材料弹性常数E、
材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ
材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ材料的弹性常数是描述材料在受力作用下的变形性能的指标,常用的弹性常数有弹性模量E和泊松比μ。
弹性模量E是材料受力后单位应力引起的单位变形量,而泊松比μ是指材料沿一个方向的单位变形引起的另一个方向单位变形的比值。
在实际工程中,需要准确测定材料的弹性常数,以便设计和计算工程结构的变形和应力分布。
其中,弹性模量E的测定是相对简单和常用的,主要有拉伸试验、压缩试验和弯曲试验等方法。
而泊松比μ则需要通过更复杂的测试方法进行测定。
本文主要介绍电测法测定材料的弹性模量E和泊松比μ的原理和应用。
一、电测法测定弹性模量E电测法是通过测量材料受力后的电阻变化来间接计算材料的弹性模量。
根据导体的电阻与其长度、横截面积和电阻率之间的关系,当材料受到力作用后,其长度和横截面积都会发生变化,从而导致电阻发生变化。
由此可以利用电阻与长度和横截面积的关系,计算出材料的弹性模量。
电测法测定弹性模量E的步骤如下:1.制备测量样品:首先制备出符合测量要求的样品,通常为长条形状,并且长度和横截面积要容易测量。
2.安装测量装置:将样品安装在测量装置上,一般采用四点法或截面法进行测量。
在四点法中,两对电极分别用来传输电流和测量电压。
在截面法中,材料上有两组电极,用来传输电流和测量电压。
3.施加载荷:施加拉力或压力载荷到样品上,使其发生变形。
4.记录电阻变化:通过测量电阻的变化,可以得到材料受力后的长度变化。
5.计算弹性模量E:利用导线的电阻与线长、横截面积和电阻率的关系,结合样品的长度变化,可以计算出材料的弹性模量。
电测法测定弹性模量E的优点是测量简便、快速,对试样的要求相对较低,可以测量各种类型的材料。
但是该方法的准确性受到试样的尺寸和形状的限制,并且测量结果受到试样固定约束的影响。
二、电测法测定泊松比μ泊松比μ描述了材料在沿一个方向的拉伸或压缩应力下,垂直于该方向的单位变形的比值。
材料力学简答题
1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1= 10、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
弹性模量
57 101 157 226 308 402
565 1005 1571 2262 3079 4021
0.06 0.10 0.16 0.23 0.31 0.40
0.57 1.01 1.57 2.26 3.08 4.02
0.31 0.55 0.86 1.24 1.69 2.21
18
254.3
509
5089
最大值=1696×0.001=1.7(KN/s)
加荷速率一览表
材料弹性模量E<150000 (N/mm2)
钢筋 直径 (mm) 钢筋横 截面积 (mm2) 应力速率 (N/mm2.s-1) 最小 2 最大20 加荷速率(KN/s) 最小 最大 平均值
6 8 10 12 14 16
28.27 50.27 78.54 113.1 153.9 201.1
从宏观角度来说,弹性模量是衡量物体抵
抗弹性变形能力大小的尺度,
从微观角度来说,则是原子、离子或分子
之间键合强度的反映。
一般工程应用中都把弹性模量作为常数。 用E表示,单位为(N/mm2)单位面积上
承受的力
弹性模量可视为衡量材料产
生弹性变形难易程度的指标,其值 越大,使材料发生一定弹性变形的
18.85 22.81
10.37 12.54
25
28 32 36 40
490.9
615.8 804.2 1018 1257
2945
3695 4825 6107 7540
29452
36945 48255 61073 75398
2.95
3.69 4.83 7.54 7.54
29.45
36.95 48.25 75.40 75.40
材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ
北京航空航天大学、材料力学、实验报告实验名称:材料弹性常数E 、μ的测定——电测法测定弹性模量E 和泊松比μ学号姓名实验时间:2010年11月17日 试件编号试验机编号 计算机编号 应变仪编号百分表编号成绩实验地点:主楼南翼116室12 11 11 11 11教师年 月 日一、实验目的1. 测量金属材料的弹性模量E 和泊松比μ;2. 验证单向受力虎克定律;3. 学习电测法的基本原理和电阻应变仪的基本操作。
