三峡大学大学物理第五章答案
大学物理第五章 习题解答
第五章 习题解答5-1解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT 可得ΔT=W/νR ,ν=1mol ,ΔT=W/RW W i T R i T T C Q p 272222)(12=+=∆+=-=υυp 5-2 J T R i E 65.124131.823102=⨯⨯⨯=∆=∆υ5-3 解:等容过程有W=0,Q=ΔE J T R i E 747930031.82322=⨯⨯⨯=∆=∆=υ 5-4解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT=200JW i T R i T T C Q 2222)(12+=∆+=-=υυp 单原子分子 i =3,J Q 500200223=⨯+= 单原子分子 i =5,J Q 700200225=⨯+= 5-5. 一系统由如图所示的a 状态沿acb 到达b 状态,有334J 热量传入系统,系统做功J 126。
(1)经adb 过程,系统做功J 42,问有多少热量传入系统?(2)当系统由b 状态沿曲线ba 返回状态a 时,外界对系统做功为J 84,试问系统是吸热还是放热?热量传递了多少?解:由acb 过程可求出b 态和a 态的内能之差Q=ΔE+W ,ΔE=Q -W=334-126=208 Jadb 过程,系统作功W=42 J , Q=ΔE+W=208+42=250J 系统吸收热量ba 过程,外界对系统作功A=-84 J , Q=ΔE +W=-208-84=-292 J 系统放热 5-6解:ab 过程吸热,bc 过程吸热 cd 过程放热,da 过程放热取1atm=105Pa 根据等温、等压过程的吸热公式可得J V p V p i T T C Q a a b b ab 336)(2)(12=-=-=V υ J V p V p i Q b b c c bc 560)(22=-+= J V p V p i Q c c d d cd 504)(2-=-= J V p V p i Q d d a a da 280)(22-=-+= 整个过程总吸热J Q Q Q bc ab 8961=+=,总放热J Q Q Q da cd 7842=+=p净功J Q Q W 11221=-=,效率%5.128967841112=-=-=Q Q η 5-7 卡诺热机的效率为%4028011112=-=-=T T T 卡η,可得高温热源温度7.4661=T K 如果%50'28011112=-=-=T T T 卡η,可得560'1=T K ,温度提高了3.93'11=-T T K 5-8 %251068.11026.1117712=⨯⨯-=-=Q Q η。
大学物理 第5章习题解答
第五章 机械振动5-1一远洋货轮,质量为t M 4102⨯=,浮在水面对其水平截面积为23102m S ⨯=。
设在水面附近货轮的截面积与货轮高度无关,试证明此货轮在水中的铅直自由运动是简谐振动,并求其自由振动的周期。
解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d ty MMa F ==故0d d 22=+gy s ty Mρ022=+y Mg s dtdy ρ故作简谐振动 M gs ρω=2)(35.68.910102101022223334s gs M T =⨯⨯⨯⨯⨯===πρπωπ5-2 重物A 的质量M=1kg ,放在倾角030=θ的光滑斜面上,并用绳跨过定滑轮与劲度系数149-⋅=mN k 的轻弹簧连接,如习题5-2图所示,将物体由弹簧未形变的位置静止释放,并开始计时,试求:(1)不计滑轮质量,物体A 的运动方程;(2)滑轮为质量M ,半轻r 的均质圆盘,物体A 的运动方程。
解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1)习题5-1图(1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin tx mx l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x mk tx故物体A 的运动是简谐振动,且)rad/s (7==mk ω由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为 x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin tx mT mg =-θ (2) 对滑轮列出转动方程为:22221d d 2121t x Mr raMr J r T r T =⎪⎭⎫ ⎝⎛==-β (3) 式中,T 2=k (l 0+x ) (4) 由式(3)、(4)知2201d d 21)(tx M x l k T ++=代入(2)式知22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ 又由(1)式知0sin kl mg =θ故0d d )21(22=++kx tx m M即0)2(d d 22=++x m M ktx习题5-2图mM k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=mM k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.5-3质点作简谐振动的振动曲线如习题5-3图所示,试根据图得出该质点的振动表达式。
基础物理学第五章(静电场)课后习题答案
第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。
对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。
静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。
5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。
通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。
只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。
5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。
由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。
但不能保证面内各局部空间无净电荷。
例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。
5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。
0lE dl⋅=⎰表示静电场的电场线不能闭合。
如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。
大学物理课后习题答案第五章
第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv =52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] =0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+t /s y /cm5 0 0.1 0.2 0.35.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为;0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+x /m y /m0.2O t 1=0 0.45 t 2=0.25P 图5.5 t /sy /m0.2O 0.5 1xy AO bau图5.6y Ax b = λ处的质点的振动方程为. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:.(3)t = 1s 时刻的波形方程为cos(22)b ty A Tππ=+cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+xy A O ut =0 t =4.2s 0.51 t /s y /m1 O -10.5 图5.8x /my /m 1O -10.5u2/3,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量.[解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5cos()26y x ππ=-cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =x5m A B C D8m 9m图5.105.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2),标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+u Bu Su(2)反射面接收到的频率为= 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为.1033165108033130B S u u u u νν++==⨯--`11331142133165B u u u νν==⨯--`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-u BuxS 1 xS 2λ/4 x xS 1x 2l两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).(注:可编辑下载,若有不当之处,请指正,谢谢!)1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
大学物理第五章习题答案
大学物理第五章习题答案大学物理第五章习题答案第一题:题目:一个质量为m的物体以速度v水平运动,撞到一个质量为M的静止物体,两物体发生完全弹性碰撞,求碰撞后两物体的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后物体m的速度为v1,物体M的速度为V1,则有mv = mv1 + MV1。
由于碰撞是完全弹性碰撞,动能守恒定律也成立,即(mv^2)/2 = (mv1^2)/2 + (MV1^2)/2。
将第一个方程代入第二个方程,可得到关于v1和V1的方程组。
解方程组即可得到碰撞后两物体的速度。
第二题:题目:一个质量为m的物体以速度v1撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V2,则有mv1 = mv2 + MV2,以及(mv1^2)/2 = (mv2^2)/2 + (MV2^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V2。
第三题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后两物体粘在一起,求粘在一起后的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后两物体的速度为V,则有mv = (m+M)V。
解方程即可得到粘在一起后的速度V。
第四题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V,则有mv = mv2 + MV,以及(mv^2)/2 = (mv2^2)/2 +(MV^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V。
第五题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求碰撞后两物体的动能变化。
解答:碰撞前物体m的动能为(mv^2)/2,碰撞后物体m的动能为(mv2^2)/2,两者之差即为动能变化。
三峡大学大学物理课后习题答案
=2+3 t 3 ,ቤተ መጻሕፍቲ ባይዱ式中以弧度计,t 以秒计,
(2)当加速度的方向和半径成45°角时,
d 9t 2 dt d 18t dt a t 2 s R t 2 s 18t t 2 s 36ms 2 an t 2 s R 2
t 2 s
(9t 2 ) 2
第二章
1.质量为10kg的质点在 xOy 平面内运动,其运动规律为:
x 5con4t 3 (m), y 5sin 4t 5 (m).求t时刻质点所受的力.
解: 本题属于第一类问题
x 5con 4t 3 vx dx 20sin 4t dt dv ax x 80 cos 4t dt
38.4 3 x ) 31J 解:(1) A (52.8 x 38.4 x )dx (26.4 x 3 0.5 0.5
2 2
1
1
(2) 由动能定理
0.5
A
(52.8x 38.4 x )(dx) 2 mv
2 1
1
2
0
所以
v
2A 2 31 5.34m / s m 2.17
2
4.质量为 m 的质点最初静止在 x0 处,在力 F k / x (N)( k 是常量)的作用下沿 X 轴运 动,求质点在 x 处的速度。 解: 由牛顿第二运动定律
F k / x 2 m vdv
x0 v x
dv dv dx dv m mv dt dx dt dx
dv 3 2t dt
dv
5
v
3
0
(3 2t )dt
v 23(ms 1 )
大学物理课后习题答案第五章-推荐下载
vx ' u
1
v c2
vx
'
3 4
c
(2) vBA vAB vx ' 0.4c
5.6 惯性系S′相对另一惯性系 S 沿 x 轴作匀速直线运动,取两坐标原点重合时刻作为
计时起点.在S系中测得两事件的时空坐标分别为 x1 =6×104m, t1 =2×10-4s,以及
x2 =12×104m, t2 =1×10-4s.已知在S′系中测得该两事件同时发生.试问:
问在以下两种情况中,它们对 S ' 系是否同时发生?
