例析基本不等式中“1”的代换及应用

合集下载

高一数学 基本不等式1的代换

高一数学 基本不等式1的代换

高一数学基本不等式1的代换基本不等式是高中数学中的重要概念,它在解决各类数学问题时起到了关键作用。

本文将通过讲解基本不等式1的代换,来帮助同学们更好地理解和应用这一概念。

基本不等式1的代换是指,在给定的不等式中,通过对不等式两边进行代换或变形,得到一个新的不等式,从而方便求解问题。

在这个过程中,我们要注意保持不等式的方向性和有效性。

我们来看一个简单的例子:已知不等式 a > b,现在我们要将其代换为另一个不等式。

我们可以令x = a - b,这样原不等式可以变形为x > 0。

通过这个代换,我们将原来的不等式转化为了一个更简单的形式,从而更方便地进行分析和推导。

接下来,我们来看一个稍微复杂一些的例子:已知不等式2x - 3 > 5,现在我们要将其代换为另一个不等式。

我们可以令y = 2x - 8,这样原不等式可以变形为y > 0。

通过这个代换,我们将原来的不等式转化为了一个更简单的形式,从而更方便地进行分析和推导。

除了代换外,我们还可以通过变形的方式来改写不等式。

例如,对于不等式3x + 2 > 7,我们可以通过将其两边同时减去2,得到3x > 5。

这样,我们就将原不等式转化为了一个更简单的形式,从而更方便地进行分析和推导。

基本不等式1的代换在解决实际问题中起到了重要作用。

例如,当我们需要求解一个含有多个变量的不等式时,可以通过代换的方式将其转化为只含有一个变量的不等式,从而更方便地进行求解。

另外,基本不等式1的代换也可以帮助我们简化不等式的形式,从而更容易观察和发现不等式的特点。

在应用基本不等式1的代换时,我们需要注意以下几点:首先,代换应该是合理的,即代换后的不等式与原不等式的关系应该一致。

其次,代换应该能够简化不等式的形式,从而更便于进行分析和推导。

最后,代换后的不等式应该保持原不等式的方向性和有效性,即代换不应该改变不等式的结论。

基本不等式1的代换是解决数学问题中常用的方法之一。

高一数学 基本不等式1的代换

高一数学 基本不等式1的代换

高一数学基本不等式1的代换高一数学基本不等式1的代换基本不等式是高中数学中的重要概念之一,它在解决数学问题和证明数学定理时起到了关键作用。

而基本不等式1的代换则是在解决一些复杂的不等式问题中的常用技巧之一。

本文将通过几个具体的例子,来介绍基本不等式1的代换方法及其应用。

我们先回顾一下基本不等式1的表达式。

基本不等式1是指对于任意的正实数a、b和正整数n,都有(a+b)^n≥C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n) * a^0 * b^n。

其中,C(n,m)表示从n个元素中选取m个元素的组合数。

下面,我们将通过实例来介绍基本不等式1的代换方法。

例1:证明当x>0时,有x^2 + 1/x^2 ≥ 2。

解:由于不等式中含有平方项,我们可以尝试将其转化为基本不等式1的形式。

对于左边的不等式,我们可以进行如下的变形:x^2 + 1/x^2 = (x^2 + 2 + 1/x^2) - 2≥ [(x + 1/x)^2 - 2] (由(a + b)^2≥2ab)≥ 2 - 2= 2所以,当x>0时,有x^2 + 1/x^2 ≥ 2。

例2:证明当a、b、c均为正实数时,有(a+b+c)(1/a+1/b+1/c) ≥ 9。

解:同样地,我们可以利用基本不等式1的代换方法来解决这个不等式。

对于左边的不等式,我们可以进行如下的变形:(a+b+c)(1/a+1/b+1/c) = (a+b+c)(ab+bc+ca)/(abc)= [(a+b+c)/3][(ab+bc+ca)/3]/(abc)≥ [(√(abc))/3][(√(abc))/3](abc) (由基本不等式1)= abc/9由于a、b、c均为正实数,所以abc>0,所以abc/9>0。