二、实验仪器和设备1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。
三、试件中碳钢矩形截面试件,名义尺寸为b ⨯t = (30⨯7.5)mm 2。
材料的屈服极限MPa s 360=σ。
四、实验原理和方法1、实验原理材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:εσE = (1)上式中的比例系数E 称为材料的弹性模量。
由以上关系,可以得到:PE A σεε== (2)材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:εεμ'=(3) 上式中的常数μ称为材料的横向变形系数或泊松比。
本实验采用增量法,即逐级加载,分别测量在各相同载荷增量∆P 作用下,产生的应变增量∆εi 。
于是式(2)和式(3)分别写为:ii A PE ε∆∆=0 (4) ii i εεμ∆'∆= (5)根据每级载荷得到的E i 和μi ,求平均值:n E E ni i∑==1(6)nni i∑==1μμ (7)以上即为实验所得材料的弹性模量和泊松比。
上式中n 为加载级数。
2、实验方法2.1电测法电测法基本原理:电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。
试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。
当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。
弹性模量计算公式
弹性模量计算公式弹性模量,也被称为弹性常数或杨氏模量,用E表示,是描述材料弹性特性的一个参数。
其计算公式如下:E=(F/A)/(ΔL/L)其中,E为弹性模量,F为施加在材料上的力,A为材料的横截面积,ΔL为材料在力作用下变形的长度,L为材料的初始长度。
这个公式是由英国科学家杨恩发现的,用于计算线弹性范围内的材料应力与应变之间的关系。
弹性模量可以用来评估材料的刚性和弹性,是设计工程中重要的参数。
在实际应用中,弹性模量的单位通常是帕斯卡(Pa)或兆帕斯卡(MPa)。
弹性模量的计算公式基于胡克定律,即力和位移之间的线性关系。
胡克定律表明,在小应力下,材料的应变是与施加在它上面的力成正比的。
通过弹性模量的计算公式,我们可以计算材料在承受外力时的弹性变形情况。
这对于设计和工程应用非常重要,例如在建筑结构中确定材料的强度和稳定性、材料选择以及计算材料的变形和应力分布等。
弹性模量在实际应用中具有广泛的用途。
例如,在材料工程中,杨氏模量常用来评估不同材料的刚性和强度,从而指导材料的选择和设计。
在制造业中,弹性模量的准确测量和控制是确保产品质量和性能的重要指标之一、在地震工程中,弹性模量被用来计算建筑结构的稳定性和耐震性能。
此外,弹性模量还可以通过其他参数来计算,例如剪切模量(G)和泊松比(ν)。
剪切模量是描述材料抗剪切变形能力的参数,计算公式为:G=(F/A)/(Δx/h)其中,G为剪切模量,F为施加在材料上的剪切力,A为材料的剪切截面积,Δx为材料在剪切力作用下变形的长度,h为材料的厚度。
泊松比是描述材料在拉伸或压缩时横向变形与纵向变形的比值,计算公式为:ν=-(ΔW/W)/(ΔL/L)其中,ν为泊松比,ΔW为材料在力作用下横向变形的宽度变化,W 为材料的初始宽度。
这些公式提供了不同角度下计算材料性能的方法,使得弹性模量可以从不同角度进行评估和应用。
总之,弹性模量的计算公式是E=(F/A)/(ΔL/L),它是描述材料弹性特性的一个重要参数。
材料的弹性模量
材料的弹性模量
弹性模量,又称弹性常数、线弹性系数或弹性系数,是一种力学参数,它表示了物体
对力作用时变形量和应力大小之间的相关关系,可以用来衡量两种或多种材料之间的弹性
特性和刚度,通常以牛顿每米(N / m2)为单位。
弹性模量是描述物体弹性特性和刚度的重要物理参数,它可以了解物质的无损力学性
能和破坏的机械性能。
它的公式表达为:
E=\frac{\sigma}{\varepsilon},
其中E代表弹性模量;σ(sigma)是应力;δ(delta)是应变。
弹性模量有三种:竖直弹性模量(E1)、侧向弹性模量(E2)和横向弹性模量(E3),它们反映物体在竖直抗压、侧向抗拉或压缩、以及横向抗弯方面的弹性性能,因此,它们