(1)两事件发生于 S 系的同一地点;
(2)两事件发生于 S 系的不同地点。
解 由洛伦兹变化 t (t v x) 知,第一种情况, x 0 , t 0 ,故 S ' 系 c2
中 t 0 ,即两事件同时发生;第二种情况, x 0 , t 0 ,故 S ' 系中 t 0 ,两
第 5 章 狭义相对论 习题及答案
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
大学物理第五章课后习题答案
第五章课后习题答案5.1 解:以振动平衡位置为坐标原点,竖直向下为正向,放手时开始计时。
设t 时刻砝码位置坐标为x ,由牛顿第二定律可知: 220)(dtx d mx x k mg =+-其中0x 为砝码处于平衡位置时弹簧的伸长量,所以有 0kx mg = 解出0x 代入上式,有:022=+x mk dtxd 其中 mk =ω可见砝码的运动为简谐振动简谐振动的角频率和频率分别为: s r a d x g mk /9.90===ω Hz 58.12==πων振动微分方程的解为)c o s (ϕω+=t A x由起始条件 t =0 时,,1.00m x x -=-= 0=v得: A =0.1m ,πϕ=振动方程为:)9.9cos(1.0π+=t x5.2 证明:取手撤去后系统静止时m 的位置为平衡位置,令此点为坐标原点,此时弹簧伸长为x ,则有: 0sinkx mg =θ (1)当物体沿斜面向下位移为x 时,则有: ma T mg =-1sin θ (2) βJ R T R T =-21 (3) )(02x x k T += (4)R a β= (5) 将(2)与(4)代入(3),并利用(5),可得: k x R R kx mgR a RJ mg --=+0sin )(θ利用(1)式可得 x RJ mR kR dtx d a +-==22所以物体作简谐振动因为 R J mR kR +=ω 所以振动周期为 ωπ2=T5.3 解: 因为 mk ππων212==所以 :1221m m =νν22121)(m m νν==2 Kg5.4 解:(1) 由振动方程)420cos(01.0ππ+=t x 可知:振幅A =0.01m ;圆频率 πω20=; 周期 s T 1.02==ωπ频率Hz 10=ν ;初相40πϕ=(2)把t =2s 分别代入可得:2005.0)420cos(01.0|2=+==ππt x t m2314.0)420sin(2.0|2-=+-===πππt dt dx v t m/s)420sin(4|22πππ+===t dtdv a t5.5 解: T =2s ,ππω==T2设振动方程为:)cos(10ϕπ+=t x则速度为:)s i n (10ϕππ+-=t v加速度为: )c o s (102ϕππ+-=t a根据t =0 时,x =5cm ,v < 0 的条件,得振动的初相为 3πϕ=,故振动方程为:)3cos(10ππ+=t x设在 1t 时刻振子位于cm x 6-=处,并向x 轴负方向运动,则有:53)3'c o s (-=+ππt 54)3's i n (=+ππt故有 s cm t v /1.25)3'sin(10-=+-=πππ22/2.59)3'cos(10s cm t a =+-=πππ设弹簧振子回到平衡位置的时刻为2t ,则有πππ2332=+t ,从上述位置回到平衡位置所需时间为: st t 8.0/)]3)53(arccos()323[(12=----=-ππππ5.6。
大学物理第五章习题答案
L
o
y
x
22
在锥体上 z 坐标处任取半径为 r高为 dz 的小柱体,则
L z 2 dm dv r dz ( R ) dz L 根据质心定义得
2
z
1 zC M
L
0
1 zdm M
L
L
0
L z 2 z ( R ) dz L
r
dz
L
R ML2 0 L L R 2 L 2 2 3 x [ zL dz 2 Lz dz z dz ] 2 0 0 0 ML R 2 L4 2 L4 L4 R 2 2 3 M L [ ] L L 2 ML 2 3 4 12 M 12 M 4
11
如果一个长度已知的不规则物体的重量超过一个弹簧秤的最大 量度,问怎样用这弹簧秤称出该物体的重量? F 上图,根据合力矩为零得
Gx Fl
N
下图,根据合力矩为零得
F l G(l x )
x
F
l
整理可得:
G F F
G
N
G
课后习题
12
5-3:静止的电动机皮带轮半径为 5 cm,接通电源后做匀变速 转动,30 s 后转速达到152 rad / s,求: 1)30 s 内电动机皮带轮转过的转数; 2)通电后 20 s 时皮带轮的角速度; 3)通电后 20 s 时皮带轮边缘上一点的速度、切向加速度和法 向加速度。 解:皮带轮的角加速度为 152 t 0 t t 5 (rad/s 2 )
8
来复线的作用是增加炮弹的射程和准确性。由于炮弹射出时 绕自身轴线高速转动,空气阻力产生的对质心的力矩使炮弹 围绕前进方向产生进动效应,弹头的轴线始终围绕着弹道切 线向前且做锥形运动,从而能克服空气阻气,保证弹头稳定 地向前飞行,避免大的偏离,提高射程与准确性。
大学物理第五章习题解答
掌握干涉现象的原理,理解干涉条纹的形成机制,掌握双缝干涉实验中条纹间距的计算方法。
理解衍射现象的原理,掌握单缝、圆孔、光栅等不同情况下衍射条纹的特征和计算方法。
光的干涉与衍射习题解答
光的衍射
光的干涉
光的偏振
理解偏振现象的原理,掌握偏振光和自然光的区别,掌握偏振片和晶体对偏振光的作用。
直线运动习题解答
总结词:理解曲线运动的性质和规律,掌握圆周运动和平抛运动的公式和计算方法。
曲线运动习题解答
曲线运动习题解答
01
详细描述
02
曲线运动的描述:速度方向与轨迹切线方向一致,加速度与轨迹的曲率半径有关。
圆周运动的向心加速度和线速度的计算公式。
03
平抛运动的水平分速度、竖直分速度和合速度的计算公式。
电场强度计算
电场线
高斯定理
电势与电势差
掌握安培环路定律的应用,解决与安培环路定律相关的题目。
安培环路定律
理解磁场线的概念,掌握磁场线的特点,如磁场线的疏密表示磁感应强度的大小。
磁场线
理解洛伦兹力的概念,掌握洛伦兹力的计算方法。
洛伦兹力
解决与磁感应强度相关的计算题,如电流在磁场中所受的力等。
磁感应强度的计算
这一定律揭示了热现象的方向性,即热量传递具有方向性。
热力学第二定律的数学表达式为:$Q = Delta U - W$,其中$Q$是系统吸收的热量,$Delta U$是系统内能的增量,$W$是系统对外做的功。
热力学定律习题解答
热力二定律指出,不可能把热量从低温物体传到高温物体而不引起其他变化。
5、简述放射性的种类及其特点。
答案:放射性主要分为三种类型:阿尔法放射性、贝塔放射性和伽马放射性。阿尔法放射性是由带两个正电荷的氦原子核组成的高能粒子流;贝塔放射性是由带负电荷的电子或正负电子对组成的低能粒子流;伽马放射性则是高频率的电磁辐射。各种类型的放射性在穿透能力和电离能力上有所不同。
大学物理习题答案第五章
[习题解答]5-1 作定轴转动的刚体上各点的法向加速度,既可写为a n= v2 /R,这表示法向加速度的大小与刚体上各点到转轴的距离R成反比;也可以写为a n= ω2 R,这表示法向加速度的大小与刚体上各点到转轴的距离R成正比。
这两者是否有矛盾?为什么?解没有矛盾。
根据公式,说法向加速度的大小与刚体上各点到转轴的距离R成反比,是有条件的,这个条件就是保持v不变;根据公式,说法向加速度的大小与刚体上各点到转轴的距离R成正比,也是有条件的,条件就是保持ω不变。
5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的?解(1)当角速度ω一定时,切向速度也是一定的,所以切向加速度,即不具有切向加速度。
而此时法向加速度,可见是恒定的。
(2)当角加速度一定时,即恒定,于是可以得到,这表示角速度是随时间变化的。
由此可得.切向加速度为,这表示切向加速度是恒定的。
法向加速度为,显然是时间的函数。
5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30s后转速达到152 rad⋅s-1 。
求:(1)在这30 s内电机皮带轮转过的转数;(2)接通电源后20 s时皮带轮的角速度;(3)接通电源后20 s时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm。
解(1)根据题意,皮带轮是在作匀角加速转动,角加速度为.在30 s内转过的角位移为.在30 s内转过的转数为.(2)在t = 20 s时其角速度为.(3)在t = 20 s时,在皮带轮边缘上r = 5.0 cm处的线速度为,切向加速度为,法向加速度为.5-4 一飞轮的转速为250 rad⋅s-1 ,开始制动后作匀变速转动,经过90 s停止。
求开始制动后转过3.14⨯103 rad时的角速度。
解飞轮作匀变速转动,,经过90 s,,所以角加速度为.从制动到转过,角速度由ω0变为ω,ω应满足.所以.5-5 分别求出质量为m = 0.50 kg、半径为r = 36 cm的金属细圆环和薄圆盘相对于通过其中心并垂直于环面和盘面的轴的转动惯量;如果它们的转速都是105 rad⋅s-1 ,它们的转动动能各为多大?解(1)细圆环:相对于通过其中心并垂直于环面的轴的转动惯量为,转动动能为.(2)相对于通过其中心并垂直于盘面的轴的转动惯量为,转动动能为.5-6 转动惯量为20 kg⋅m2 、直径为50 cm的飞轮以105 rad⋅s-1 的角速度旋转。
大学物理习题答案解析第五章
第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。
大学物理第5章习题答案(1)
E=
q
4 0r
2
q r 4 r 3 E= r r
3
3 0
E= r r 3 0
习题答案
第五章 静电场
e
E dS
s
根据高斯定理
s
EdS
e
4
q/
r2
0
E
E=
q
4 0r
2
Q
r
当场点在球体内时 r R
R
q r 4 r 3 E= r r
(1) 在两直线构成的平面上,任意一点的场强.
(2) 两带电直线上单位长度上的电场力.
解:
E 2 π 0r er
r
(1)
E
E
E
2 0
1 x
r
1
x
i
r
x E
o
E
x
i
2 0 x(r x)
习题答案
解:
E 2 π 0r er
R 0
dq
4 0r 2
= 1
4 0r 2
R
dq
0
=q
4 0r 2
. r dq
r R q R kr4r2 d r R 4kr3 d r kR4
0
0
E
kR4
40r 2
er
习题答案
第五章 静电场
5-18
解:dq ds 2 RdR
R
2
rR
q rdV r kr4r 2 d r r 4kr 3 d r kr4
大学物理第五章习题及解答
第五章 刚体力学一、填空1.刚体的基本运动包括 和 。
2.刚体的质心公式 。
3.质量为m,半径为R 的均匀薄圆环对过圆心且垂直圆环面的转动惯量是 ,对 圆环直径的转动惯量是 。
4.长度为L,质量为M 均匀细棒,对通过棒的一端与棒垂直轴的转动惯量是 ,对通过棒中点与棒垂直轴的转动惯量是 。
二、简答题1.什么是刚体?2.简述质心运动定理的内容。
3.简述刚体绕某轴转动时的转动惯量的定义式及影响转动惯量的因素。
4.简述转动惯量的平行轴定理和垂直轴定理。
5.简述转动定律的内容。
三、计算题5.1飞轮以转速{ EMBED Equation.3 |1min1500n -⋅=round n 转动,受到制动而均匀的减速,经而停止。
求:(1)角加速度的大小;(2)从制动算起到停止,转过的圈数;(3)制动后,第时角速度的大小。
5.2 已知飞轮的半径为,初速度为,角加速度为。
试计算时的(1)角速度;(2)角位移;(3)边缘上一点的速度;(4)边缘上一点的加速度。
5.3某发动机飞轮在时间间隔内的角位移为求:时刻的角速度和角加速度。
5.4如图所示,钢制炉门由两个长1.5m的平行臂AB和CD支撑,以角速率逆时针转动,求臂与铅直成45º时门中心G的速度和加速度。
5.5 桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,自发动机至驱动轮的转速比为0.909.问发动机转速为每分钟多少转?第五章刚体力学答案一、填空1.平动,定轴转动2.3.4.二、简答题1.什么是刚体?刚体是受力作用时不改变形状和体积的物体,是物体的理想化模型。
2.简述质心运动定理的内容。
质点系所受的合外力等于质点系的质量乘以质心加速度。
3.简述刚体转动惯量的定义式,并具体说明转动惯量与哪些因素有关答:转动惯量定义式:。
其与物体的总质量、质量的分布、转轴的位置有关。
4.简述转动惯量的平行轴定理和垂直轴定理。
答:平行轴定理:刚体对于某轴的转动惯量等于刚体对于通过其质心且和该轴平行的轴的转动惯量与刚体的质量和两轴间距平方的乘积之和。
大学物理智慧树知到课后章节答案2023年下三峡大学
大学物理智慧树知到课后章节答案2023年下三峡大学第一章测试1.某质点的运动方程为x=3t-5t3+6(SI),则该质点作( )。
A:变加速直线运动,加速度沿x轴正方向。
B:匀加速直线运动,加速度沿x轴负方向。
C:匀加速直线运动,加速度沿x轴正方向。
D:变加速直线运动,加速度沿x轴负方向。
答案:变加速直线运动,加速度沿x轴负方向。
2.一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度()。
A:等于-2m/s B:不能确定 C:等于零 D:等于2m/s 答案:不能确定3.某物体的运动规律为,式中的k为大于零的常数.当t=0时,初速为v0,则速度v与时间t的函数关系是( )。
A: B:C: D:答案:4.某质点沿半径为1米的圆周运动,运动方程为,2秒末质点的切向加速的大小为()。
A:6 B:24 C:12 D:48 答案:245.曲线运动一定有加速度() A:错 B:对答案:对6.讨论地球公转时可视为质点,而讨论地球自转时不能视为质点。
()A:对 B:错答案:对7.位移的大小等于路程。
()A:对 B:错答案:错第二章测试1.某质点在力(SI)的作用下沿x轴作直线运动。
在从x=0移动到x=5m的过程中,力做功为()。
A:125J B:75J C:50J D:25J 答案:75J2.质点系的内力可以改变()。
A:系统的总动量 B:系统的总质量 C:系统的总动能 D:系统的总角动量答案:系统的总质量3.力作用在质量为1kg的物体上,使物体由静止开始做直线运动,则它在2s末的动量大小为()。
A:54 B:28 C:24 D:56 答案:244.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将()A:保持静止 B:向右加速运动 C:向左加速运动 D:向右匀速运动答案:保持静止5.对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?( )A:外力和保守内力都不作功 B:外力和非保守内力都不作功 C:合外力为0 D:合外力不作功答案:外力和非保守内力都不作功6.质点做匀速圆周运动时,它的动量变化,而相对于圆心的角动量不变。
大物第五章课后习题答案
⼤物第五章课后习题答案简答题5、1 什么就是简谐运动?说明下列运动就是否就是简谐运动?(1)活塞得往复运动;(2)⽪球在硬地上得跳动;(3)⼀⼩球在半径很⼤得光滑凹球⾯底部得来回滑动,且经过得弧线很短;(4)锥摆得运动。
答:质点得简谐振动⼀定要有平衡位置,以平衡位置作为坐标原点,如果以表⽰质点偏离平衡位置得位移,质点所受合外⼒⼀定具有得形式。
(1)活塞得往复运动不就是简谐运动,因为活塞受⼒得⽅向与它得位移就是同⼀⽅向,任⼀时刻所受得合外⼒不具有得形式,所以活塞得往复运动就是简谐运动。
(2)⽪球在硬地上得跳动不就是简谐运动,因为忽略空⽓阻⼒,⽪球在上升与下落阶段,始终受到竖直向下得重⼒得作⽤,任⼀时刻所受得合外⼒不具有得形式,所以⽪球得运动不就是简谐运动。
(3)⼀⼩球在半径很⼤得光滑凹球⾯底部得来回滑动,且经过得弧线很短就是简谐运动。
符合简谐运动得定义。
(4)锥摆得运动不就是简谐运动,此时锥摆受到重⼒与绳得拉⼒得作⽤,这两个⼒得合⼒得⼤⼩为恒量,⽽⽅向在不断得改变,任⼀时刻所受得合外⼒不具有得形式,所以锥摆得运动不就是简谐运动。
5、2(1)试述相位与初相得意义,如何确定初相?(2)在简谐振动表达式中,t=0就是质点开始运动得时刻,还就是开始观察得时刻?初相各表⽰从什么位置开始运动?答:1)相位就是决定谐振动运动状态得物理量,初相就是确定振动物体初始时刻运动状态得物理量。
由初始条件可以确定初相。
2)在简谐振动表达式中,t=0就是质点开始计时时刻得运动状态,就是开始观察得时刻。
初相就是物体处于正最⼤位移处开始运动,初相就是物体处于平衡位置且向初相轴负向开始运动。
5、3 ⼀质点沿x轴按作简谐振动,其振幅为A,⾓频率为ω,今在下述情况下开始计时,试分别求振动得初相:(1)质点在x=+A处;(2)质点在平衡位置处、且向正⽅向运动;(3)质点在平衡位置处、且向负⽅向运动;(4)质点在x=A/2处、且向正⽅向运动;(5)质点得速度为零⽽加速度为正值。
最新大学物理第5章习题答案复习课程
P
E1
习题答案
第五章 静电场
1 2p 1 2p
EE1E24πε0(zd)34πε0(zd)3
q 6d2
2p 4πε0
3 z 2 d2 d 3
[
(
z
2
d
2
4 )3
]
2
q 6d 2
[ 4πε0
z4
]
E [ 4πε0
z4
]k
4
z
d
d
+ q
p
p
+ q
2
1
. E 2
P
E1
Z
习题答案
第五章 静电场
5-9 若电荷均匀分布在长为L的细棒上,求证:
dE0
xdq 4 πε0R3
Rcos2R2sind
4 πε0R3
cossind
2ε0
E02ε0
2cossind
0
4ε0
习题答案
第五章 静电场
5-12 真空中两条平行的“无限长”均匀带电直线相
距为r,其电荷线密度分别为-和+.试求:
(1) 在两直线构成的平面上,任意一点的场强.
(2) 两带电直线上单位长度上的电场力.
Q
E
40L
L 2
dx
L 2
(r-x)2
1Q
0 4r 2 L2
第五章 静电场
y
r
dq
o x dx r
P dE x
dq dx Qdx
L r rx
习题答案
第五章 静电场
(2)
dq
d E 4π0r2
dEy
dq
4π0r2
sin
大学物理_第五版答案
第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无穷大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 转变的关系曲线为图(B)中的( )分析与解 “无穷大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理能够求得各区域电场强度的大小和方向.因此正确答案为(B).5 -2 以下说法正确的选项是( )(A)闭合曲面上各点电场强度都为零时,曲面内必然没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必然为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必然为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必然为零,但不能确信曲面内必然没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确信曲面上各点的电场强度必然为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因此正确答案为(B).5 -3以下说法正确的选项是( )(A) 电场强度为零的点,电势也必然为零(B) 电场强度不为零的点,电势也必然不为零(C) 电势为零的点,电场强度也必然为零(D) 电势在某一区域内为常量,那么电场强度在该区域内必然为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示实验电荷在该点受到的电场力为零,电势为零表示将实验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意途径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因此正确答案为(D).*5 -4在一个带负电的带电棒周围有一个电偶极子,其电偶极矩p的方向如下图.