八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年压轴题版

合集下载

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

2020八上6.4用一次函数解决问题课后练习(有答案)

2020八上6.4用一次函数解决问题课后练习(有答案)

2020八上6.4用一次函数解决问题课后练习班级:___________姓名:___________得分:___________一、选择题1.某航空公司规定,旅客乘机携带行李的质量x(千克)与其运费y(元)由如图所示的一次函数图象确定,若旅客携带行李的运费为750元,则旅客携带行李的质量为().A. 45千克B. 44千克C. 43千克D. 42千克2.李大爷要围一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长应恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x 米,AB边的长为y米,则y与x之间的函数表达式及x的取值范围是()x+12(0<x<24)A. y=−2x+24(0<x<12)B. y=−12x−12(0<x<24)C. y=2x−24(0<x<12)D. y=123.某市规定了每月用水不超过18立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为()立方米.A. 29B. 30C. 31D. 324.某绿化组承担了绿化任务,工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位m2)与工作时间t(单位:ℎ)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A. 200B. 300C. 400D. 5005.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:m1234v0.01 2.98.0315.1则m和v之间的关系最接近于下列各关系式中的()A. v=2m−2B. v=m2−1C. v=3m−3D. v=m+16.如图,在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小丽和小梅所跑的路程s(米)与所用时间t(秒)之间的函数图象分别为如图的线段OA和折线OBCD,下列说法正确的是()A. 小丽的速度随时间的增大而增大B. 小梅的平均速度比小丽的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小丽的前面二、填空题7.红星中学食堂有存煤100吨,每天用去2吨,x天后还剩下煤y吨,则y(吨)随x(天)变化的函数解析式为________________.8.某淘宝店主因每日的货流量很大,便与某快递公司签了包重协议,即快递费不计重,每件6元.若这位淘宝店主每日发货数量为x件,他应付的快递费为y元,则y关于x的函数关系式是________.当x=1000时,函数值是________,它的实际意义是________.9.某通讯公司推出市话眼务,收费标准为月租费25元,本地网通话费为每分钟0.1元(不足1分钟按1分钟计算).(1)完成下表:全月通话时间x/分1234…当月通话费用/元…当月应缴费用y/元…(2)根据上表提供的信息,写出y与x的函数表达式:_______.10.在一次越野赛跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数图象如图所示,根据图象可知再跑________秒,小刚就会追上小明.11.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(ℎ)之间的函数关系,且OP与EF相交于点M.则经过______小时,甲、乙两人相距3km.12.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民大病住院医疗费用的报销比例标准如表:医疗费用范围报销比例标准不超过800元不予报销超过800元且不超过3000元的部分50%超过3000元且不超过5000元的部分60%超过5000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,且800<x≤3000,按上述标准报销后,该居民实际支出的金额为y元.则y关于x的函数关系式为________.三、解答题13.“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,直.接.写出y1、y2关于x的函数表达式;(2)若租车时间为8小时,请你帮助小明计算选择哪个租车方案合算.14.某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min.(1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算;(3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等.15.如下图表示甲乙两船沿相同路线从A港出发到B港行驶过程中路随时间变化的图象,根据图象解答下列问题:(1)分别求出两船行驶的速度;(2)请分别求出表示甲船和乙船行驶过程的函数解析式;(3)问乙船出发多长时间赶上甲船?16.某星期天早晨,小华从家出发步行前往体育馆锻炼,途中在报亭看了一会儿报,如图所示是小华从家到体育馆这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)体育馆离小华家_______米,从出发到体育馆,小华共用了______分钟;(2)小华在报亭看报用了多少分钟?(3)小华看完报后到体育馆的平均速度是多少?答案和解析1. A解:设y 与x 的函数关系式为y =kx +b , 由题意可知:{300=30k +b,900=30k +b,,解得:{k =30,b =−600,,∴函数关系式为y =30x −600, 当y =750时,得750=30x −600, ∴x =45千克.2. B解:由题意得:2y +x =24, 故可得:y =−12x +12(0<x <24).3. B解:设当x >18时的函数解析式为y =kx +b , 由图可知图像经过(18,54),(28,94)则可知超过18立方米每立方米水费k =94−5428−18=4, 将(28,54)代入解析式可得4×28+b =94,解得b =−18 即当x >18时的函数解析式为y =4x −18, ∵102>54,∴当y =102时,102=4x −18,得x =30,4. B解:从图象可以知2至5时的函数图象经过(4,1600)(5,2100),设该时段的一次函数解析式为y =kx +b(x ≥2),依题意,将点(4,1600)(5,2100)分别代入, 可列方程组有{1600=4k +b 2100=5k +b ,解得:{k =500b =−400, ∴一次函数的解析式为:y =500x −400, ∴当x =2时,解得y =600,∴前两小时每小时完成的绿化面积是600÷2=300(m 2),5. B解:当m =4时, A .v =2m −2=6; B .v =m 2−1=15; C .v =3m −3=9; D .v =m +1=5.6. D解:A.由于线段OA 表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小丽的速度是没有变化的.故本选项错误;B .小丽比小梅先到,由此可以确定小梅的平均速度比小丽的平均速度小.故本选项错误;C .根据图象可以知道起跑后180秒时,两人的路程不相等,故没有相遇.故本选项错误;D .根据图象知道起跑后50秒时OB 在OA 的上面,可以确定小梅的路程比小丽的路程多,所以小梅在小丽的前面.故本选项正确.7. y =100−2x解:解:由题意得,y =100−2x ,则y(吨)随x(天)变化的函数解析式为y =100−2x ,8. y =6x ;6000;邮寄1000件物品所需费用为6000元解:由题意可得y 与x 的函数关系式为y =6x , 当x =1000时,则y =6000,它的实际意义为邮寄1000件物品所需费用为6000元.9. (1)0.1;0.2;0.3;0.4;25.1;25.2;25.3;25.4(2)y =25+0.1x解:(1)当通话时间为1分钟时,当月通话费用为0.1元,当月应缴费用为25+0.1=25.1(元);当通话时间为2分钟时,当月通话费用为0.2元,当月应缴费用为25+0.2=25.2(元); 当通话时间为3分钟时,当月通话费用为0.3元,当月应缴费用为25+0.3=25.3(元); 当通话时间为4分钟时,当月通话费用为0.4元,当月应缴费用为25+0.4=25.4(元); 故答案为0.1;0.2;0.3;0.4;25.1;25.2;25.3;25.4; (2)由表格可得,y 与x 的函数表达式为y =25+0.1x .10. 100解:由图象可得当t =100秒时,小刚会追上小明.11. 38或58解:设线段OP 对应的y 甲与x 的函数关系式为y 甲=kx , 9=0.5k ,得k =18,即线段OP 对应的y 甲与x 的函数关系式为y 甲=18x ; 设y 乙与x 的函数关系式为y 乙=ax +b ,则 {0.5a +b =92a +b =0,得{a =−6b =12, 即y 乙与x 的函数关系式为y 乙=−6x +12, ∵当x =0时,y 乙=12, 即A ,B 两地的距离是12km ,∴当甲步行至乙地后,甲、乙两人相距必大于3km , ∴甲、乙两人相距3km 时有: |(−6x +12)−18x|=3, 解得,x 1=38,x 2=58,12. y =0.5x +400解:当800<x ≤3000时,y =x −0.5(x −800)=0.5x +400.13. 解:(1)由题意可得:y 1=15x +80,y 2=30x ;(2)当x =8时,y 1=15×8+80=200,y 2=30×8=240, ∵200<240, ∴选择方案一合算.14. 解:(1)A 类:y =0.2x +12,B 类:y =0.25x ;(2)A 类收费:12+0.2×300=72元; B 类收费:0.25×300=75元, 75>72,所以选择A 类收费方式; (3)设每月通话时间x 分钟, 由题意得12+0.2x =0.25x , 解得:x =240.答:每月通话时间240分钟,按A 、B 两类收费标准缴费,所缴话费相等.15. 解:(1)V 甲=20千米/小时,V 乙=40千米/小时(2)设甲船的解析式为y =kx ,∵过点(8,160), ∴160=8k , 即k =20,∴y =20x(0≤x ≤8), 设乙船的解析式为y =ax +b , ∵过点(2,0),(6,160) ∴{0=2a +b160=6a +b∴{a =40b =−80∴y =40x −80(2≤x ≤6);(3)根据题意,得 {y =20x y =40x −80 解之,得{x =4y =80,所以当x =4,即乙船出发4−2=2小时赶上甲船.16. 解:(1)1000;25(2)由图像可知:小华在报亭看报时间=20−10=10分钟(3)由图像得:小华看完报后到体育馆所用的时间=25−20=5分钟, 小华看完报后到体育馆的路程=1000−500=500米, 则小华看完报后到体育馆的平均速度=5005=100米/分钟.。