可以用来比较不同材料的刚度和弹性。
不同材料的弹性模量具有不同的值,对它们的估计和测定也有不同的方法。
例如,金
属材料的弹性模量一般通过静态加载实验定值,木质材料的弹性模量可以通过动态法和静
力学加载法定值,而橡胶材料的弹性模量则可以通过热疲劳法定值。
弹性模量对于材料工程学家而言,是材料设计中重要而有用的参数,它可以帮助他们
更准确地预测材料在受到不同外力作用时,所发生的应变和强度变化,从而改善部件的性
能和安全性。
材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ
实验名称:弹性常数E 、μ的测定一、实验目的1. 测量金属材料的弹性模量E 和泊松比μ;2. 验证单向受力胡克定律;3. 学习电测法的基本原理和电阻应变仪的基本操作。
二、实验仪器和设备1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。
三、试件中碳钢矩形截面试件,名义尺寸为b ⨯t = (16⨯6)mm 2; 材料的屈服极限MPa s 360=σ。
四、实验原理和方法1、实验原理:材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:εσE = (1)上式中的比例系数E 称为材料的弹性模量。
由以上关系,可以得到:PE A σεε==(2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:εεμ'=(3) 上式中的常数μ称为材料的横向变形系数或泊松比。
本实验采用增量法,即逐级加载,分别测量在各相同载荷增量∆P 作用下,产生的应变增量∆εi 。
于是式(2)和式(3)分别写为:ii A PE ε∆∆=0 (4) ii i εεμ∆'∆=(5) 根据每级载荷得到的E i 和μi ,求平均值:n E E ni i∑==1(6)nni i∑==1μμ (7)以上即为实验所得材料的弹性模量和泊松比。
上式中n 为加载级数。
2、实验方法(1)、电测法 电测法基本原理:电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。
试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。
当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。
这时,敏感栅的电阻由初始值R 变为R+ΔR 。
在一定范围内,敏感栅的电阻变化率ΔR/R 与正应变ε成正比,即:Rk Rε∆= 上式中,比例常数k 为应变片的灵敏系数。
故只要测出敏感栅的电阻变化率,即可确定相应的应变。
电阻应变仪测点桥的原理: 电桥B 、D 端的输出电压为:14231234()()BD R R R R U U R R R R -∆=++当每一电阻分别改变1234,,,R R R R ∆∆∆∆时,B 、D 端的输出电压变为:1144223311223344()()()()()()R R R R R R R R U U R R R R R R R R +∆+∆-+∆+∆∆=+∆++∆+∆++∆略去高阶小量,上式可写为:3121242121234()()BD R R R R R R U UR R R R R R ∆∆∆∆∆=--++在测试时,一般四个电阻的初始值相等,则上式变为:31241234()4BD R R R R U U R R R R ∆∆∆∆∆=--+ 得到:1234()4BD kUU εεεε∆=--+ 如果将应变仪的读数按应变标定,则应变仪的读数为: 12344()BDU kUεεεεε∆==--+ 电阻应变仪的基本测量电路(2)、加载方法——增量法与重复加载法增量法可以验证力与变形之间的线性关系,若各级载荷增量ΔP 相同,相应的应变增量∆ε也应大致相等,这就验证了虎克定律,如右图所示。
材料的各种模量
材料的各种模量(转帖)lsy002010-03-10 16:14模量:模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
(有点类似虎克定律^_^)弹性模量(Elastic Modulus)E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
