湖北省黄梅县中考数学模拟试卷(1)人教新课标版
【附20套中考模拟试题】湖北省黄梅县2019-2020学年中考数学模拟试卷含解析
湖北省黄梅县2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A .0.86×104B .8.6×102C .8.6×103D .86×1022.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .64.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°5.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15 B .12C .9D .6 6.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确7.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH 的长是()A.223B.5C.322D.3558.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1659.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.10.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A .12aB .aC .32aD .3a11.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB12.9的值是( )A .±3B .3C .9D .81 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B ,B C ,C D ,D E ,E A 通过小客车数量(辆) 260 330 300 360 240 在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 14.如图,已知AB ∥CD ,α∠=____________15.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.16.如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC =100°.若∠1=34°,则∠2=_____°.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.20.(6分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG 是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)21.(6分)解方程311(1)(2)xx x x-=--+.22.(8分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD 的值.23.(8分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.24.(10分)解不等式组 2233134x x x x +≤+⎧⎪+⎨<⎪⎩() ,并把解集在数轴上表示出来. 25.(10分)如图,在一笔直的海岸线l 上有A 、B 两个码头,A 在B 的正东方向,一艘小船从A 码头沿它的北偏西60°的方向行驶了20海里到达点P 处,此时从B 码头测得小船在它的北偏东45°的方向.求此时小船到B 码头的距离(即BP 的长)和A 、B 两个码头间的距离(结果都保留根号).26.(12分)计算532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 27.(12分)解不等式组21114(2)x x x +-⎧⎨+>-⎩…参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).2.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C .考点:勾股定理的证明.4.D【解析】【详解】解:∵35AOC ∠=o ,∴35BOD ∠=o ,∵EO ⊥AB ,∴90EOB ∠=o ,∴9035125EOD EOB BOD ∠=∠+∠=+=o o o ,故选D.5.A【解析】【分析】根据三角函数的定义直接求解.【详解】在Rt △ABC 中,∠C =90°,AC =9, ∵sin AC B AB =, ∴935AB =, 解得AB =1.故选A6.A【解析】【分析】过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,因为是两把完全相同的长方形直尺,可得CE=CF ,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP 平分∠AOB【详解】如图所示:过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7.D【解析】【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴2,2∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,2222+=+=(2)(32)25AC CF∵CH⊥AF,∴1122AC CF AF CH⋅=⋅,即112222522CH⨯=⨯⋅,∴CH=35.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.8.A【解析】【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.10.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.11.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A 、∵AD-CD=AC ,∴此选项表示正确;B 、∵AB+BC=AC ,∴此选项表示正确;C 、∵AB=CD ,∴BD-AB=BD-CD ,∴此选项表示不正确;D 、∵AB=CD ,∴AD-AB=AD-CD=AC ,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.12.C【解析】试题解析:∵93∴9的值是3故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.B【解析】【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.14.85°.【解析】如图,过F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°−∠ABF+∠C=180°−120°+25°=85°故答案为85°. 15.4cm【解析】【分析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.16.46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a ∥b ,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°. 17.6.4【解析】【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】 解:由题可知:1.628=树高, 解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.18.2【解析】【分析】把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)35.【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定20.(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS 可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.试题解析:(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)需要添加的条件是AB=BC.点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.21.原分式方程无解.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.22.(1)见解析;(2)1 3 .【解析】【分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB,CD=DB,∴OD=12 AC,∵四边形ACFD是平行四边形,∴DF=AC,设OD=x,∴AC=DF=2x,∵∠OCF=90°,CD ⊥OF ,∴CD 2=OD•DF=2x 2,∴x ,∴x ,∴=,∵OD=x ,x ,∴,∴DH=CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.23.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.24.不等式组的解集为13x ≤<,在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】由2(x+2)≤3x+3,可得:x≥1, 由134x x +<,可得:x <3, 则不等式组的解为:1≤x <3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.小船到B 码头的距离是2海里,A 、B 两个码头间的距离是(3【解析】试题分析:过P 作PM ⊥AB 于M ,求出∠PBM=45°,∠PAM=30°,求出PM ,即可求出BM 、AM 、BP .试题解析:如图:过P 作PM ⊥AB 于M ,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=12AP=10,3PM=103BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=10103+BP=sin 45PM o =2B 码头的距离是2海里,A 、B 两个码头间的距离是(10103+)海里.考点:解直角三角形的应用-方向角问题.26.26m +【解析】分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.27.﹣1≤x <1.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x ﹣2),得:x <1,则不等式组的解集为﹣1≤x <1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.中考模拟数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.2.如图是某个几何体的三视图,则该几何体的形状是()A.长方体B.圆锥 C.圆柱 D.三棱柱3.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2D. +=4.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户)40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是545.