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年单选题版

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年单选题版

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年单选题版答案答案答案2020年八上数学:函数_函数基础知识_通过函数图象获取信息并解决问题练习题~~第1题~~(2020.八上期末) 某乡村盛产葡萄,果大味美,甲、乙两个葡萄采摘园为吸引游客,在销售价格一样的基础上分别推出优惠方案,甲采摘园的优惠方案:游客进园需购买门票,采摘的所有葡萄按六折优惠.乙采摘园的优惠方案:游客无需买票,采摘葡萄超过一定数量后,超过的部分打折销售.活动期间,某游客的葡萄采摘量为xkg ,若在甲采摘园所需总费用为y 元,若在乙采摘园所需总费用为y 元,y 、y 与x 之间的函数图象如图所示,则下列说法错误的是( )A . 甲采摘园的门票费用是60元B . 两个采摘园优惠前的葡萄价格是30元/千克C . 乙采摘园超过10kg 后,超过的部分价格是12元/千克D . 若游客采摘18kg 葡萄,那么到甲或乙两个采摘园的总费用相同考点: 通过函数图象获取信息并解决问题;~~第2题~~(2020武汉.八上期末) 甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发.他们离出发地的距离s/km 和骑行时间t/h 之间的函数关系如图所示.根据图象信息,以下说法错误的是( )A . 他们都骑了20 kmB . 两人在各自出发后半小时内的速度相同C . 甲和乙两人同时到达目的地D . 相遇后,甲的速度大于乙的速度考点: 通过函数图象获取信息并解决问题;~~第3题~~(2019嵊州.八上期末) 一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则每分钟的进水量与出水量分别是( )A . 5L ,3.75LB . 2.5L ,5LC . 5L ,2.5LD . 3.75L ,5L考点: 通过函数图象获取信息并解决问题;~~第4题~~(2019温州.八上期末) 如图1,四边形ABCD 中,AB ∥CD ,∠B=90°,AC=AD.动点P 从点B 出发沿折线B→A→D→C 方向以1单位/秒的速度运动,在整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( )甲乙甲乙答案答案答案答案 A . 10 B . C . 8 D .考点: 通过函数图象获取信息并解决问题;动点问题的函数图象;~~第5题~~(2019庆元.八上期末) 庆元大道两侧需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位m )与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A . 200B . 300C . 400D . 500考点: 通过函数图象获取信息并解决问题;一次函数的性质;待定系数法求一次函数解析式;~~第6题~~(2019慈溪.八上期末) 我国国内平信邮资标准是:每封信的质量不超过20g ,付邮资 元;质量超过20g 后,每增加不足20g 按照20g 计算增加元,如图表示的是质量与邮资 元 的关系,下列表述正确的是( )A . 当 时, 元B . 当 元时,C . q 是p 的函数D . p 是q 的函数考点: 通过函数图象获取信息并解决问题;分段函数;~~第7题~~(2019昆山.八上期末) 如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A . 4B . 5C . 6D . 7考点: 通过函数图象获取信息并解决问题;~~第8题~~(2019连云港.八上期末) 星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )2答案答案答案A . 从家出发,休息一会,就回家 B . 从家出发,一直散步(没有停留),然后回家 C . 从家出发,休息一会,返回用时20分钟D . 从家出发,休息一会,继续行走一段,然后回家考点: 通过函数图象获取信息并解决问题;~~第9题~~(2019永登.八上期中) 甲、乙两车从A 地出发,沿同一路线驶向B 地. 甲车先出发匀速驶向B 地,40 min 后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时. 由于满载货物,为了行驶安全,速度减少了50 km/h ,结果与甲车同时到达B 地. 甲乙两车距A 地的路程y (km )与乙车行驶时间x (h )之间的函数图象如图所示,则下列说法:①a =4.5;②甲的速度是60 km/h ;③乙出发80 min 追上甲;④乙刚到达货站时,甲距B 地180 km.其中正确的有( )A . 1个B . 2个C . 3个D . 4个考点: 通过函数图象获取信息并解决问题;~~第10题~~(2019永登.八上期末) 今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A . 小明中途休息用了20分钟B . 小明休息前爬山的平均速度为每分钟70米C . 小明在上述过程中所走的路程为6600米D . 小明休息前爬山的平均速度大于休息后爬山的平均速度考点: 通过函数图象获取信息并解决问题;2020年八上数学:函数_函数基础知识_通过函数图象获取信息并解决问题练习题答案1.答案:D2.答案:C3.答案:A4.答案:B5.答案:B6.答案:D7.答案:B8.答案:D9.答案:D10.答案:C。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