柔量J:一个弹性常数,它等于应变(或应变分量)对应力(或应力分量)之比。
对一个完善的弹性材料来说,它是弹性模量的倒数,即材料每单位应力的变形率。
常见的实验测定的柔量有拉伸柔量、剪切柔量、蠕变柔量等。
(完整版)材料力学简答题
1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ.研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1=10、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
胡克定律在弹性限度内物体的形变跟引起形变的外力成正比
胡克定律在弹性限度内物体的形变跟引起形变的外力成正比胡克定律是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。
这个定律是英国科学家胡克发现的,所以叫做胡克定律。
表达式胡克定律的表达式为F=-kx或△F=-kΔx,其中k是常数,是物体的劲度(倔强)系数。
在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。
倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。
在现代,仍然是物理学的重要基本理论。
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F=-kx。
k 是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。
历史证明Hookelaw材料力学和弹性力学的基本规律之一。
由R.胡克于1678年提出而得名。
胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力ζ与应变ε成正比,即ζ=Εε,式中E为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。
胡克定律为弹性力学的发展奠定了基础。
各向同性材料的广义胡克定律有两种常用的数学形式:ζ11=λ(ε11+ε22+ε33)+2Gε11,ζ23=2Gε23,ζ22=λ(ε11+ε22+ε33)+2Gε22,ζ31=2Gε31,(1)ζ33=λ(ε11+ε22+ε33)+2Gε33,ζ12=2G ε12,及式中ζij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量;E为弹性模量(或杨氏模量);v为泊松比。
λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
材料力学试题及答案
B、提高到原来的4倍
C、降低到原来的1/2倍
D、降低到原来的1/4倍
5.已知图示二梁的抗弯截面刚度EI相同,若二者自由端的挠度相等,则P1/P2=( )
A、2
B、4
C、8
D、16
二、作图示刚架的轴力图、剪力图、弯矩图。(15分)
三、如图所示直径为d的圆截面轴,其两端承受扭转力偶矩m的作用。设由实验测的轴表面上与轴线成450方向的正应变,试求力偶矩m之值、材料的弹性常数E、μ均为已知。(15分)
5、(17分)平面刚架如图所示。其各部分的抗弯刚度均为常量 , ,试求点 在铅垂方向的位移 。(忽略截面剪力与轴力)
6、(17分)用积分法求梁B点的挠度和转角,梁的EI,L已知。
选择题(20分)
1、图示刚性梁AB由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A1和A2,若载荷P使刚梁平行下移,则其横截面面积( )。
A、2
B、4
C、8
D、16
二、作图示梁的剪力图、弯矩图。(15分)
三、如图所示直径为d的圆截面轴,其两端承受扭转力偶矩m的作用。设由实验测的轴表面上与轴线成450方向的正应变,试求力偶矩m之值、材料的弹性常数E、μ均为已知。(15分)
四、电动机功率为9kW,转速为715r/min,皮带轮直径D=250mm,主轴外伸部分长度为l=120mm,主轴直径d=40mm,〔σ〕=60MPa,用第三强度理论校核轴的强度。(15分)
D -50 MPa、30MPa、50MPa
正确答案是
3、对莫尔积分 的下述讨论,正确的是。
A只适用于弯曲变形;
B等式两端具有不相同的量纲;
C对于基本变形、组合变形均适用;
D只适用于直杆。
