设计要求和相关标准。
总结起来,我们经过自检评估,认为桩基施工质量符合设计要求和相关标准。
但我们也发现了一些问题和不足之处,例如施工图纸的审查和记录的完善性,施工过程中的某些控制不够严格等。
我们将采取相应的纠正措施和改进方案,确保桩基施工的质量和安全性。
感谢您对我们工作的支持和指导!此致敬礼。
桩基检测方法—自平衡法
由高压油泵在地面(平台)向荷载箱充油加载,荷载箱 将力传递到桩身,其上部桩极限侧摩阻力及自重与下部 桩极限侧摩阻力及极限端阻力相平衡来维持加载,从而 获得桩的承载力。这种试验方法的最大特点是在桩基自 身内部寻求反力进行加载,不同于传统方法那样借助于 外部反力加载。
⑵Q-S 曲线确定承载力和等效转换曲线。 通过自平衡法检测可获得的向上、向下两条Q-S 曲线 (S+ 和S- 曲线)。对于陡降型Q-s 曲线,取陡降起始 点对应的荷载。对缓变形Q-S 曲线,按位移值确定极限 值,极限侧阻取对应于向上位移S+=40~60mm 对应的 荷载;极限端阻取S-=40~60mm 对应荷载,或大直径 桩的S-=(0.03~0.06)D(D 为桩端直径,大直径桩取 低值,小直径桩取高值)的对应荷载。如果根据位移随 时间的变化特征确定极限承载力,下段桩取S-lgt 曲线 尾部出现明显向下弯曲的前一级荷载值,上段桩取S-lgt 曲线尾部出现明显向上弯曲的前一级荷载值。
1.4自平衡法与传统加载方法比较
相同点 试验对象: 相对于其他测桩方法(高、低应变等)而 言,自反力法与传统加载方法一样,同属于对桩体直接 施载的方法,且试验结果为勘探、设计、施工的综合结 果。 试验原理: 自反力(自平衡)测桩法,并不是一种全 新的桩基静载试验,其代表的仅仅是在桩基内部寻求反 力的一类加载方法(或技巧),与传统的试验方法以及 现在普遍执行的试验规范并不矛盾。将自反力法(自平 衡法)视为对桩基上、下部同时进行传统方法加载,加 载设备、载荷分级方法、加载速度、稳定判别条件等, 与传统加载方法基本一致,完全可以在现有的传统试验 规范的框架内完成。
桩基检测方法—自平衡法
1 桩基检测方法---静荷载实验法
基桩工程质量的好坏主要取决于两个因素,即承载能力 与桩身质量,而承载力是二者中的主要因素。单桩承载 力的准确测试对于各类建筑物基础设计乃至上部结构的 设计都起着举足轻重的作用。长期以来,国内外确定单 桩承载力的方法很多,总的可分为两大类: 第一类是对工程现场试桩进行静载荷试验和动力检测; 第二类是通过其它手段,分别得出桩端阻力和桩身的侧 阻力后计算求得。基桩检测的主要目的之一是确定单桩 承载力,而单桩竖向静载荷试验是公认的检测单桩竖向 承载力最直观、最可靠的方法。
自平衡试桩报告范文
自平衡试桩报告范文自平衡试桩是建设大型建筑物,特别是高层建筑的重要一环。
试桩的目的是通过施加载荷和观察试桩的变形和承载能力,评估土层的物理和力学性质,以确定在建造建筑物时所需的桩基参数和设计要求。
本报告旨在详细描述自平衡试桩的实验过程、结果分析和结论。
实验过程:1.土层勘察和选址:根据土壤勘察报告,选定合适的试验地点,并确定试桩的设计参数。
2.桩的施工:选定适当的桩型和开挖方法,进行桩的施工。
施工过程中需注意施工质量的控制,确保桩身的垂直度和水平度。
3.打入试桩:利用试桩机或其他合适的设备将试桩沉入地面,直至达到设计的插入深度。
4.加载载荷:根据设计要求,在试桩顶部施加逐渐增加的水平载荷,并记录相应的变形和载荷数据。
5.变形测量:在试桩的不同部位使用变形传感器,记录试桩的挠度、倾斜和变形情况。
6.载荷卸除:当达到预定的最大载荷后,逐渐卸除载荷,并记录相应的变形数据。
7.数据分析:将记录的载荷和变形数据进行分析,计算试桩的承载能力和挠度等参数。