八年级上册数学《单个一次函数图象的应用》专项练习题及答案

八年级上册数学《单个一次函数图象的应用》专项练习题及答案

八年级上册数学《单个一次函数图象的应用》专项练习题及答案一、单项选择1.如图,图象l表示的是某植物生长t天后的高度y(单位:cm)与t之间的关系,根据图象,下列结论不正确的是( )A.该植物初始的高度是3cm B.该植物10天后的高度是10cmC.该植物平均每天生长0.7cm D.y与t之间的函数关系式是y=t+3(t≥0) 2. 下列图象中,能反映等腰三角形的顶角y(度)与底角x(度)之间的函数关系的是( )3. 一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )A.150km B.165km C.125km D.350km4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( )5. 直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为( )A.x=0 B.x=1 C.x=2 D.x=36. 如图①是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数表达式为P=kh+P0,其图象如图②所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是( )A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数表达式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数表达式为P=9.8×105h+76二、填空题7. 已知关于x的方程3x+b=0的解是x=5,则一次函数y=3x+b的图象与x 轴的交点坐标是________.8. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是________.9. 如图,一辆轿车离某城市的距离y(km)与行驶时间t(h)之间的关系式为y=kt +30,在1h到3h之间,轿车行驶的路程是 _____ km.10. 一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前 ____ h到达B地.11.已知方程3x+9=0的解是x=-3,则一次函数y=3x+9的图象与x轴的交点坐标是 __________.12.如图是一次函数y=kx+2的图象,则关于x的方程kx=-2的解为__________.13. 如图,一次函数y=ax+b的图象为直线l,(1)关于x的方程ax+b=0的解为__________.(2)关于x的方程ax+b=1的解为__________.14. 一根粗细均匀的蜡烛开始燃烧后剩下的长度y(cm)与燃烧的时间x(min)的关系如图所示.(1)这根蜡烛的总长度为 ____ cm;(2)燃烧10 min后这根蜡烛剩下的长度为 ____cm;(3)这根蜡烛每分钟燃烧 ____cm;(4)y与x之间的函数关系式为 ________________,自变量x的取值范围为___________.三、解答题15. 某公司市场营销部的营销员的个人月收入y(元)与该营销员每月的销售量x(万件)成一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)若该公司的营销员李平5月份的销售量为4.2万件,求李平5月份的收入.16. 一辆汽车在某次行驶过程中,油箱中的剩余油量y(L)与行驶路程x(km)之间是一次函数关系,其部分图象如图所示.(1)求y与x之间的函数关系式;(2)当油箱中的剩余油量为8L时该汽车会开始提示加油,问提示加油时汽车行驶的路程是多少千米?17. 如图是函数y=kx+b(k,b是常数,且k≠0)的图象.(1)求方程kx+b=0的解;(2)求方程kx+b=-3的解;(3)求式子k+b的值.18. 某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,骑自行车匀速前往奥体中心,小君13:05从离奥体中心6000m的家中出发,骑自行车匀速行驶.已知小君骑车速度是小敏骑车速度的1.5倍.设小敏出发xmin后,到达离奥体中心y m的地方,图中线段AB表示y与x之间的函数关系.(1)小敏家离奥体中心的距离为 ______ m,她骑自行车的速度为 ______ m/min;(2)求线段AB所在直线的函数表达式;(3)小敏与小君谁先到达奥体中心?要等另一个人多久?19. 某游泳池的平面图如图①所示,宽30m,深水区长40m,浅水区长8m,游泳池定期换水.图②是小明给游泳池放水时游泳池的存水量Q(m3)与放水时间t(h)之间的函数图象,其中点P(2.5,1152)表示正好放到浅水区底部时的状态.(1)深水区的面积是 ________ m2,浅水区的面积是 _______ m2,放水的速度是______ m3/h;(2)求Q关于t的函数表达式,并写出自变量t的取值范围;(3)游泳池清理干净后又将水放到原来的高度,若进水速度与放水速度相同,请在图③中画出游泳池中的水深h(m)关于进水时间t(h)的函数图象(请标注关键点的坐标).20. 某食品加工厂需要一批食品包装盒,要获得这种包装盒有两种方案可供选择,方案一:从包装盒加工厂直接购买,购买所需的费用y1与所需包装盒数量x 满足如图1所示的函数关系;方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与所需包装盒数量x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是 ____ 元;(2)方案二中租赁机器的费用是 ______ 元,生产一个包装盒的费用是____元;(3)分别求出y1,y2与x之间的函数关系式;(4)如果你是决策者,加工厂需要10000个这样的包装盒,你认为应该选择哪种方案更省钱?并说明理由.答案;一、1-6 DCACA C二、7. (5,0)8. x=29. 12910. 211. (-3,0)12. x=-113. (1) x=2(2) x=414. (1) 15(2) 10(3) 0.5(4) y=-0.5x+15 0≤x≤3三、15. 解:(1)设y=kx+b,将点(0,800),(2,2800)分别代入y=kx+b,得800=b,2800=2k+b,解得k=1000,b=800,所以y与x之间的函数关系式为y =1000x+800(x≥0)(2)当x=4.2时,y=1 000x+800=5000,所以李平5月份的收入为5000元16. 解:(1)设y=kx+b,将点(0,60),(150,45)分别代入y=kx+b,得60=b,45=150k+b,解得k=-0.1,b=60,所以y=-0.1x+60.当y=-0.1x +60=0时,解得x=600,所以y与x之间的函数关系式为y=-0.1x+60(0≤x ≤600)(2)当y=-0.1x+60=8时,解得x=520,所以提示加油时汽车行驶的路程是520km17. 解:(1)方程kx +b =0的解是x =2 (2)方程kx +b =-3的解是x =-1 (3)k +b =1-2=-118. 解:(1) 6000 200(2)设线段AB 所在直线的函数表达式为y =kx +b ,根据题意,得b =6000①,30k +b =0②.将①代入②,得k =-200.所以线段AB 所在直线的函数表达式为y =-200x +6000(3)因为小君骑车速度是小敏骑车速度的1.5倍,所以小君骑车的速度是200×1.5=300(m/min).6000÷300=20(min).所以小君到达奥体中心的时间是13:25.因为小敏骑自行车到奥体中心需要30min ,所以小敏到达奥体中心的时间是13:30.所以小君先到达奥体中心,小君要等小敏5min 19. 解:(1) 1200 240 576(2)Q 关于t 的函数表达式为Q =2 592-576t(0≤t ≤4.5)(3)当0≤t ≤2时,h =5761 200t =0.48t ;当2<t ≤4.5时,h =0.48×2+5761 200+240(t -2)=0.4t +0.16,所以游泳池中的水深h(m)关于进水时间t(h)的函数图象如图所示 20. 解:(1) 5(2) 2000 14(3)设图1中的函数表达式为y 1=k 1x ,由图象知函数经过点(100,500),所以500=100k 1,解得k 1=5.所以图1中的函数表达式为y 1=5x.设图2中的函数表达式为y 2=k 2x +b.根据题意,得b =2000①,4000k 2+b =3000②.将①代入②,得k 2=14 .所以图2中的函数表达式为y 2=14x +2000 (4)当x =10000时,y 1=50000,y 2=14×10000+2000=4500.因为4500<50000,所以选择方案二更省钱。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。

中考数学每日一练:二次函数图象与系数的关系练习题及答案_2020年压轴题版

中考数学每日一练:二次函数图象与系数的关系练习题及答案_2020年压轴题版

中考数学每日一练:二次函数图象与系数的关系练习题及答案_2020年压轴题版答案答案2020年中考数学:函数_二次函数_二次函数图象与系数的关系练习题~~第1题~~(2019巴中.中考真卷) 如图,抛物线经过x 轴上的点A (1,0)和点B 及y轴上的点C ,经过B 、C 两点的直线为 .①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t为何值时,△PBE 的面积最大并求出最大值.③过点A 作 于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.考点: 二次函数图象与系数的关系;二次函数的最值;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;二次函数图象与一元二次方程的综合应用;~~第2题~~(2018绍兴.中考模拟) 已知x 轴上有点A (1,0),点B 在y 轴上,点C (m ,0)为x 轴上一动点且m <﹣1,连接AB ,BC ,tan ∠ABO= ,以线段BC 为直径作⊙M 交直线AB 于点D ,过点B 作直线l ∥AC ,过A ,B ,C 三点的抛物线为y=ax +bx+c ,直线l 与抛物线和⊙M 的另一个交点分别是E ,F .(1) 求B 点坐标;(2) 用含m 的式子表示抛物线的对称轴;(3) 线段EF 的长是否为定值?如果是,求出EF 的长;如果不是,说明理由.(4) 是否存在点C (m ,0),使得BD= AB ?若存在,求出此时m 的值;若不存在,说明理由.考点: 二次函数图象与系数的关系;二次函数的实际应用-几何问题;圆周角定理;解直角三角形;~~第3题~~(2017邗江.中考模拟) 如图,点P (x ,y )与Q (x ,y )分别是两个函数图象C 与C 上的任一点.当a≤x≤b 时,有﹣1≤y ﹣y ≤1成立,则称这两个函数在a≤x≤b 上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P (x ,y )与Q 21212121答案答案答案(x ,y )分别是两个函数y=3x+1与y=2x ﹣1图象上的任一点,当﹣3≤x≤﹣1时,y ﹣y =(3x+1)﹣(2x ﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y ﹣y ≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1) 判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2) 若函数y=x ﹣x 与y=x ﹣a 在0≤x≤2上是“相邻函数”,求a 的取值范围;(3) 若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a 的最大值与最小值.考点: 定义新运算;一次函数的实际应用;反比例函数的实际应用;二次函数图象与系数的关系;二次函数的最值;~~第4题~~(2017祁阳.中考模拟) 将抛物线c : 沿x轴翻折,得到抛物线c , 如图1所示.(1)请直接写出抛物线c 的表达式;(2)现将抛物线c 向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.考点: 二次函数图象的几何变换;二次函数图象与系数的关系;二次函数的实际应用-几何问题;矩形的判定;轴对称的性质;~~第5题~~(2017越秀.中考模拟) 设二次函数y =a (x ﹣2)+c (a≠0)的图象与y 轴的交点为(0,1),在x 轴上截得的线段长为 .(1) 求a 、c 的值.(2) 对于任意实数k ,规定:当﹣2≤x≤1时,关于x 的函数y =y ﹣kx 的最小值称为k 的“贡献值”,记作g (k ).求g (k )的解析式.(3) 在(2)条件下,当“贡献值”g (k )=1时,求k 的值.考点: 解二元一次方程组;二次函数图象与系数的关系;二次函数的最值;2020年中考数学:函数_二次函数_二次函数图象与系数的关系练习题答案1.答案:2121221221212212.答案:3.答案:4.答案:5.答案:。