一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C. D.6.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()A.x<﹣3 B.x<﹣3或x>1 C.﹣3<x<0或x>1 D.﹣3<x<18.如图,将矩形ABCD沿EF折叠,点C落在A处,点D落在D′处.若AB=3,BC=9,则折痕EF的长为()A. B.4 C.5 D.2二、填空题(共6小题,每小题3分,满分18分)9.﹣的相反数是.10.因式分解:5x2﹣10x+5= .11.在我国南海某海域探明可燃冰储量约有194亿立方米,数字00000用科学记数法表示正确的是.12.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.13.在如图所示的单位正方形格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为.14.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]= .三、解答题(本大题共9个小题,满分58分)15.计算:2tan30°﹣|1﹣|+(+π)0+.16.先化简,再求值:÷(1﹣),其中x=3.17.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:△ABE ≌△CDF.18.已知关于x的方程x2+mx+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=﹣3x1x2,求实数m的值.19.某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,测量一建筑物CD 的高度,他们站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走20m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知观测员的眼睛与地面距离为1.5m(即AB=1.5m),求这栋建筑物CD的高度.(参考数据:≈1.732,≈1.414.结果保留整数)20.某电器超市销售A、B两种不同型号的电风扇,每种型号电风扇的购买单价分别为每台310元,460元.(1)若某单位购买A,B两种型号的电风扇共50台,且恰好支出20000元,求A,B两种型号电风扇各购买多少台?(2)若购买A,B两种型号的电风扇共50台,且支出不超过18000元,求A种型号电风扇至少要购买多少台?21.已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:CB2=AB•DB;(2)若⊙O的半径为2,∠BCP=30°,求图中阴影部分的面积.22.为了进一步了解义务教育阶段学生的体质健康状况,某县从全县九年级学生中随机抽取了部分学生进行了体质抽测.体质抽测的结果分为四个等级:A级:优秀;B级:良好;C级:合格;D级:不合格.并根据抽测结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽测的学生人数是人;(2)图(1)中∠α的度数是,并把图(2)条形统计图补充完整;(3)该县九年级有学生4800名,如果全部参加这次体质测试,请估计不合格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中H为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.23.如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2017年湖南省张家界市永定区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.【考点】26:无理数.【分析】据无理数是无限不循环小数,可得答案.【解答】解:A、﹣3是整数,是有理数,选项不符合题意;B、3.14是有限小数,是有理数,选项不符合题意;C、是分数,是有理数,选项不符合题意;D、是无理数,选项符合题意.故选D.2.如图是某个几何体的三视图,则该几何体的形状是()A.长方体B.圆锥 C.圆柱 D.三棱柱【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:D.3.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2D. +=【考点】4C:完全平方公式;2C:实数的运算;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选:B4.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户)40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【解答】解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.5.一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C. D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≤1;由②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,表示在数轴上,如图所示:,故选B.6.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm【考点】M5:圆周角定理;W:等腰直角三角形;M2:垂径定理.【分析】连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.【解答】解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选:B.7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()A.x<﹣3 B.x<﹣3或x>1 C.﹣3<x<0或x>1 D.﹣3<x<1【考点】G8:反比例函数与一次函数的交点问题.【分析】观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b >.【解答】解:不等式ax+b>的解集为﹣3<x<0或x>1.故选C.8.如图,将矩形ABCD沿EF折叠,点C落在A处,点D落在D′处.若AB=3,BC=9,则折痕EF的长为()A. B.4 C.5 D.2【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据翻折的性质可得AE=EC,∠AEF=∠CEF,设AE=x,表示出BE,在Rt△ABE中,利用勾股定理列方程求出x,根据两直线平行,内错角相等可得∠AFE=∠CEF,从而得到∠AEF=∠AFE,根据等角对等边可得AF=AE,过点E作EG⊥AD于G,求出AG、GF,再利用勾股定理列式计算即可得解.【解答】解:∵矩形ABCD沿EF折叠,点C落在A处,∴AE=EC,∠AEF=∠CEF,设AE=x,则BE=BC﹣EC=9﹣x,在Rt△ABE中,根据勾股定理得,AB2+BE2=AE2,即32+(9﹣x)2=x2,解得x=5,所以,AE=5,BE=9﹣5=4,∵矩形对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=5,过点E作EG⊥AD于G,则四边形ABEG是矩形,∴AG=BE=4,GF=AF﹣AG=5﹣4=1,在Rt△EFG中,根据勾股定理得,EF===.故选A.二、填空题(共6小题,每小题3分,满分18分)9.﹣的相反数是.【考点】14:相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是﹣(﹣)=.故答案为:.10.因式分解:5x2﹣10x+5= 5(x﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取5,再利用完全平方公式分解即可.【解答】解:原式=5(x2﹣2x+1)=5(x﹣1)2,故答案为:5(x﹣1)211.在我国南海某海域探明可燃冰储量约有194亿立方米,数字00000用科学记数法表示正确的是 1.94×1010.【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:00000=1.94×1010.故答案为:1.94×1010.12.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为40°.【考点】JA:平行线的性质;:等边三角形的性质.【分析】过C作CM∥直线l,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB﹣∠MCB=60°﹣20°=40°,故答案为:40°.13.在如图所示的单位正方形格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为(1.6,1).。
2024-2025学年湖北省黄冈市黄梅县九年级数学第一学期开学质量检测模拟试题【含答案】
2024-2025学年湖北省黄冈市黄梅县九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题正确的是()A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B .两个全等的图形之间必有平移关系.C .三角形经过旋转,对应线段平行且相等.D .将一个封闭图形旋转,旋转中心只能在图形内部.2、(4分)下列条件,不能判断四边形ABCD 是平行四边形的是()A .AB CD ∥,AB CD =B .AB CD =,BC AD =C .A C ∠=∠,AD BC ∥D .AB CD ∥,A B ∠=∠3、(4分)下列四组线段中,可以构成直角三角形的是()A .4,5,6B .2,3,4C .1.5,2,2.5D .1,34、(4分)已知一次函数的图象过点(0,3),且与两坐标轴围成的三角形的面积为3,则这个一次函数的表达式为()A .y =1.5x +3B .y =-1.5x +3C .y =1.5x +3或y =-1.5x +3D .y =1.5x-3或y =-1.5x-35、(4分)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.1.其中说法正确的是()A .①②③B .①②④C .①③④D .①②③④6、(4分)下列调查中,适宜采用普查方式的是()A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况7、(4分))A .x <2B .x <﹣2C .x ≥﹣2D .x ≤28、(4分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.10、(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,D ,E ,F 分别为AB ,AC ,AD 的中点,3EF =,则BC 的长度为__.11、(4分)如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=1.点A 2,B 2,C 2分别是边B 1C 1,A 1C 1,A 1B 1的中点;点A 3,B 3,C 3分别是边B 2C 2,A 2C 2,A 2B 2的中点;…;以此类推,则第2019个三角形的周长是_____.12、(4分)计算=_____.13、(4分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF .(1)BD 与CD 有什么数量关系,并说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.15、(8分)已知关于x 的一元二次方程2(3)30mx m x -++=总有两个不相等的实数根.(1)求m 的取值范围;(2)若此方程的两根均为正整数,求正整数m 的值.16、(8分)在平面直角坐标系中,点A ,B 分别是x 轴正半轴与y 轴正半轴上一点,OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD .(1)若m =4,n =3,直接写出点C 与点D 的坐标;(2)点C 在直线y =kx (k >1且k 为常数)上运动.①如图1,若k =2,求直线OD 的解析式;②如图2,连接AC 、BD 交于点E ,连接OE ,若OE =OA ,求k 的值.17、(10分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图①中,画一个三角形,使它的三边长都是有理数;图①(2)在图②中,画一个直角三角形,使它们的三边长都是无理数.图②18、(10分)如图,平行四边形ABCD 中,点E 是AD 的中点,连结CE 并延长,与BA 的延长线交于点F ,证明:EF =EC .B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.20、(4分)如图,在平面直角坐标系中,点A 为()6,0,点C 是第一象限上一点,以OA ,OC 为邻边作▱OABC ,反比例函数1k y x =的图象经过点C 和AB 的中点D ,反比例函数2ky x =图象经过点B ,则21k k 的值为______.21、(4分)如图,菱形ABCD 的对角线长分别为a、b,以菱形ABCD 各边的中点为顶点作矩形1111D C B A ,然后再以矩形1111D C B A 的中点为顶点作菱形2222A B C D ,……,如此下去,得到四边形A 2019B 2019C 2019D 2019的面积用含a,b 的代数式表示为___.22、(4分)如果的平方根是3±,则a =_________23、(4分)在□ABCD 中,O 是对角线的交点,那么12AB AC -=____.二、解答题(本大题共3个小题,共30分)24、(8分)申遗成功后的杭州,在国庆黄金周旅游市场中的知名餐饮受游客追捧,西湖景区附近的A ,B 两家餐饮店在这一周内的日营业额如下表:(1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量;(2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这两个方差的大小反映了什么?(结果精确到0.1)(3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由.25、(10分)(1)计算并观察下列各式:第1个:()()a b a b -+=;第2个:()()22a b a ab b -++=;第3个:()()3223a b a a b ab b -+++=;······这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则()()12322321···n n n n n n a b a a b a b a b ab b -------++++++=;(3)利用(2)的猜想计算5432222221+++++=;(4)拓广与应用5432333331+++++=.26、(12分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2、D【解析】根据平行四边形的判定方法一一判断即可.【详解】解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;故选:D.本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.3、C【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、42+52=41≠62,不可以构成直角三角形,故A 选项错误;B 、22+32=13≠42,不可以构成直角三角形,故B 选项错误;C 、1.52+22=6.25=2.52,可以构成直角三角形,故C 选项正确;D 、222133+=≠,不可以构成直角三角形,故D 选项错误.故选:C .本题考查勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4、C 【解析】先求出一次函数y=kx+b 与x 轴和y 轴的交点,再利用三角形的面积公式得到关于k 的方程,解方程即可求出k 的值.【详解】解:∵一次函数y=kx+b (k ≠0)图象过点(0,3),∴b=3,令y=0,则x=-3k ,∵函数图象与两坐标轴围成的三角形面积为2,∴12×2×|-3k |=2,即|3k |=2,解得:k=±1.5,则函数的解析式是y =1.5x +3或y =-1.5x +3.故选C .本题考查一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性,注意点的坐标和线段长度的转化.5、A【解析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.6、D【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.7、C【解析】根据被开方数大于等于0列式计算即可得解.【详解】由题意得:x +1≥0,解得:x ≥﹣1.故选C .本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.8、D 【解析】结合中心对称图形和轴对称图形的概念求解即可.【详解】解:A 、是轴对称图形,不是中心对称图形.故本选项错误;B 、不是轴对称图形,是中心对称图形.故本选项错误;C 、是轴对称图形,不是中心对称图形.故本选项错误;D 、既是中心对称图形,又是轴对称图形.故本选项正确;故选:D .本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(本大题共5个小题,每小题4分,共20分)9、14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD 中,BD =2.∵菱形的周长为10,BD =2,∴AB =5,BO =3,∴4AO ==,AC =3.∴面积168242S =⨯⨯=.故答案为14.此题考查了菱形的性质及面积求法,难度不大.10、6【解析】因为在Rt ABC ∆中90ACB ∠=︒,30A ∠=︒∴AB=2BC 又D 为AB 中点,∴CD=AD=BD=BC=12AB 又E ,F 分别为AC ,AD 的中点,∴EF=12CD ,所以CD=2EF=6故BC 为6本题主要考查三角形的基本概念和直角三角形。
湖北省黄梅县2024届中考数学模拟试题含解析
湖北省黄梅县2024年中考数学模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a 元,则原售价为( )A .(a ﹣20%)元B .(a +20%)元C .a 元D . a 元2.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( )A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<0 3.若不等式组的整数解共有三个,则a 的取值范围是( ) A .5<a <6 B .5<a ≤6 C .5≤a <6 D .5≤a ≤64.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个5.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<6.如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A 5B .136C .1D .567.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A .③②④①B .②④①③C .③①④②D .②③④①8.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( ) A .①② B .①③ C .①④D .①③④ 9.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④10.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°二、填空题(共7小题,每小题3分,满分21分)11.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.12.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm 刻度线与量角器的0°线在同一直线上,且直径DC 是直角边BC 的两倍,过点A 作量角器圆弧所在圆的切线,切点为E ,则点E 在量角器上所对应的度数是____.13.若正六边形的边长为2,则此正六边形的边心距为______.14.函数y=2+1-1x x 中自变量x 的取值范围是___________. 15.20-114+-3-2014-4+6⨯()()=________16.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.17.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.三、解答题(共7小题,满分69分)18.(10分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 19.(5分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2)求乙组加工零件总量a 的值.20.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.21.(10分)如图,已知∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 与BD 相交于点O .求证:EC=ED .22.(10分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A(2,1),反比例函数y =k x (x >0)的图象经过点B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,将线段OA 延长交y =k x(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,①求直线BD 的解析式;②求线段ED 的长度.23.(12分)解不等式组()()303129x x x -≥⎧⎨->+⎩. 24.(14分)直角三角形ABC 中,BAC 90∠=,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD45⊥于点G,连接DG.依题意补全图形,并求四边形ABGD的∠=,AF22=+,过点B作BG FC面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据题意列出代数式,化简即可得到结果.【题目详解】根据题意得:a÷(1−20%)=a÷= a(元),故答案选:C.