第七章平面直角坐标系复习卷
(完整)七年级数学下册第七章《平面直角坐标系》测试题
七年级数学下册第七章《平面直角坐标系》测试题(新人教版)班级姓名(时间 120 分满分 120 分)一、选择题:(每题 2.5 分,共 50 分)、若 a 5, b 4 ,且点 M ( a , b )在第二象限,则点 M 的坐标是()1A 、(5,4)B 、(- 5,4)C 、(- 5,- 4)D 、(5,- 4)2、过 A ( ,- )和 B (- ,- )两点的直线必定( )4 2 22A 、垂直于 x 轴B 、与 y 轴订交但不平于x 轴 C 、平行于 x 轴 D 、与 x 轴、 y 轴平行3、如右图所示的象棋盘上,若 帅位于点( 1,- 2)上,相位于点( 3,- 2)上,○ ○则炮○位于点()A 、(- 1,1)B 、(- 1, 2)C 、(- 2,1)D 、(- 2,2)炮帅 相4、一个长方形在平面直角坐标系中三个极点的坐标为(-图 31,- 1)、(- 1,2)、(3,- 1),则第四个极点的坐标为()A 、(2,2) B、( 3,2) C 、(3,3) D 、(2,3)5、若 x 轴上的点 P 到 y 轴的距离为 3,则点 P 的坐标为()A 、(3,0)B 、(3,0)或(– 3,0)C 、(0,3)D 、(0,3)或( 0,– 3)6、点 M (x ,y )知足 x=0那么点 M 的可能地点是()yA .x 轴上全部的点B .除掉原点后 x 轴上的点的全体C .y 轴上全部的点D .除掉原点后 y 轴上的点的全体7、假如两个点到 x 轴的距离相等,那么这两个点的坐标一定知足( )A 横坐标相等B 纵坐标相等C 横坐标的绝对值相等 D纵坐标的绝对值相等8、线段 CD 是由线段 AB 平移获得的 . 点 A (– 1,4)的对应点为 C ( 4, 7),则点 B (– 4 ,– 1 )的对应点 D 的坐标为( )A. (2,9)B. (5, 3)C. (1,2)D. (– 9 ,– 4 ) 9、已知三角形的三个极点坐标分别是(-1,4),(1,1),(- 4,- 1),现将这三个点先向右平移 2 个单位长度,再向上平移 3 个单位长度,则平移后三个极点的坐标是( )A 、(-2,2),(3,4),( 1,7)B 、(- 2,2),(4,3),(1,7)C 、(2,2),(3,4),(1,7) D、(2,- 2),(3,3),(1,7)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形对比( )A 、向右平移了 3 个单位B 、向左平移了 3 个单位C 、向上平移了 3 个单位 D、向下平移了 3 个单位11、在平面直角坐标系中,点1,m 2 1 必定在()A .第一象限B .第二象限C .第三象限D .第四象限、若点 P m, n 在第二象限,则点 Q m, n 在( ) 12A .第一象限B .第二象限C .第三象限D .第四象限13、已知两圆的圆心都在 x 轴上, A 、B 为两圆的交点,若点 A 的坐标为 1, 1 ,则点 B 坐标为()A . 1,1B . 1,1C . 1,1D .没法求出14、已知点 A 2, 2 ,假如点 A 对于 x 轴的对称点是 B ,点 B 对于原点的对称点是 C ,那么 C点的坐标是()A . 2,2B .2,2C . 1,1D .2, 2、在平面直角坐标系中,以点 P 1,2 为圆心, 1 为半径的圆必与 x 轴有 个公共点15 ()A .0B .1C .2D .316、已知点 A 3a,2b 在 x 轴上方, y 轴的左边,则点 A 到 x 轴. y 轴的距离分别为()A . 3a, 2bB . 3a,2bC . 2b, 3aD . 2b,3a17、若点 P ( a , b )到 x 轴的距离是 2 ,到 y 轴的距离是 3 ,则这样的点 P 有 ()A.1个 B.2个 C.3个 D.4个18、点( x , x 1 )不行能在 ( )A .第一象限B .第二象限C .第三象限D .第四象限、假如点 P ( m , 3 )与点 P 1( 5 , n )对于 y 轴对称,则 m , n 的值分别为 ( )19A . m5,n3B . m 5, n 3C . m 5, n 3D . m 3, n 520、一艘轮船从港口 O 出发,以 15 海里 / 时的速度沿北偏东 60°的方向航行 4 小时后抵达 A 处,此时观察到其正西方向 50 海里处有一座小岛 B .若以港口 O 为坐标原点,正东方向为 x 轴的正方向,正北方向为y 轴的正方向, 1 海里为 1 个单位长度成立平面直角坐标系(如图),则小岛 B 所在地点的坐标是() AA . (30 3 50,30) B. (30,30 3 50)C . (30 3,30)D . (30,30 3)yAO x第 20题图二、填空题:(每空 2 分,共 54 分)1、按以下条件确立点 P ( x ,y )的地点:⑴ x =0, y <0,则点 P 在_____;⑵ xy =0, 则点 P 必定在____;⑶| x |+| y |=0,则点 P 在_____;⑷若 xy >0,则点 P在____.2、己知点 P (x ,y )位于第二象限,而且知足 y ≤x +4, x 、y 为整数,写出一个切合上述 条件的点 P 的坐标___。
人教版数学七年级下册第七章平面直角坐标系测试卷(含答案)
人教版七年级下册第七章平面直角坐标系测试卷(含答案)一、选择题(每题3分,共30分)1.如果(7,3)表示电影票上“7排3号”,那么3排7号就表示为() A.(7,3) B.(3,7)C.(-7,-3) D.(-3,-7)2.在平面直角坐标系中,点(5,-2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.将三角形ABC的三个顶点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿x轴的正方向平移了3个单位长度B.沿x轴的负方向平移了3个单位长度C.沿y轴的正方向平移了3个单位长度D.沿y轴的负方向平移了3个单位长度4.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)(第4题)5.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为() A.(0,1) B.(1,0)C.(0,1)或(0,-1) D.(1,0)或(-1,0)6.在下列各点中,与点A(-2,-4)的连线平行于y轴的是() A.(2,-4) B.(-2,4) C.(-4,2) D.(4,-2)7.已知点A(-3,2m-4)在x轴上,点B(n+3,4)在y轴上,则m+n的值是()A.1 B.0 C.-1 D.78.如图,长方形ABCD的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下列哪个点不在长方形上()A.(4,-2) B.(-2,4) C.(4,2) D.(0,-2) 9.已知点A(1,0),B(0,2),点P在x轴上,且三角形P AB的面积为5,则点P 的坐标是()A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.(0,12)或(0,-8)10.