2019-2020年高三第一次联合模拟考试数学(理)试题 含解析

合集下载

2019-2020年高考数学一模试卷 理(含解析)

2019-2020年高考数学一模试卷 理(含解析)

2019-2020年高考数学一模试卷理(含解析)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={2,0,1,5},集合A={0,2},则∁U A=()A.φB.{0,2} C.{1,5} D.{2,0,1,5}2.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.3.(5分)若函数y=a x+b的部分图象如图所示,则()A.0<a<1,﹣1<b<0 B.0<a<1,0<b<1 C.a>1,﹣1<b<0 D.a>1,0<b<14.(5分)已知实数x,y满足不等式组,则2x+y的最大值为()A.3 B.4 C.6 D.95.(5分)已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)执行如图所示的程序框图,则输出S的值为()A.16 B.25 C.36 D.497.(5分)在△ABC中,a,b,c分为为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,] C.[,π)D.[,π]8.(5分)如果自然数a的各位数字之和等于8,我们称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3…,若a n=xx,则n=()A.83 B.82 C.39 D.37二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须作答.9.(5分)(x﹣)4的展开式中常数项为.(用数字表示)10.(5分)(x2﹣2sinx)dx=.11.(5分)已知向量=(﹣1,1),=(1,)(x>0,y>0),若⊥,则x+4y的最小值为.12.(5分)已知圆C:x2+y2+8x+ay﹣5=0经过抛物线E:x2=4y的焦点,则抛物线E的准线与圆C相交所得的弦长为.13.(5分)设P是函数y=lnx图象上的动点,则点P到直线y=x的距离的最小值为.三、【坐标系与参数方程选做题】(共1小题,每小题5分,满分5分)14.(5分)在极坐标系中,曲线C1:ρcosθ=与曲线C2:ρ2cos2θ=1相交于A,B两点,则|AB|=.四、【几何证明选讲选做题】(共1小题,每小题0分,满分0分)15.如图,在Rt△ABC中,∠A=30°,∠C=90°,D是AB边上的一点,以BD为直径的⊙O与AC相切于点E.若BC=6,则DE的长为.三、解答题16.(12分)函数f(x)=2sin(ωx+)(w>0)的最小正周期是π.(1)求f()的值;(2)若sinx0=,且x0∈(0,),求f(x0)的值.17.(12分)空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在xx12月份某时刻实时监测到的数据:城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值广州118 东莞137 中山95 江门78 云浮76 茂名107 揭阳80深圳94 珠海95 湛江75 潮州94 河源124 肇庆48 清远47佛山160 惠州113 汕头88 汕尾74 阳江112 韶关68 梅州84 (1)请根据上表中的数据,完成下列表格:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望.18.(14分)在三棱锥P﹣ABC中,已知平面PBC⊥平面ABC,AB是底面△ABC最长的边.三棱锥P﹣ABC的三视图如图1所示,其中侧视图和俯视图均为直角三角形.(1)请在图2中,用斜二测画法,把三棱锥P﹣ABC的直观图补充完整(其中点P在xOz平面内),并指出三棱锥P﹣ABC的哪些面是直角三角形;(2)求二面角B﹣PA﹣C的正切值;(3)求点C到面PAB的距离.19.(14分)已知数列{a n}的首项大于0,公差d=1,且+=.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b1=﹣1,b2=λ,b n+1=b n+,其中n≥2.①求数列{b n}的通项b n;②是否存在实数λ,使得数列{b n}为等比数列?若存在,求出λ的值;若不存在,请说明理由.20.(14分)已知椭圆E:+=1(a>b>0)的离心率为,过左焦点倾斜角为45°的直线被椭圆截得的弦长为.(1)求椭圆E的方程;(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q 的轨迹方程.21.(14分)已知定义在[﹣2,2]上的奇函数f(x)满足:当x∈(0,2]时,f(x)=x(x﹣2).(1)求f(x)的解析式和值域;(2)设g(x)=ln(x+2)﹣ax﹣2a,其中常数a>0.①试指出函数F(x)=g(f(x))的零点个数;②若当1+是函数F(x)=g(f(x))的一个零点时,相应的常数a记为a k,其中k=1,2,…,n.证明:a1+a2+…+a n<(n∈N*).广东省深圳市xx高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={2,0,1,5},集合A={0,2},则∁U A=()A.φB.{0,2} C.{1,5} D.{2,0,1,5}考点:交、并、补集的混合运算.专题:集合.分析:根据集合的补集的定义求出A的补集即可.解答:解:∵集合U={2,0,1,5},集合A={0,2},∴∁U A={1,5},故选:C.点评:本题考查了集合的运算,是一道基础题.2.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:∵z(1+i)=1,∴=.故选:D.点评:本题考查了复数的运算法则,属于基础题.3.(5分)若函数y=a x+b的部分图象如图所示,则()A.0<a<1,﹣1<b<0 B.0<a<1,0<b<1 C.a>1,﹣1<b<0 D.a>1,0<b<1考点:指数函数的图像与性质.专题:函数的性质及应用.分析:根据指数函数的图象和性质即可判断解答:解:由图象可以看出,函数为减函数,故0<a<1,因为函数y=a x的图象过定点(0,1),函数y=a x+b的图象过定点(0,b),∴﹣1<b<0,故选:A点评:本题主要考查函数图象的应用,利用函数过定点是解决本题的关键.4.(5分)已知实数x,y满足不等式组,则2x+y的最大值为()A.3 B.4 C.6 D.9考点:简单线性规划.专题:不等式的解法及应用.分析:作出可行域,平行直线可得直线过点A(3,0)时,z取最大值,代值计算可得.解答:解:作出不等式组所对应的可行域(如图阴影),变形目标函数z=2x+y可得y=﹣2x+z,平移直线y=﹣2x可知,当直线经过点A(3,0)时,z取最大值,代值计算可得z=2x+y的最大值为6故选:C点评:本题考查简单线性规划,准确作图是解决问题的关键,属中档题.5.(5分)已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.解答:解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.点评:本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.6.(5分)执行如图所示的程序框图,则输出S的值为()A.16 B.25 C.36 D.49考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的i,n,S的值,当i=6时,满足条件i>5,退出循环,输出S的值为36.解答:解:执行程序框图,可得S=0,n=1,i=1S=1,不满足条件i>5,i=2,n=3,S=4不满足条件i>5,i=3,n=5,S=9不满足条件i>5,i=4,n=7,S=16不满足条件i>5,i=5,n=9,S=25不满足条件i>5,i=6,n=11,S=36满足条件i>5,退出循环,输出S的值为36.故选:C.点评:本题主要考察了程序框图和算法,正确判断退出循环时S的值是解题的关键,属于基础题.7.(5分)在△ABC中,a,b,c分为为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,] C.[,π)D.[,π]考点:利用导数研究函数的极值.专题:计算题;导数的综合应用;解三角形.分析:先求导f′(x)=x2+2bx+(a2+c2﹣ac),从而化函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点为x2+2bx+(a2+c2﹣ac)=0有两个不同的根,从而再利用余弦定理求解.解答:解:∵f(x)=x3+bx2+(a2+c2﹣ac)x+1,∴f′(x)=x2+2bx+(a2+c2﹣ac),又∵函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,∴x2+2bx+(a2+c2﹣ac)=0有两个不同的根,∴△=(2b)2﹣4(a2+c2﹣ac)>0,即ac>a2+c2﹣b2,即ac>2accosB;即cosB<;故∠B的范围是(,π);故选:D.点评:本题考查了导数的综合应用及余弦定理的应用,属于中档题.8.