所以,当a、b、c均为正实数时,有(a+b+c)(1/a+1/b+1/c) ≥ 9。

2023年高三一轮复习专题一基本不等式及其应用-教师版

2023年高三一轮复习专题一基本不等式及其应用-教师版

高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。

高中数学基本不等式的解法十例

高中数学基本不等式的解法十例
ab
解 析 : 由 三 点 共 线 可 得 a b 1 , 观 察 形 式 采 用 “1” 的 代 换 , 故 而
1
1
1 a
1 b
a
b
2
b
a
,等式右侧积为定值,故而利用积定和最小法则可
ab
1
ab
得 : b a 2 ba 2 , 当 且 仅当 b aab1 时 取 等号 。故 而 可 得
a b ab
2x 2y
42x
y
2
2x 2y 42x y 4 , 当 且 仅 当
2x y 2x 2y
2x y 2x 2y
2x 2y 2x y
42x y
2x 2y
2 ,亦即
x
y
0 3 2
时取等号。此时可得 4 x
3y min
9 2

问题 3:方程中的基本不等式
解题思路:将需要利用不等式的项移到方程的一边,利用基本不等式求解即可。
3
2
3 a
2 b
2a
3b
12
9b a
4a b
,观察分子可得分子积为定值,根据积定和
ab
6
6
最小法则可得: 9b 4a 2
ab
9b a
4a b
12
,当且仅当
9b a
4a b
a b
3 2
1
时取等号,故
而可得
3
2
12
9b a
4a b
4

ab
6
(不等式与解三角形)例题 7: .
中,角
的对边分别为
a
2
b
2
ab

专题2.1 基本不等式的应用技巧(解析版)

专题2.1 基本不等式的应用技巧(解析版)