八上数学每日一练:一次函数的图象练习题及答案_2020年压轴题版

八上数学每日一练:一次函数的图象练习题及答案_2020年压轴题版

图象上第一象限内一点 且满足OP=OQ,
,求
的值;
(4) 一次函数
的图象与一次函数
的图象交于C点,与y轴交于点D,直线OP与直线AB、直线C
D不能围成三角形,直接写出符合条件的P点的坐标.
考点: 一次函数的图象;两一次函数图象相交或平行问题;
答案解析
2020年 八 上 数 学 : 函 数 _一 次 函 数 _一 次 函 数 的 图 象 练 习 题 答 案
S与x的函数关系为S=

(1) 写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值? (2) 设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y. ①随着x增大,y怎样变化?
②当x取何值时,y取最小值,y的最小值是多少?
1.答案:
2.答案:
3.答案:
4.答案:
5.答案:
八上数学每日一练:一次函数的图象练习题及答案_2020年压轴题版
2020年 八 上 数 学 : 函 数 _一 次 函 数 _一 次 函 数 的 图 象 练 习 题
1. (2020南京.八上期末) 用函数方法研究动点到定点的距离问题. 在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:
答案解析
3. (2019皇姑.八上期末) 如图,直线 、点 .
与直线
交于点
,直线 与 轴、 轴分别交于点
(1) 求直线 的关系式;
(2) 若与 轴平行的直线
与直线
分别交于点 、点 ,则
的面积为(直接填空);
(3) 在(2)的情况下,把
沿着过原点的直线
翻折,当点 落在直线 上时,直接写出
的值.

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年综合题版

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年综合题版

(1) 洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升. (2) 进水时y与x之间的关系式是. (3) 已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升. 考点: 通过函数图象获取信息并解决问题;
答案解析
3. (2020盐城.八上期末) 如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成 剩下的工程.
八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年
综合题版
2020年 八 上 数 学 : 函 数 _函 数 基 础 知 识 _通 过 函 数 图 象 获 取 信 息 并 解 决 问 题 练 习 题
1. (2020牡丹.八上期末) 小明和爸爸从家步行去公园,爸爸先出发,一直匀速前进,小明的出发,家到公园的距离为2500 m,如图是小明和爸爸所走路程s(m)与步行时间t(min)的函数图象。
(1) 甲队单独完成这项工程,需要多少天? (2) 求乙队单独完成这项工程需要的天数; (3) 实际完成的时间比甲独做所需的时间提前多少天? 考点: 通过函数图象获取信息并解决问题;
答案解析
4.
(2019婺城.八上期末) 甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶 甲车比乙车早行驶,甲车途中休息了
设甲车行驶时间为 ,下图是甲乙两车行驶的距离
与 的函数图象,根据题中信息回答问题:
(1) 填空: , ;
(2) 当乙车出发后,求乙车行驶路程
与 的函数解析式,并写出相应的x的取值范围;
(3) 当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.
考点: 通过函数图象获取信息并解决问题;
答案解析
(1) 直接写出小明所走路程s与时间t的函数关系式

八上数学每日一练:一次函数的图象练习题及答案_2020年综合题版

八上数学每日一练:一次函数的图象练习题及答案_2020年综合题版

八上数学每日一练:一次函数的图象练习题及答案_2020年综合题版答案解析答案解析答案解析2020年八上数学:函数_一次函数_一次函数的图象练习题1.(2020青山.八上期末) 已知:如图,直线AB 的函数解析式为y=-2x+8,与x 轴交于点A ,与y 轴交于点B 。

(1) 求A 、B 两点的坐标;(2) 若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF ,若△PEF 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;(3) 以上(2)中的函数图象是一条直线吗?请尝试作图验证。