8.结果报告:根据实验结果,编写试桩报告,包括试桩的技术参数、承载能力和应用建议等。
结果分析:通过对试桩的载荷和变形数据进行分析,可以得出以下结论:1.承载能力:根据试桩的载荷-变形曲线,可以确定试桩的承载能力,即试桩在达到极限状态之前所能承受的最大载荷。
承载能力是评估土层物理和力学性质的关键指标,用于确定建筑物的基础设计要求。
2.土层特性:根据试桩的变形情况,可以判断土层的强度、刚度和稳定性等特性。
试桩的变形反映了土层的变形模式和复杂性,在设计建筑物时需考虑土层的变形特点。
3.基础设计:根据试桩结果,可以确定建筑物的基础设计要求,包括桩的长度、直径和布置方式等。
试桩结果还可用于评估土层的承载能力和变形特性,在建筑物施工前做出相应的设计调整。
结论:自平衡试桩是评估土层性质和设计建筑物基础要求的重要实验方法。
通过施加载荷和观察试桩的变形情况,可以确定土层的物理和力学性质,并为建筑物的基础设计提供依据。
桩基检测(自平衡检测) 检测报告
基桩质量检测报告工程名称:桩基检测项目现场试验:张三李四报告编制:张三审核:XXX审定:XXX报告编号:2017-XXX工程地点:XXXXXXXXXXXXXXX年XX月XX日目录单桩竖向静载检测(自平衡) (3)(一)、检测试验桩的相关参数 (3)(二)、试验原理、方法及使用仪器 (3)(三)、试验设备 (5)(四)、试验步骤 (5)(五)、静载检测结果分析 (6)(六)、自平衡检测结论 (7)单桩竖向静载检测(自平衡)(一)、检测试验桩的相关参数(二)、试验原理、方法及使用仪器自平衡测桩法的主要装置是一种经特别设计可用于加载的荷载箱。
它主要由活塞、顶盖、底盖及箱壁四部分组成。
顶、底盖的外径略小于桩的外径,在顶、底盖上布置位移棒。
在桩底部预先做好荷载箱的垫层,将荷载箱与钢筋笼焊接成一体放入桩底后,即可浇捣混凝土成桩。
试验时,在地面上通过油泵加压,随着压力增加,荷载箱将同时向上、向下发生变位,促使桩侧阻力及桩端荷载箱底板下土阻力的发挥,上图为试验示意图。
荷载箱中的压力可用压力传感器测得,荷载箱的向上、向下位移可用位移传感器测得。
因此,可根据读数绘出相应的“向上的力与位移图”及“向下的力与位移图”,根据两条Q s -曲线及相应的lg s t -、lg s Q -曲线,可分别求得荷载箱上段桩及荷载箱下底板单位面积土层的极限承载力,将上段桩极限承载力经一定处理后与桩端土层对桩总的阻力相加即为桩极限承载力。
根据位移随荷载的变化特性确定极限承载力。
陡变形Q s -曲线取曲线发生明显陡变的起始点;对于缓变型Q s -曲线,上段桩极限侧阻力取对应于向上位移s 上=10~20mm (桩端进入基岩取低值,土体取高值)的对应荷载;荷载箱下土阻力极限值取s 下=40mm 对应的荷载。
根据沉降随时间的变化特征确定极限承载力:下段桩取lg s t -下曲线尾部出现明显向下弯曲的前一级荷载值,上段桩取lg s t -上曲线尾部出现明显向上弯曲的前一级荷载值。
基桩检测报告
目录1、工程及检测概述 02、工程地质概况 (1)3、低应变反射波法检测 (1)4、自平衡法深层平板载荷试验 (5)5、结论 (8)6、低应变反射波法检测结果汇总表 (8)7、低应变反射波法实测信号曲线 (10)8、自平衡法深层平板载荷试验数据汇总表 (17)9、 U—δ、δ-lgt曲线和Q—s、s-lgt曲线 (20)10、自平衡法深层平板载荷测试示意图 (27)1、工程及检测概述拟建的鸿路职工宿舍1#楼位于合肥市双凤工业区凤霞路东侧,金安路北侧,该工程由亚瑞建筑设计有限公司设计,基础由华汇建设集团有限公司负责施工。
该工程建筑基础为人工挖孔桩,总桩数为61根,桩身混凝土强度等级设计为C30.受安徽双丰建设集团有限公司北辰分公司委托,我院承担该工程的基桩检测工作。