(5分)如果自然数a的各位数字之和等于8,我们称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3…,若a n=xx,则n=()A.83 B.82 C.39 D.37考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用“吉祥数”的定义,分类列举出“吉祥数”,推理可得到结论.解答:解:由题意,一位数时只有8一个;二位数时,有17,26,35,44,53,62,71,80共8个三位数时:(0,0,8)有1个,(0,1,7)有4个,(0,2,6)有4个,(0,3,5)有4个,(0,4,4)有2个,(1,1,6)有3个,(1,2,5)有6个,(1,3,4)有6个,(2,2,4),有3个,(2,3,3)有3个,共1+4×3+2+3×3+6×2=36个,四位数小于等于xx:(0,0,1,7)有3个,(0,0,2,6)有1个,(0,1,1,6)有6个,(0,1,2,5)有7个,(0,1,3,4)有6个,(1,1,1,5)有3个,(1,1,2,4)有6个,(1,1,3,3)有3个,(1,2,2,3)有3个,共有3×4+6×3+1+7=38个数,∴小于等于xx的一共有1+8+36+38=83个,即a83=xx故选:A点评:本题考查新定义,涉及简单计数原理和排列组合的知识,属中档题.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须作答.9.(5分)(x﹣)4的展开式中常数项为.(用数字表示)考点:二项式定理.专题:计算题;二项式定理.分析:利用二项展开式的通项公式T r+1=(﹣)r••x4﹣2r,令4﹣2r=0得r=2,即可求出(x﹣)4的展开式中常数项.解答:解:设(x﹣)4展开式的通项为T r+1,则T r+1=(﹣)r••x4﹣2r,令4﹣2r=0得r=2.∴展开式中常数项为:(﹣)2•=.故答案为:.点评:本题考查二项式系数的性质,利用通项公式化简是关键,属于中档题.10.(5分)(x2﹣2sinx)dx=18.考点:微积分基本定理.专题:导数的概念及应用.分析:根据微积分基本定理计算即可.解答:解:(x2﹣2sinx)dx=(x3+2cosx)|=×33+2cos3﹣×(﹣3)3﹣2cos(﹣3)=9+9=18 故答案为:18点评:本题考查了微积分基本定理,关键是求出原函数,属于基础题11.(5分)已知向量=(﹣1,1),=(1,)(x>0,y>0),若⊥,则x+4y的最小值为9.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据⊥,得到x+y=xy,由x+4y≥4结合“=”成立的条件,求出此时x,y的值,从而得到答案.解答:解:∵⊥,(x>0,y>0),∴•=﹣1+=0,∴+=1,∴x+4y=(x+4y)(+)=1+++4≥5+2=9,当且仅当=即x2=4y2时“=”成立,故答案为:9点评:本题考查了平面向量数量积的运算,考查了基本不等式的性质,是一道基础题.12.(5分)已知圆C:x2+y2+8x+ay﹣5=0经过抛物线E:x2=4y的焦点,则抛物线E的准线与圆C相交所得的弦长为4.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出抛物线E:x2=4y的焦点为(0,1),准线为y=﹣1,确定圆的方程,即可求出抛物线E的准线与圆C相交所得的弦长.解答:解:抛物线E:x2=4y的焦点为(0,1),准线为y=﹣1.(0,1)代入圆C:x2+y2+8x+ay﹣5=0,可得1+a﹣5=0,∴a=4∴圆C:x2+y2+8x+4y﹣5=0,即(x+4)2+(y+2)2=25,∴圆心到直线的距离为d=1,∴抛物线E的准线与圆C相交所得的弦长为2=4.故答案为:4.点评:本题考查圆的方程,考查抛物线的性质,考查直线与圆的位置关系,考查学生的计算能力,比较基础.13.(5分)设P是函数y=lnx图象上的动点,则点P到直线y=x的距离的最小值为.考点:利用导数研究曲线上某点切线方程.专题:计算题;作图题;导数的综合应用.分析:由题意作图,从而可得点P(1,0)时,点P到直线y=x的距离的有最小值;从而求解.解答:解:由题意作图如下,令y′==1得,x=1,y=0;故点P(1,0)时,点P到直线y=x的距离的有最小值;故d==;故答案为:.点评:本题考查了导数的综合应用及数形结合的思想应用,属于中档题.三、【坐标系与参数方程选做题】(共1小题,每小题5分,满分5分)14.(5分)在极坐标系中,曲线C1:ρcosθ=与曲线C2:ρ2cos2θ=1相交于A,B两点,则|AB|=2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:曲线C1:ρcosθ=化为x=.曲线C2:ρ2cos2θ=1化为ρ2(cos2θ﹣sin2θ)=1,可得x2﹣y2=1,联立解得即可.解答:解:曲线C1:ρcosθ=化为x=.曲线C2:ρ2cos2θ=1化为ρ2(cos2θ﹣sin2θ)=1,∴x2﹣y2=1,联立,解得.∴|AB|=2.故答案为:2.点评:本题考查了极坐标方程化为直角坐标方程、弦长问题,考查了计算能力,属于基础题.四、【几何证明选讲选做题】(共1小题,每小题0分,满分0分)15.如图,在Rt△ABC中,∠A=30°,∠C=90°,D是AB边上的一点,以BD为直径的⊙O与AC相切于点E.若BC=6,则DE的长为4.考点:与圆有关的比例线段.专题:立体几何.分析:连接OE,由已知得∠AEO=90°,OA=2OE,OD=AD,由直角三角形斜边中线等于斜边的一半,得DE=OD,由此能求出DE的长.解答:解:连接OE,∵AC是⊙O的切线,∴∠AEO=90°,∵∠A=30°,∴OA=2OE,∵OA=OD+AD,OD=OE,∴OD=AD,∴DE=OD(直角三角形斜边中线等于斜边的一半),∵∠C=90°,∠A=30°,BC=6,∴AB=2BC=12,∵AB=OB+OD+AD=3OD=12,∴OD=4,∴DE=OD=4.故答案为:4.点评:本题考查线段长的求法,是中档题,解题时要认真审题,注意圆的简单性质的合理运用.三、解答题16.(12分)函数f(x)=2sin(ωx+)(w>0)的最小正周期是π.(1)求f()的值;(2)若sinx0=,且x0∈(0,),求f(x0)的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的求值.分析:(1)由已知可求ω的值,从而可得解析式,即可根据诱导公式求值.(2)由已知可求得cos2x0的值,即可求sin2x0的值,由两角和的正弦公式展开所求代入即可求值.解答:解:(1)∵f(x)的周期是π,即T=π,…(1分)∴ω==2,即.…(3分)∴.…(5分)(2)由得,…(7分)又,∴2x0∈(0,π),…(8分)∴,…(9分)∵=.∴.…(12分)点评:本小题主要考查了三角函数f(x)=Asin(ωx+ϕ)的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力,属于基础题.17.(12分)空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在xx12月份某时刻实时监测到的数据:城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值广州118 东莞137 中山95 江门78 云浮76 茂名107 揭阳80深圳94 珠海95 湛江75 潮州94 河源124 肇庆48 清远47佛山160 惠州113 汕头88 汕尾74 阳江112 韶关68 梅州84 (1)请根据上表中的数据,完成下列表格:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望.考点:离散型随机变量的期望与方差;分层抽样方法.专题:概率与统计.分析:(1)根据已知数据,能完成表格.(2)按分层抽样的方法,抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.分别求出相应的概率,由此能求出ξ的分布列和数学期望.解答:解:(1)根据数据,完成表格如下:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市频数 2 12 6 1…(2分)(2)按分层抽样的方法,从“良好”类城市中抽取个,…(3分)从“轻度污染”类城市中抽取个,…(4分)所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.∵,,.…(8分)∴ξ的分布列为:ξ 1 2 3p所以.…(11分)答:ξ的数学期望为2个.…(12分)点评:本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(14分)在三棱锥P﹣ABC中,已知平面PBC⊥平面ABC,AB是底面△ABC最长的边.三棱锥P﹣ABC的三视图如图1所示,其中侧视图和俯视图均为直角三角形.(1)请在图2中,用斜二测画法,把三棱锥P﹣ABC的直观图补充完整(其中点P在xOz平面内),并指出三棱锥P﹣ABC的哪些面是直角三角形;(2)求二面角B﹣PA﹣C的正切值;(3)求点C到面PAB的距离.考点:二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(1)由已知条件能用出三棱锥P﹣ABC直观图,由三视图知△ABC和△PCA是直角三角形.