考点: 一次函数的图象;一次函数的性质;2.(2020驿城.八上期中)、 两地相距,甲、乙两人沿同一条路从地到地. ,分别表示甲、乙两人离开地的距离与时间之间的关系.(1) 乙先出发后,甲才出发;直接写出 ,的表达式、.(2) 甲到达 地时,乙还需几小时到达地?考点:一次函数的图象;一次函数的实际应用;3.(2020苏州.八上期末) 已知一次函数,完成下列问题:(1) 求此函数图像与x 轴、y 轴的交点坐标;(2) 画出此函数的图像;观察图像,当时,x 的取值范围是;(3) 平移一次函数 的图像后经过点(-3,1),求平移后的函数表达式.考点: 一次函数的图象;一次函数图象与坐标轴交点问题;一次函数图象与几何变换;答案解析答案解析4.(2020南京.八上期末) 用函数方法研究动点到定点的距离问题.在研究一个动点P (x ,0)到定点A (1,0)的距离S 时,小明发现:S 与x 的函数关系为S =并画出图像如图:借助小明的研究经验,解决下列问题:(1) 写出动点P (x ,0)到定点B (-2,0)的距离S 的函数表达式,并求当x 取何值时,S 取最小值?(2) 设动点P (x ,0)到两个定点M (1,0)、N (5,0)的距离和为y .①随着x 增大,y 怎样变化?②当x 取何值时,y 取最小值,y 的最小值是多少?③当x<1时,证明y 随着x 增大而变化的规律.考点: 一次函数的图象;一次函数的性质;5.(2020百色.八上期末) 如图,直线y=-x+1和直线y=x-2相交于点P ,分别与y 轴交于A 、B 两点.(1) 求点P 的坐标;(2) 求△ABP 的面积;(3) M 、N 分别是直线y=-x+1和y=x-2上的两个动点,且MN ∥y 轴,若MN=5,直接写出M 、N 两点的坐标.考点: 坐标与图形性质;一次函数的图象;一次函数与二元一次方程(组)的综合应用;2020年八上数学:函数_一次函数_一次函数的图象练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.17)一、选择题1.如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32第1题第2题2.如图,矩形ABCD中,E是AB的中点,F是AD边上的一个动点,已知AB=4,AD=2,△GEF与△AEF关于直线EF成轴对称.当点F沿AD边从点A运动到点D时,点G的运动路径长为()A.2B.4πC.2πD.二、填空题3.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.第3题第4题4.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三、解答题5.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.6.如图,在平面直角坐标系中,O是原点,点A在x轴的负半轴上,点B在y轴的正半轴上,tan∠BAO=,且线段OB的长是方程x2﹣2x﹣8=0的根.(1)求直线AB的函数表达式.(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE =16.点F是直线CE上一点,分别过点E,F作x轴和y轴的平行线交于点G,将△EFG 沿EF折叠,使点G的对应点落在坐标轴上,求点F的坐标.(3)在(2)的条件下,点M是DO的中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请画出示意图并直接写出点P的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.2.【分析】由轴对称性质可知,GE=AE=2是定长,故点G的运动路径为以E为圆心、AE 长为半径的圆弧上,圆弧的最大角度即点F到达中点D时,∠AEG的度数.利用AD、AE的长可求tan∠AED的值,求得∠AED并进而求得∠AEG为特殊角.再代入弧长公式即求出点G的运动路径长.【解答】解:∵矩形ABCD中,AB=4,E是AB的中点∴AE=AB=2∵△GEF与△AEF关于直线EF成轴对称∴GE=AE=2,∠GEF=∠AEF∴G在以E为圆心,AE长为半径的圆弧上运动如图,当点F与点D重合时,AD=∴tan∠AED=∴∠AED=60°∴∠AEG=2∠AED=120°∴G运动路径长为:2π×2×=故选:D.二、填空题3.【分析】直接利用圆环面积求法进而得出答案.【解答】解:正五边形的内切圆与外接圆所围圆环的面积为:π(OA2﹣OH2)=π×AH2=.故答案为:.4.【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三、解答题5.【分析】(1)连接FD.证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(2)成立.连接FD,证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(3)分两种情形分别画出图形,利用(2)中结论求出CD即可解决问题.【解答】(1)证明:连接FD,∵AD=ED,∠ADE=90°,∴∠DAC=∠AED=45°,∵四边形BCEF是平行四边形,∠BCE=90°,∴四边形BCEF是矩形,∴∠CEF=∠AEF=90°,BC=EF=AC,∴∠DEF=45°,∴∠A=∠DEF,∴△ADC≌△EDF(SAS),∴DC=DF,∠DCA=∠DFE,∴∠FDC=∠FEC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(2)解:成立.理由:连接FD,∵AD⊥DE,EF⊥AC,∴∠DAC=∠DEF,又AD=ED,AC=EF,∴△ADC≌△EDF(SAS),∴DC=DF,∠ADC=∠EDF,即∠ADE+∠EDC=∠FDC+∠EDC,∴∠FDC=∠ADE=90°∴△DFC为等腰直角三角形,∴CD=CF.(3)解:如图3﹣1中,设AE与CD的交点为M,∵CE=CA,DE=DA,∴CD垂直平分AE,∴=,DM=,∴CD=DM+CM=3,∵CF=CD∴CF=6.如图3﹣2中,设AE与CD的交点为M,同法可得CD=CM﹣DM=﹣=2,∴CF=CD=4,综上所述,满足条件的CF的值为6或4.6.【分析】(1)解方程求出OB,解直角三角形求出OA,可得A(﹣8,0),B(0,4),再利用待定系数法即可解决问题.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.可证△FHI∽△HER,推出===2,设ER=m,则IH=2m,可得F(m﹣16,2m),再利用待定系数法即可解决问题.(3)分三种种情形分别求解:①如图3﹣1,当四边形MNPQ是矩形时.②如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合.③如图3﹣3,当四边形MNPQ是矩形时.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的根,∴OB=4,又tan∠BAO==,∴OA=8,∴A(﹣8,0).B(0,4),设直线AB的解析式为y=kx+b,则有,解得∴直线AB:y=x+4.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.∵直线EC⊥AB,S△DOE=16,∴OD=4,OE=8,可得直线DE:y=﹣2x﹣8,∵∠GFE=∠DEO,∴GE:GF=EH:HF=1:2∵∠FHE=∠I=∠R=90°,可证△FHI∽△HER,∴===2,设ER=m,则IH=2m,∴F(m﹣16,2m),把点F坐标代入y=﹣2x﹣8,得到:2m=﹣2(m﹣16)﹣8,∴m=6,∴F(﹣10,12).(3)如图3﹣1,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合,易证△DMQ是等腰直角三角形,OP=MQ=DM=2,∴P(0,2).如图3﹣3,当四边形MNPQ是矩形时,设PM交BD于R,则R(﹣1,3),∴P(0,6).如图3﹣4中,当QN是对角线时,P(2,6).。

八上数学每日一练:直角三角形斜边上的中线练习题及答案_2020年压轴题版

八上数学每日一练:直角三角形斜边上的中线练习题及答案_2020年压轴题版

(2) 如图4,当∠CDF=30°时,AM+CKMK(填“>”或“<”);
(3) 猜想:如图1,当0°<∠CDF<60°时,AM+CKMK,试证明你的猜想.. 考点: 全等三角形的判定与性质;等腰三角形的性质川.八上期中) 如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E , BF⊥CD交CD 的延长线于F , CH⊥AB于H点,交AE于G .
(2) 问题2: 如图,△ABC中,∠ACB=80°, ∠BAC=40°,求画一条直线l把△ABC分成两个等腰三角形, 并在图中标注两个顶角的 度数.
(3) 问题3: 如图,△ABC中,∠ACB=120°, ∠BAC=40°,求画一条直线l把△ABC分成两个等腰三角形, 并在图中标注两个顶角的 度数.
答案解析
2. (2016平谷.八上期末) 如图1,有两个全等的直角三角形△ABC和△EDF,∠ACB=∠F=90°,∠A=∠E=30°,点D在边 AB上,且AD=BD=CD.△EDF绕着点D旋转,边DE,DF分别交边AC于点M,K.
(1) 如图2、图3,当∠CDF=0°或60°时,AM+CKMK(填“>”,“<”或“=”),你的依据是;
八上数学每日一练:直角三角形斜边上的中线练习题及答案_2020年压轴题版
2020年 八 上 数 学 : 图 形 的 性 质 _三 角 形 _直 角 三 角 形 斜 边 上 的 中 线 练 习 题
1. (2017温岭.八上期末) 动手操作题:如何能把一个三角形分成两个等腰三角形吗? 实际上,一个三角形只要具备下列三个条件之一,都可以被分成两个等腰三角形: ①一个角为90°;②一个角是另一个的2倍(第三角必须大于45°); ③一个角是另一个角的3倍.今天,我们通过作图来验证这个结论。 (1) 问题1: 如图,Rt△ABC中,求画一条直线l将△ABC分成两个等腰三角形.并说明直线l与△ABC 边上的交点D的位置.

八上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年压轴题版

八上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年压轴题版
八上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年压轴题版
2020年 八 上 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题
1.
(2020武汉.八上期末) 平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为(0,0)、A(a,0)、C(0,b),且a
(1) 直线CD的函数表达式为;(直接写出结果)
(2) 在x轴上求一点P使△PAD为等腰三角形,直接写出所有满足条件的点P的坐标.
(3) 若点Q为线段DE上的一个动点,连接BQ.点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落
在直线AB下方的y轴上?若存在,求点Q的坐标;若不存在,请说明理由.
(3) 在(2)的情况下,把
沿着过原点的直线
翻折,当点 落在直线 上时,直接写出
的值.
考点: 坐标与图形性质;一次函数的图象;待定系数法求一次函数解析式;翻折变换(折叠问题);
答案解析
2020年 八 上 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题 答 案
形的判定与性质;
答案解析
2. (2020江苏.八上期中)
(1) 如图1,将长方形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=48°,则∠DBE 的度数为.
(2) 小明手中有一张长方形纸片ABCD,AB=12,AD=27.
(画一画)
如图2,点E在这张长方形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD ,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,).