实验电测法测定材料弹性模量E、μ
实验一、电测法测定材料弹性模量E、μ一、实验目的1.学习电测方法。
2.电测法测定材料的弹性模量E、μ。
二、实验仪器设备1.弯曲梁实验装置。
2.数字式电阻应变仪。
三、实验装置与实验原理图 1 图 2 1.实验装置见图1和图2,拔下销子3,卸下加载横梁8,卸下传感器9,从传感器上旋下加载压头7,然后将万向接头旋到加载系统5上,再将传感器旋到万向接头上,传感器下端与上夹头连接,下夹头安装在试验机架底座的孔内(注意:螺母不要旋紧,留有一定的活动距离,使其起到万向接头的作用;另外保护试件,以免试件被压弯),接着调整好上、下夹头之间的距离,将E、μ试件放入上、下夹头内,对准孔,插入销子,就可进行试验了。
图 3 图 42.实验原理试件上沿着试件轴向和横向各粘贴两片应变片,补偿块上粘贴四片应变片见图3,按图4接两个测量桥,对试件加载,记录载荷P ,并分别记录测得的轴向应变εP 和横向应变εP /,由公式P A P E ε= 计算出弹性模量E ,由公式 pp εεμ/=计算出泊松比μ。
实验一 电测法测定弹性模量E 和泊松比μ实验日期:: 室温 小组成员 (一)实验目的(二)实验设备、仪器(三)实验记录表1 测定E 和μ实验试件原始尺寸 试件材料宽度 b (mm) 厚度 t(mm)横截面面积A 0 (mm 2)长度 L (mm)152.5(四)结果处理弹性模量: 泊松比:(五)问题讨论1.电测法测定材料的E 和μ值时应测何值?2.电阻应变片的作用是什么?3.写出电阻应变仪的读数应变表达式εd ?4.温度补偿片的作用是什么?5.应变片在电桥中的接线方法有哪两种?6.根据逐级加载时载荷和变形的读数记录,作图验证虎克定律。
P E=εο∆A ∆=εεμ∆∆ O ε实验二、纯弯曲梁正应力电测实验一、实验目的1.电测法测定纯弯曲梁正应力分布规律。
2.验证纯弯曲梁正应力计算公式。
二、实验装置与仪器1.纯弯曲梁实验装置。
2.数字式电阻应变仪。
常用材料弹性模量
弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。
凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。
因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。
但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
§4电测法测定材料的弹性模量和泊松比实验
(1)§4电测法测定材料的弹性模量E 和泊松比实验1、概述弹性模量E (也称杨氏模量)是表征材料力学性能中弹性段的重要指标之一,它反映了材 料抵抗弹性变形的能力。
泊松比反映了材料在弹性范围内,由纵向变形引起的横向变形的大小。
在对构件进行刚度稳定和振动计算、研究构件的应力和变形时,要经常用到E 和这两个弹性常 数。
而弹性模量E 和泊松比只能通过实验来测定。
2、实验目的验证胡克定律;了解电阻应变片的工作原理及贴片方式; 了解应变测试的接线方式。
3、实验原理 弹性模量E 和泊松比是反映材料弹性阶段力学性能的两个重要指标,在弹性阶段,给一个确定截而形状的试件施加轴向拉力,在截面上便产生了轴向拉应力,试件轴向伸 长,单位长度的 伸长量称之为应变,同样,当施加轴向压力时,试件轴向缩短。
在弹性阶 段,拉伸时的应力与应 变的比值等于压缩时的应力与应变的比值,且为一定值,称之为弹性模量E ,L/L在试件轴向拉伸仲长的同时,其横向会缩短,同样,在试件受压轴向缩短的同时,其横向会伸长,在弹性阶段,确定材质的试件拉仲时的横向应变与试件的纵向应变的比值等于 压缩时横向 应变与试件的 纵向应变的比值,且同样为一定值,称之为泊 松比,横纵L 横/ L0 压力的测量原理同拉、压实验,应变的测量采用电阻应变片电测法原理。
电阻应变片可形彖地理解为按一定规律排列有一定长度的电阻丝,实验前通过胶粘的 方式 将电阻应变片粘贴在试件的表而,试件受力变形时,电阻应变片中的电阻丝的长度也随 之发生相 应的变化,应变片的阻值也就发生了变化。
实验中我们采用的应变片是由两个单向应变片组成的 十字形应变花,所谓单向应变片,就是应变片的电阻值对沿某一个方向的变形最为敏感,称此 方向为应变片的纵向,而对垂直于该方向的变形阻值变化可忽略,称此方向为应变片的横向。
利用应变片的这个特性,在进行应变测试时,我们所测到只是试件沿应变 片纵向的应变,其不 包含试件垂直方向变形所引起的影响。