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()(第8题) (第10题)A.2 B.3 C.4 D.5二、填空题(每题3分,共24分)11.点P(3,-4)到x轴的距离为________.12.若点P(a,b)在第四象限,则点Q(-a,-b)在第________象限.13.已知点M(x,y)与点N(-2,-3)关于x轴对称,则x+y=________.14.在平面直角坐标系中,点A(1,2a+3)在第一象限,且该点到x轴的距离与到y轴的距离相等,则a=________.15.已知A(a,-3),B(1,b),线段AB∥x轴,且AB=3.若a<1,则a+b=________.16.如图,点A,B的坐标分别为(1,2),(2,0),将三角形AOB沿x轴向右平移,得到三角形CDE,若DB=1,则点C的坐标为__________.(第16题)(第17题)(第18题)17.如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标A(-1,-1),B(3,1.5),D(-2,0.5),则C点坐标为__________.18.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________.三、解答题(19,20,22题每题10分,21题8分,其余每题14分,共66分) 19.如图,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标:B(____,____),B′(____,____).20.在如图所示的平面直角坐标系中,描出点A(-2,1),B(3,1),C(-2,-2),D(3,-2).(1)线段AB,CD有什么关系?并说明理由.(2)顺次连接A,B,C,D四点组成的图形,你认为它像什么?21.张超设计的广告模板草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)22.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.23.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.24.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD各顶点的坐标.答案一、1.B 2.D 3.C 4.D 5.D 6.B7.C8B9.C10.B二、11.412.二13.114.-115.-516.(2,2)17.(2,3)18.(-505,505)点拨:由题图知,A4n的坐标为(-n,-n),A4n-1的坐标的坐标为(n,n),A4n-3的坐标为(n,-(n-1)).因为2 为(-n,n),A4n-2019=505×4-1,所以A2 019的坐标应为(-505,505).三、19.解:(1)如图所示.(2)如图所示.1;2;3;520.解:(1)AB∥CD,AB=CD.理由:∵A(-2,1),B(3,1),∴A,B的纵坐标相同.∴AB∥x轴.同理,CD∥x轴.∴AB∥CD.∵AB=5,CD=5,∴AB=CD.(2)如图所示.像“Z”字.21.解:如图,建立平面直角坐标系,标出点(0,0),(0,5),(3,5),(3,3),(7,3),(7,0),再把各点依次连接,所得图案即为张超设计的草图.22.解:(1)A(2,3)与D(-2,-3),B(1,2)与E(-1,-2),C(3,1)与F(-3,-1);对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a+3=-2a,4-b=-(2b-3),解得a=-1,b=-1.23.解:(1)S四边形ABCO=12×2×1+12×(2+4)×4+12×4×1=1+12+2=15.(2)画图略.四边形的形状和大小不变,只是将四边形ABCO向左平移了3个单位长度,向下平移了2个单位长度.(3)S四边形A′B′C′O′=15.24.解:(1)当点B1与点D重合时,两个正方形只有一个公共点,此时A1(5,2),B1(3,0),C1(5,-2),D1(7,0);当点B与D1重合时,两个正方形只有一个公共点,此时A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).(2)当点D与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(5,3),B(2,0),C(5,-3),D(8,0);当点B与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(11,3),B(8,0),C(11,-3),D(14,0).。
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
第7章 平面直角坐标系【真题模拟练】(原卷版)七年级数学下册单元复习(人教版)
第7章平面直角坐标系真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)P x+,3)-所在的象限是() 1.(3分)(2020•扬州)在平面直角坐标系中,点2(2A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)(2021•牡丹江)如图,在平面直角坐标系中(1,1)D,C-,(3,1)B--,(3,2)A-,(1,2)一只瓢虫从点A出发以2个单位长度/秒的速度沿A B C D A→→→→循环爬行,问第2021秒瓢虫在()处.A.(3,1)B.(1,2)---C.(1,2)-D.(3,2)3.(3分)(2021•海南)如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是()A.(2,2)B.(1,2)C.(1,1)D.(2,1)4.(3分)(2021•凉山州)在平面直角坐标系中,将线段AB平移后得到线段A'B',点A(2,1)的对应点A'的坐标为(-2,-3),则点B(-2,3)的对应点B'的坐标为()A.(6,1)B.(3,7)C.(-6,-1)D.(2,-1)5.(3分)(2020•宜昌)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.(3分)(2021•日照)在平面直角坐标系中,把点P(-3,2)向右平移两个单位后,得到对应点的坐标是()A.(-5,2)B.(-1,4)C.(-3,4)D.(-1,2)7.(3分)(2020•台湾)已知小薇住家的西方100公尺处为车站,住家的北方200公尺处为学校,且从学校往东方走100公尺,再往南走400公尺可到达公园.若小薇将住家、车站、学校分别标示在坐标平面上的(2,0)、(0,0)、(2,4)三点,则公园应标示在此坐标平面上的哪一点?()A.(4,4)-D.(0,12) -B.(4,12)C.(0,4)8.(3分)(2021•台湾)如图的坐标平面上有A、B、C、D四点.根据图中各点位置判断,哪一个点在第二象限()A.A B.B C.C D.D9.(3分)(2020•邵阳)已知0a b+>,0ab>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(,)--D.