实数知识点与对应题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数知识点与对应题型
一、平方根:(11——19的平方)
1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。(也称为二次方根),也就是说如果x 2=a ,
那么x 就叫做a 的平方根。
2、平方根的性质:
①一个正数有两个平方根,它们互为相反数;
一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。( a 叫被开方数, “”是二次根号,这里“”,亦可写成“2”)
②0只有一个平方根,就是0本身。算术平方根是0。
③负数没有平方根。
3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。
4、(1) 平方根是它本身的数是零。
(2)算术平方根是它本身的数是0和1。
(3)()()()().0,0,0222<-=≥=≥=a a a a a a a a a
(4)一个数的两个平方根之和为0
二、立方根:(1——9的立方)
1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。(也称为二次方根),也就是说如果x 3
=a ,
那么x 就叫做a 的立方根。记作“3a ”。
2、立方根的性质:
①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(
3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。
4、立方根是它本身的数是1,0,-1。
5、平方根和立方根的区别:
(1)被开方数的取值范围不同:在±a 中,a ≥0,在a 3中,a 可以为任意数值。 (2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。
6、立方根和平方根:
不同点:
(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:±a 中的被开方数
a 是非负数;3a 中的被开方数可以是任何数.
(2)正数有两个平方根,任何数都有惟一的立方根;
(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0.
共同点:0的立方根和平方根都是0.
三、实数:
1、定义:有理数和无理数统称为实数
无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。
有理数:有限小数或无限循环小数
注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式
2、实数的分类:
实数有理数正有理数零负有理数有限小数或无限循环小数
无理数正无理数负无理数无限不循环小数⎧⎨⎪⎩⎪⎫⎬⎪⎪⎭⎪⎪⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪
实数的性质:①实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。
②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。
③两个实数可以按有理数比较大小的法则比较大小。
④实数可以按有理数的运算法则和运算律进行运算。
3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到
精确的数,用以描述所研究的量,这样的数就叫近似数。
取近似值的方法——四舍五入法
4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数
都称为这个近似数的有效数字
5、科学记数法:
把一个数记为做科学记数法。是整数)的形式,就叫其中n ,10a 1(10a n <≤⨯
6、实数和数轴:
每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。实数与数轴上的点是一一对应的。
一、平方根:
(一)文字类题目:
一个数的平方等于它本身,这个数是 ;
一个数的平方根等于它本身,这个数是 ;
一个数的算术平方根等于它本身,这个数是
一个数的立方根等于它本身,这个数是 ;
一个正数的两个平方根的和是________.
一个正数的两个平方根的商是________.
(二). 定义:
1.(1) 81 的平方根是9±的数学表达式是( )
A. 981=
B. 981=±
C. 981±=
D. 981±=±
81的平方根是( )
A. 9
B.9
C.9±
D.3± 实数