【题目点拨】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.2、A【解题分析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3、C【解题分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【题目详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C.【题目点拨】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4、B【解题分析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.5、A【解题分析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.6、D【解题分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到AE ADAF FH=,于是得到AE=AF,列方程即可得到结论.【题目详解】解:如图:解:过F作FH⊥AE于H,四边形ABCD是矩形,∴AB=CD,AB∥CD,AE//CF, ∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3-DE,∴24DE+∠FHA=∠D=∠DAF=90o,∴∠AFH+∠HAF=∠DAE+∠FAH=90, ∴∠DAE=∠AFH, ∴△ADE~△AFH,∴AE AD AF FH=∴AE=AF,∴243DE DE+=-,∴DE=5 6 ,故选D.【题目点拨】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.7、B【解题分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【题目详解】证明:DE //BC ②,ADE B ∠∠∴=④,①又DF//AC ,A BDF ∠∠∴=③,ADE ∴∽DBF .故选B .【题目点拨】本题考查了相似三角形的判定与性质;关键是证明三角形相似.8、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确; ∴互为倒数的是:①④,故选C .【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9、B【解题分析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP ,∵D 为BC 的中点,∴PD 垂直平分BC ,∴①ED ⊥BC 正确.∵∠ABC=90°,∴PD ∥AB.∴E 为AC 的中点,∴EC=EA ,∵EB=EC.∴②∠A=∠EBA 正确;③EB 平分∠AED 错误;④ED=12AB 正确. ∴正确的有①②④.故选B.考点:线段垂直平分线的性质.10、C【解题分析】分析:作AC对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作AC对的圆周角∠APC,如图,∵∠P=12∠AOC=12×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(共7小题,每小题3分,满分21分)11、5【解题分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【题目详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC ⊥AB .∴AD=4cm .设半径为Rcm ,则R 2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm .故答案为5【题目点拨】此题考查了切线的性质及垂径定理,建立数学模型是关键.12、60.【解题分析】首先设半圆的圆心为O ,连接OE ,OA ,由题意易得AC 是线段OB 的垂直平分线,即可求得∠AOC =∠ABC =60°,又由AE 是切线,易证得Rt △AOE ≌Rt △AOC ,继而求得∠AOE 的度数,则可求得答案.【题目详解】设半圆的圆心为O ,连接OE ,OA ,∵CD =2OC =2BC ,∴OC =BC ,∵∠ACB =90°,即AC ⊥OB ,∴OA =BA ,∴∠AOC =∠ABC ,∵∠BAC =30°,∴∠AOC =∠ABC =60°,∵AE 是切线,∴∠AEO =90°,∴∠AEO =∠ACO =90°,∵在Rt △AOE 和Rt △AOC 中,AO AO OE OC =⎧⎨=⎩, ∴Rt △AOE ≌Rt △AOC (HL ),∴∠AOE =∠AOC =60°,∴∠EOD =180°﹣∠AOE ﹣∠AOC =60°,∴点E所对应的量角器上的刻度数是60°,故答案为:60.【题目点拨】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.13、3.【解题分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【题目详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:314、x≥﹣12且x≠1【解题分析】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1. 故答案为:x≥﹣12且x≠1. 15、13【解题分析】20-11-3-2014-4+6⨯()() =2+9-4+6=13.故答案是:13.16、x +23x =75. 【解题分析】试题解析:设长方形墙砖的长为x 厘米,可得:x +23x =75. 17、85【解题分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【题目详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【题目点拨】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.三、解答题(共7小题,满分69分)18、(1)12,14;(2)证明见解析;(3)34m n =. 【解题分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【题目详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽, ∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =,3n =,∴tan ∠B=12CE AC BE BC ==,tan ∠ACE= tan ∠B=12AE CE = ∴BE=2CE ,12AE CE =4BE AE ∴=,2BD CD =,设AE a =,则4BE a =,//DH AC , ∴2BH BD AH CD ==, 53AH a ∴=,5233EH a a a =-=, //DH AF ,∴3223EF AE a DE EH a ===, 32EF DE ∴=. (3)如图2中,作DH AB ⊥于H .90ACB CEB ∠=∠=︒,90ACE ECB ∴∠+∠=︒,90B ECB ∠+∠=︒,ACE B ∴∠=∠,DA DB =,EAG B ∠=∠,EAG ACE ∴∠=∠,90AEG AEC ∠=∠=︒,AEG CEA ∴∆∆∽,2AE EG EC ∴=,32CG AE =,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,4AC b =,:4:3AC CD ∴=,mAC nDC =,::4:3AC CD n m ∴==, ∴34m n =. 【题目点拨】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.19、(1)y=60x ;(2)300【解题分析】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 20、(1)y=﹣3x 2+252x ﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解题分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【题目详解】(1)由题意得:每件商品的销售利润为(x ﹣2)元,那么m 件的销售利润为y =m (x ﹣2).又∵m =162﹣3x ,∴y =(x ﹣2)(162﹣3x ),即y =﹣3x 2+252x ﹣1.∵x ﹣2≥0,∴x ≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【题目点拨】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.21、见解析【解题分析】由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证. 【题目详解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【题目点拨】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22、(1)B(2,4),反比例函数的关系式为y=8x;(2)①直线BD的解析式为y=-x+6;②ED=2【解题分析】试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4,可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式;②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度. 试题解析:(1)过点A作AP⊥x轴于点P,则AP =1,OP =2,又∵AB =OC =3,∴B(2,4).,∵反比例函数y =k x (x >0)的图象经过的B , ∴4=2k , ∴k =8. ∴反比例函数的关系式为y =8x ; (2)①由点A (2,1)可得直线OA 的解析式为y =12x . 解方程组128y x y x⎧=⎪⎪⎨⎪=⎪⎩,得1142x y =⎧⎨=⎩,2224x y =-⎧⎨=-⎩. ∵点D 在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD 的解析式为y =-x +6;②把y =0代入y =-x +6,解得x =6,∴E(6,0),过点D 分别作x 轴的垂线,垂足分别为G ,则G (4,0),由勾股定理可得:ED 22(64)(02)22-+-=.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.23、x <﹣1.【解题分析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 由①得x≤1,由②得x <﹣1,∴原不等式组的解集是x <﹣1.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.24、(1)证明见解析;(2)补图见解析;ABGD S 四边形=【解题分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论; ()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x,解直角三角形得到BF == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论.【题目详解】解:()1AB AD =,ABD ADB ∠∠∴=,ADB CDE ∠∠=,ABD CDE ∠∠∴=,BAC 90∠=,ABD ACB 90∠∠∴+=,CE AE ⊥,DCE CDE 90∠∠∴+=,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=,BAC 90∠=,BAE CAE 45∠∠∴==,F ACF 45∠∠==,AE CF ⊥,BG CF ⊥,AD //BG ∴,BG CF ⊥,BAC 90∠=,且ACB DCE ∠∠=,AB BG ∴=,AB AD =,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF 2BG 2x ∴==,AB BF x 2x 22∴+=+=+x 2∴=过点B 作BH AD ⊥于H ,2BH AB 12∴==. ABGD S AD BH 2∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD =2S 四边形.【题目点拨】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.。