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因此正确答案为(B).5 -5 周密实验说明,电子与质子电量差值的最大范围可不能超过±10-21e ,而中子电量与零差值的最大范围也可不能超过±10-21e ,由最极端的情形考虑,一个有8 个电子,8 个质子和8 个中子组成的氧原子所带的最大可能净电荷是多少? 假设将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情形, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,那么由一个氧原子所包括的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律能够估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即便电子、质子、中子等微观粒子带电量存在不同,其不同在±10-21e 范围内时,关于像天体一类电中性物体的运动,起要紧作用的仍是万有引力. 5 -6 1964年,盖尔曼等人提出大体粒子是由更大体的夸克组成,中子确实是由一个带e 32 的上夸克和两个带e 31-的下夸克组成.假设将夸克作为经典粒子处置(夸克线度约为10-20 m),中子内的两个下夸克之间相距×10-15 m .求它们之间的彼此作使劲.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同说明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率知足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 依照题意将电子作为经典粒子处置.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41re εr m =v 由此动身命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最临近的八个一价铯离子Cs +组成如下图的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺点),求现在氯离子所受的库仑力.分析 铯离子和氯离子都可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算能够利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除有缺点的那条对角线外,其它铯离子与氯离子的作用合力为零,因此氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如下图.5 -9 假设电荷Q 均匀地散布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 假设棒为无穷长(即L →∞),试将结果与无穷长均匀带电直线的电场强度相较较.分析 这是计算持续散布电荷的电场强度.现在棒的长度不能忽略,因此不能将棒看成点电荷处置.但带电细棒上的电荷可看做均匀散布在一维的长直线上.如下图,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处置那个矢量积分.(1) 假设点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 假设点P 在棒的垂直平分线上,如图(A)所示,那么电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度确实是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 依照以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,假设棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无穷长带电直线周围的电场强度散布相同[图(B)].这说明只要知足r 2/L 2<<1,带电长直细棒可视为无穷长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个持续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如下图,从教材第5 -3 节的例1 能够看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如下图,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如下图.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度 302π41xp εE = 可求得电场的散布.也可由点电荷的电场强度叠加,求电场散布. 解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,那么该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无穷长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线组成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线组成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身成立的电场可不能对自身电荷产生作使劲.解 (1) 设点P 在导线组成的平面上,E +、E -别离表示正、负带电导线在P 点的电场强度,那么有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2(2) 设F +、F -别离表示正、负带电导线单位长度所受的电场力,那么有iE F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,彼此作使劲大小相等,方向相反,两导线彼此吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 依照点电荷电场的叠加求P 点的电场强度. 解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4zqd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2称作电四极矩,代入得P 点的电场强度kE43π41zQε=5 -14设匀强电场的电场强度E与半径为R的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方式1:由电场强度通量的概念,对半球面S 求积分,即⎰⋅=SS dsEΦ方式2:作半径为R的平面S′与半球面S一路可组成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01dqεSSE这说明穿过闭合曲面的净通量为零,穿入平面S′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因此⎰⎰'⋅-=⋅=SSSESEΦdd解1 由于闭合曲面内无电荷散布,依照高斯定理,有⎰⎰'⋅-=⋅=SSSESEΦdd依照约定取闭合曲面的外法线方向为面元d S的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER S S2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如下图,其表面别离平行于Oxy 、Oyz 和Ozx 平面,立方体的一个极点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如下图,由题意E 与Oxy 面平行,因此任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场散布相同,故有22a E ABGF CDEO -=-=ΦΦ同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层老是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体内,其电荷为球对称散布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试别离用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处置方式:(1) 利用高斯定理求球内外的电场散布.由题意知电荷呈球对称散布,因此电场散布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因此有2Sπ4d r E ⋅=⋅⎰S E 依照高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的散布. (2) 利用带电球壳电场叠加的方式求球内外的电场散布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每一个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场r rεq e E 20π4d d = 由电场叠加可解得带电球体内外的电场散布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷散布和电场散布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R )()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无穷大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种超级特殊的对称性电场.此题的电场散布尽管不具有如此的对称性,但能够利用具有对称性的无穷大带电平面和带电圆盘的电场叠加,求出电场的散布.假设把小圆孔看做由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.