2019—2020年最新浙教版八年级数学上册《一次函数的图像和性质》同步测试题及答案.docx

2019—2020年最新浙教版八年级数学上册《一次函数的图像和性质》同步测试题及答案.docx

5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限 (C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y (元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值(A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能4.若函数b kx y +=(b k ,为常数)的图象如图所示,那么当0>y 时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是().(A )(B )(C )(D )yx2116.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线y x=-上运动,当线段AB最短时,点B的坐标为A.(0,0)B.11(,)22- C.22(,)22- D.11(,)22-9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx (n≠0)的图象都经过点(2,3),yxEDCBA则m=______,n=_________.2.如果函数()1f x x =+,那么()1f =3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km 的过程中,行使的路程y 与经过的时间x 之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h ,汽车的速度为____km/h .汽车电动自行车90 80 70 60 50 40 30 20 100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5y (km )x (h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―1|+2a = 。

2020中考复习——函数图像信息题训练一(含答案)

2020中考复习——函数图像信息题训练一(含答案)

2020中考复习——函数图像信息题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.一次函数y=ax+b,ab<0,则其大致图象正确的是()A. B.C. D.2.关于函数y=−(x+2)2−1的图象叙述正确的是()A. 开口向上B. 顶点(2,−1)C. 与y轴交点为(0,−1)D. 图象都在x轴下方3.函数y=︱x+1︱的图像是()A. B.C. D.4.老师布置课外学习作业:探究函数y=2x+2的性质,小明根据研究函数的方法:x列表、描点、连线画出图像,观察图像后,他得到如下性质:①x取值范围是不等随x的增大于0的一切实数,y的取值范围是y≥4;②当x>1时,函数y=2x+2x 而增大;③函数图像的对称轴为直线x=1;④函数图像关于原点对称.其中正确的是()A. ①②B. ③④C. ①③D. ②④5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的关系用图象表示为()A. B. C. D.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.如图,小亮在操场上玩,一段时间内沿M−A−B−M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论正确的是()A. 甲步行的速度为60米/分B. 乙走完全程用了32分钟C. 乙用16分钟追上甲D. 乙到达终点时,甲离终点还有300米二、填空题9.如图,放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则s与t的函数关系式为_______ .(x>0)的图象10.如图,一次函数y=kx+b(k,b为常数,且k≠0)和反比例函数y=4x<kx+b的解集是.交于A、B两点,利用函数图象直接写出不等式4xx+3的图象大致如图.若y1<y2则自变量x的取值11.已知函数y1=x2与函数y2=−12范围是____________.12.周末,小明和爸爸一起去登山,到达山脚后,爸爸遇上一朋友,准备和朋友聊会天,于是爸爸让小明先出发.爸爸和朋友聊了5分钟后,立即沿小明行径的路线匀速登山去追小明,经过一段时间,爸爸追上了小明,但他没作停留,继续按原速度登山,登上山顶才停下来等待小明.整个过程中,小明一直按一定的速度匀速登山,没有休息.设小明登山的时间为x(分钟),小明与爸爸之间的距离为y(米),y与x的关系如图所示,则a+b的值=_____.13.直线y1=k1x+a与y2=k2x+b的图象如图,则:(1)当x________时,k1x+a=k2x+b;(2)当x________时,k1x+a>k2x+b;(3)当x________时,k1x+a<k2x+b.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小明离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校.情境b:小明从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是___________,___________.(填序号)(2)请你为剩下的函数图象写出一个适合的情境.15.阅读下面材料:小明想探究函数y=√x2−1的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:x…−3−2−1123…y… 2.83 1.7300 1.73 2.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是______.请写出函数y=√x2−1的一条性质:______.三、解答题16.已知函数y=−12x+1。

八年级数学上册一次函数图像应用题(带解析版答案)

八年级数学上册一次函数图像应用题(带解析版答案)

八年级数学上册一次函数图像应用题(带解析版答案)参考答案与试题解析一.选择题(共5小题)1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元【分析】由图象可知,不超过100面时,一面收50÷100=0.5元,超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元;【解答】超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元。

故选A.2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2【分析】写出直线y=kx(k≠0)在y=ax+4(a≠0)上方部分的x的取值范围即可;【解答】由图可知,不等式kx>ax+4的解集为x>2;故选C.3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选B.4.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个 B.1个 C.2个 D.3个【分析】①由图象的数量关系,由速度=路程÷时间就可以直接求出结论;②先由图象条件求出行驶后面路程的时间,然后可求出维修用的时间;③由图象求出BC和EF的解析式,然后由其解析式构成二元一次方程组就可以求出t的值;④当t=3时,甲车行的路程为120km,乙车行的路程为:80×(3﹣2)=80km,两车相距的路程为:120﹣80=40km.【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【分析】(1)先由函数图象中的信息求出m的值,再根据“路程÷时间=速度”求出甲的速度,并求出a的值;(2)根据函数图象可得乙车行驶3.5﹣2=1小时后的路程为120km进行计算;(3)先根据图形判断甲、乙两车中先到达B地的是乙车,再把y=260代入y=40x ﹣20求得甲车到达B地的时间,再求出乙车行驶260km需要260÷80=3.25h,即可得到结论;(4)根据甲、乙两车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【分析】由已知可以得到A1,A2,A3,…点的坐标分别为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),…,由此可推出点A n,B n,A n+1,B n+1的坐标为(n,0),(n,),(n+1,0),(n+1,).由函数图象和已知可知要求的P n的坐标是直线A n B n+1和直线A n+1B n的交点.在这里可以根据推出的四点求出两直线的方程,从而求出点P n.【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为,(n,0),(n,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为:y﹣0=(x﹣n)+0,y﹣0=(x﹣n﹣1)+0,即,解得:,故答案为:(n+,).7.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为38.15℃.(精确到0.01℃)【分析】由于图象是表示的是时间与体温的关系,而在10﹣14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【解答】∵图象在10﹣14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=﹣,b=39.05,∴y=﹣x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.8.“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A 地时,则甲列车距离重庆km.【分析】先设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,依据题意列方程,求得未知数的值,进而得到重庆到A地的路程,以及乙列车到达A地的时间,最后得出当乙列车到达A 地时,甲列车距离重庆的路程.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【分析】(1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,可得x的值;(3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

2020八上6.3一次函数的图像课后练习(有答案)

2020八上6.3一次函数的图像课后练习(有答案)