湖北省黄冈黄梅县联考2020届数学中考模拟试卷
湖北省黄冈黄梅县联考2020届数学中考模拟试卷一、选择题1.如图,在△ABC 中,AB =AC ,BC =4,tanB =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取( )A.2B.3C.4D.52.下列说法正确的是( )A .“打开电视机,正在播放《达州新闻》”是必然事件B .天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S 2=0.4,则甲的成绩更稳定D .数据6,6,7,7,8的中位数与众数均为73.下列运算正确的是( )A .(a 2)3=a 6B .(a+2)2=a 2+4C .a 6÷a 3=a 2D =4.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .﹣4B .﹣2C .3D .5 5.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110 B .(1+x )2=109 C .1+2x =1110 D .1+2x =109 6.下列四个命题中:①若,则;②反比例函数,当时,y 随x 的增大而增大;③垂直于弦的直径平分这条弦; ④平行四边形的对角线互相平分,真命题的个数是( )A.1个B.2个C.3个D.4个7.如图,AB 是O 的直径,C ,D 分别是O 上的两点,OC OD ⊥,2AC cm =,BD =,则O 的半径是( )A B .2cm C D .3cm8.一个公园有,,A B C 三个入口和,D E 二个出口,小明进入公园游玩,从“A 口进D 口出”的概率为( )A.12B.13C.15D.169.若x2-9=0,则2563x xx-+-的值为( )A.1 B.-5 C.1或-5 D.010.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=5,EC=1,则DE的长为( )A.2B.4 C.D.11.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形12.如图,在△ABC中,∠B=70°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.40°B.45°C.50°D.60°二、填空题13.在Rt△ABC中,∠C=90°,sinA=35,则cosB的值为_____.14.已知a2+1=3a,则代数式a+1a的值为.15.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.16.如图,双曲线y=kx(x>0)经过A、B两点,若点A的横坐标为1,∠OAB=90°,且OA=AB,则k的值为_______.17.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为__________.18.圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.三、解答题19.关于x的一次函数y=ax+b与反比例函数y=kx(x>0)的图象交于点A(m,4)和点B(4,1).(1)求m的值和反比例函数的解析式;(2)求一次函数的解析式.20.某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B 种型号的篮球,问A种型号的篮球采购多少个?21.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB =DC(1)求证:四边形BFCE是平行四边形;(2)如果AD=5,DC=32,∠EBD=60°,那么当四边形BFCE为菱形时BE的长是多少?22.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套?(3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?23.甲、乙两公司为某基金会各捐款30 000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?24.解不等式组:22213x x x x >-⎧⎪+⎨>⎪⎩ . 25.如图1,A ,B 分别在射线OM ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:四边形OCED 为平行四边形;(2)求证:△PCE ≌△EDQ(3)如图2,延长PC,QD 交于点R.若∠MON=150°,求证:△ABR 为等边三角形。
湖北省黄冈黄梅县联考2019-2020学年中考数学模拟考试试题
湖北省黄冈黄梅县联考2019-2020学年中考数学模拟考试试题一、选择题1.下列说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的矩形是正方形C .顺次联结矩形各边中点所得四边形是正方形D .正多边形都是中心对称图形2.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点F ;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若3BF =, 2.5AB =,则AE 的长为( )A.2B.4C.8D.53.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为( )A .0.1B .0.17C .0.33D .0.94.如图,是由一个长方体和一个圆锥体组成,则该几何体的左视图是( )A. B. C. D.5.当实数x y=x+1中y 的取值范围是( )A .y≥-3B .y≤-3C .y>-1D .y≥-16.在同一直角坐标系中,函数y =k x和y =kx ﹣2的图象大致是( )A.B.C.D.7.一个不透明的布袋里装有2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.15B.25C.35D.128.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A B.C.1 D.﹣19.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME 的最小值为( )D.1010.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有()A.1B.2C.3D.411.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A.1.32×109B.1.32×108C.1.32×107D.1.32×10612.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a6二、填空题13.已知a,b是方程x2﹣3x﹣1=0的两个根,则代数式a+b的值为_____.14.如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是_____度.15.因式分解:a3-ab2=______________.16.因式分解:2a2﹣8= .17.小明有5根小棒,长度分别为3cm,4cm,5cm,6cm,7cm,现从中任选3根小棒,怡好能搭成三角形的概率是______18.将y=2x2的图象沿y轴向下平移3个单位,则得到的新图象所对应的函数表达式为_____.三、解答题19.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.20.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.21.(1)计算:112tan602)3-︒⎛⎫+ ⎪⎝⎭(2)解不等式:1123x x +-<22.五一假期,某家庭开展自驾游活动,计划按A→B→C→D线路游览四个景点,如图,其中A、B、C三景点在同一直线上,D景点在A景点北偏东30°方向,在C景点北偏西45°方向,C景点在A景点北偏东75°方向.若A景点与D景点的直线距离AD=60km,问沿上述线路从A景点到D景点的路程是多少?23.如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.24.如图,一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=﹣8x的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.(1)求点C的坐标及k、b的值.(2)求出一次函数图象与反比例函数图象的另一个交点的坐标,并直接写出当8kx bx+>-时,x的取值范围.25.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12月的用水量多5m3,求小丽家今年7月的用水量.【参考答案】***一、选择题13.314.6015.a(a+b)(a﹣b)16.2(a+2)(a-2).17.35.18.y=2x2﹣3.三、解答题19.见解析,49.【解析】【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。
2021年湖北省黄冈市黄梅县中考模拟数学试题(含答案解析)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.﹣3的相反数为( )
A.﹣3B.﹣ C. D.3
2.石墨烯是最薄的纳米材料,其厚度为0.00000000034m,这个数字用科学记数法记为( )
A. B. C. D.
3.下列运算正确的是()
A. B. C. D.
4.如图所示的几何体,其主视图是()
A. B. C. D.
5.已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则 的值为()
A.2B.-1
C.- D.-2
6.如图,已知直线AB//CD,∠GEB的平分线EF交CD于点F,∠1=30°,则∠2等于()
21.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
23.如图,AB是⊙O的直径,C是弧AB的中点,延长AC至D,使CD=AC,连接DB.E是OB的中点,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;
(2)⊙O的直径为2,求BH的长.