(,)a b-a b-C.(,)a ba b B.(,)10.(3分)(2020•毕节市)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是()A .(5,4)B .(4,5)C .(4,5)-D .(5,4)-11.(3分)(2020•滨州)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为()A .(4,5)-B .(5,4)-C .(4,5)-D .(5,4)-12.(3分)(2021•遵义)数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如(a bi a +,b 为实数)的数叫做复数,用z a bi =+表示,任何一个复数z a bi =+在平面直角坐标系中都可以用有序数对(,)Z a b 表示,如:12z i =+表示为(1,2)Z ,则2z i =-可表示为()A .(2,0)Z B .(2,1)Z -C .(2,1)Z D .(1,2)Z -二、填空题(共8小题,满分24分,每小题3分)13.(3分)(2021•大连)在平面直角坐标系中,将点(2,3)P -向右平移4个单位长度,得到点P ',则点P '的坐标是.14.(3分)(2021•山西)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为(2,2)-,(3,0)-,则叶杆“底部”点C 的坐标为.15.(3分)(2020•金华)点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可).16.(3分)(2020•泰州)以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30︒、60︒、90︒、⋯、330︒得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0)︒、(4,300)︒,则点C 的坐标表示为.17.(3分)(2021•西宁)在平面直角坐标系xOy 中,点A 的坐标是(2,1)-,若//AB y 轴,且9AB =,则点B 的坐标是.18.(3分)(2020•威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)⋯若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条件是.19.(3分)(2021•湖北)如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得点1(1,1)P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,⋯,按此作法进行下去,则点2021P 的坐标为.20.(3分)(2021•潍坊)在直角坐标系中,点1A从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:2(1,0)A,3(1,1)A,4(1,1)A-,5(1,1)A--,6(2,1)A-,7(2,2)A,⋯.若到达终点(506,505)nA-,则n的值为.三、解答题(共6小题,满分40分)21.(6分)(2011•安徽)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:1(A,),3(A,),12(A,);(2)写出点4nA的坐标(n是正整数);(3)指出蚂蚁从点100A 到101A 的移动方向.22.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在44⨯个边长为1的正方形组成的方格中,标有A ,B 两点.请你用两种不同方法表述点B 相对点A 的位置.23.(6分)(2000•海淀区)在平面直角坐标系内,已知点(12,2)A k k --在第三象限,且k 为整数,求k 的值.24.(6分)(2012•黄冈)在平面直角坐标系中,ABC ∆的三个顶点的坐标是(2,3)A -,(4,1)B --,(2,0)C ,将ABC ∆平移至△111A B C 的位置,点ABC 的对应点分别是111A B C ,若点1A 的坐标为(3,1).求点1C 的坐标.25.(8分)(2007•广安)广安市旅游事业蓬勃发展,被评为“全国优秀旅游城市”,下图是该市部分旅游景点的示意图(图中每个小正方形的边长为1个单位长度).请以图中某个景点为坐标原点建立适当的直角坐标系,并在图中用坐标表示这些景点的位置.26.(8分)(2010•河源)在平面直角坐标系中,点M 的坐标为(,2)a a -.(1)当1a =-时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,求a 的取值范围.。
七年级数学下册《第七章 平面直角坐标系》单元测试卷-带答案(人教版)
七年级数学下册《第七章平面直角坐标系》单元测试卷-带答案(人教版)一、选择题(共8题)1.在平面直角坐标系中,点A(−2,−3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,在P(x−3,x+3)是x轴上一点,则点P的坐标是()A.(0,6)B.(0,−6)C.(−6,0)D.(6,0)3.在平面直角坐标系中,把点A(3,5)向下平移3个单位长度,再向左平移2个单位长度后,得对应点A1的坐标是()A.(1,2)B.(2,1)C.(−1,2)D.(−1,−2)4.已知点P(a,b)且ab=0,则点P在()A.x轴上B.y轴上C.坐标原点D.坐标轴上5.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(−2,2),黑棋(乙)的坐标为(−1,−2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,−1)D.(2,1)6.如图A,B的坐标为(1,0),(0,2)若将线段AB平移至A1B1,则a−b的值为()A.1B.−1C.0D.27.在直角坐标平面内,A是第二象限内的一点,如果它到x轴、y轴的距离分别是3和4,那么点A 的坐标是()A.(3,−4)B.(−3,4)C.(4,−3)D.(−4,3)8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到A1,第2次移动到A2⋯第n 次移动到A n,则△OA3A2020的面积是()A.504.5m2B.505m2C.505.5m2D.1010m2二、填空题(共5题)9.点P(−3,2)到x轴的距离是.10.如果点P(a,2)在第二象限,那么点Q(−3,a−1)在第象限.11.坐标系中点M(a,a+1)在x轴上,则a=.12.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为1,则点C的坐标为13.在平面直角坐标系xOy中,对于点P(x,y),我们把点Pʹ(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4⋯⋯这样依次得到点A1,A2,A3⋯A n⋯.若点A1的坐标为(2,4),点A2021的坐标为.三、解答题(共6题)14.