如此中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无穷大带电平面周围n εσe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εσx r εσe e E 02202/112≈+= 上述结果说明,在x >>r 时,带电平板上小圆孔对电场散布的阻碍能够忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,假设将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如下图).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 此题带电体的电荷散布不知足球对称,其电场散布也不是球对称散布,因此无法直接利用高斯定理求电场的散布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度别离为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体内部一点的电场强度为r E 03ερ= 因此 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 依照几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个内外半径别离为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场散布.电场强度是不是为离球心距离r 的持续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称散布,电场强度也为球对称散布,高斯面上电场强度沿径矢方向,且大小相等.因此24d r πE ⋅=⎰S E .在确信高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的散布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E += 电场强度的方向均沿径矢方向,各区域的电场强度散布曲线如图(B )所示.在带电球面的双侧,电场强度的左右极限不同,电场强度不持续,而在紧贴r =R 3 的带电球面双侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有必然厚度的球壳,壳层内外的电场强度也是持续转变的,此题中带电球壳内外的电场,在球壳的厚度变小时,E 的转变就变陡,最后当厚度趋于零时,E 的转变成为一跃变.5 -21 两个带有等量异号电荷的无穷长同轴圆柱面,半径别离为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷散布在无穷长同轴圆柱面上,电场强度也必然沿轴对称散布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的散布.解 作同轴圆柱面为高斯面,依照高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面周围,电场强度大小不持续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面周围,电场强度大小不持续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如下图,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距散布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情形下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的概念,依照Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方式有两种:(1)依照功的概念,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 依照电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他途径所作的功相同,请想一想什么缘故?)外力所作的功为()d εQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的进程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方式,显然用功与电势能转变的关系来求解较为简练.这是因为在许多实际问题中直接求电场散布困难较大,而求电势散布要简单得多. 5 -23 已知均匀带电长直线周围的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,咱们曾取r →∞处的电势为零,求均匀带电长直线周围的电势时,可否如此取? 试说明.解 (1) 由于电场力作功与途径无关,假设沿径向积分,那么有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无穷长的均匀带电直线,而现在电荷散布在无穷空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为 ×10-30C· m .求在下述情形下,距离分子为r = ×10-9 m 处的电势.(1)0θ=︒;(2) 45θ=︒;(3)90θ=︒,θ 为r 与p 之间的夹角.解 由点电荷电势的叠加2000P π4cos π4π4r εθp r εq r εq V V V =-+=+=-+-+(1) 若o0=θ V 1023.2π4320P -⨯==rεpV (2) 若o45=θ V 1058.1π445cos 320o P -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==r εp V5 -25 一个球形雨滴半径为 mm ,带有电量 pC ,它表面的电势有多大? 两个如此的雨滴相遇后归并为一个较大的雨滴,那个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴归并为一个较大雨滴后,半径增大为R 32,代入上式后能够求出两雨滴相遇归并后,雨滴表面的电势.解 依照已知条件球形雨滴半径R 1 = mm ,带有电量q 1 = pC ,能够求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴归并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度别离为+σ和-σ的两块“无穷大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势散布并画出电势随位置坐标x 转变的关系曲线.分析 由于“无穷大”均匀带电的平行平板电荷散布在“无穷”空间,不能采纳点电荷电势叠加的方式求电势散布:应该第一由“无穷大”均匀带电平板的电场强度叠加求电场强度的散布,然后依照电势的概念式求电势散布. 解 由“无穷大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的散布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势转变曲线如图(b )所示.5 -27 两个同心球面的半径别离为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势散布,并画出散布曲线;(2) 两球面间的电势差为多少?分析 通常可采纳两种方式(1) 由于电荷均匀散布在球面上,电场散布也具有球对称性,因此,可依照电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度散布,再由⎰∞⋅=pp V lE d 可求得电势散布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.依照上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的散布. 解1 (1) 由高斯定理可求得电场散布()()()22021321201211 π4 π40R r rεQ Q R r R rεQ R r r r>+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势散布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势散布.假设该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=假设该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=假设该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -28 一半径为R 的无穷长带电细棒,其内部的电荷均匀散布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势散布并画出散布曲线.分析 无穷长均匀带电细棒电荷散布呈轴对称,其电场和电势的散布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E可求得电场散布E (r ),再依照电势差的概念()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的散布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如下图是电势V 随空间位置r 的散布曲线.5 -29 一圆盘半径R = ×10-2 m .圆盘均匀带电,电荷面密度σ=×10-5 C·m -2 .(1) 求轴线上的电势散布;(2) 依照电场强度与电势梯度的关系求电场散布;(3) 计算离盘心 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势散布,再依照电场强度与电势之间的微分关系式可求得电场强度的散布. 