24.绿色生态农场生产并销售某种有机产品,每日最多生产130kg,假设生产出的产品能全部售出,每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣ x+168,生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.
湖北省黄冈黄梅县联考2019-2020学年中考数学模拟试卷
湖北省黄冈黄梅县联考2019-2020学年中考数学模拟试卷一、选择题1.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有四个整数解,那么m 的取值范围为( ) A.10m -≤< B.10m -<< C.1m ≥- D.0m <2.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A.3:4B.9:16C.9:1D.3:13.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=1035 4.已知反比例函数2y x=,下列结论中不正确的是( ) A .图象经过点(﹣1,﹣2) B .图象在第一、三象限C .当x >1时,0<y <2D .当x <0时,y 随着x 的增大而增大 5.|﹣5|的相反数的倒数是( )A .﹣5B .5C .15D .﹣15 6.若关于x 的方程3x 2﹣2x+m =0的一个根是﹣1,则m 的值为( )A .﹣5B .﹣1C .1D .57.如果关于x 的分式方程有整数解,且关于x 的不等式组的解集为x >4,那么符合条件的所有整数a 的值之和是( )A.7B.8C.4D.5852,0,﹣1,其中最小的是( )A 5B .2C .0D .﹣19.点(1,-4)在反比例函数k y x =的图像上,则下列各点在此函数图像上的是( ) A .(1,4) B .(-12,-8) C .(-1,-4) D .(4,-1) 10.下列说法错误的是A .Rt △ABC 中,AB=3,BC=4,则AC=5;B .极差能反映一组数据的变化范围;C .经过点A (2,3)的双曲线一定经过点B (-3,-2);D .连接菱形各边中点所得的四边形是矩形.11.如图,双曲线y =6x(x >0)经过线段AB 的中点M ,则△AOB 的面积为( )A .18B .24C .6D .1212.下列说法正确的是( )A .一组数据2,5,5,3,4的众数和中位数都是5B .“掷一次骰子,向上一面的点数是1”是必然事件C .掷一枚硬币正面朝上的概率是12表示每抛硬币2次就有1次正面朝上 D .计算甲组和乙组数据,得知x 甲=x 乙=10,2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定二、填空题13.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD=2,tan ∠OAB= ,则AB 的长是________.14.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD 的中点,弦CE ⊥AB 于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF 、BC 于点P 、Q ,连接AC .给出下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心;④AP•AD=CQ•CB.其中正确的是_____(写出所有正确结论的序号).15.分解因式:ax 2﹣ax =_____.16.如图所示,在Rt ABC ∆中,90ACB ∠=︒,CM 是斜边AB 上的中线,E F 、分别为MB BC 、的中点,若1EF =,则AB =_____.17.如图,正方形ABCD 的顶点A 、D 分别在x 轴、y 轴上,∠ADO =30°,OA =2,反比例函y =k x经过CD 的中点M ,那么k =_____.18.若式子1x -在实数范围内有意义,则x 的取值范围是_____.三、解答题19.如图,在△ABC 中,AB =AC ,AH ⊥BC 于点H ,HE ⊥AB 于点E ,以H 为圆心,HE 为半径作半圆,交AH 于点F .(1)求证:AC 是⊙H 的切线;(2)若点F 是AH 的中点,HE =6,求图中阴影部分的面积.20.计算:()201sin 30292-︒⎛⎫-+-- ⎪⎝⎭. 21.计算:()101820196cos603π-⎛⎫+-+- ⎪⎝⎭. 22.(1)问题发现:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,则AB ,AD ,DC 之间的数量关系为_______.(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,点F 是DC 的延长线上一点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的数量关系,并证明你的结论;(3)问题解决:如图3,AB ∥CD ,点E 在线段BC 上,且BE:EC=3:4.点F 在线段AE 上,且∠EFD =∠EAB ,直接写出AB ,DF ,CD 之间的数量关系.23.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(1,-4) ,B(3,-3) ,C(1,-1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC 向左平移3个单位,再向上平移5个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕点C 逆时针旋转90°,画出旋转后得到的△A 2B 2C 2,并直接写出点A 旋转到点A 2所经过的路径长.24.为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:社团类别人数占总人数比例球类60 m舞蹈30 0.25健美操n 0.15武术12 0.1(1)求样本容量及表格中m、n的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.25.如图,AB是⊙O的直径,点C在⊙O上,EO⊥AB,垂足为O,EO交AC于E.过点C作⊙O的切线CD 交AB的延长线于点D.(1)求证:∠AEO+∠BCD=90°;(2)若AC=CD=3,求⊙O的半径.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A B B D D A B D D A D D13.814.②③④15.ax(x﹣1).16.417318.x≤1.三、解答题-19.(1)见解析;(2)1836π【解析】【分析】(1)作HG⊥AC于G,如图,利用等腰三角形的性质得AH平分∠BAC,再根据角平分线性质得HG=HE,然后根据切线的判定定理得到结论;(2)先确定∠HAE=30°,∠AHE=60°,再计算出AE=3部分的面积=S△AHE﹣S扇形EHF进行计算;【详解】解:(1)证明:作HG⊥AC于G,如图,∵AB=AC,AH⊥BC于点H,∴AH平分∠BAC,∵HE⊥AB,HG⊥AC,∴HG=HE,∴AC是⊙O的切线;(2)解:∵点F是AH的中点,∴AH=2HF=12,而HE=6,∴∠HAE=30°,∠AHE=60°,∴AE3=3,∴图中阴影部分的面积=S△AHE﹣S扇形EHF=12×6×63﹣2606360π⨯=183﹣6π;【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.20.0【解析】【分析】根据三角函数、0指数幂,负指数幂的定义进行计算.【详解】解:原式=1+3﹣4=0.【点睛】考核知识点:三角函数、0指数幂,负指数幂.