(2)过P作PH⊥BC交BC于点H,由三视图知△PBC为等腰三角形,取PC的中点E,过E作EF⊥PA且交PA于点F,连接BE,BF,∠BFE是二面角B﹣PA﹣C的平面角,由此能求出二面角B﹣PA﹣C的正切值.(3)记C到面PAB的距离为h,由V P﹣ABC=V C﹣PAB,能求出C到面PAB的距离.解答:解:(1)三棱锥P﹣ABC直观图如图1所示;由三视图知△ABC和△PCA是直角三角形.…(3分)(2)如图2,过P作PH⊥BC交BC于点H,由三视图知△PBC为等腰三角形,∵BC=4,,∴PB=PC=BC=4,取PC的中点E,过E作EF⊥PA且交PA于点F,连接BE,BF,因为BE⊥PC,由三视图知AC⊥面PBC,且BE⊂面PBC,∴AC⊥BE,又由AC∩PC=C,∴BE⊥面PAC,由PA⊂面PAC,∴BE⊥PA,BE∩EF=E,∴PA⊥面BEF,由BF⊂面BEF,∴PA⊥BF,所以∠BFE是二面角B﹣PA﹣C的平面角.…(6分)∵△PEF∽△PAC,∴,∵,∴,…(8分),∴在直角△BFE中,有.所以,二面角B﹣PA﹣C的正切值为.…(9分)(3)记C到面PAB的距离为h,由(1)、(2)知,∴,PB=4,V C﹣PAB==,…(12分)三棱锥P﹣ABC的体积,…(13分)由V P﹣ABC=V C﹣PAB,得C到面PAB的距离.…(14分)点评:本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19.(14分)已知数列{a n}的首项大于0,公差d=1,且+=.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b1=﹣1,b2=λ,b n+1=b n+,其中n≥2.①求数列{b n}的通项b n;②是否存在实数λ,使得数列{b n}为等比数列?若存在,求出λ的值;若不存在,请说明理由.考点:数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由已知得=,从而,由此能求出数列{a n}的通项公式.(2)①由已知得=+1,令c n=,则c2=λ,c n+1=c n+1,由此能求出数列{b n}的通项公式.②若数列{b n}为等比数列,则有,由此能求出存在实数λ=1,使得数列{b n}为等比数列.解答:解:(1)∵数列{a n}的首项大于0,公差d=1,且+=,…(2分)∴=,…(3分)整理得,解得a1=1或a1=﹣3(舍去).…(4分)因此数列{a n}的通项a n=n.…(5分)(2)①∵b n+,∴=+1.…(6分)令c n=,则有c2=λ,c n+1=c n+1,(n≥2).∴当n≥2时,c n=c2+(n﹣2)=n﹣2+λ,.…(8分)∴数列{b n}的通项b n=.…(9分)②∵b1=﹣1,b2=λ,,…(10分)∴若数列{b n}为等比数列,则有=b1b3,即,解得λ=1或.…(11分)当时,(n≥2),不是常数,数列{b n}不是等比数列,当λ=1时,b1=﹣1,,(n≥2),数列{b n}为等比数列.所以,存在实数λ=1,使得数列{b n}为等比数列.…(14分)点评:本题考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想.20.(14分)已知椭圆E:+=1(a>b>0)的离心率为,过左焦点倾斜角为45°的直线被椭圆截得的弦长为.(1)求椭圆E的方程;(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q 的轨迹方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由椭圆E的离心率为,可得=,解得a2=2b2,可得c=b.故椭圆E的方程可设为x2+2y2=2b2,则椭圆E的左焦点坐标为(﹣b,0),过左焦点倾斜角为45°的直线方程为l′:y=x+b.与椭圆方程联立可得交点坐标,利用弦长公式|AB|===,解得b即可得出.(2)当切线l的斜率存在且不为0时,设l的方程为y=kx+m,与椭圆方程联立得(1+2k2)x2+4kmx+2m2﹣2=0,根据直线l和椭圆E有且仅有一个交点,可得△=0,m2=2k2+1.由于直线MQ与l垂直,可得直线MQ的方程为:y=﹣,联立,解得,消去m,k即可得出.解答:解:(1)∵椭圆E的离心率为,∴=,解得a2=2b2,∴c2=a2﹣b2=b2,即c=b.故椭圆E的方程可设为x2+2y2=2b2,则椭圆E的左焦点坐标为(﹣b,0),过左焦点倾斜角为45°的直线方程为l′:y=x+b.设直线l′与椭圆E的交点记为A,B,联立,消去y,得3x2+4bx=0,解得x1=0,x2=﹣,∴|AB|===,解得b=1.故椭圆E的方程为.(2)( i)当切线l的斜率存在且不为0时,设l的方程为y=kx+m,联立,消去y并整理,得(1+2k2)x2+4kmx+2m2﹣2=0,∵直线l和椭圆E有且仅有一个交点,∴△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,化简并整理,得m2=2k2+1.∵直线MQ与l垂直,∴直线MQ的方程为:y=﹣,联立,解得,∴x2+y2====2.(*)( ii)当切线l的斜率为0时,此时Q(1,±1),符合(*)式.( iii)当切线l的斜率不存在时,此时Q 或,符合(*)式.综上所述,点Q的轨迹方程为x2+y2=2.点评:本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想,属于难题.21.(14分)已知定义在[﹣2,2]上的奇函数f(x)满足:当x∈(0,2]时,f(x)=x(x﹣2).(1)求f(x)的解析式和值域;(2)设g(x)=ln(x+2)﹣ax﹣2a,其中常数a>0.①试指出函数F(x)=g(f(x))的零点个数;②若当1+是函数F(x)=g(f(x))的一个零点时,相应的常数a记为a k,其中k=1,2,…,n.证明:a1+a2+…+a n<(n∈N*).考点:数列与函数的综合.专题:导数的综合应用;等差数列与等比数列.分析:(1)由奇函数性质得f(0)=0,当x∈[﹣2,0)时,f(x)=﹣f(﹣x)=﹣(﹣x)(﹣x﹣2)=﹣x(x+2),由此能求出f(x)的解析式和值域.(2)①当t=0时,方程f(x)=t有三个实根,当t=1或t=﹣1时,方程f(x)=t只有一个实根,当t∈(0,1)或t∈(﹣1,0)时,方程f(x)=t有两个实根.设h(x)=,x∈[﹣1,1],h(﹣1)=0,,由此利用导数性质能求出函数F(x)=g (f(x))的零点个数.②由已知得g(f(1+))=0,g(f(1+))=g()=ln(﹣a k()=0,从而,记m(x)=ln(x+1)﹣x,﹣1=,由此利用导数性质能证明a1+a2+…+a n<(n∈N*).解答:(1)解:∵f(x)为奇函数,∴f(0)=0.当x∈[﹣2,0)时,﹣x∈(0,2],则f(x)=﹣f(﹣x)=﹣(﹣x)(﹣x﹣2)=﹣x(x+2),∴f(x)=.∵x∈[0,2]时,f(x)∈[﹣1,0],x∈[﹣2,0),f(x)∈[0,1],∴f(x)的值域为[﹣1,1].(2)①解:函数f(x)的图象如图a所示,当t=0时,方程f(x)=t有三个实根,当t=1或t=﹣1时,方程f(x)=t只有一个实根,当t∈(0,1)或t∈(﹣1,0)时,方程f(x)=t有两个实根.由g(x)=0,解得a=,∵f(x)的值域为[﹣1,1],∴只需研究函数y=在[﹣1,1]上的图象特征.设h(x)=,x∈[﹣1,1],h(﹣1)=0,,令h′(x)=0,得x=e﹣2∈(0,1),h(e﹣2)=.∵当﹣1<x<e﹣2时,h′(x)>0,当e﹣2<x<1时,h′(x)<0,又∵ln23<ln32,即,由h(0)=,h(1)=,得h(0)<h(1),∴h(x)的大致图象如图b所示.根据图象b可知,当0<a<、、a=时,直线y=a与函数y=h(x)的图象仅有一个交点,则函数g(x)在[﹣1,1]上仅有一个零点,记零点为t,则t分别在区间(﹣1,0)、(0,1)上,根据图象a,方程f(x)=t有两个交点,因此函数F(x)=g(f(x))有两个零点.类似地,当a=时,函数g(x)在[﹣1,1]上仅有零点0,因此函数F(x)有﹣1、0、1这三个零点.当a=时,函数g(x)在[﹣1,1]上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数Y(x)有三个零点.当时,函数g(x)在[﹣1,1]上有两个零点,且这两个零点均在(0,1)内,因此函数F(x)有四个零点.当a>时,函数g(x)在[﹣1,1]上没有零点,因此函数F(x)没有零点.②证明:∵1+是函数F(x)=g(f(x))的一个零点,∴有g(f(1+))=0,∵1+∈(0,2),∴f(1+)=,∴g(f(1+))=g()=ln()﹣a k()=0,∴,k=1,2,…,n.记m(x)=ln(x+1)﹣x,﹣1=,∵当x∈(0,1]时,m′(x)<0,∴当x∈(0,1]时,m(x)<m(0)=0,即ln(x+1)<x.故有ln()<,则<=,k=1,2,…,n.当n=1时,a1.当n≥2时,∵<=﹣,∴a1+a2+a3+…+a n<+…+<==<.综上,有a1+a2+…+a n<(n∈N*).点评:本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。