在平面直角坐标系中A,B,C三点的坐标分别为(−5,6),(−3,2),(0,5).(1) 在如图的坐标系中画出△ABC.(2) △ABC的面积为.(3) 将△ABC平移得到△AʹBʹCʹ,点A经过平移后的对应点为Aʹ(1,1),在坐标系内画出△AʹBʹCʹ,并写出点Bʹ,Cʹ的坐标.15.如图,在平面直角坐标系中,已知A(a,0),B(b,0)其中a,b满足∣a+2∣+(b−4)2=0.(1) 填空:a=,b=;(2) 如果在第三象限内有一点M(−3,m),请用含m的式子表示△ABM的面积;(3) 在(2)条件下,当m=−3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.16.已知点P(−3a−4,2+a),解答下列各题:(1) 若点P在x轴上,试求出点P的坐标;(2) 若Q(5,8),且PQ∥y轴,试求出点P的坐标.17.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点上.点A的坐标为(2,3),点B的坐标为(3,0),点C的坐标为(0,2).(1) 以点C为旋转中心,将△ABC旋转180∘后得到△A1B1C,请画出△A1B1C.(2) 平移△ABC,使点A的对应点A2的坐标为(0,−1),请画出△A2B2C2.(3) 若将△A1B1C绕点P旋转可得到△A2B2C2,则点P的坐标为.18.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a,b,c满足关系式:∣a−2∣+(b−3)2+√c−4=0.(1) 求a,b,c的值.),请用含m的式子表示四边形ABOP的面积.(2) 如果在第二象限内有一点P(m,12(3) 在(2)的条件下,是否存在点P,使得四边形ABOP的面积不小于△ABC的面积的两倍?若存在,求出点P的坐标;若不存在,请说明理由.19.如图,点O为平面直角坐标系的原点,三角形ABC中∠BAC=90∘,AB=m顶点A,C的坐标分别为(1,0),(n,0)且∣m−3∣+(n−5)2=0.(1) 求三角形ABC的面积;(2) 动点P从点C出发沿射线CA方向以每秒1个单位长度的速度运动,设点P的运动时间为t秒,连接PB,请用含t的式子表示三角形ABP的面积;(3) 在(2)的条件下,当三角形ABP的面积为15时,直线BP与y轴相交于点D,求点D的坐标.2参考答案1. C2. C3. A4. D5. D6. C7. D8. B9. 210. 三11. −112. (0,2)或(0,−2)13. (2,4)14.(1) 略(2) 9(3) 略,点Bʹ(3,−3),Cʹ(6,0).15.(1) −2;4×6∣m∣=−3m.(2) S△ABM=12(3) P1(0,3),P2(0,−3).16.(1) ∵点P在x轴上∴2+a=0,∴a=−2∴−3a−4=2,∴P(2,0).(2) ∵Q(5,8),且PQ∥y轴∴−3a−4=5,a=−3∴2+a=−1∴P(5,−1).17.(1) 略(2) 略(3) (−1,0)18.(1) ∵∣a−2∣+(b−3)2+√c−4=0且∣a−2∣≥0,(b−3)2≥0,√c−4≥0∴∣a−2∣=0,(b−3)2=0,√c−4=0∴a=2,b=3,c=4.(2) 过P点作OA边上的高,设为ℎ由图可知:S ABOP=S△APO+S△ABO由(1)可得:A(0,2),B(3,0),C(3,4)∴OA=2,OB=3.又∵P点坐标(m,12)且P在第二象限∴m<0,ℎ=−m∴S ABOP=S△APO+S△ABO=12⋅OA⋅ℎ+12⋅OA⋅OB=12×2×(−m)+12×2×3=3−m,即四边形ABOP的面积为3−m.(3) P点是存在的.由(2)得:S ABOP=3−m过A点作BC边上的高,设为ℎ1∵BC=4,ℎ1=3∴S△ABC=12⋅BC⋅ℎ1=12×4×3=6.又∵S ABOP≥2S△ABC∴3−m≥2×6∴m≤−9此时P点坐标为(−9,12)即P点存在.19.(1) ∵∣m−3∣+(n−5)2=0.∴∣m−3∣=0,(n−5)2=0.∴m=3,n=5∴B(1,3)。
人教版七年级数学下册《第七章平面直角坐标系》测试卷-含有答案
人教版七年级数学下册《第七章平面直角坐标系》测试卷-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P(x, y)在第二象限,且,则x + y =()A.-1 B.1 C.5 D.-53.直角平坐标面内,如果点在第四象限,那么点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,是象棋盘的一部分,若“帅”位于点,“相”位于点上,则“炮”位于点()上.A.B.C.D.5.如图是天安门周围的景点分布示意图.在图中,分别以正东,正北方向为轴,轴的正方向建立平面直角坐标系.如果表示景山的点的坐标为,表示王府井的点的坐标为,则表示人民大会堂的点的坐标为()A.B.C.D.6.已知点与点在同一条平行于x轴的直线上,且N到y轴的距离等于4,则点N的坐标是()A.或B.或C.或D.或7.如图,已知A,B的坐标分别为和,将沿x轴正方向平移,使B平移到点E,得到,若,则点C的坐标为()A.B.C.D.8.四边形四个顶点的坐标分别为,和,琪琪把四边形平移后得到了四边形,并写出了它的四个顶点的坐标,和,琪琪所写四个顶点的坐标错误的是()A.B.C.D.二、填空题9.点(3,-3)在平面直角坐标系中第象限.10.剧院里5排2号可以用(5,2)表示,则(7,4)表示.11.点Q在第四象限内,并且到x轴的距离为4,到y轴的距离为3,则点Q的坐标为.12.课间操时,小明、小丽、小亮的位置如图所示,如果小明的位置用表示,小丽的位置用表示,那么小亮的位置可以表示成.13.在平面直角坐标系中,线段平行于轴,且 .若点的坐标为,点的坐标为,则.三、解答题14.已知点,根据下列条件,求出点的坐标.(1)点在轴上;(2)点的坐标为,直线轴.15.围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.如图是某围棋棋盘的一部分,若棋盘是由边长均为1的小正方形组成的,棋盘上两颗棋子的坐标分别为.(1)根据题意,画出相应的平面直角坐标系;(2)有一颗黑色棋子的坐标为,请标注出黑色棋子的位置.16.下图是利用平面直角坐标系画出的故宫博物院主要建筑分布图(图中的小方格均为边长为1的正方形),其中太和门的坐标为,九龙壁的坐标为.(1)在图中画出平面直角坐标系,并写出景仁宫的坐标;(2)如果养心殿的坐标是,在图中用点表示它的位置.17.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.18.在平面直角坐标系中,点的坐标为.(1)若点在过点且与轴平行的直线上时,求点的坐标;(2)将点向右平移个单位,再向上平移个单位后得到点,若点在第三象限,且点到轴的距离为,求点的坐标.参考答案:1.B2.B3.B4.D5.D6.D7.A8.D9.四10.7排4号11.12.13.5或-314.(1)解:∵点在x轴上∴a+4=0解得:a=−4∴=−2−1=−3则P(−3,0);(2)解:∵点Q的坐标为,直线轴∴=-5解得:a=-8∴a+4=-4则P(-5,-4).15.(1)正确画图(2)正确标注黑色棋子C的位置16.(1)解:平面直角坐标系如图,景仁宫的坐标为;(2)解:点的位置如图所示.17.(1)解:由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2)(2)解:如图, S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF= ×1×3+×1×3+ ×2×4+3×3=16.18.(1)解:点在过点且与轴平行的直线上点的横坐标为解得点坐标为;(2)由题意知的坐标为在第三象限,且到轴的距离为点的横坐标为解得点的坐标为。