弹性模量E和泊松比
弹性模量E和泊松比Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT00EA A P ==εσε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。
(一) (一) 试验目的1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ;2. 2.验证虎克定律;3. 3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:00EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
弹性常数E、μ的测定、梁的弯曲正应力测定 (1)
实验4 材料弹性常数E 、μ的测定刘红欣 编写一、试验目的1.在比例极限内验证虎克定律并测定材料的弹性模量E 及泊松比μ。
2.初步使用YJ28A-P10R 型静态电阻应变仪(见附录四)。
二、试验设备1.YJ28A-P10R 型静态电阻应变仪。
2.电子测力仪。
3.组合试验台。
4.游标卡尺。
三、试验原理及装置测定材料的弹性常数时,一般采用在比例极限内的拉伸试验。
采用矩形截面试件(GB228—76规定选取),在试件中央部分两侧沿纵向和横向各贴二片电阻应变片(如图5-1),温度补偿片贴在不受力的与试件相同的材料上,一般取两侧读数的平均值作为测量结果。
图5-1 矩形截面试件为了验证虎克定律和消除测量中的可能产生的误差,本试验采用增量法逐级加载,每增加相同的载荷增量∆P ,测量相应的纵向应变31,εε及横向应变42,εε。
再由两次载荷的纵向应变之差31,εε∆∆算出其纵向应变增量231εεε∆+∆=∆纵。
同理算出其横向应变增量242εεε∆+∆=∆横,其中1ε∆、2ε∆、3ε∆和4ε∆分别为应变片R 1、R 2、R 3和R 4的应变增量。
然后取纵向应变增量的平均值纵ε∆代人虎克定律计算出弹性模量0A ∆∆=E 纵εP ,由横向应变增量的平均值横ε∆与纵向应变增量的平均值纵ε∆的比值计算出泊松比纵横εεμ∆∆=,其中试件横截面面积A 。
=a × b 。
在试验前要拟订加载方案。
拟订加载方案时根据上述要求,一般考虑以下几点:1.由于在比例极限内进行试验,故最大应力值不能超过比例极限,碳钢一般取屈服极限的70—80%。
2.初载荷可按屈服载荷的10%来选定。
3.至少应有4—5级加载。
四、试验步骤1.测量试件尺寸。
2.将工作应变片接在仪器的A 、B 接线柱上,补偿片接在B ,C 接线柱上。
然后按仪器使用方法将仪器调整好。
3.先加初载荷P 。
.然后每增加相同载荷△P ,记录相应的应变值。
4.重复以上试验三次。
5.请教师检查试验数据。
弹性模量E和泊松比
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
材料弹性常数eu的测定实验电阻应变片的工作原理
材料弹性常数eu的测定实验电阻应变片的工作原理材料的弹性常数e和u是用来衡量材料的弹性性能的重要物理量。
弹性常数e代表材料的杨氏模量,是描述材料在受力作用下产生的弹性变形的能力;而u代表材料的泊松比,是描述材料在受力作用下体积的变化与横向变形的比例关系。
电阻应变片是一种可以测量材料弹性常数的装置,它利用电阻元件的电阻随样品应变的变化而变化的特性,通过测量电阻的变化来计算材料的弹性常数。
电阻应变片的工作原理如下:1.电阻传感原理:电阻应变片是一种电阻材料,其电阻随材料的拉伸或压缩而发生变化。
当材料受到外力作用,产生应变时,电阻片的电阻值也会发生相应的变化。
2.应变测量:在电阻应变片上通过电流,使其产生热量,加在试样上,通过热敏电阻元件测量材料外部温度。
在材料受到外力作用时,电阻发生改变,热量产生的速率也会发生相应的变化,进而可以在电路中测量出电阻的变化。
3.弹性常数计算:根据电阻变化的大小,可以得到材料的应变量。
然后利用材料的几何尺寸和应力值,结合胡克定律(应力与应变成正比)来计算材料的弹性常数e和u。
通过以上的工作原理,我们可以进行材料弹性常数e和u的测定实验,具体的实验步骤如下:1.实验器材准备:准备一台电桥,一个电源,一个数字万用表,一个电阻应变片和一块待测材料样品。
2.材料样品制备:将待测材料样品制备成适当的形状和尺寸,通常是长条形。
3.实验电路搭建:将电阻应变片和待测材料样品固定在一起,组成一个悬臂梁结构。