2019-2020年高三校模拟考试数学(理)试题含答案.doc

2019-2020年高三校模拟考试数学(理)试题含答案.doc

2019-2020年高三校模拟考试数学(理)试题含答案注意:本卷共22题,满分150分,考试时间120分钟第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U 等于 A .}{,,,1456 B .}{4C .}{,15D .}{,,,,123452.若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 A .-6 B .13 C .32D .133.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为A .16B .13C .23D .15.已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l m ⊥,l n ⊥,且l α⊄,l β⊄,则A .//αβ,且//l αB .αβ⊥,且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l6.()cos()(,0)f x A x A ωϕω=+>的图象如图所示,为得到()sin()6g x A x πω=-+的图象,可以将)(x f 的图象A .向右平移65π个单位长度 B .向右平移125π个单位长度 C .向左平移65π个单位长度 D .向左平移125π个单位长度 7.数列{}n a 共有11项,1110,4,a a ==且11(1,2,...,10)k k a a k +-==,则满足该条件的不同数列的个数为A .100B .120C .140D .1608.若正数,x y 满足2610x xy +-=,则2x y +的最小值是A .3 B .3 C .3 D9.已知抛物线24y x =,圆22:(1)1F x y -+=,过点F 作直线l ,自上而下顺次与上述两曲线交于点,,,A B C D (如图所示),则AB CD ⋅的值正确的是A .等于1B .最小值是1C .等于4D .最大值是410.若函数()f x =22(1)()x x ax b -++的图像关于直线x =2对称,则()f x 的最大值是A .9B .14C .15D .16第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题,每小题4分,共28分。

2019-2020年高三一模试题及答案(数学理)

2019-2020年高三一模试题及答案(数学理)