人教版七年级数学下册第七章《平面直角坐标系》综合复习检测卷【含答案】
人教版七年级数学下册第七章《平面直角坐标系》综合复习检测卷学校:___________姓名:___________班级:___________得分:___________一、选择题(共36分)1.已知点,点,若直线轴,则m的值为()A. 2B.C.D. 32.一个小球从原点出发,先向右平移2个单位长度,再向上平移4个单位长度,则最后停留位置的坐标为()A. B. C. D.3.如图所示的象棋盘上,若“帅”位于点,“马”位于点,则位于原点位置的是()A. 兵B. 炮C. 相D. 车4.若点与点、在同一条平行于x轴的直线上,且,则N点的坐标为()A. B. 或 C. D. 或5.点向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A. B. C. D.6.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为()A. B. C. D.7.在平面直角坐标系中,点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.小虫在小方格的线路上爬行,它的起始位置是,先爬到,再爬到,最后爬到,小虫一共爬了()A. 7个长度单位B. 5个长度单位C. 4个长度单位D. 3个长度单位9.点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,一个机器人从点O出发,向正西方向走2m到达点;再向正北方向走4m到达点,再向正东方向走6m到达点,再向正南方向走8m到达点,再向正东方向走10m到达点,按如此规律走下去,当机器人走到点时,点的坐标为()A. B. C. D.11.线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标为()A. B. C. D.12.若轴上的点到轴的距离为3,则点的坐标为()A. ,B. ,C. ,或,D. ,或,二、填空题(共15分)13.已知点在第四象限的角平分线上,则a的值为________。
人教版数学七年级下册第七章《平面直角坐标系》全章测试题
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1、小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()2、已知点A(0,-1),M(1,2),N(-3,0),则射线AM和射线AN组成的角的度数()A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1) B.(-2,-1) C.(-4,1) D.(1,-2)4.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴5.点P(2-a,2a-1)到x轴的距离为3,则a的值为()A.2 B.-2 C.2或-1 D.-16.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为().A.2 B.3 C.4 D.57.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16)D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P ;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母______的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为________三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。
七年级数学下册第七章《平面直角坐标》测试卷-人教版【含答案】
七年级数学下册第七章《平面直角坐标》测试卷-人教版【含答案】题号 一 二 三总分 19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.在海战演习中,欲确定每艘战舰的位置,需要知道每艘战舰对我方潜艇的( ) A.距离B.方位角C.方位角和距离D.以上都不对2.点(,1)P M 在第二象限内,则点(,0)Q M -在( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上D.y 轴负半轴上3.在平面直角坐标系中,将点(2,8)P 向左平移2 016个单位后得到的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限4,如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A.(1,0)B.(1,0)-C.(1,1)-D.(1,1)-5、已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是()A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)6、如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是()A.(-3,1)B.(4,1)C.(-2,1)D.(2,-1)7、已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上8、如图是天安门周围的景点分布示意图.若以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标是()A.(1,0)B.(2,0)C.(1,-2)D.(1,-1)9.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.2 B.1 C.4 D.3二、填空题(每题3分,共24分)11. 若点P(x,y)的坐标满足xy=0(x≠y),则点P在12. 若4,5==ba,且点M(a,b)在第三象限,则点M的坐标是13.已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为 .14.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是 .15.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则5xy=___________.16.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P _______.17. 