2020八上6.3一次函数的图像课后练习班级:___________姓名:___________得分:___________一、选择题1.关于函数y=−x+1,下列结论正确的是()A. 图象必经过点(1,1)B. 图象经过第一、二、三象限C. 图象与y轴的交点坐标为(0,1)D. y随x的增大而增大2.已知点(−4,y1),(2,y2)都在直线y=−2x+3上,则y1,y2大小关系是()A. y1>y2B. y1=y2C. y1<y2D. 不能比较3.一次函数y=kx−k的图象大致是()A. B. C. D.4.下列说法不正确的是()A. 正比例函数是一次函数的特殊形式B. 一次函数不一定是正比例函数C. y=kx+b是一次函数D. y=2x的图象经过第一、三象限5.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.6.把水匀速滴进如图所示玻璃容器,那么水的高度随着时间变化的图象大致是()A. B. C. D.7.已知一次函数y=kx+3经过点(2,1),则一次函数的图象经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限二、填空题8.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而______.(填“增大”或“减小”)9.如图,直线l经过第二、三、四象限,其解析式为y=(m−2)x−m,则m的取值范围为______.10.已知点P(a−3,2b+4)与点Q(b+5,3a−7)关于原点对称,则直线y=ax+b经过________象限.11.点(−1,y1)、(2,y2)是直线y=−2x+1上的两点,则y1y2(填“>”或“=”或“<”)12.已知点P(−2,−4)在函数y=x+b的图象上,则b的值为_______.三、解答题13.已知y−4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x=−1时,求函数y的值;2(3)结合图象和函数的增减性,求当y<−2时自变量x的取值范围.14.已知一次函数的图象经过点(3,1)和(−1,−3).(1)求此一次函数的解析式;(2)求此一次函数的图象与两坐标轴围成的三角形的面积.15.已知一次函数y=(2m+1)x+3−m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.16.司机小刘开车从A地出发去360千米远的B地游玩,其行驶路程s与时间t之间的关系如图所示,当汽车行驶若干小时到达C地时,汽车发生故障,需停车检修,修好后又继续行驶,根据题意回答下列问题.(1)上述问题中反映的是两个变量______之间的关系,其中自变量是______,因变量是______;(2)汽车从A地到C地平均每小时行驶______千米;(3)汽车停车检修了______小时,修车的地方离B地的距离是______千米;(4)车修好后每小时走多少千米?答案和解析1.C解:A、∵当x=1时,y=0,∴图象不经过点(1,1),故本选项错误;B、∵k=−1<0,b=1>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=1,∴图象与y轴的交点坐标为(0,1),故本选项正确;D、∵k=−1<0,∴y随x的增大而减小,故本选项错误;2.A解:∵点(−4,y1),(2,y2)在直线y=−2x+3上,∴y1=8+3=11,y2=−4+3=−1,∵11>−1,∴y1>y2.3.C解:当k>0时,直线经过一,三,四象限,不存在此选项;当k<0时,直线经过二,四,一象限,C符合此条件.4.C解:A、正比例函数是一次函数的特殊形式,正确;B、一次函数不一定是正比例函数,正确;C、y=kx+b当k≠0时是一次函数,故错误;D、y=2x的图象经过第一、三象限,正确,5.A解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.6.D解:因为根据图象可知,物体的形状为首先大然后变小最后又变大,而水滴的速度是相同的,所以开始与最后上升速度慢,中间上升速度变快,7.B解:∵一次函数y=kx+3经过点(2,1),∴1=2k+3,解得:k=−1.∴一次函数的解析式为y=−x+3.∵k=−1<0,b=3>0,∴一次函数的图象经过的象限是:第一、二、四象限.8.减小解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,9.0<m<2解:∵直线y=(m−2)x−m经过第二、三、四象限,∴{m−2<0−m<0,∴0<m<2.10.第一、三、四解:∵点P(a−3,2b+4)与点Q(b+5,3a−7)关于原点对称,∴a−3=−(b+5)且2b+4=−(3a−7),解得a=7,b=−9,∵a=7>0,b=−9<0,则直线y =ax +b 经过第一、三、四象限.11. >解:∵一次项系数−2<0,∴y 随x 的增大而减小,又∵−1<2,∴y 1>y 2.12. −2解:∵P(−2,−4)在一次函数y =x +b 的图象上,∴−2+b =−4,解得b =−2.13. 解:(1)设y −4=kx ,∵当x =1时,y =2,∴2−4=k ,解得k =−2,∴y −4=−2k ,∴y 与x 之间的函数关系式为y =−2x +4;如图,(2)当x =−12时,y =−2×12+4=5;(3)当y <−2时自变量x 的取值范围为x >3.14.解:(1)设一次函数的解析式为:y=kx+b(k≠0),则{3k+b=1−k+b=−3,{k=1b=−2,∴一次函数的解析式为:y=x−2;(2)如图,令x=0,则y=x−2=−2,令y=0,则y=x−2=0,得x=2,∴A(2,0),B(0,−2),∴OA=OB=2,∴S△OAB=12OA⋅OB=2.∴此一次函数的图象与两坐标轴围成的三角形的面积为2.15.解:(1)由2m+1<0,可得m<−12,∴当m<−12时,随着x的增大而减小;(2)由{2m+1>03−m>0,可得−12<m<3,∴当−12<m<3时,函数图象经过第一、二、三象限.16.s与t t s60 1 240解:(1)上述问题中反映的是两个变量驶路程s与时间t之间的关系,其中自变量是t,因变量是s.故答案为:s与t;t;s;(2)汽车从A地到C地平均每小时行驶:360÷6=60(千米),故答案为:60;(3)汽车停车检修了1小时,修车的地方离B地的距离是:360−120=240(千米).故答案为:1;240;(4)240÷(6−3)=80(千米/小时).答:车修好后每小时走80千米.。