将电源和电桥连接好,通过电流使电阻应变片产生热量,使试样得到相应的温度梯度。
4.实验参数设置:根据待测材料的特性,设计一定的实验参数,如电流大小、电压变化范围等。
5.实验数据采集:利用数字万用表测量电路中的电阻值变化,记录下电阻的变化范围和电桥平衡的情况。
6.数据处理与计算:根据实验数据,可以得到电阻的变化量和应变的大小。
然后,根据胡克定律,结合试样的尺寸和应力值,计算出材料的弹性常数e和u。
弹性模量E和泊松比
拉伸试验中得到的屈服极限бb和强度极限бS,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。
由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E和泊松比µ。
(一)(一)试验目的1.1.用电测方法测定低碳钢的弹性模量E及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二)(二)试验原理1.测定材料弹性模量E一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:(1)若已知载荷ΔP及试件尺寸,只要测得试件伸长ΔL即可得出弹性模量E。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3)所以(2)成为:(4)式中:ΔP——载荷增量,kN;A0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量ΔP 作用下试件所产生的应变增量Δε。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料弹性常数E、µ的测试实验报告
使用设备名称与型号
同组人员
实验时间
一、实验目的
1.在比例极限内验证虎克定律并测定材料的弹性模量E及泊松比μ。
2.初步使用YJ28A-P10R型静态电阻应变仪(见附录四)。
二、实验设备与仪器
1.YJ28A-P10R型静态电阻应变仪。
2.电子测力仪。
3.组合试验台。
4.游标卡尺。
三、实验原理
测定材料的弹性常数时,一般采用在比例极限内的拉伸试验。
采用矩形截面试件(GB228—76规定选取),在试件中央部分两侧沿纵向和横向各贴二片电阻应变片(如图5-1),温度补偿片贴在不受力的与试件相同的材料上,一般取两侧读数的平均值作为测量结果。
图5-1 矩形截面试件
为了验证虎克定律和消除测量中的可能产生的误差,本试验采用增量法逐级加载,每增加相同的载荷增量∆P ,测量相应的纵向应变31,εε及横向应变42,εε。
再由两次载荷的纵向应变之差31,εε∆∆算出其纵向应变增量
23
1εεε∆+∆=
∆纵。
同理算出其横向应
变增量
24
2εεε∆+∆=
∆横,其中1ε∆、2ε∆、3ε∆和4ε∆分别为应变片R 1、R 2、R 3和
R 4的应变增量。
然后取纵向应变增量的平均值纵ε∆代人虎克定律计算出弹性模量
A ∆∆=
E 纵εP
,由横向应变增量的平均值横ε∆与纵向应变增量的平均值纵ε∆的比值计
算出泊松比
纵
横εεμ∆∆=
,其中试件横截面面积A 。
=a × b 。
在试验前要拟订加载方案。
拟订加载方案时根据上述要求,一般考虑以下几点: 1.由于在比例极限内进行试验,故最大应力值不能超过比例极限,碳钢一般取屈服极限的70—80%。
2.初载荷可按屈服载荷的10%来选定。
3.至少应有4—5级加载。
四、实验操作步骤 1.测量试件尺寸。
2.将工作应变片接在仪器的A 、B 接线柱上,补偿片接在B ,C 接线柱上。
然后按仪器使用方法将仪器调整好。
3.先加初载荷P 。
.然后每增加相同载荷△P ,记录相应的应变值。
4.重复以上试验三次。
5.请教师检查试验数据。
五、实验结果及分析计算
1
2、 结果计算
1.取几次试验数据最好的一组列表计算,表格形式自拟。
纵向应变平均值
2
3
1εεε∆+∆=
∆纵
横向应变平均值
2
2ε
εε∆+∆=
∆横
2.根据载荷计算应力值
0A P =
σ为纵坐标,纵向应变值23
1
εεε+=为横坐标,画出其应力-
应变曲线。
观察各点是否近似在一直线,以验证虎克定律。
六、思考题
1、略述弹性模量E 和泊松比μ的物理意义。
2、试件的尺寸和形式对测定弹性模量有无影响?
3、根据试件的尺寸及材料的屈服极限,试拟定加载方案。
七、实验中的收获、感想与建议。