在平面直角坐标系中,点(-1,m2+1)一定在第象限18. 已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为_________.三.解答题(共46分,19题6分,20—28题8分)19.如图是游乐园的一角.(1)如果用(3,1)表示跳跳床的位置,你能用数对表示其他游乐设施的位置吗?请你写出来;(2)如果秋千的位置表示为(4,3),请在图中标出秋千的位置.20.如图,在平面直角坐标系中,O为坐标原点,△ABC的三个顶点坐标分别为A(-1,-2),B(1,1),C(-3,1),△A1B1C1是△ABC向下平移2个单位,向右平移3个单位得到的.(1)写出点A1、B1、C1的坐标,并在右图中画出△A1B1C1;(2)求△A1B1C1的面积.21.如图,甲处表示两条路的交叉口,乙处也是两条路的交叉口,如果用(1,3)表示甲处的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(4,2)→(4,1)→(4,0)”表示甲处到乙处的一种路线,若图中一个单位长度表示5Km,请你用上述表示法写出甲处到乙处的另两种走法,最短距离是多少千米?22. 下图是“欢乐谷”的平面图,请建立适当的平面直角坐标系,写出“欢乐谷”中各娱乐设施的坐标.23. 如图8,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;(2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.图824.方格坐标纸上有A,B,C,D四点,如图9所示.(1)分别写出A,B,C,D四点的坐标;(2)写出A点向右平移6个单位,再向下平移2个单位后得到的P点的坐标;(3)写出C点到x轴的距离;(4)求四边形ABCD的面积;(5)B点与C点有什么关系?图9参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10答案 C A B A A B B D B A二、填空题:11. x轴上或y轴上 12.(-5, -4) 13. (-1, -2)或 (-1, 6)14. (-3, 2)或(-3, -2) 15. -50 16. 答案不唯一 17.二18. (1, 2)三.解答题:19.(1)跷跷板(2,4),碰碰车(5,1),摩天轮(6,5)(2)在图中标出秋千(4,3)的位置如图所示:20.(1)画图见解析,点的坐标分别为(2,−4);(4,−1);(0,−1).(2)6.21.答案不唯一,最短距离为30km22. (1)解:如以小正方形的边长为单位长度,以碰碰车为原点,分别以水平向右方向、竖直向上方向为x轴、y轴的正方向,建立平面直角坐标系,则各娱乐设施的坐标为:碰碰车(0,0),海盗船(5,1),太空飞人(3,4),跳伞塔(1,5),魔鬼城(4,8),过山车(2,7)-.-,碰碰船(2,2)【解析】解本题答案不唯一.23. 解:(1)建立直角坐标系如答图所示.图书馆B位置的坐标为(-3,-2).(2)标出体育馆位置C如答图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=12×5×4=10.24. 解:(1)A(-2,2),B(-3,-2),C(3,-2),D(1,3).(2)P(4,0).(3)C点到x轴的距离是|-2|=2.(4)S四边形ABCD=12×1×4+12×1×3+3×4+12×2×5=2012.(5)B点与C点关于y轴对称.。
人教版七年级下册 第七章 平面直角坐标系单元复习卷(含答案)
第七章平面直角坐标系一、选择题1.如图,下列各点在阴影区域内的是()A. (3,2)B. (-3,2)C. (3,-2)D. (-3,-2)2.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.小敏的家在学校正南150 m,正东方向200 m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A. (-200,-150)B. (200,150)C. (200,-150)D. (-200,150)4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A. (2,3)B. (-2,-3)C. (-3,2)D. (3,-2)5.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“炮”位于点()A. (-2,-1)B. (0,0)C. (1,-2)D. (-1,1)7.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点8.如果点P(a-4,a)在y轴上,则点P的坐标是()A. (4,0)B. (0,4)C. (-4,0)D. (0,-4)9.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限10.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为()A. (2,1)B. (3,3)C. (2,3)D. (3,2)二、填空题11.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1、1),则此“QQ”笑脸左眼B的坐标________.12.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1)、(2,3)、(2,3)、(5,2)、(5,1);则这个英文单词是________.(大小写均可)13.平面直角坐标系中,点P(3,-4)到x轴的距离是________.14.如图是中国象棋棋盘的一部分.马在第2列第1行,表示为(2,1).请写出其它几枚棋子的位置:兵(______,______)、将(______,______)、相(______,______)、炮(______,______)、車(______,______)15.若以A(1,2),B(-1,0),C(2,0)三点为顶点要画平行四边形,则第四个顶点坐标为________.16.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为6,则点P的坐标是________.17.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.18.如图是轰炸机机群的一个飞行队形,若轰炸机A,B的坐标分别是A(-2,1),B(-2,-3),则轰炸机C的坐标为________.19.点M(-1,5)向下平移4个单位得N点坐标是________.20.点(2,-1)向左平移3个单位长度得到的点在第________象限.三、解答题21.请写出点A,B,C,D的坐标.22.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.23.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点,且与x轴平行的直线上.24.如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.25.