2020年浙教 版八年级上册同步练习:5.4《一次函数的图像》 含答案

2020年浙教 版八年级上册同步练习:5.4《一次函数的图像》   含答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2020年浙教新版八年级上册同步练习:5.4《一次函数的图像》一.选择题1.下列函数中,y随x增大而减小的函数是()A.y=﹣2+x B.y=3x+2C.y=4x D.y=4﹣3x2.函数y=﹣4x﹣5的图象不经过的象限是()A.第一B.第二C.第三D.第四3.正比例函数y=3x的图象经过()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A.y=﹣4x+2B.y=﹣6x C.y=﹣4x﹣2D.y=﹣2x5.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)6.下面所画的函数图象中,不可能是一次函数y=mx+2﹣m图象的是()A.B.C.D.7.一次函数y1=ax+b与一次函数y2=bx﹣a在同一平面直角坐标系中的图象大致是()A.B.C.D.8.若点A(﹣3,y1)和点B(1,y2)都在如图所示的直线上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1 <y2D.y1≤y29.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.10.函数y=|x﹣1|的图象是()A.B.C.D.11.直线y=kx+b的图象如图所示,则()A.k=﹣,b=﹣2B.k=,b=﹣2C.k=﹣,b=﹣2D.k=,b=﹣2 12.若正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个正比例函数的表达式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x二.填空题13.若点A(﹣2,y1),B(1,y2)都在正比例函数y=﹣5x的图象上,则y1y2(填“>、<或=”).14.在一次函数y=﹣2x+5图象上有A(x1,y1)和A(x2,y2)两点,且x1>x2,则y1y2(填“>,<或=”).15.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.16.一次函数y=kx+b的图象如图所示,其中b=,k=.17.已知y与x的函数如图所示,则y与x的函数解析式为.18.如图,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,与x轴交于点C,连接AB,AB=4,则OC的长为.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,则△AOB的面积为.20.如图,正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…在直线y=x+1上,点B1,B2,B3,…在x轴上.已知点A1是直线与y轴的交点,则点C2020的纵坐标是.三.解答题21.画出直线y=x﹣2,并求它的截距.22.在平面直角坐标系中,点A(2,2),点B(﹣4,0),直线AB交y轴于点C.试求直线AB的表达式和点C的坐标;并在平面直角坐标系中画出直线AB.23.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=,k=.(2)当x=30时,y=.(3)当y=30时,x=.24.直线y=kx+b经过点A(1,0)、B(0,﹣2).(1)求直线y=kx+b的解析式;(2)若点C在x轴上,且S△ABC=3S△AOB,求出点C坐标.25.如图,已知一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点;(1)求出A、B两点的坐标;(2)若点P在直线y=﹣2x﹣4上(与A、B不重合),且使S△POA=S△AOB,求出P点坐标.26.已知一次函数图形经过(0,5),(2,﹣5)两点.(1)求这个函数的表达式;(2)试判断点P(3,﹣5)是否在该直线上.27.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C坐标.28.已知一次函数y=﹣2x+4.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;(3)求△AOB的面积;(4)利用图象直接写出:当y≤0时,x的取值范围.参考答案一.选择题1.解:A、∵k=1>0,∴y随x的增大而增大,故本选项不符合题意;B、∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C、∵k=4>0,∴y随x的增大而增大,故本选项不符合题意;D、∵k=﹣3<0,∴y随x的增大而减小,故本选项符合题意.故选:D.2.解:∵在一次函数y=﹣4x﹣5中,k=﹣4<0,b=﹣5<0,∴函数y=﹣4x﹣5的图象经过第二、三、四象限,不经过第一象限.故选:A.3.解:正比例函数y=3x中k=3>0,因此图象经过第一、三象限,故选:B.4.解:将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得图象对应的函数关系式为:y=﹣4x﹣2.故选:C.5.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.6.解:根据图象知:A、m<0,2﹣m>0.解得m<0,所以有可能;B、m>0,2﹣m>0.解得0<m<2,所以有可能;C、m<0,2﹣m<0.两不等式无公共部分,所以不可能;D、m>0,2﹣m<0.解得m>2,所以有可能.故选:C.7.解:A、由y1的图象可知,a>0,b>0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;B、由y1的图象可知,a>0,b<0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;C、由y1的图象可知,a<0,b<0;由y2的图象可知,b<0,﹣a<0,即a>0,两结论相矛盾,故错误;D、由y1的图象可知,a>0,b>0;由y2的图象可知,b>0,﹣a<0,即a>0,两结论符合,故正确.故选:D.8.解:观察函数图象,可知:y随x的增大而减小,∵﹣3<1,∴y1>y2.故选:A.9.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.10.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.11.解:观察图象,可得直线y=kx+b的图象过点(0,﹣2)与(3,0)则有,解可得k=,b=﹣2,故选:B.12.解:将点(2,﹣1)代入正比例函数y=kx(k≠0),得﹣1=2k,∴k=﹣,∴函数的表达式为y=﹣x,故选:D.二.填空题13.解:根据题意得y1=﹣5×(﹣2)=10,y2=﹣5×1=﹣5,所以y1>y2.故答案为>.14.解:∵一次函数y=﹣2x+5中,k=﹣2<0,∴y随x的增大而减小.∵x1>x2,∴y1<y2.故答案为:<.15.解:由图象可得,当y>0时,x的取值范围是x<2,故答案为:x<2.16.解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y=kx+b(k≠0),把(0,3),(2,0)代入得,,解得b=3,k=﹣;故答案为3,﹣.17.解:观察图象可知:一次函数过原点,所以设函数解析式为y=kx,将(﹣7,2)代入得,﹣7k=2,k=﹣,所以一次函数解析式为y=﹣x.故答案为y=﹣x.18.解:∵点A坐标为(6,0),∴OA=6,∵AB=4,∴OB===2,∴b=OB=2,∴直线的解析式为y=x+2,令y=0,则x=﹣2,∴C(﹣2,0),∴OC=2,故答案为2.19.解:∵一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,∴,解得,∴一次函数的解析式为y=2x+2,设一次函数与y轴的交点为D∴D(0,2),∴S△AOB=S△AOD+S△BOD=+=3,故答案为3.20.解:∵当x=0时,y=x+1=1,∴点A1的坐标是(0,1),∵四边形A1B1C1A2是正方形,∴点C1的纵坐标是1,∵当x=1时,y=x+1=2,点A2的坐标是(1,2),∵四边形A2B2C2A3是正方形,∴点C2的纵坐标是2,同理,点A3的坐标是(3,4),点C3的纵坐标是4,∴点∁n的纵坐标是2n﹣1,∴点C2020的纵坐标是22019,故答案为:22019.三.解答题21.解:列表:x03y﹣20作图:因为当x=0时,y=﹣2,所以截距是﹣2.22.解:画点A(2,2),点B(﹣4,0),作直线AB,设直线AB的解析式为y=kx+b,把A(2,2),B(﹣4,0)分别代入得:,解得,∴直线AB的解析式为y=x+;当x=0时,y=x+=,∴C点坐标为(0,).23.解:(1)根据图形可得函数过点(3,0)和(0,2),将这两点代入得:,解得:k=﹣,b=2.(2)由(1)得函数解析式为:y=﹣x+2,∴当x=30时,y=﹣×30+2=﹣18;(3)当y=30时,则30=﹣x+2,解得x=﹣42.故答案为:2,﹣;﹣18;﹣42.24.解:(1)∵直线AB:y=kx+b(k≠0)过点A(1,0)和B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S△ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).25.解:(1)一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点,令y=0,则﹣2x﹣4=0,解得x=﹣2,令x=0,则y=﹣4,∴A(﹣2,0),B(0,﹣4);(2)∵A(﹣2,0),B(0,﹣4),∴OA=2,OB=4,∴S△OAB=×2×4=4,∵S△POA=S△AOB,∴S△POA=2.即OA•|y P|=|y P|=2,∴|y P|=2,即点P的纵坐标为±2.当点P的纵坐标为2时,有﹣2x﹣4=2,解得x=﹣3,此时点P的坐标为(﹣3,2);当点P的纵坐标为﹣2时,有﹣2x﹣4=﹣2,解得x=﹣1,此时点P的坐标为(﹣1,﹣2);∴点P的坐标为(﹣3,2)或(﹣1,﹣2).26.解:(1)设一次函数解析式为y=kx+b(k≠0),将(0,5),(2,﹣5)代入y=kx+b,得,解得:,∴这个函数的解析式为y=﹣5x+5.(2)当x=3时,y=﹣5×3+5=﹣10≠﹣5,∴点P(3,﹣5)不在该直线上.27.解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=﹣4;(2)∵S△AOC=4,点A(2,0),∴OA=2,∴•OA•y C=4,解得y C=4,把y=4代入y=2x﹣4得2x﹣4=4,解得x=4,∴C(4,4).28.解:(1)画出函数图象,如图所示;(2)当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4);当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);(3)S△AOB=OA•OB=×2×4=4;(4)观察函数图象,可知:当y≤0时,x≥2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上数学每日一练:通过函数图象获取信息并解决问题练习题及答案_2020年压轴题版
答案解析答案解析2020年八上数学:函数_函数基础知识_通过函数图象获取信息并解决问题练习题
1.
(2020牡丹.八上期末) 小明和爸爸从家步行去公园,爸爸先出发,一直匀速前进,小明的出发,家到公园的距离为2500m
,如图是小明和爸爸所走路程s (m)与步行时间t (min)的函数图象。

(1) 直接写出小明所走路程s 与时间t 的函数关系式
(2) 小明出发多少时间与爸爸第三次相遇?
(3) 在速度都不变的情况下,小明希望比爸爸早20min 到达公园,则小明在步行过程中停留的时间需作怎样的调整?考点: 通过函数图象获取信息并解决问题;2.
(2019嘉兴.八上期末) 甲、乙两位同学从学校出发沿同一条绿道到相距学校l500m 的图书馆去看书,甲步行,乙骑自行
车.图1中OD ,AC 分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象.
(1) 求线段AC 所在直线的函数表达式;
(2) 设d(m)表示甲、乙两人之间的路程,在图2中补全d 关于x 的函数图象(标注必要的数据);
(3) 当x 在什么范围时,甲、乙两人之间的路程至少为180m .
考点: 通过函数图象获取信息并解决问题;待定系数法求一次函数解析式;一次函数的实际应用;3.
(2019焦作.八上期末) 为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,
小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y (米)与出发的时间x (分钟)的函数图象,根据图象解答下列问题:
(1) 小亮在家停留了分钟.
(2) 求小亮骑单车从家出发去图书馆时距家的路程y (米)与出发时间x (分钟)之间的函数关系式.
(3) 若小亮和姐姐到图书馆的实际时间为m 分钟,原计划步行到达图书馆的时间为n 分钟,则n-m=分钟.
答案解析答案解析答案解析
考点: 通过函数图象获取信息并解决问题;一次函数的实际应用;4.
(2019榆林.八上期末) 如图,甲、乙两人利用不同的交通工具,沿同一路线从A 地出发到距离A 地350千米的B 地办事,甲先出发,乙后出发,甲、乙两人距
A 地的路程和时间的关系如图所示,根据图示提供的信息解答:
(1) 乙比甲晚小时出发;乙出发小时后追上甲;
(2) 分别求甲、乙两人离开A 地的路程s 关于t 的函数关系式;
(3) 求乙比甲早几小时到达B 地?
考点: 通过函数图象获取信息并解决问题;待定系数法求一次函数解析式;一次函数的实际应用;5.
(2019靖远.八上期末) 一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x 小时后,记客车离甲地的距离y 千米,轿车离甲地的距离y 千米,y 、y 关于x 的函数图象如图所示:
①根据图象直接写出y 、y 关于x 的函数关系式;
②当两车相遇时,求此时客车行驶的时间.
③相遇后,两车相距200千米时,求客车又行驶的时间.
考点: 通过函数图象获取信息并解决问题;待定系数法求一次函数解析式;一次函数与二元一次方程(组)的综合应用;
2020年八上数学:函数_函数基础知识_通过函数图象获取信息并解决问题练习题答案
1.
答案:
2.答案:121212
3.答案:
4.答案:
5.答案:。

相关文档
最新文档