解 (1) 带电圆环激发的电势220d π2π41d xr rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x = cm 别离代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也能够视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,能够忽略圆盘的几何形状,而将带电的圆盘看成点电荷来处置.在此题中作如此的近似处置,E 和V 的误不同离不超过%和%,这已足以知足一样的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =×10-2 m ,R 2 = m ),带有等量异号的电荷,二者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r = m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=依照电势差的概念有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r = 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的进程,叫做核聚变.在此进程中能够释放出庞大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出 的能量.即MeV 25.9e 2He H 4014211++→这种聚变反映提供了太阳发光、发烧的能源.若是咱们能在地球上实现核聚变,就能够取得丰硕廉价的能源.可是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度超级大,才能使原子核相碰而结合,故核。
大学物理课后习题(第五章)
第五章 静电场选择题5-1 关于电场强度定义式0q =FE ,下列说法中正确的是 ( B ) (A) 电场强度E 的大小与检验电荷的电荷量0q 成反比;(B) 对电场中某点,检验电荷所受的力F 与其电荷量0q 的比值不因0q 的改变而变化; (C) 检验电荷在电场中某点所受电场力F 的方向就是该处电场强度E 的方向; (D) 若电场中某点不放检验电荷,则0=F ,因而0=E .5-2 下述关于某点的电势正负的陈述,正确的是 ( C ) (A) 电势的正负决定于检验电荷的正负;(B) 电势的正负决定于外力对检验电荷所做的功的正负; (C) 在电场中,空间某点的电势的正负,决定于电势零点的选取;(D) 电势的正负决定于带电体所带电荷的正负,带正电的物体周围的电势一定是正的,带负电的物体的周围的电势一定为负.5-3 在正六边形的顶角上,相间放置电荷相等的正负点电荷,则中心处 ( C ) (A) 电势为零,电场强度不为零; (B) 电势不为零,电场强度为零; (C) 电势为零,电场强度也为零; (D) 电势不为零,电场强度也不为零.5-4 一电子逆着电场线进入匀强电场,在前进过程中,其动能 ( B ) (A) 先增大后减小; (B) 越来越大; (C) 越来越小; (D) 先减小后增大.5-5 处于静电场中的平面1S 和曲面2S 有共同的边界,则 ( B ) (A) 穿过平面1S 的电场强度通量比穿过曲面2S 的电场强度通量大; (B) 穿过平面1S 的电场强度通量与穿过曲面2S 的电场强度通量相等;(C) 穿过平面1S 的电场强度通量比穿过曲面2S 的电场强度通量小;(D) 若电场是匀强的,穿过平面1S 的电场强度通量与穿过曲面2S 的电场强度通量相等,否则不相等.5-6 下列叙述中,正确的是 ( D ) (A) 在匀强电场中,两点之间的电势差为零; (B) 电场强度等于零的地方,电势也为零; (C) 电场强度较大的地方,电势也较高; (D) 在电场强度为零的空间,电势处处相等.5-7 无限长均匀带电的直线的电荷线密度为λ.在距离该直线为r 处,电场强度的大小为 ( D )(A)204πr λε; (B) 04πr λε; (C) 202πr λε; (D) 02πrλε.5-8 若两块无限大均匀带电平行平板的电荷面密度分别为σ和σ-,则两平板之间的电场强度和两平板之外的电场强度大小分别为 ( A )(A)0σε, 0 ; (B) 0 2σε, 02σε; (C) 0σε , 0σε; (D) 02σε, 0 . 5-9 在电荷面密度分别为σ-和σ+的两块无限大均匀带电平行平板之间的电场中,在任一条电场线上的不同点 ( B )(A) 电场强度E 相同,电势U 相同; (B) 电场强度E 相同,电势U 不同; (C) 电场强度E 不同,电势U 相同; (D) 电场强度E 不同,电势U 不同.5-10 如图所示,负的点电荷q 的电场中有A 、B 两点.下面的说法正确的是 ( C ) (A) 点B 场强的大小比点A 的小, 点B 的电势比点A 的高; (B) 点B 场强的大小比点A 的小, 点B 的电势比点A 的低; (C) 点B 场强的大小比点A 的大, 点B 的电势比点A 的低; (D) 点B 场强的大小比点A 的大, 点B 的电势比点A 的高.5-11 半径为R 的球面上均匀分布电荷q ,球心处的电势为 ( C ) (A) 0; (B)04πq R ε-; (C) 04πq R ε; (D) 02πqRε.5-12 两块相互平行的无限大均匀带电平板,它们的电荷面密度分别为σ±,若平板之间距离为d ,则两平板之间的电势差为 ( B )(A)02d σε; (B) 0d σε; (C) 02d σε; (D) 04dσε. 5-13 一半径为R 的均匀带电圆环,所带电荷为q ,环心处的电场强度大小和电势分别为 ( D )(A) 204πq E R ε=, 04πqV Rε=; (B) 0E =, 0V =;(C) 204πq E R ε=, 0V =; (D) 0E =, 04πqV Rε=.5-14 关于真空平行板电容器,下面说法正确的是 ( C ) (A) 极板上的电荷增加一倍,其电容也增加一倍; (B) 极板之间的电压增加一倍,其电容也增加一倍; (C) 极板的面积增加一倍,其电容也增加一倍; (D) 极板之间的距离增加一倍,其电容也增加一倍.5-15 一真空平行板电容器的电容为0C ,充电至极板间电势差为0U 时和电源断开,保持极板上的电荷不变.若在其极板间充满相对电容率为r ε的电介质,则其电容C 和极板间电势差U 分别为 ( B )(A) r 0C C ε=, r 0ε=U U ; (B) r 0C C ε=, 0rε=U U ;(C) 0rC C ε=, 0rε=U U ; (D) 0rC C ε=, r 0ε=U U ;5-16 平行板电容器充电后仍与电源连接.若用绝缘手柄将两极板的间距拉大,则极板上电荷Q ,极板间的电场强度E 的大小和电场能量e W 的变化为 ( B )(A) Q 增大, E 增大, e W 增大; (B) Q 减小, E 减小, e W 减小;(C) Q 增大, E 减小, e W 增大; (D) Q 减小, E 增大, e W 增大.计算题5-17 电荷为61 2.010C q -=⨯和62 4.010C q -=⨯的两个点电荷,相距10cm ,求两点电荷连线上电场强度为零的点的位置.解 设场强为零的点到1q 的距离为x ,则12220004π4π()q q x d x εε-=-式中10cm d =.解方程,可得cm 4.14cm x ===5-18 如图所示,两个等量异号的点电荷q ±,相距为l .求两点电荷的连线上距离中点O 为x 的点P 的电场强度.若x l >>,这两个点电荷组成的系统可看成电偶极子,求此情况下,点P 处的电场强度表达式.解 以O P →为Ox 轴正向,q 在点P 的电场强度为1204π2q E l x ε=⎛⎫- ⎪⎝⎭q -在点P 的电场强度为2204π2q E l x ε-=⎛⎫+ ⎪⎝⎭点P 的电场强度为12222202002π4π4π224q q q xlE E E l l l x x x εεε-=+=+=⎛⎫⎛⎫⎛⎫-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭0E >,说明其方向沿O P →.若x l >>,则33002π2πql pE x xεε== 式中p ql =,为偶极子的电矩p 的大小;若写成矢量式,则为302πxε=p E .5-19 一半径为R ,圆心角为2π3的圆环上均匀分布电荷q -.求圆心处的电场强度E . 解 取坐标如图.圆环上单位长度电荷绝对值为322ππ3q qRR λ==.如图所示,在θ处取d d q R λθ=,其在环心O 处的电场强度d E 方向如图,大小为22000d d d d 4π4π4πq R E R R Rλθλθεεε=== 由于对称, 圆环上的电荷在环心O 处的电场强度沿Ox 方向的分量d 0x x E E ==⎰.在Oy 方向上0cos d d d cos 4πy E E Rλθθθε==圆环上的电荷在环心O 处的电场强度沿Oy 方向的分量为π3π220003cos d 4π4π8πy E R R R λθθεεε-===⎰圆环上的电荷在环心O 处的电场强度为2208πy E Rε==E j j 5-20 正电荷q 均匀地分布在长度为L 的细棒上.求证在棒的延长线上,距离棒中心为r 处的电场强度的大小为2201π4qE r L ε=-证 取坐标如图所示.在棒上x 处取微元d x ,其上的电荷为d d d qq x x Lλ==.d q 在棒的延长线上距中心r 处的点C 的电场强度沿Ox 轴正向,为20d d 4π()xE r x λε=-整个棒上的电荷在点C 的电场强度为22002222200d 114π()4π2241 4π4π4L L x E L L r x r r L q r L r L λλεελεε-⎛⎫⎪==- ⎪- ⎪-+⎝⎭==--⎰5-21 如图所示,一细线被弯成半径为R 的半圆形,其上部均匀分布有电荷q ,下部均匀分布电荷q -.求圆心O 处的电场强度E .解 半圆细线关于Ox 轴对称.取对称的大小相等的正负电荷微元,它们在圆心O 处的电场强度之和沿Oy 轴负向.