根据业主、设计等部门及规范的要求:①该工程61根人工挖孔桩全部进行完整性(低应变反射波法)检测;②抽取3根桩(桩号为#、#、#)进行了基桩竖向承载力(自平衡法)检测.自平衡法试验桩的施工参数及施工日期详见下表1。
以上检测外业工作于2012年1月18日全部结束。
桩端持力层为④层中风化砂岩中,该层桩端承载力特征值qpa=4000kPa。
各试验桩的详细资料见下表1。
表1 基桩承载力(自平衡法)各基桩参数一览表注:以上资料由建设、设计、勘察等单位提供2、工程地质概况根据安徽工程勘察院提供的关于《鸿路职工宿舍岩土工程勘察报告》可知,地层分布及其主要特征由上而下描述于下:ml):灰黄色,松散~稍密,稍湿~湿,主要成分为粘性土.层厚0。
20~3.20m。
①层素填土(Q4al + pl):褐色、褐黄色,硬塑~坚硬状态,摇振反应无,光泽反应有光泽,干强②层粘土 (Q3度高,韧性高,含Fe、Mn质结核.层顶埋深0。
20~3。
20m,层顶高程35。
64~43.08m,层厚1。
80~9.30m,该层在场地内分布普遍。
):紫红色,密实状,组成矿物基本已风化难辩,可见绢云母,结构松③层强风化砂岩(K1x散、呈细粒结构,层状构造,含少量碎石等。
自平衡测试报告
范》(JTJ041-2000)和江苏省地方标准《桩承载力自平衡测试技术规程》(DB32/T291-1999)
进行,即:
南京东南大学科技服务中心
7
025-83791829
13801598300
云南永武高速公路元谋至武定段自平衡试桩报告
1)成桩至试验间隙时间 在桩身强度达到设计要求的前提下,对于岩石、砂类土,不少于 10d;对粉土和粘性 土,不少于 15d。 2)荷载分级 根据指挥部要求和现场情况进行加载分级,每级加载为预估加载值的 1/10,第一级按 两倍分级荷载加载,卸载分 5 级进行。 3)位移观测 每级加载完毕后,在第 1h 内分别于 5、15、30、45、60min 各测读一次,以后每隔 30min 测读一次。电子位移传感器连接到电脑,直接由电脑控制测读,在电脑屏幕上显示 Q-S、 S-lgt 曲线。 4)稳定标准 每级加载下沉量,在下列时间内不大于 0.1mm 时即认为稳定: (1) 桩端下为巨粒土、砂类土、坚硬粘质土,最后 30min。 (2) 桩端下为半坚硬和细粒土,最后 1h。 5)加载终止及极限荷载取值 (1)总位移量大于或等于 40mm,本级荷载的下沉量大于或等于前一级荷载的下沉量
1683.1
1686.1
05.8.24 05.9.15
南京东南大学科技服务中心
4
025-83791829
13801598300
云南永武高速公路元谋至武定段自平衡试桩报告
五、检测方法、检测仪器设备、检测过程叙述
5.1 测试原理 5.1.1 自平衡试桩法起源
传统的桩基荷载试验方法有两种,一是堆载法,二是锚桩法。两种方法都是采用油压 千斤顶在桩顶施加荷载,而千斤顶的反力,前者通过反力架上的堆重与之平衡,后者通过 反力架将反力传给锚桩,与锚桩的抗拔力平衡。其存在的主要问题是:前者必须解决几百 吨甚至上千吨的荷载来源、堆放及运输问题,后者必须设置多根锚桩及反力大梁,不仅所 需费用昂贵,时间较长,而且易受吨位和场地条件的限制(堆载法目前国内试桩最大极限 承载力仅达 3000 多吨,锚桩法的试桩最大极限承载力也不超过 4000 吨),以致许多大吨 位桩和特殊场地的桩(如山地、桥桩)的承载力往往得不到准确数据,基桩的潜力不能合 理发挥,这是桩基础领域面临的一大难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基桩质量检测报告
工程名称:桩基检测项目
现场试验:张三李四
报告编制:张三
审核:XXX