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.26.在平面直角坐标系中,设坐标轴的单位长度为1 cm,整数点P从原点O出发,速度为1 cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:(2)当P点从点O出发10秒,可得到的整数点的个数是________个.(3)当P点从点O出发________秒时,可得到整数点(10,5)27.如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新△O′A′B′,求△O′A′B′的3个顶点的坐标.28.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(Ⅰ)A点到原点的距离是________.(Ⅱ)将点C向x轴的负方向平移6个单位,它与点______重合.(Ⅲ)连接CE,则直线CE与坐标轴是什么关系?(Ⅳ)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.答案解析1.【答案】A【解析】观察图形可知:阴影区域在第一象限,A.(3,2)在第一象限,故正确;B.(-3,2)在第二象限,故错误;C.(3,-2)在第四象限,故错误;D.(-3,-2)在第三象限,故错误.2.【答案】B【解析】点A的坐标是(-2,5),所以点A在第二象限.3.【答案】C【解析】以学校位置为原点,以正北、正东为正方向,建立直角坐标系.因为小敏的家在学校正南150 m,正东方向200 m处,所以用有序实数对表示为(200,-150).4.【答案】C【解析】因为点C在x轴上方,y轴左侧,所以点C的纵坐标大于0,横坐标小于0,点C在第二象限;因为点C距离x轴2个单位长度,距离y轴3个单位长度,所以点C的横坐标是-3,纵坐标是2,故点C的坐标为(-3,2).故选C.5.【答案】C【解析】因为点P(m,n)在第二象限,所以m<0,n>0,所以-n<0,所以点Q(m,-n)在第三象限.6.【答案】B【解析】“帥”的位置向右平移1个单位,上移两个单位(0,0)7.【答案】D【解析】A.点(0,0)是坐标原点,故A不符合题意;B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应,故B不符合题意;C.点A(a,-b)在第二象限,得a<0,-b>0,-a>0,b<0,则点B(-a,b)在第四象限,故C不符合题意;D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标轴上,故D符合题意.8.【答案】B【解析】由点P(a-4,a)在y轴上,得a-4=0,解得a=4,P的坐标为(0,4).9.【答案】B【解析】因为|a|>0,所以-|a|-1<0,因为b2>0,所以b2+2>0.所以点P的横坐标是负数,纵坐标是正数,所以点P在第二象限.10.【答案】C【解析】根据题干分析可得:B的位置是第8列第7行,记为(8,7),学生A在第二列第三行的位置可以表示为:(2,3).11.【答案】(0,3)【解析】画出直角坐标系为,则笑脸左眼B的坐标(0,3).12.【答案】APPLE【解析】有序数对(1,1)、(2,3)、(2,3)、(5,2)、(5,1)分别对应的字母为:A,P,P,L,E;所以这个英文单词是APPLE.13.【答案】4【解析】点P(3,-4)到x轴的距离为|-4|=4.14.【答案】3 6 6 1 8 1 9 4 10 1【解析】兵(3,6)、将(6,1)、相(8,1)、炮(9,4)、車(10,1).15.【答案】(-1,2)或(4,2)或(0,-2)【解析】根据平行四边形的两组对边分别平行,可得D点有三种情况,所以D点坐标为(-1,2)或(4,2)或(0,-2).16.【答案】(-2,4)【解析】因为点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为6,所以-2a+1-3a=6,解得a=-1,所以2a=2×(-1)=-2,1-3a=1-3×(-1)=1+3=4,所以,点P的坐标为(-2,4).17.【答案】四【解析】由题意,得n<0,m<0,所以mn>0,m+n<0,所以点Q(mn,m+n)在第四象限.18.【答案】(2,-1)【解析】因为A(-2,1)在第二象限,所以y轴在A的右侧2个单位,x轴在A的下方1个单位,如图所示,所以点C的坐标为(2,-1).19.【答案】(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).20.【答案】三【解析】原来点的横坐标是2,纵坐标是-1,向左平移3个单位长度得到新点的横坐标是2-3=-1,纵坐标不变.坐标为(-1,-1),点在第三象限.21.【答案】解:各点的坐标分别为:A(3,2),B(-3,4),C(-4,-3),D(3,-3).【解析】根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标.22.【答案】解:(1)因为点A的坐标为(2,0),所以点A在x轴上.当点B在点A的左侧时,点B的坐标为(-2,0),当点B在点A的右侧时,点B的坐标为(6,0).(2)因为点A的坐标为(0,0),所以点A在x轴上也在y轴上.当点A在x轴上时,点B的坐标为(-4,0)或(4,0);当点A在y轴上时,点B的坐标为(0,4)或(0,-4).【解析】(1)由点A的坐标可知点A在x轴上,点B可以在点A的左、右两侧,根据AB=4可求得点B的坐标;(2)由点A的坐标可知点A在x轴和y轴上,符合条件的点B共有4个,根据AB=4可求得点B的坐标.23.【答案】解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-4,解得m=-3.所以P点的坐标为(-2,-4).【解析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让纵坐标为-4求得m的值,代入点P的坐标即可求解.24.【答案】解:A1(-3,5),B1(0,6),C1(-1,4).【解析】根据点A、B、C的坐标,向左平移4个单位,向上平移3个单位即可得到三角形A1B1C1三个顶点的坐标.25.【答案】解:以南门的位置作为原点建立直角坐标系,则动物们的位置分别表示为:南门(0,0),马(-3,-3);两栖动物(4,1);飞禽(3,4);狮子(-4,5).【解析】此题答案不唯一,建立的直角坐标系的原点不一样,答案不一样.26.【答案】解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点,故答案为11;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒,故答案为15.【解析】(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10个单位,用10秒;再向上移动5个单位用5秒.27.【答案】解:(1)如图所示:S△ABO=3×4-×3×2-×4×1-×2×2=5;(2)A′(2,0),B′(4,-2),O′(0,-3).【解析】(1)把△ABO放在一个长方形里面,用长方形COED的面积-△ACO的面积-△ABD的面积-△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.28.【答案】解:由题意得,如图所示:(Ⅰ)A点到原点的距离是3.(Ⅱ)将点C向x轴的负方向平移6个单位,它与点D重合.(Ⅲ)直线CE与y轴平行,与x轴垂直;(Ⅳ)直线CD与CE垂直,直线CD与FG垂直.【解析】(Ⅰ)利用点的坐标的意义求解.(Ⅱ)将点C向x轴的负方向平移6个单位得到对应点的坐标为(-3,5),于是可判断它与点D重合.(Ⅲ)利用点C和点E的横坐标相同可判断直线CE与坐标轴的关系;(Ⅳ)观察所描的点可得到两组直线垂直.。