由此可见,所有电荷在圆心O 处的电场强度,也一定沿Oy 轴负向.上半部分带正电荷,电荷线密度为2ππ2q qR R λ+==.在圆弧上取微元d d l R θ=,其上所带电量为d d d q l R λλθ==.d q 在圆心处产生的电场强度1d E 的大小为1200d d d 4π4πR E R Rλθλθεε== 1d E 沿Oy 方向的分量为10d d cos 4πy E Rλθθε=-式中θ为d q 到Oy 轴的角距离.对上面的四分之一圆弧积分,即得所有正电荷在圆心O 处的电场强度沿Oy 方向的分量为π21000cos 4π4πy E d R Rλλθθεε=-=-⎰ 同样的方法,可求得所有负电荷在圆心O 处的电场强度沿Oy 方向的分量为204πy E Rλε=-整个半圆环上的电荷在圆心O 处的电场强度为()1222002ππy y qE E R R λεε=+=-=-E j j j5-22 边长为a 的正方体的中心,放置一点电荷Q .求穿过正方体各个侧面的电场强度通量.若点电荷Q 放在正方体的顶点A 上,如图所示,则穿过侧面BCDE 的电场强度通量为多少?解 若点电荷放置在正方体的中心,则正方体表面包围的电荷为Q ,穿过表面的电场强度通量为e 0QΦε=穿过各侧面的电场强度通量相等,为e106QΦε=若点电荷放在正方体的顶点A 上,则可设想点电荷处于另一个大正方体的中心,这个大正方体是原来的小正方体的8倍.穿过这个大正方体表面的电场强度通量为e 0QΦε=,穿过大正方体一个侧面的电场强度通量为e6Φ.每个侧面都是由4个BCDF 这样的正方形对称地拼铺而成.因此, 穿过BCDF 的电场强度通量是穿过一个侧面的电场强度通量的14,为 e e e201462424QΦΦΦε=⨯==5-23 电场强度大小为1300V m -⋅的匀强电场中,有一半径为20.0cm 的圆周,电场强度与圆平面的夹角为o30.求穿过以该圆周为边界的曲面的电场强度通量e Φ.解 电场穿过以圆周为边界的任何曲面的电场强度通量都与穿过圆平面的电场强度通量相等.电场强度与圆平面的法线间的夹角为ooo(9030)60θ=-=,因此()2o e 21o cos πcos 60 300π2.010cos 60 V m 18.85 V mΦES E R θ-=⋅===⨯⋅=⋅E S5-24 相互平行的两条无限长直线,相距为a ,其上均匀带电,电荷线密度分别为λ和λ-.求距离两直线均为a 的点P 的电场强度.解 二带电直线在点P 的电场强度1E 和2E 如图所示.二者大小相等,为1202πE E aλε==.总电场强度E 是1E 和2E 的矢量和,方向如图,垂直于二直线且与二直线组成的平面平行;由几何关系可知,E 大小与1E 和2E 相同,亦为02πE a λε=5-25 如图所示,相互平行的两条无限长直线,相距为d ,其上均匀带电,电荷线密度分别为λ和λ-.求在两直线所决定的平面上的电场强度分布.解 取坐标如图所示.在两条带电直线所在的平面上, 两条带电直线的电场强度1E 和2E 的方向均沿Ox 轴.左边的均匀带电无限长直线在x 处的电场强度为()10 02πE x xλε=≠ 右边的均匀带电无限长直线在x 处的电场强度为()()20 2πE x d x d λε-=≠-两条带电直线决定的的平面上的电场强度为()()1200011 0,2π2π2πE E E x x d x x d x x d λλλεεε-⎛⎫=+=+=-≠≠ ⎪--⎝⎭5-26 如图所示,两块相互平行的无限大均匀带电平面上,电荷面密度分别为σ和2σ-.求图中三个区域的电场强度.解 两块电荷均匀分布的无限大平板的电场均为匀强场.如图所示,左边平板的电场方向如图上实箭头所指,大小为02σε,右边平板的电场方向如图上虚箭头所指,大小为0σε.如图所示,取Ox 轴与平面垂直,则三个区域的电场强度均沿Ox 轴.由叠加原理,各区域的场强为:Ⅰ区域100022E σσσεεε⎛⎫=+-=⎪⎝⎭ Ⅱ区域2000322E σσσεεε⎛⎫=+=⎪⎝⎭ Ⅲ区域300022E σσσεεε⎛⎫-=-+=⎪⎝⎭ 5-27 如图所示,两个电偶极矩大小均为p ql =的电偶极子在一条直线上,方向相反,且负电荷重合.求在它们的延长线上距离负电荷为r (r l >>)的点P 的电势.解 从左到右三个点电荷的电场在点P 的电势分别为()104πqV r l ε=+2024πq V r ε-=()304πqV r l ε=-点P 的电势为()()()12300022202 4π4π4π 2πV V V V q q qr l r r l ql r r l εεεε=++-=+++-=- 因为r l >>,所以可近似为233002π2πql pl V r r εε==5-28 如图所示,电荷为q ±的两个点电荷分别位于点D 和点O ,2DO R =.若将带电粒子0q 从DO 的中点A ,沿以点O 为圆心,R 为半径的圆弧ABC 移至点C ,求电场力对它所做的功.解 q +和q -的电场中,点A 的电势0A V =,点C 的电势为00114π36πC q qV R R Rεε--⎛⎫=+= ⎪⎝⎭ 将0q 从点A 经点B 沿圆弧移至点C ,电场力对它所做的功为()0006πA C q qA q V V Rε=-=5-29 一均匀带电的半圆环,半径为R ,所带电荷为Q ,求环心处的电势. 解 半圆环上的电荷元d q 的电场中,圆心O 处的电势为0d d 4πqV Rε=带电半圆环的电场中,圆心O 处的电势为00d d 4π4πLq QV V R Rεε===⎰⎰5-30 电荷q 均匀地分布在半径为R 的细圆环上.求细圆环轴线上,距中心为x 的点P 的电势.解 取坐标如图所示.在园环上取电荷元d q ,其电场在Ox 轴上x 处的点P 处的电势为0d d 4πq V r ε==整个园环上的电荷的电场在点P 处的电势为d V q ===⎰⎰圆环也可以用电势定义d P P L V ∞=⋅⎰E l 来求.在例5-4中,已经求得带电圆环轴线上距中心为x 处的场强为()322204πqx E x Rε=+若选积分路径为从点P 沿轴线延伸到∞的直线,则d d x =l i ,于是()32220d d 4πqx x x Rε⋅=+E l点P 处的电势为()322021d d 4πP P x Lqx xV P xRε∞∞=⋅==+⎰⎰E l点P 是任意的,因此V =5-31 如图所示,平面曲线ABMCD 上均匀带电,电荷线密度为λ.BMC 是半径为R 的半圆弧,AB 、CD 和圆心O 在同一条直线上,AB CD R ==.求圆心O 处的电场强度和电势.解 AB 和CD 上的电荷,在圆心O 处产生的电场强度,大小相等方向相反,相互抵消.因此圆心O 处总的电场强度与半圆弧BMC 上的电荷在此产生的电场强度相等,方向垂直AD 向下.如题5—19,可求得该电场强度的大小为02πE Rλε=.在AB 上距离A 为x 出取d x ,其上电荷为d d q x λ=.d q 的电场中,圆心O 处的电势为0d d 4π(2)xV R x λε=-.AB 上的电荷的电场中,圆心O 处的电势为1000d ln 24π(2)4πRxU R x λλεε==-⎰同样的方法可求得CD 上的电荷的电场中,圆心O 处的电势为20ln 24πV λε=半圆弧BMC 上电荷的电场中,圆心O 处的电势为 300π4π4R V R λλεε==圆心O 处的总电势为12300022ln 2ln 214π44πV V V V λλλεεε⎛⎫=++=⨯+=+ ⎪⎝⎭5-32 无限长直线均匀带电,电荷线密度为λ.求其电场中距离直线分别为a 和b 的两点之间的电势差.解 均匀带电线密度为λ的无限长直线周围的电场,沿以该直线为轴的柱坐标的径向,到带电直线的距离为r 的点上,电场强度的大小为02πE rλε=到带电直线的距离为a 和b 的两点之间的电势差为00d d d ln 2π2πb b bab aaabU E r r r aλλεε=⋅=⋅==⎰⎰⎰E l 5-33 在平行板电容器极板之间充填两种电容率分别为1ε和2ε的电介质,每一种电介质各占一半体积.若电介质如图(a)分布,两种电介质中的电场能量密度之比是多少?若电介质按图(b)分布,则两种电介质中电场能量密度之比又是多少?解 (a) 极板间的电势差相同,因此板间的电场强度相等,12E E =.由2e 12E ε=w ,可得两种介质中的电场的能量密度之比为e1e212::εε=w w(b) 电介质中的电场强度为E σε=,因此两种介质中的电场强度之比为121211::E E εε=.由2e 12E ε=w ,可得两种介质中的电场的能量密度之比为 22e1e21122211211::::E E εεεεεε===w w5-34 一个标有“10μF,450V ”的电容器,当充电到电势差400V U =时,它所储存的电场能为多少?若是平行板电容器,极板之间的距离为320010cm d .-=⨯,充填的电介质的相对电容率为r 520.ε=,则极板之间电场的能量密度为多大?解 电容器储存的电场能为262e 111010400J 0.8 J 22W CU -==⨯⨯⨯=极板之间的电场强度为UE d=,电场的能量密度为 22e r 0r 0212333511221400 52088510J m 92010J m 220010U E d ....εεεε----⎛⎫== ⎪⎝⎭⎛⎫=⨯⨯⨯⨯⋅=⨯⋅ ⎪⨯⎝⎭w。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 狭义相对论 习题答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。
在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。
2. 狭义相对论的两个基本原理是什么? 答:狭义相对论的两个基本原理是:(1)相对性原理 在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理 在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。
3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。
解 在相对论中,不是一切都是相对的,也有绝对性存在的方面。