2019-2020年高三一模试题及答案(数学理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(i 为虚数单位)等于A .1B .1-C .iD .i -2.若集合}11,|{31≤≤-==x x y y A ,}1{x y x B -==,则A B =A .(]1,∞-B .]1,1[-C .φD .{1}3.设p 和q 是两个简单命题,若p ⌝是q 的充分不必要条件,则p 是q ⌝的 A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.计算机执行下面的程序段后,输出的结果是1=a 3=b b a a += b a b -= PRINT b a ,A .1 3 B .4 1 C . 0 0 D .605.若dx x a ⎰=22sin π,dx x b ⎰=10cos ,则a 与b 的关系是A .b a <B .b a >C .b a =D .0=+b a 6.圆222210x y x y +--+=上的点到直线2=-y x 的距离的最大值是A .2 B. 1+C .2+D. 1+7.已知抛物线2x ay =的焦点恰好为双曲线222y x -=的上焦点,则a 的值为A .1B .4C .8D .168.将奇函数()sin()(0,0,)22f x A x A ππωφωφ=+≠>-<<的图象向左平移6π个单位得到的图象关于原点对称,则ω的值可以为A .2B .3C .4D .6 9.已知281(0,0)x y x y+=>>,则x y +的最小值为A .12B .14C .16D .1810.过原点的直线与函数xy 2=的图像交于B A ,两点,过B 作y 轴的垂线交于函数xy 4=的图像于点C ,若直线AC 平行于y 轴,则点A 的坐标是A .)2,1(B .)4,2(C .)2,21( D .)1,0(11.在数列}{n a 中,a a a n n +=+1(a n ,N *∈为常数),若平面上的三个不共线的非零向量,,满足a a 20101+=,三点C B A ,,共线且该直线不过O 点,则2010S 等于A .1005B .1006C .2010D .201212.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是直线1m 和直线1n ,给出下列四个命题: ①1m ⊥1n ⇒m ⊥n ; ②m ⊥n ⇒1m ⊥1n ; ③1m 与1n 相交⇒m 与n 相交或重合; ④1m 与1n 平行⇒m 与n 平行或重合; 其中不正确...的命题个数是 A.1 B. 2 C.3 D. 4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若nxx )1(+展开式中第2项与第6项的系数相同,那么展开式的中间一项的系数为 ;14.已知区域}0,5,0|),{(},0,0,10|),{(≥≤≥-=≥≥≤+=Ωy x y x y x A y x y x y x ,若向区域Ω上随机投1个点,则这个点落入区域A 的概率()P A = ; 15.关于x 的不等式|2||1|5x x ++-<的解集为 ;16.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,且关于x 的方程0)(=-+a x x f 有且只有一个实根,则实数a 的范围是 .三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量)cos ,2sin 3(x t x m +=,)cos 2,1(x n =,设函数n m x f ⋅=)(. (Ⅰ)若21)32cos(=-πx ,且⊥,求实数t 的值; (Ⅱ)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,若1,3)(==b A f ,且ABC ∆的面积为23,实数1=t ,求边长a 的值.18.(本小题满分12分)某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品, 2种家电商品, 3种日用商品中,选出3种商品进行促销活动.(Ⅰ)试求选出的3种商品中至多有一种是家电商品的概率;(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高x 元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为40元的奖券.假设顾客每次抽奖时获奖的概率都是21,若使促销方案对商场有利,则x 最少为多少元?19.(本题满分共12分)下图分别为三棱锥ABC S -的直观图与三视图,在直观图中,SA SC =,N M 、分别为SB AB 、的中点.(Ⅰ)求证:SB AC ⊥;(Ⅱ)求二面角B NC M --的余弦值.CSN侧视图20.(本题满分共12分)已知各项均为正数的数列{}n a 满足12212+++=n n n n a a a a ,且42342+=+a a a ,其中*∈N n .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,令2n n a b =,其中*∈N n ,试比较n n T T 4121++与1log 22log 2212-++n n b b 的大小,并加以证明.21.(本题满分12分)已知定义在正实数集上的函数ex x x f 221)(2+=,b x e x g +=ln 3)(2(其中e 为常数,2.71828e =⋅⋅⋅),若这两个函数的图象有公共点,且在该点处的切线相同.(Ⅰ)求实数b 的值;(Ⅱ)当⎥⎦⎤⎢⎣⎡∈e e x ,1时,x a e x g e aex x f )2())(2(6)2)((222+≤++-恒成立,求实数a 的取值范围.22.(本题满分14分)已知椭圆)0(1:2222>>=+b a by a x C 的左右两焦点分别为21,F F ,P 是椭圆C 上的一点,且在x 轴的上方,H 是1PF 上一点,若12120,0PF OH F F PF ==⋅=⋅⎥⎦⎤⎢⎣⎡∈21,31λ(其中O 为坐标原点).(Ⅰ)求椭圆C 离心率e 的最大值;(Ⅱ)如果离心率e 取(Ⅰ)中求得的最大值, 已知22=b ,点),(01-M ,设Q 是椭圆C 上的一点,过Q 、M 两点的直线l 交y 轴于点N ,若2NQ QM , 求直线l 的方程.青岛市高三教学质量统一检测数学试题(理科)答案 2010.3一、选择题:本大题共12小题,每小题5分,共60分. CBBBA BCDDA AD二、填空题:本大题共4小题,每小题4分,共16分 13.20 14.4115.),(23- 16.),(∞+1 三、解答题(共74分). 17.(本小题满分12分)解: (Ⅰ)由题意得01)62sin(2cos 2)2sin 3(2=+++=++=⋅t x x t x n m π…………3分 所以21)32cos(21)62sin(2-=---=-+-=ππx x t …………………6分 (Ⅱ)由(Ⅰ)知2)62sin(21)62sin(2)(++=+++=ππx t x x f由题意得32)62sin(2)(=++=πA A f所以21)62sin(=+πA …………………8分 因为6136260ππππ<+<<<A A ,,所以6562ππ=+A 解得3π=A因为ABC ∆的面积为23,所以23sin 21=A bc ,2=bc 即2=c …………10分 由余弦定理得32121241cos 222=⨯⨯⨯-+=-+=A bc c b a …………12分 18.(本小题满分12分)解: (Ⅰ)选出3种商品一共有37C 种选法, …………2分选出的3种商品中至多有一种是家电商品有251235C C C +种. …………4分所以至多有一种是家电商品的概率为7637251235=+=C C C C P .…………5分 (Ⅱ)奖券总额是一随机变量,设为ξ,可能值为0, 40,80,120.…………6分(),81212103003=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛==C P ξ…………7分 (),832121402113=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛==C P ξ…………8分(),832121801223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛==C P ξ …………9分 ().1111200333=⎪⎫ ⎛⋅⎪⎫ ⎛==C P ς…………10分所以60812088084080=⨯+⨯+⨯+⨯=EX .所以60≥x ,因此要使促销方案对商场有利,则x 最少为60元. …………12分19.(本题满分12分)解: 由题意知: 32==SC SA ,侧面⊥SAC 底面ABC , 底面ABC ∆为正三角形…………2分 (Ⅰ) 取AC 的中点O ,连结OB OS ,. 因为BC AB SC SA ==,, 所以OB ACSO AC ⊥⊥,. 所以⊥AC 平面OSB .所以SB AC ⊥ …………4分(Ⅱ) 如图所示建立空间直角坐标系xyz O -,则)2,3,0(),0,3,1(),22,0,0(),0,0,2(),0,32,0(),0,0,2(N M S C B A -.(4,0,0),(0,AC SB ∴=-=-.).2,0,1(),0,3,3(-==…………6分设=n ),,(z y x 为平面CMN 的一个法向量,则⎪⎩⎪⎨⎧=+-=⋅=+=⋅02033z x y x ,取1=z ,得6,2-==y x . 所以)1,6,2(-=n …………8分又由上可得).2,3,2(),0,32,2(==CN CB 设),,(c b a m =为平面NBC 的法向量,由⎪⎩⎪⎨⎧=++=⋅=+=⋅02320322c b a b a ,得02=+c a , 令1=c ,则)1,36,2(-=…………10分所以11333333122||||,cos -=⨯+--=>=<n m所以二面角B NC M --的余弦值为1133. …………12分 20.(本题满分12分)解:(Ⅰ)因为12212+++=n n n n a a a a ,即0)2)((11=-+++n n n n a a a a又0>n a ,所以有021=-+n n a a ,所以12+=n n a a 所以数列{}n a 是公比为2的等比数列…………2分 由42342+=+a a a 得4882111+=+a a a ,解得21=a故数列{}n a 的通项公式为n n a 2=)N (*∈n …………4分(Ⅱ) 因n n n n a b 4222===,所以4,411==+nn b b b 即数列{}n b 是首项为4,公比是4的等比数列 所以)14(34-=nn T …………6分 则1431)14(48441211-+=-+=+++n n n n n T T 又147114641log 22log 2212-+=-+=-++n n n b b n n)14)(14()4713(41471431log 22log 241212121--⋅-+=---=-+-+-++n n n b b T T nn n n n n n 猜想:13471+>⋅-n n …………8分①当1=n 时,41137470=+⨯>=⋅,上面不等式显然成立; ②假设当k n =时,不等式13471+>⋅-k k 成立…………9分当1+=k n 时,1)1(343412)13(4474471++=+>+=+>⨯⨯=⨯-k k k k k k综上①②对任意的*∈N n 均有13471+>⋅-n n …………11分又410,410nn ->->01log 22log 24122121<-+-+∴++n n n n b b T T 所以对任意的*∈N n 均有1log 22log 24122121-+<+++n n n n b b T T …………12分 21.(本题满分12分)解:(Ⅰ)e x x f 2)(+=',xex g 23)(='………………1分设函数ex x x f 221)(2+=与b x e x g +=ln 3)(2的图象有公共点为),(00y x 由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧>=++=+032ln 3221002002020x x e e x b x e ex x ………………………3分解得:22e b -= ………………………5分(Ⅱ)由(Ⅰ)知,2ln 3)(22e x e x g -=所以x a x e x g eaex x f ln ))(2(6)2)((2222+=++- 即)1(2)ln 2x x x x a -≥-(当)1,1[ex ∈时,0ln <x ,0ln >-∴x x当[]e x ,1∈时,x x ≤≤1ln ,且等号不能同时成立,0ln >-∴x x所以,则由(1)式可得x x x x a ln 22--≥在⎥⎦⎤⎢⎣⎡e e ,1上恒成立……………………7分设x x x x x F ln 2)(2--=,⎥⎦⎤⎢⎣⎡∈e e x ,1又2)ln (ln 22)(1()(x x x x x x F --+-=')……………………9分令0)(='x F 得:1=x 又0ln 22,1ln >-+∴≤x x x所以,当1,1x e ⎡⎫∈⎪⎢⎣⎭时,0)(<'x F ;当(]1,x e ∈时,0)(>'x F ; 所以,)(x F 在)1,1[e上为减函数,)(x F 在(]1,e 上为增函数…………11分又<<+-=0)1(21)1(e e ee F 12)(2--=e e e e F故12)()(2max --==e e e e F x F所以实数a 的取值范围是⎪⎪⎭⎫⎢⎣⎡+∞--,122e e e ……………12分 22.(本题满分14分)解:(Ⅰ)由题意知1212,PF OH F F PF ⊥⊥ 则有OH F 1∆与21PF F ∆相似 所以λ==PF PF OF OH 121……………2分设0),0,(),0,(21>-c c F c F ,),(1y c P则有122122=+by a c ,解得a b y 21=所以ab y PF 212==根据椭圆的定义得:ab a PF a P F 22122-=-= ……………4分2222b a b -=∴λ,即λλ+=1222ab 所以112122222-+=-==λab ac e ……………6分显然1122-+=λe 在]21,31[上是单调减函数 当31=λ时,2e 取最大值21 所以椭圆C 离心率e 的最大值是22……………8分 (Ⅱ)由(Ⅰ)知21211222222=-=-==a a b a c e ,解得42=a 所以此时椭圆C 的方程为12422=+y x ……………10分 由题意知直线l 的斜率存在,故设其斜率为k ,则其方程为),0(),1(k N x k y +=设),(11y x Q ,由于2=,所以有),1(2),(1111y x k y x ---=-3,3211k y x =-=∴……………12分 又Q 是椭圆C 上的一点,则12)3(4)32(22=+-k 解得4±=k所以直线l 的方程为044=+-y x 或044=++y x ……………14分。