理解定义是关键.21.2+1【解析】【分析】分别根据算术平方根、零指数幂,负整数指数幂运算法则以及特殊角三角函数值代入进行运算求值即可. 【详解】原式1=22+1+362+12-⨯=【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根、零指数幂,负整数指数幂运算法则是解题关键.22.(1)AB+CD=AD;(2)详见解析;(3)AB=34(CD+DF ) .【解析】【分析】(1)结论:AB+CD=AD.只要证明△CEF≌△BEA(AAS),推出AB=CF,再证明DA=DF即可解决问题.(2)结论:AB=AF+CF.只要证明△CEG≌△BEA(AAS),推出AB=CG,再证明FA=FG即可解决问题.(3)结论:AB=34(CD+DF).如图3中,延长AE交CD的延长线于G.证明△CEG∽△BEA,推出AB=34CG,再证明DF=DG即可解决问题.【详解】(1)结论:AB+CD=AD.理由:如图1中,∵AB∥CF,∴∠CFE=∠EAB,∵CE=EB,∠CEF=∠AEB,∴△CEF≌△BEA(AAS),∴AB=CF.∵AF平分∠DAB,∴∠DAF=∠EAB,∵∠EAB=∠CFE,∴∠DAF=∠DFA,∴AD=DF,∵DF=DC+CF=CD+AB,∴AB+CD=AD.故答案为: AB+CD=AD.(2)结论:AB=AF+CF延长AE交DC的延长线于点G.∵ AB∥CD,∴∠EAB=∠G,∠B=∠BCG.又 E是BC的中点,∴ BE=CE.∴△ABE≌△GCE,∴ AB=CG.∵ AE是∠BAF的平分线,∴∠EAB=∠FAE,∴∠G=∠FAE.∴ AF=FG,∴ CG=CF+FG= CF+AF.∴ AB=AF+CF.(3)结论:AB=34(CD+DF ) .如图3中,延长AE交CD的延长线于G.∵CG∥AB,∴△CEG∽△BEA,∴34BE ABEC CG==,∵∠G=∠A,∴AB=34 CG,∵∠DFE=∠A,∴∠DFG=∠G,∴DF=DG,∴CD+DF=CD+DG=CG,∴AB=34(CD+DF).【点睛】本题属于四边形综合题,考查的是全等三角形的判定和性质、相似三角形的判定和性质,准确识图是解题的关键.23.(1)见解析;(2)3 2π【解析】【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C,△ABC绕点C顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再先求得AC的长,再根据弧长公式列式计算即可.【详解】(1)如图所示:A(1,-4) ,B(3,-3) ,C(1,-1) 向左平移3个单位,再向上平移5个单位的坐标分别为A1(-2,1)、B1(0,2)、C1(-2,4).(2)如图所示:AC=4-1=3,290323 3602AAππ=⨯⨯=.【点睛】考查作图-旋转变换,轨迹,作图-平移变换,解题的关键是:平移,旋转后对应点的坐标表示出来,及弧长公式的正确运用.24.(1)120,0.5,18;(2)答案见解析;(3)75.【解析】【分析】(1)根据喜欢武术的有12人,所占的比例是0.1,即可求得总数;(2)根据(1)的结果,即可补全统计图;(3)利用总人数3000乘以对应的比例,即可估计该校最喜欢足球的人数.【详解】(1)样本容量为:12÷0.1=120,m=60÷120=0.5,n=120×0.15=18;(2)如图所示:;(3)学校喜欢球类人有:3000×0.5×360=75(人).答:估计该校最喜欢足球的人数为75.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)见解析;(2)⊙O3【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,求得∠A+∠ABC=90°,根据余角的性质得到∠AEO=∠ABC,根据切线的性质即可得到结论;(2)根据等腰三角形的性质得到∠A=∠ACO,∠A=∠D,解直角三角形即可得到结论.【详解】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵EO⊥AB,∴∠A+∠AEO=90°,∴∠AEO=∠ABC,∵OC=OB,∴∠ABC=∠OCB,∴∠AEO=∠OCB,∵CD是⊙O的切线,∴∠OCD=90°,∴∠AEO+∠BCD=90°;(2)∵OA=OC,∴∠A=∠ACO,∵AC=CD,∴∠A=∠D,∵∠A+∠D+∠ACO+∠OCD=180°,∴3∠A+90°=180°,∴∠A=30°,∵AC=3,∴32 3.cos3032ACAB===∴⊙O的半径为3.【点睛】本题考查了切线的性质,圆周角定理,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考模拟试卷数学卷考试时间100分钟 满分120分一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.-7的倒数是( )A.7 B.-7 C.-71 D.71 2.下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是( )A.圆柱 B.圆锥 C.三棱柱 D.正方体3.如图,是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B =140°,∠D =120°, 则∠C 的度数为( )A . 100°B . 120°C .140°D .90° 4.下列各式中计算结果等于62x 的是( )A .33x x + B .32(2)xC .232x x ⋅D .72xx ÷5)A .平均数B .中位数C .众数D .方差6.由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字 7 .在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10 8.如图,88⨯方格纸的两条对称轴EF MN ,相交于点O , 对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格; ②先以点O 为中心旋转180,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a 变换成图b 的是( )A .①②B .①③C .②③D .③9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60° (第8题图)第9题(第12题图)BC10.如图,在平行四边形ABCD中,点M为CD的中点,AM与 BD相交于点N,那么=∆ABCD D MN s s 平行四边形:( ) A 、112 B 、19 C 、18 D 、 16二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.数轴上离开-2的点距离为3的数是 _______________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 220x x m -++=的解为 .13.如图,有五张不透明的卡片除正面的数不同外,其余相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到写着无理数的卡片的概率为_________.14.在⊙0中,半径R=5,AB 、CD 是两条平行弦,且AB=8,CD=6,则弦AC=_________.15.二次函数y=x 2-2x-3的图象关于原点O (0,0)对称的图象的解析式是_________.16.已知在直角ABC 中,∠C=900,AC=8㎝,BC=6㎝,则⊿ABC 的外接圆半径长为_________㎝,⊿ABC 的内切圆半径长为_________㎝,⊿ABC 的外心与内心之间的距离为_________㎝。