如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。
4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点; (2)两事件发生于S 系的不同地点。
解 由洛伦兹变化2()vt t x cγ'∆=∆-∆知,第一种情况,0x ∆=,0t ∆=,故'S 系中0t '∆=,即两事件同时发生;第二种情况,0x ∆≠,0t ∆=,故'S 系中0t '∆≠,两事件不同时发生。
5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率; (2)飞船B 测得飞船A 的速率。
解 选地面为S 系,飞船A 为S '系。
(1)'0.4,0.5x v c u c ==,2'341'x x x v u v c vv c+==+ (2)'0.4BA AB x v v v c =-=-=-5.6 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问: (1)S ′系相对S 系的速度是多少?(2) S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v ,(1) )(1211x cvt t -='γ)(2222x c vt t -='γ 由题意 012='-'t t 则 )(12212x x cvt t -=- 故 812122105.12⨯-=-=--=cx x t t cv 1s m -⋅(2)由洛仑兹变换 )(),(222111vt x x vt x x -='-='γγ 代入数值, m 102.5412⨯='-'x x 5-7 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解: 门外观测者测得杆长为运动长度,20)(1cu l l -=,当l a ≤时,可认为能被拉进门,则l a ≤解得杆的运动速率至少为: 2)(1l a c u -= 5-8 在S 系中有一静止的正方形,其面积为100m 2,观察者S '以0.8c 的速度沿正方形的对角线运动,S '测得的该面积是多少?解 设正方形在S 系中每边长为L, ,因为相对运动,沿着运动方向的对角线缩短,垂直于运动方向的对角线长度不变。
固在S '系观测的面积为2260S L L L m '===5-9 观测者A 测得与他相对静止的x-y 平面上某圆面积为122cm ,另一观察者B 相对于A 以0.8c 的速率平行于x-y 平面做匀速圆周运动,则B 测得这一图形的面积是多少?(答案:7.2c m 2) 解: 将静系S 固联于观测者A 所在的xoy 平面,动系S '固联于观测者B 上,在观测的时刻t ,令S 和S '系的()x x '重合。
则在动系上观测,圆的直径在运动方向收缩,在垂直于运动方向的直径不变,因此,观测者A 观测的圆,B 测得为一椭圆。
该椭圆的长轴为 /2a d =短轴为 13210b d ==面积为 233(/2)1020S ab d d d πππ==⨯⨯= 由题意 24()12102dπ-=⨯ 由此得到 2442233412107.2107.2()2020S d m cm π--==⨯⨯⨯=⨯= 5-10 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 因为l l '=3=35=∴ c c v 542591=-=5-11 某种介子静止时的寿命是810s -。
如它在实验室中的速率为8210m s ⨯,在它的一生中能飞行多少米?解:介子静止时的寿命是固有时间,由于它相对于实验室运动,从而实验室观测的寿命是非固有时间。
在实验室观测的介子寿命为:881.342s τ--====所以介子一生中能飞行距离为:2.68s c m τ∆==5-12 两个惯性系中的观察者O 和O '以0.6c (c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇?解 O '测得的是固有时间t '∆,O 测得相遇时间为t ∆,又cv L t 6.0200==∆ 所以O ' 测得的固有时间t '∆为∴ vL tt 201βγ-=∆='∆8200.88.8910s 0.6c-⨯==⨯,此题也可用长度收缩效应来解。
O 测得长度为固有长度,O '测得长度为非固有长度,设用L 表示,则00.8,L L L L ===由L t v'∆=有 8080.80.8208.8910s 0.60.6 3.010L t c -⨯'∆===⨯⨯⨯5-13 一米尺静止在'S 系中,长度为0l ,并与'X 轴成30角。
若在S 系中测得该米尺与X 轴成45角,则'S 相对于S 系的速度为多大?S 系中测得该米尺的长度是多少?解:在S 中观察,米尺在运动方向(X 轴方向)长度收缩,在Y 轴方向长度不变,因此00cos30x l l l == 000sin30y y l l l == 由题意:045y xl tg l =所以 045tg解之得'S 相对于S 系的速度为: u=0.816c 0.816(/)u c m s = S 系中测得该米尺的长度为:00.707l l m ==5-14 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功? 解: (1)对电子作的功,等于电子动能的增量,得22220000(1)1)k k E E mc m c m c m c γ∆=-=-=-=)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) 同理)()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cv c m c m c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=5-15 两飞船,在自己的静止参考系中侧的各自的长度均为0l m ,飞船甲上仪器测得飞船甲的前端驶完飞船乙的全长需s t ∆,求两飞船的相对运动速度。
解 由运动的相对性可知,乙船全长驶过甲船前端所需要时间为s t ∆,0l m 是固有长度,由甲船上来观测,乙船的长度收缩为l l =,u 即为两飞船的相对运动速度,由题意有:l l u t ==∆所以 22222(1)u l u t c-=∆由此得到:u =5-16 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之几? 解: 设静止质量为0m ,运动质量为m , 由题设10.00=-m m m 而 201β-=m m由此二式得10.01112=--β∴ 10.1112=-β 设物体在运动方向上的长度和静长分别为l 和0l ,则相对收缩量为:%1.9091.010.111112000==-=--=-=β∆l l l l l5-17 一电子在电场中从静止开始加速,试问它应通过多大的电势差才能使其质量增加0.4%?此时电子速度是多少?已知电子的静止质量为9.1×10-31kg . 解 由质能关系1004.0200=∆=∆c m E m m ∴ 100/)103(101.94.01004.0283120⨯⨯⨯⨯==∆-c m E J 1028.316-⨯==eV 106.11028.31916--⨯⨯= eV 100.23⨯= 所需电势差为3100.2⨯伏特 由质速公式有:004.111004.01111100002=+=∆+=∆+==-m m mm m m m β ∴ 32221095.7)004.11(1)(-⨯=-==c v β故电子速度为 -17s m 107.2⋅⨯==c v β5-18 一正负电子对撞机可以把电子加速到动能K E =2.8×109eV .这种电子速率比光速差多少? 这样的一个电子动量是多大?(与电子静止质量相应的能量为0E =0.511×106eV)解: 2022201c m cv c m E k --=所以 20202022/111cm E c m c m E c v k k +=+=- 由上式,2962622020)108.210511.0/()1051.0(1)(1⨯+⨯⨯-=+-=c E c m c m c v k8109979245.2⨯=-1s m ⋅810997924580.2⨯=-v c -1s m ⋅8109979245.28=⨯- -1s m ⋅由动量能量关系420222c m c p E +=可得cc m E E ccm c m E ccm E p k k k 20242022042022)(+=-+=-=11882138269182s m kg 1049.1103/]106.1)10511.0108.22108.2[(---⋅⋅⨯=⨯⨯⨯⨯⨯⨯⨯+⨯=5-19 甲相对乙以0.6c 的速率运动,求:(1)甲携带质量为1kg 的物体,乙测得该物体的质量是多少? (2)甲、乙测得该物体的总能量各是多少? 解:(1)m ==1.25kg(2)甲测得该物体的总能量: 21600910E m c J ==⨯; 乙测得该物体的总能量:2171.1310E mc J ==⨯5-20 一静止质量为0m 的粒子,裂变成两个粒子,速度分别为0.6c 和0.8c .求裂变过程的静质量亏损和释放出的动能.解: 孤立系统在裂变过程中释放出动能,引起静能减少,相应的静止质量减少,即静质量亏损. 设裂变产生两个粒子的静质量分别为10m 和20m ,其相应的速度c v 6.01=,c v 8.02= 由于孤立系统中所发生的任何过程都同时遵守动量守恒定律和能(质)量守恒定律,所以有0112222201221102211=-+-=+v cv m v c v m v m v m022220221102111m cv m cv m m m =-+-=+注意1m 和2m 必沿相反方向运动,动量守恒的矢量方程可以简化为一维标量方程,再以6.01=v c,8.02=v c 代入,将上二方程化为:20106886m m =,020106.08.0m m m =+ 上二式联立求解可得:010459.0m m =, 020257.0m m =故静质量亏损020100284.0)(m m m m m =+-=∆由静质量亏损引起静能减少,即转化为动能,故202284.0c m mc E k =∆=∆5-21 实验室测得一质子的速率为0.995c ,求该质子的质量、总能量、动量和动能。