审定:XXX
报告编号:2017-XXX
工程地点:XXX
XXXXXXXX
XXXX年XX月XX日
目录
单桩竖向静载检测(自平衡) (3)
(一)、检测试验桩的相关参数 (3)
(二)、试验原理、方法及使用仪器 (3)
(三)、试验设备 (5)
(四)、试验步骤 (5)
(五)、静载检测结果分析 (6)
(六)、自平衡检测结论 (7)
单桩竖向静载检测(自平衡)(一)、检测试验桩的相关参数
(二)、试验原理、方法及使用仪器
自平衡测桩法的主要装置是一种经特别设计可用于加载的荷载箱。
它主要由活塞、顶盖、底盖及箱壁四部分组成。
顶、底盖的外径略小于桩的外径,在顶、底盖上布置位移棒。
在桩底部预先做好荷载箱的垫层,将荷载箱与钢筋笼焊接成一体放入桩底后,即可浇捣混凝土成桩。
试验时,在地面上通过油泵加压,随着压力增加,荷载箱将同时向上、向下发生变位,促使桩侧阻力及桩端荷载箱底板下土阻力的发挥,上图为试验示意图。
荷载箱中的压力可用压力传感器测得,荷载箱的向上、向下位移可用位移传感器测得。
因此,可根据读数绘出相应的“向上的力与位移图”及“向下的力与位移图”,根据两条Q s -曲线及相应的lg s t -、lg s Q -曲线,可分别求得荷载箱上段桩及荷载箱下底板单位面积土层的极限承载力,将上段桩极限承载力经一定处理后与桩端土层对桩总的阻力相加即为桩极限承载力。
根据位移随荷载的变化特性确定极限承载力。
陡变形Q s -曲线取曲线发生明显陡变的起始点;对于缓变型Q s -曲线,上段桩极限侧阻力取对应于向上位移s 上=10~20mm (桩端进入基岩取低值,土体取高值)的对应荷载;荷载箱下土阻力极限值取s 下=40mm 对应的荷载。
根据沉降随时间的变化特征确定极限承载力:下段桩取lg s t -下曲线尾部出现明显向下弯曲的前一级荷载值,上段桩取lg s t -上曲线尾部出现明显向上弯曲的前一级荷载值。
根据上述准则,可求得桩的极限摩阻力和桩端土层极限承载力u Q 上、u Q 下。
该法测试时,荷载箱上部桩身自重方向与桩侧阻力方向一致,故在判定桩侧阻力
时应当扣除。
按照下式可得出单桩竖向抗压极限承载力测定值:
()/u u u Q Q W Q γ=-+下上
按照下式可得出单桩竖向抗拔极限承载力测定值:
u Q =u Q 上
u Q :单桩竖向抗压极限承载力; u Q 上:荷载箱上部桩的实测极限值; u Q 下:桩端土层对桩承载力极限值;
W :荷载箱上部桩自重;
γ:为桩侧阻力修正系数,应根据下列情况确定:
(1)桩端进入基岩,γ=0.8~1.0(工程检测桩取大值,设计试验桩取小值); (2)桩侧土层为粘性土、粉土,γ =0.8;对于砂土γ =0.7。
整桩可按土层厚度加权。
(三)、试验设备
本次测试采用电动油泵供压,荷载量和桩顶上拔量及桩底沉降量由压力传感器和位移传感器通过RS-JYB 桩基静载荷测试分析系统测量和控制。
(四)、试验步骤
加载应分级进行,采用逐级等量加载;分级荷载为预定检测最大荷载的1/10~1/15,加载方式采用慢速维持荷载法,具体方法如下:
①、每级荷载施加后按第5、15、30、45、60min 各测读一次,以后每隔30min 测读一次;
②、试桩沉降相对稳定标准:每1h 的位移不超过0.1mm ,并连续出现两次(由1.5h 内连续三次观测值计算),认为已达到相对稳定,可加下一级荷载。
③、卸载与卸载位移观测:每级卸载量取加载时分级荷载的2倍,每级卸载后隔15min 测读一次残余沉降,读二次后,隔30min 再读一次,即可卸下一级荷载。
6、终止加载条件
(1)、已达到预定检测最大加载值或桩破坏;
(2)、当荷载-向下位移曲线上有可判定极限荷载的陡降段,且桩向下位移
沉降量超过40~60mm (工程桩检测取小值,设计试验桩取大值);