三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)先化简再求值:11131332--+÷--x x x x x ,并从不等式组x - 3(x-2) ≥2 的解中选一 - 2 < 5x + 1 个你喜欢的数代入,求原分式的值 18.(本小题满分6分)如图是一个以线段BC 为直径的半圆,请用直尺和圆规画出一个300的角,使这个角的顶点在直径BC 上或半圆弧BC 上。
(要求保留痕迹)B19.(本小题满分6分)已知圆锥的侧面积为16∏㎝2.(1)求圆锥的母线长L(㎝)关于底面半径r(㎝)之间的函数关系式; (2)写出自变量r 的取值范围;(3)当圆锥的侧面展开图是圆心角为900的扇形时,求圆锥的高。
20.(本小题满分8分)如图,BD 为⊙O 的直径,AB AC =,AD 交BC 于E ,2AE =,4ED =. (1)求证:ABE ADB △∽△. (2)求AB 长.21.(本小题满分8分)2011年3月10日,云南盈江县发生里氏5.8级地震。
萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。
救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。
(结果精确到0.1米,参考数据:1.41 1.73≈≈)22.(本小题满分10分)某酒店的客房有三人普通间、双人普通间客房,收费数据如下表:一个50人的旅游团到该酒店入住,住了一些三人普通间和双人普通间客房。
若每间客房正好住满,且三人普通间住了x 间,双人普通间住了y 间。
(1)用含x 的代数式表示y ;(2)若该旅游团一天的住宿费要低于3000元,且旅客要求住进的三人普通间不多于双人普通间,那么该旅游团住进的三人普通间和双人普通间各多少间?23.(本小题满分10分)如图,在平面直角坐标系中,直线L :y=-2x-8分别与x 轴、y 轴相交于A 、B 两点,点P (0,k)是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P 。
(1)连结PA ,若PA=PB ,试判断⊙P 与X 轴的位置关系,并说明理由;(2)当K 为何值时,以⊙P 与直线L 的两个交点和圆心P 为顶点的三角形是正三角形?24.(本小题满分12分)如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交 抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是 平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由.2011年中考模拟试卷数学答题卷一、仔细选一选(本题有10小题,每小题3分,共30分)BC题号 1 2 3 4 5 6 7 8 9 10 答案二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 12. 13. 14. 15. 16.三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)11131332--+÷--x x x x x18.(本小题满分6分)19.(本小题满分6分)20、(本小题满分8分)21、(本小题满分8分)22、(本小题满分10分)23.(本小题满分10分)24、(本小题满分12分)2011年中考模拟试卷数学参考答案及评分标准一、仔细选一选(本题有10小题,每小题3分,共30分) 题号 12345678910答案C D A D C C B D B A二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 1或-5 (只写一个正确答案得2分;考生给出的答案中含有错误答案的,一律给0分)12. -1,3 (评分标准:与第11题同) 13.52 14. 2,52,72 (只写出一个正确答案的得1分,只写出两个正确答案的得2分,考生给出的答案中含有错误答案的,一律给0分) 15. Y=_-x 2-2x+3(写成顶点式也对)16.依次填5,2,5 (分值:1分 + 1分 + 2分) 三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)原式=)1(1x x -----3分,不等式组的解是-3<x ≤2 -----2分当x = 2时,原式 = -21-----------------1分 18.(本小题满分6分)痕迹清楚且图形正确给5分,结论1分。
19.(本小题满分6分)(1)∵S = ∏rL = 16∏ ∴L = r16------2分 (2)∵L =r16> r > 0 ∴0<r <4 -------2分 (3) ∵ θ = 900= lr × 3600, ∴L=4r又L = r16∴ r = 2 ,L = 8 ,h = 215 -----2分(1)证明:AB AC =,ABC C ∴=∠∠,C D =∠∠,ABC D ∴=∠∠.------------2分 又BAE DAB =∠∠, ABE ADB ∴△∽△. ········· 2分(2)∵△ABE ∽△ADB∴AB AEAD AB = ············ 1分∴122)42()(2=⨯+=⋅+=⋅=AE ED AE AE AD AB ---------1分 ∴32=AB --------------------2分21、(本小题满分8分)解:如图,过点C 作CD ⊥AB 交AB 于点D. --------------1分 ∵探测线与地面的夹角为30°和 60°∴∠CAD=30°,∠CBD=60° ------------1分 在Rt △BDC 中,BDCD=︒60tan ∴360tan CDCD BD ==︒ ------------------1分在Rt △ADC 中,ADCD=︒30tan ∴3330tan CDCD AD ==︒---------------1分 ∵3=-=BD AD AB ∴3333=-CD CD --------------2分∴)(6.2273.13233米≈⨯==CD -----------------1分 答:生命所在点C 的深度大约为2.6米。
-----------------1分(1)解:∵ 3x + 2y = 50 ∴ y = -23x + 25 (x 、y 是正整数)-------2分 (2)解:由题意得 150x + 140(-23x + 25) = 3000 X ≤ -23x + 25 -------------3分 ∴650< x ≤ 10 ------------2分 ∵ x 是正整数 ∴ x = 9, 10 --------1分 当X = 9时,y =12.5(不合题意,舍去) --------1分 当X = 10时,y = 10答该旅游团住进的三人普通间10间,住双人普通间10间-----1分23.(本小题满分10分)(1)由直线L 的解析式可知A (-4,0),B (0,-8)设OP=X ,则BP=8-X ,AP=8-X由勾股定理得 X 2 + 42 =(8-X )2解得 X = 3 ---------------2分 ∴ OP = R = 3∴⊙P 与X 轴相切 --------------2分(2)分两种情况讨论:①当圆心P 在线段OB 上由⊿AOB ∽ ⊿PEB 得PB ABPE AO 把AO=4,AB=45,PE=233代入比例式得PB=2315 --------------------2分∴ OP = 8-2315 ∴ K =2315-8 -----1分11②当圆心P 在线段OB 的延长线上时:由⊿AOB ∽ ⊿PEB 同样可得 PB=2315 ∴ OP = 8 + 2315 ∴ K = -2315-8 (2分) ∴当K=2315-8或-2315-8时,以⊙P 与直线L 的两个交点和圆心P 为顶点的三角形是正三角形。