2019-2020年高三数学一模试卷(理科) 含解析

2019-2020年高三数学一模试卷(理科) 含解析

2019-2020年高三数学一模试卷(理科)含解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.把正确选项的代号填在答题卡上)1.设全集为实数集R,M={x|x∈R|x≤},N={1,2,3,4},则∁R M∩N=()A.{4}B.{3,4}C.{2,3,4}D.{1,2,3,4}2.已知复数z满足(3+i)z=10i(其中i是虚数单位,满足i2=﹣1),则复数z的共轭复数是()A.﹣1+3i B.1﹣3i C.1+3i D.﹣1﹣3i3.已知a,b为实数,则“a+b≤2”是“a≤1且b≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设直线y=kx与椭圆相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A.B. C. D.±25.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A.B.C.D.6.如图是函数f(x)=sin2x和函数g(x)的部分图象,则g(x)的图象可能是由f(x)的图象()A.向右平移个单位得到B.向右平移个单位得到C.向右平移个单位得到D.向右平移个单位得到7.一个棱锥的三视图及其尺寸如图所示,则该几何体的体积为()A.16 B.24 C.30 D.328.在△ABC中,BC=1,ccosA+acosC=2bcosB,△ABC的面积S=,则AC等于()A. B.4 C.3 D.9.某店一个月的收入和支出总共记录了N个数据a1,a2,…a N,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()A.A>0,V=S﹣T B.A<0,V=S﹣T C.A>0,V=S+T D.A<0,V=S+T10.不等式组表示的平面区域为D,若对数函数y=log a x(a>0,a≠1)的图象上存在区域D上的点,则实数a的取值范围是()A.[1,3]B.(0,1)∪(1,3] C.[3,+∞)D.(,1)∪[3,+∞)11.已知双曲线﹣=1(a>0,b>0)与圆x2+y2=c2(c=)交A、B、C、D 四点,若四边形ABCD是正方形,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x12.已知函数y=f(x﹣1)的图象关于x=1对称,y=f′(x)是y=f(x)的导数,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立,已知a=f(log32)log32,b=(log52)log52,c=2f(2),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b本题包括必考题和选考题两部分。

2019-2020年高三第一次高考模拟数学(理)试题 含答案

2019-2020年高三第一次高考模拟数学(理)试题 含答案

2019-2020年高三第一次高考模拟数学(理)试题 含答案一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合24{90,},{}, yA x x x x NB yN **=-<∈=∈则中元素个数为 ( )A .0个B .1个C .2个D .3个2.如果复数,则( )A .|z|=2 B. z 的实部为1 C. z 的虚部为﹣1 D. z 的共轭复数为1+i 3.己知,则的值是 ( )A. B. C. D.4.已知命题p 1:函数在R 上为增函数,p 2:函数在R 上为减函数,则在命题1:122:123:12,,()q p p q p p q p p ⌝∨∧∨和中,真命题是( )A. B. C. D.5.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A. B. C. D.6.若当时,函数始终满足,则函数的图象大致为( )7.设函数61,00.,(),x x f x x x x ⎧⎛⎫-<⎪ ⎪=⎝-≥⎭⎨⎪⎩ , 则当x>0时, 表达式的展开式中常数项为 ( ) (A) -20 (B) 20 (C) -15 (D) 158.已知函数是周期为的周期函数,且当时,,则函数的零点个数是( )9.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是( )A. 192B. 32C. 96D. -19210.抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.设不等式组表示平面区域为D,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 。