(3)、某级荷载作用下,桩的向下位移量大于前一级荷载作用下向下位移量的2倍,且经24h 尚未达到相对稳定;
(4)累计向上位移超过20~40mm (工程检测桩取小值,设计试验桩取大值);
(5)、向上位移和向下位移量合计超过荷载箱活塞有效行程;
(五)、静载检测结果分析
1、65#桩:荷载箱加载至2×4550kN 时,向上总位移量为5.85mm ,向下总位移量为11.59mm ,随荷载量的增大,检测桩在每级荷载作用下向上和向下的位移量较均匀增大,且Q s -曲线和U δ-曲线均为缓变型,lg s t - 曲线尾部未出现向下弯曲,lg t δ-曲线尾部未出现向上弯曲。
卸载后荷载箱上段桩最大回弹量为1.37mm ,回弹率为23.4%,荷载箱下部土层最大回弹量为3.86mm ,回弹率为33.3%,根据规范可以确定:
u Q 上和u Q 下均不小于4550kN W =3.14×(0.4)2×5.05×24.5=63kN
依据规范综合分析确定:该桩单桩竖向抗压极限承载力测定值不小于
()/u u u Q Q W Q γ=-+下上不小于(4550-63)/1+4550kN=9037kN 。
2、66#桩:荷载箱加载至2×4550kN 时,向上总位移量为9.18mm ,向下总位移量为7.52mm ,随荷载量的增大,检测桩在每级荷载作用下向上和向下的位移量较均匀增大,且Q s -曲线和U δ-曲线均为缓变型,lg s t - 曲线尾部未出现向下弯曲,lg t δ-曲线尾部未出现向上弯曲。
卸载后荷载箱上段桩最大回弹量为2.57mm ,回弹率为28.0%,荷载箱下部土层最大回弹量为1.78mm ,回弹率为23.7%,根据规范可以确定:
u Q 上和u Q 下均不小于4550kN W =3.14×(0.4)2×5.0×24.5=62kN
依据规范综合分析确定:该桩单桩竖向抗压极限承载力测定值不小于
()/u u u Q Q W Q γ=-+下上不小于(4550-62)/1+4550kN=9038kN 。
3、67#桩:荷载箱加载至2×4550kN 时,向上总位移量为7.75mm ,向下总位移量为8.50mm ,随荷载量的增大,检测桩在每级荷载作用下向上和向下的位
移量较均匀增大,且Q s -曲线和U δ-曲线均为缓变型,lg s t - 曲线尾部未出现向下弯曲,lg t δ-曲线尾部未出现向上弯曲。
卸载后荷载箱上段桩最大回弹量为2.02mm ,回弹率为26.0%,荷载箱下部土层最大回弹量为2.06mm ,回弹率为24.2%,根据规范可以确定:
u Q 上和u Q 下均不小于4550kN W =3.14×(0.4)2×5.13×24.5=64kN
依据规范综合分析确定:该桩单桩竖向抗压极限承载力测定值不小于
()/u u u Q Q W Q γ=-+下上不小于(4550-64)/1+4550kN=9036kN kN 。
(六)、自平衡检测结论
过以上分析,在桩身混凝土抗压强度满足要求的前提下,可得出如下结论: 1、65#桩(桩径800mm ):单桩竖向抗压极限承载力不小于9037kN ;满足设计要求。
2、66#桩(桩径800mm ):单桩竖向抗压极限承载力不小于9038kN ;满足设计要求。
3、67#桩(桩径800mm ):单桩竖向抗压极限承载力不小于9036kN ;满足设计要求。
单桩竖向静载试验汇总表
工程名称:桩基检测项目
试验桩号:65#桩测试日期:XXXX
现场试验:张三李四资料整理:张三
单桩竖向静载试验汇总表
工程名称:桩基检测项目
试验桩号:66#桩测试日期:XXXX
现场试验:张三李四资料整理:张三
单桩竖向静载试验汇总表
工程名称:桩基检测项目
试验桩号:67#桩测试日期:XXXX
现场试验:张三李四资料整理:张三。