七年级数学下册第七章:平面直角坐标系综合复习
七年级数学下册第七章:平面直角坐标系综合复习训练一、选择题。
1、在平面直角坐标系中,点A (﹣3,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限2、如图,若以洛阳白马寺的印度风格佛殿为原点建立平面直角坐标系,则大雄殿的坐标为( ) A.(0,3) B.(2,2) C.(2,3) D.(3,2)3、若李红坐在教室的第三列第四行,用数对(3,4)来表示,则王伟坐在第五列第六行,可以用数对表示为( )A.(6,5)B.(5,6)C.(3,6)D.(6,4) 4、如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( ) A.北偏东55°,2km B.东北方向C.东偏北35°,2kmD.北偏东35°,2km5、在平面直角坐标系中,在第二象限内有一点P ,点P 到x 轴的距离为5,到y 轴的距离为3,则点P 的坐标为( )A.(﹣3,5)B.(﹣5,3)C.(3,﹣5)D.(5,﹣3)6、在平面直角坐标系中,线段AB 是由线段CD 平移得到的,点C (﹣1,4)的对应点为A (4,7).点B (2,4)的对应点D 的坐标为( )A.(5,7)B.(﹣1,1)C.(﹣3,1)D.(7,7)7、若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( ) A.(﹣2,﹣1) B.(﹣1,0) C.(﹣1,﹣1) D.(﹣2,0) 8、若点M(2-a,3a+6)到两坐标轴的距离相等,则点M 的坐标( )A.(6,-6)B.(3,3)C.(-6,6)或(-3,3)D.(6,-6)或(3,3)9、一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,O)B.(5,0)C.(0,5)D.(5,5)9题图 10题图10、如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点()10,1A 、()21,1A 、()31,0A 、()42,0A ,…,那么点A 2023的坐标为( )A .(1011,0)B .(1011,1)C .(1010,0)D .(1011,1)二、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期中复习卷 出卷人:王滢 用卷日期:5月4日
平面直角坐标系
教学目标:
1. 掌握平面直角坐标系的相关概念
2.能够解决平面直角坐标系中的问题
一、 有序数对:
1、如果用(7,8)表示七年级八班,那么八年级七班可表示成 .
2、电影票上“4排5号”,记作(4,5),则“5排4号”记作______. 二、 平面直角坐标系
1、点A (-3,5)在第_____象限,到x 轴的距离为______,到y 轴的距离为_______。
关于原点的对称点坐标为_________,关于y 轴的对称点坐标为_________。
2、下列各点中,在第二象限的点是 ( ) A .(2,3) B .(2,-3) C .(-2,3) D .(-2, -3)
2、已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
3、若点P (x,y )的坐标满足xy=0(x ≠y),则点P 在 ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上
4、点P (m +3, m +1)在直角坐标系的x 轴上,则点P 坐标为 ( ) A .(0,-2) B .( 2,0) C .( 4,0) D .(0,-4)
5、已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P ;点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 .
6、点P 到x 轴的距离是2,到y 轴的距离是3,且在y 轴的左侧,则P 点的坐标是 .
7、已知x 轴上点P 到y 轴的距离是3,则点P 坐标是________________。
8、在直角坐标系中,若点P )5,2(+-b a 在y 轴上,则点P 的坐标为____________
9、点P ),(b a 在第四象限,则点Q ),(a b -在第______象限
10、如果点P (5,y )在第四象限,则y 的取值范围是( )A .y <0 B .y >0 C .y ≤0 D .y ≥0 三、用坐标表示地理位置
1、课间操时,小华、小军、小刚的位置如图,小华对小网说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)
2、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成 。
小华
小军小刚 (1题图)
2题图)
四、用坐标表示平移
1、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是
2、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________.
3、平面直角坐标系中,三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( ) A 、向右平移了3个单位 B 、向左平移了3个单位 C 、向上平移了3个单位 D 、向下平移了3个单位
4、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为
5、已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为 .
6、如图,在平面直角坐标系中,分别写出△ABC 的顶点坐标,并求出△ABC 的面积。
7、如图所示,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3)、A 1(2,3)、A 2(4,3)、A 3(8,3),B (2,0)、B 1(4,0)、B 2(8,0)、B 3(16,0)。
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是__________,B 4的坐标是__________。
(2
)若按第一题找出的规律,将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是________,B n 的坐标是__________。