12.关于x 的方程4x-k .2x+k+3=0,只有一个实数解,则实数k 的取值范围是_______ 13.在中,222sin sin sin sin sin A B C B C ≤+-,则的取值范围是________. 14.已知函数,若的取值范围为15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分) A. (不等式选讲)不等式对于 任意恒成立的实数a 的集合为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三第一次联合模拟考试数学(理)试题含解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={x|﹣2<x<1},B={x|x2﹣2x≤0},则A∩B=()A.{x|0<x<1} B.{x|0≤x<1} C.{x|﹣1<x≤1} D.{x|﹣2<x≤1}考点:交集及其运算.专题:集合.分析:解不等式求出集合B,代入集合交集运算,可得答案.解答:解:∵集合A={x|﹣2<x<1},B={x|x2﹣2x≤0}={x|0≤x≤2},∴A∩B={x|0≤x<1},故选:B.点评:本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数=()A.2(+i)B.1+i C.i D.﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出;解答:解:==i,故选:C.点评:本题考查了复数的运算法则,属于基础题.3.(5分)点M(1,1)到抛物线y=ax2准线的距离为2,则a的值为()A.B.﹣C.或﹣D.﹣或考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出抛物线的准线方程,利用点到直线的距离公式求解即可.解答:解:抛物线y=ax2化为:x2=,它的准线方程为:y=﹣,点M(1,1)到抛物线y=ax2准线的距离为2,可得|1+|=2,解得a=或﹣.故选:C.点评:本题考查抛物线的简单性质的应用,基本知识的考查.4.(5分)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6 B.7 C.10 D.9考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a7+a8=0,从而可得数列的前7项为正数,从第8项开始为负数,可得结论.解答:解:由题意可得S9﹣S5=a6+a7+a8+a9=0,∴2(a7+a8)=0,∴a7+a8=0,又a1>0,∴该等差数列的前7项为正数,从第8项开始为负数,∴当S n最大时,n=7故选:B点评:本题考查等差数列的前n项和的最值,得出数列项的正负变化是解决问题的关键,属基础题.5.(5分)执行如图所示的程序框图,要使输出的S值小于1,则输入的t值不能是下面的()A.2012 B.2016 C.2014 D.2015考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,可得程序框图的功能是求S=sin+sin+…sin的值,观察规律可得sin的取值以6为周期,且sin+sin+…sin=0,依次验证选项即可得解.解答:解:模拟执行程序框图,可得程序框图的功能是求S=sin+sin+…sin的值,因为sin的取值以6为周期,且sin+sin+…sin=0,由2012=335*6+2,所以输入的t值是2012时,S=sin+sin=>12014=335*6+4,所以输入的t值是2014时,S=sin+sin+sin+sin=<12015=335*6+5,所以输入的t值是2015时,S=sin+sin+sin+sin+sin=0<1 2016=335*6+6,所以输入的t值是2016时,S=sin+sin+sin+sin+sin+sin2π=0<1故选:A.点评:本题主要考察了循环结构的程序框图,考查了正弦函数的周期性,模拟执行程序框图正确得到程序框图的功能是解题的关键,属于基本知识的考查.6.(5分)下列命题中正确命题的个数是()①对于命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,均有x2+x﹣1>0;②p是q的必要不充分条件,则¬p是¬q的充分不必要条件;③命题“若x=y,则sinx=siny”的逆否命题为真命题;④“m=﹣1”是“直线l1:mx+(2m﹣1)y+1=0与直线l2:3x+my+3=0垂直”的充要条件.A.1个B.2个C.3个D.4个考点:命题的真假判断与应用.专题:简易逻辑.分析:①利用命题的否定即可判断出正误;②利用充分必要条件定义即可判断出;③利用互为逆否命题之间的等价关系即可判断出正误;④对m分类讨论,利用相互垂直的直线与斜率之间的关系即可判断出.解答:解:①对于命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,均有x2+x﹣1≥0,因此不正确;②p是q的必要不充分条件,则¬p是¬q的充分不必要条件,正确;③由于命题“若x=y,则sinx=siny”是真命题,因此其逆否命题也为真命题,正确;④当m=0时,直线l1:mx+(2m﹣1)y+1=0与直线l2:3x+my+3=0垂直;m≠0时,若两条直线垂直,则=﹣1,解得m=﹣1,可知:“m=﹣1”是“直线l1:mx+(2m﹣1)y+1=0与直线l2:3x+my+3=0垂直”的充分不必要条件,因此不正确.综上可得:正确命题的个数为:2.故选:B.点评:本题考查了简易逻辑的判定、相互垂直的直线与斜率之间的关系,考查了推理能力,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.8 C.10 D.12考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图得到几何体的直观图,利用直观图即可求出对应的体积.解答:解:由三视图可知该几何体的直观图是三棱锥,其中面VAB⊥面ABC,VE⊥AB,CD⊥AB,且AB=5,VE=3,CD=4,则该三棱锥的体积V=×AB•CD•VE==10,故选:C点评:本题主要考查三视图的应用,利用三视图还原成直观图是解决本题的关键.8.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,焦点F到一条渐近线的距离为d,若|FB|≥d,则双曲线离心率的取值范围是()A.(1,] B.[,+∞)C.(1,3] D.[,+∞)考点:双曲线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:设F(c,0),B(0,b),一条渐近线的方程为bx+ay=0,则d==b,|FB|=,利用|FB|≥d,可得a,c的关系,即可得出双曲线离心率的取值范围.解答:解:设F(c,0),B(0,b),一条渐近线的方程为bx+ay=0,则d==b,|FB|=,因为|FB|≥d,所以≥b,所以c2≥2c2﹣2a2,所以2a2≥c2,所以1<e≤.故选:A.点评:本题考查双曲线离心率的取值范围,考查点到直线的距离公式,考查学生的计算能力,比较基础.9.(5分)不等式组表示的点集记为A,不等式组表示的点集记为B,在A中任取一点P,则P∈B的概率为()A.B.C.D.考点:二元一次不等式(组)与平面区域;几何概型.专题:概率与统计.分析:分别画出点集对应的区域,求出面积,利用几何概型的公式解答.解答:解:分别画出点集A,B如图,A对应的区域面积为4×4=16,B对应的区域面积如图阴影部分面积为=()|=,由几何概型公式得,在A中任取一点P,则P∈B的概率为;故选A.点评:本题考查了几何概型的公式的运用;关键是画出区域,求出区域面积,利用几何概型公式求值.10.(5分)设二项式(x﹣)n(n∈N*)展开式的二项式系数和与各项系数和分别为a n,b n,则=()A.2n﹣1+3 B.2(2n﹣1+1)C.2n+1 D.1考点:二项式定理的应用;数列的求和.专题:等差数列与等比数列;二项式定理.分析:首先利用条件求得a n、b n,再利用等比数列的求和公式计算所给的式子,可得结果.解答:解:由于二项式(x﹣)n(n∈N*)展开式的二项式系数和与各项系数和分别为a n、b n,则a n =2n,b n =2﹣n,所以===2n+1故选:C.点评:本题主要考查展开式的二项式系数和与各项系数和的区别,等比数列的求和公式,属于中档题.11.(5分)已知数列{a n}满足a n=n3﹣n2+3+m,若数列的最小项为1,则m的值为()A.B.C.﹣D.﹣考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:导数的综合应用.分析:令f(x)=x3﹣x2+3+m,(x≥1).利用导数研究其单调性极值与最值,即可得出.解答:解:数列a n=n3﹣n2+3+m,令f(x)=x3﹣x2+3+m,(x≥1).f′(x)=x2﹣x,由f′(x)>0,解得x>,此时函数f(x)单调递增;由f′(x)<0,解得1≤x<,此时函数f(x)单调递减.∴对于f(n)来说,最小值只能是f(2)或f(3)中的最小值.f(3)﹣f(2)=9﹣﹣(﹣5)>0,∴f(2)最小,∴×8﹣5+3+m=1,解得m=.故选:B.点评:本题考查了利用导数研究其单调性极值与最值,考查了计算能力,属于中档题.12.(5分)已知函数f(x)=,若函数F(x)=f(x)﹣kx有且只有两个零点,则k的取值范围为()A.(0,1)B.(0,)C.(,1)D.(1,+∞)考点:函数的零点与方程根的关系.专题:计算题;导数的概念及应用.分析:求出双曲线的渐近线方程,y=﹣ln(1﹣x)在x=0处的切线方程,即可得出结论.解答:解:由题意,x≥0,f(x)=为双曲线4y2﹣x2=1在第一象限的部分,渐近线方程为y=±x;当k=1时,由y=﹣ln(1﹣x),可得y′==1可得x=0,即y=﹣ln(1﹣x)在x=0处的切线方程为y=x,此时函数F(x)=f(x)﹣kx有且只有1个零点,∴若函数F(x)=f(x)﹣kx有且只有两个零点,则k的取值范围为(,1),故选:C.点评:本题考查函数的零点,考查导数知识的运用,考查学生分析解决问题的能力,知识综合性强.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为90°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量垂直的条件可得(+)•(2﹣)=0,根据向量数量积的运算化简得=0,即可求出向量与的夹角.解答:解:因为||=1,||=,(+)⊥(2﹣),所以(+)•(2﹣)=2+﹣=0,则2+﹣2=0,即=0,所以,则向量与的夹角为90°,故答案为:90°.点评:本题重点考查了向量数量积的运算,以及向量垂直的条件,属于中档题.14.(5分)三棱柱ABC﹣A1B1C1各顶点都在一个球面上,侧棱与底面垂直,∠ACB=120°,CA=CB=2,AA1=4,则这个球的表面积为64π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O′,球心为O,在RT△OAO′中,求出球的半径,然后求出球的表面积即可.解答:解:在△ABC中,∠ACB=120°,CA=CB=2,由余弦定理可得AB=6,由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O′,球心为O,在RT△OAO′中,得球半径R==4,故此球的表面积为4πR2=64π.故答案为:64π.点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.15.(5分)某校高一开设4门选修课,有4名同学,每人只选一门,恰有2门课程没有同学选修,共有84种不同选课方案(用数字作答).考点:排列、组合及简单计数问题.专题:排列组合.分析:先从4门课中任选2门,每一门为一步,第一门有4为同学可以选,第二门有3位同学可选,根据分步计数原理可得答案.解答:解:恰有2门选修课没有被这4名学生选择,先从4门课中任选2门,为=6种,四个学生选这两种课共有24=16中,排除四个人全选其中一门课程为16﹣2=14种,故有14=84种.故答案为:84.点评:本题考查了分步计数原理,关键是如何分步,属于基础题16.(5分)已知函数y=sin(πx+φ)﹣2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:利用辅助角公式结合三角函数的对称性,结合二倍角公式进行求解即可.解答:解:y=sin(πx+φ)﹣2cos(πx+φ)=sin(πx+φ﹣α),其中sinα=,cosα=.∵函数的图象关于直线x=1对称,∴π+φ﹣α=+kπ,即φ=α﹣+kπ,则sin2φ=sin2(α﹣+kπ)=sin(2α﹣π+2kπ)=sin(2α﹣π)=﹣sin2α=﹣2sinαcosα=﹣2××=,故答案为:点评:本题主要考查三角函数值的计算,利用辅助角公式以及三角函数的对称轴是解决本题的关键.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.考点:两角和与差的正弦函数;数量积表示两个向量的夹角;三角函数的最值.专题:三角函数的求值.分析:(1)由数量积和三角形的面积公式可得tanθ的范围,进而可得θ的取值范围;(2)化简可得f(θ)=1+2sin(2θ﹣),由θ的范围和三角函数公式可得.解答:解:(1)由题意可得•=cbcosθ,∵△ABC的面积为2,∴bcsinθ=2,变形可得cb=,∴•=cbcosθ==,由0<•≤4,可得0<≤4解得tanθ≥1,又∵0<θ<π,∴向量夹角θ的范围为[,);(2)化简可得f(θ)=2sin2(+θ)﹣cos2θ=2×﹣cos2θ=1+sin2θ﹣cos2θ=1+2sin(2θ﹣)∵由(1)知θ∈[,),∴2θ﹣∈[﹣,),∴sin(2θ﹣)∈[﹣,1],∴1+sin(2θ﹣)∈[,2],∴f(θ)的取值范围为:[,2]点评:本题考查两角和与差的三角函数公式,涉及向量的数量积和三角函数的值域,属中档题.18.(12分)为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2频率分布表Ⅰ(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.专题:概率与统计.分析:(1)利用频率分布表和频率分布直方图能求出频率分布表中的①②位置应填什么数,并补全频率分布直方图,再根据频率分布直方图能统计出这500名志愿者得平均年龄.(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.解答:解:(1)由题意知频率分布表中的①位置应填数字为:100﹣5﹣20﹣30﹣10=35,②位置应填数字为:=0.30.补全频率分布直方图,如右图所示.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:EX==.点评:本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)如图,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥底面ABCD,E、F 分别为AB、PC的中点.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)若PA=2,试问在线段EF上是否存在点Q,使得二面角Q﹣AP﹣D的余弦值为?若存在,确定点Q的位置;若不存在,请说明理由.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)取PD中点M,连接MF、MA,通过中位线定理可得EF∥AM,利用线面平行的判定定理即得结论;(Ⅱ)以点A为坐标原点建立空间直角坐标系,则平面PAD的法向量与平面PAQ的法向量的夹角的余弦值即为,计算即可.解答:证明:(Ⅰ)取PD中点M,连接MF、MA,在△PCD中,F为PC的中点,∴MF,正方形ABCD中E为AB中点,∴AE,∴AE MF,故四边形EFMA为平行四边形,∴EF∥AM,又∵EF⊄平面PAD,AM⊂平面PAD,∴EF∥平面PAD;(Ⅱ)结论:满足条件的Q存在,是EF中点.理由如下:如图:以点A为坐标原点建立空间直角坐标系,则P(0,0,2),B(0,1,0),C(1,1,0),E(0,,0),F(,,1),由题易知平面PAD的法向量为=(0,1,0),假设存在Q满足条件:设=λ,∵=(,0,1),∴Q(,,λ),=(,,λ),λ∈[0,1],设平面PAQ的法向量为=(x,y,z),由,可得=(1,﹣λ,0),∴==,由已知:=,解得:,所以满足条件的Q存在,是EF中点.点评:本题考查二面角,空间中线面的位置关系,向量数量积运算,注意解题方法的积累,建立坐标系是解决本题的关键,属于中档题.20.(12分)已知椭圆+=1(a>b>0)的左、右焦点为F1、F2,点A(2,)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.考点:椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)有已知:c=2,解得a=,b2=4,从而写出方程.(2)分AB斜率不存在或斜率存在两种情况讨论.解答:解:(1)有已知:c=2,∴a=,b2=4,故椭圆方程为;(2)当AB斜率不存在时:,当AB斜率存在时:设其方程为:,由得,由已知:△=16﹣8(2k2+1)=8,即:,|AB|=,O到直线AB的距离:d=,∴S△AOB==,∴2k2+1∈[1,2)∪(2,+∞),∴,∴此时,综上所求:当AB斜率不存在或斜率存在时:△AOB面积取最大值为.点评:本题主要考查了椭圆的标准方程和椭圆与直线,考查了学生综合运用所学知识,创造性地解决问题的能力,解题时要认真审题,仔细解答.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出f(x)的导数,求得切线的斜率和切点,由点斜式方程可得切线方程,代入点(0,﹣2),即可解得a;(2)①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1,求出导数,讨论当a≥0时,当a<0时,求得函数g(x)的单调性,令极大值大于0,解不等式即可得证;②由①知:f(x),f′(x)变化,求得f(x)的增区间,通过导数,判断x1∈(0,1),设h (x)=(xlnx﹣x)(0<x<1),求得h(x)的单调性,即可得证.解答:(1)解:由已知可得,f′(x)=lnx+1+2ax(x>0),切点P(1,a),f(x)在x=1处的切线斜率为k=1+2a,切线方程:y﹣a=(2a+1)(x﹣1),把(0,﹣2)代入得:a=1;(2)证明:①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1 则:g′(x)=+2a(x>0)当a≥0时,有g′(x)>0,所以g(x)是增函数,不符合题意;当a<0时:由g′(x)=0得:x=﹣>0,列表如下:依题意:g(﹣)=ln(﹣)>0,解得:﹣<a<0,综上可得,﹣<a<0得证;②由①知:f(x),f′(x)变化如下:由表可知:f(x)在[x1,x2]上为增函数,所以:f(x2)>f(x1)又f′(1)=g(1)=1+2a>0,故x1∈(0,1),由(1)知:ax1=,f(x1)=x1lnx1+ax12=(x1lnx1﹣x1)(0<x1<1)设h(x)=(xlnx﹣x)(0<x<1),则h′(x)=lnx<0成立,所以h(x)单调递减,故:h(x)>h(1)=﹣,也就是f(x1)>﹣综上所证:f(x2)>f(x1)>﹣成立.点评:本题考查导数的运用:求切线方程和单调区间、极值,主要考查导数的几何意义和分类讨论的思想方法,注意函数的单调性的运用,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:推理和证明.分析:(1)连接BE,OE,由已知得∠ABC=90°=∠AEB,∠A=∠A,从而△AEB∽△ABC,进而∠ABE=∠C,进而∠BEO+∠DEB=∠DCE+∠CBE=90°,由此能证明DE是圆O的切线.(2)DM=OD﹣OM=(AC﹣AB),从而DM•AC+DM•AB=(AC﹣AB)•(AC+AB)=BC2,由此能证明DE•BC=DM•AC+DM•AB.解答:证明:(1)连接BE,OE,∵AB是直径,∴∠AEB=90°,∵∠ABC=90°=∠AEB,∠A=∠A,∴△AEB∽△ABC,∴∠ABE=∠C,∵BE⊥AC,D为BC的中点,∴DE=BD=DC,∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,∴∠BEO+∠DEB=∠DCE+∠CBE=90°,∴∠OEE=90°,∴DE是圆O的切线.(2)证明:∵O、D分别为AB、BC的中点,∴DM=OD﹣OM=(AC﹣AB),∴DM•AC+DM•AB=DM•(AC+AB)=(AC﹣AB)•(AC+AB)=(AC2﹣AB2)=BC2=DE•BC.∴DE•BC=DM•AC+DM•AB.点评:本题考查DE是圆O的切线的证明,考查DE•BC=DM•AC+DM•AB的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t 即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.解答:解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=t1t2,∴m2﹣2m=1,解得.又满足△>0.∴实数m=1.点评:本题考查了极坐标方程化为直角坐标方程、参数方程的应用,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,平方后解一元二次不等式求得它的解集.(Ⅱ)根据f(x)的解析式,求出f(x)的最小值为f(),再根据f()+2m2<4m,求得m的范围.解答:解:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,即4x2﹣4x+1>x2+4x+4,即3x2﹣8x+3>0,求得它的解集为{x|x<﹣,或x>3}.(Ⅱ)f(x)=|2x﹣1|﹣|x+2|=,故f(x)的最小值为f()=﹣,根据∃x0∈R,使得f(x0)+2m2<4m,可得4m﹣2m2>﹣,即4m2﹣8m﹣5<0,求得﹣<m<.点评:本题主要考查绝对值不等式的解法,带有绝对会的函数,函数的能成立问题,体现了等价转化和分类讨论的数学思想,属于中档题.。

相关文档
最新文档