专题2.1 基本不等式的应用技巧 闯关技巧在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用.一、加项变换例1 已知关于x 的不等式x +1x -a≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5解析 ∵x >a ,∴x -a >0,∴x +1x -a =(x -a )+1x -a+a ≥2+a , 当且仅当x =a +1时,等号成立,∴2+a ≥7,即a ≥5.反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.二、平方后使用基本不等式例2 若x >0,y >0,且2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 923 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2⎝⎛⎭⎫1+y 23 ≤3·⎝ ⎛⎭⎪⎫2x 2+1+y 2322=3×⎝⎛⎭⎫922. 当且仅当2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为923. 三、展开后求最值例3 若a ,b 是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10答案 C解析 ∵a ,b 是正数,∴⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =1+4a b +b a +4=5+4a b +b a≥5+24a b ·b a=5+4=9, 当且仅当b =2a 时取“=”.四、常数代换法求最值例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94C .2D .3 答案 B解析 由x +y =1得(x +2)+(y +1)=4,即14[(x +2)+(y +1)]=1, ∴4x +2+1y +1=⎝⎛⎭⎫4x +2+1y +1·14[(x +2)+(y +1)] =14⎣⎢⎡⎦⎥⎤4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94, 当且仅当x =23,y =13时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.五、代换减元求最值例5 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 答案 8解析 ∵实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12, ∴x =3y +3,∴0<3y +3<12,解得y >3. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4,x =37时取等号.反思感悟 在解含有两个以上变元的最值问题时,通过代换的方法减少变元,把问题化为两个或一个变元的问题,再使用基本不等式求解.六、建立求解目标不等式求最值例6 已知a ,b 是正数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值等于________. 答案 62-1解析 a ,b 是正数,且(a +b )(a +2b )+a +b =9,即有(a +b )(a +2b +1)=9,即(2a +2b )(a +2b +1)=18,可得3a +4b +1=(2a +2b )+(a +2b +1)≥2(2a +2b )(a +2b +1)=62,当且仅当2a +2b =a +2b +1时,上式取得等号,即有3a +4b 的最小值为62-1.例7 已知a >0,b >0,且a +b +1a +1b=5,则a +b 的取值范围是( ) A .1≤a +b ≤4B .a +b ≥2C .1<a +b <4D .a +b >4答案 A解析 ∵a +b +1a +1b=5, ∴a +b +a +b ab=5. ∵a >0,b >0,ab ≤⎝⎛⎭⎫a +b 22, ∴1ab ≥4(a +b )2, ∴a +b +a +b ab ≥a +b +4a +b, ∴a +b +4a +b≤5, 即(a +b )2-5(a +b )+4≤0,∴(a +b -4)(a +b -1)≤0,即1≤a +b ≤4,当a =b =12时,左边等号成立, 当a =b =2时,右边等号成立,故选A.反思感悟 利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值. 闯关训练一、单选题1.已知实数a 、b 满足1)28()(a b ++=,有结论:①存在0a >,0b >,使得ab 取到最大值;②存在0a <,0b <,使得a+b 取到最小值;正确的判断是( )A .①成立,②成立B .①不成立,②不成立C .①成立,②不成立D .①不成立,②成立【答案】C【分析】 由已知结合基本不等式及其应用条件分别检验①②即可判断.【详解】解:因为1)28()(a b ++=,所以(2)6ab a b =-+,①0a >,0b >,22224()()44a b a b +=+++-≥=,当且22b =时取等号,所以64ab -≥,解得2ab ≤,即ab 取到最大值2;①正确;②0a <,0b <,当20a +>时,881233322a b a a a a +=+-=++-≥=++,当且仅当822a a +=+时取等号,此时2a =不符合0a <,不满足题意;当20a +<时,888123(2)33222a b a a a a a a ⎡⎤+=+-=++-=--+--≤--⎢⎥+++⎣⎦当且仅当()822a a -+=-+时取等号,此时2a =- 此时取得最大值,没有最小值,②错误.故选:C .【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2.已知1,0x y ,且1211x y +=-,则21x y +-的最小值为( )A .9B .10C .11D .7+【答案】A【分析】 利用“乘1法”将问题转化为求[]12(1)21x y x y ⎛⎫-++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解.【详解】1x >,10x ∴->,又0y >,且1211x y+=-,[]1222(1)21(1)25511y x x y x y x y x y ⎛⎫-∴+-=-++=++≥+ ⎪--⎝⎭9=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故21x y +-的最小值为9.故选:A .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.已知a ,b ∈R ,a +b =2.则221111a b +++的最大值为( )A .1B .65CD .2 【答案】C【分析】 化简配方可得211a ++211b +=242(1)(1)4ab ab ---+,令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0,则242(1)(1)4ab ab ---+=2424t t -+,令4﹣2t =s (s ≥4),即t =42s -,再由基本不等式计算可得最大值. 【详解】解:a ,b ∈R ,a +b =2. 则211a ++211b +=2222221()a b a b ab +++++ =222()221()2()a b ab a b ab ab +-+++-+=26252()ab ab ab --+=242(1)(1)4ab ab ---+, 令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0, 则242(1)(1)4ab ab ---+=2424t t -+, 令4﹣2t =s (s ≥4),即t =42s -,可得2424t t -+=2(4)44s s -+=4328s s +-, 由s +32s, 当且仅当s =t =2﹣可得4328s s+-≤12, 则211a ++211b +故选:C.【点睛】本题考查基本不等式的运用,注意化简变形和换元,以及等号成立的条件,考查运算能力,属于较难题.4.已知正实数,a b 满足1a b +=,则222124a b a b +++的最小值为( ) A .10B .11C .13D .21【答案】B【分析】利用“乘1法”与基本不等式的性质即可得出.【详解】解:正实数,a b 满足1a b +=, 则2221241422a b a b a b a b+++=+++, ()142a b a b ⎛⎫=+++ ⎪⎝⎭4777411b a a b =++≥++=, 即:22212411a b a b+++≥, 当且仅当4b a a b =且1a b +=,即21,33b a ==时取等号, 所以222124a b a b+++的最小值为11. 故选:B.【点睛】本题考查了“乘1法”与基本不等式的性质的应用,同时考查转化思想和计算能力. 5.已知ab 14=,a ,b ∈(0,1),则1211a b +--的最小值为 A .4B ..6 C.3D.4【答案】D【分析】 根据14b a =代入1211a b +--,变形为2244414a a ++--,等价处理成()()()2444123444121a a a a ⎛⎫+-+-+ ⎪--⎝⎭,利用基本不等式求最值. 【详解】由题:ab 14=,a ,b ∈(0,1),14b a=, 12121111114112482a b a a a aa +=+=+---+----212141a a =++-- 2424441a a =++-- ()()()2444123411442a a a a ⎛⎫=+-+-+ ⎪--⎝⎭ ()(412442212323444123a a a a ⎛⎫--=++++≥++ ⎪--⎝⎭, 当且仅当()414444124a a a a --=--时,取得最小值,解得当a =4+故选:D【点睛】 此题考查利用基本不等式求最小值,关键在于根据题目所给条件准确变形,根据积为定值求最值,注意考虑等号成立的条件.6.正数a ,b 满足9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是A .[)3,+∞B .(]3,-∞C .(],6-∞D .[)6,+∞【答案】A利用基本不等式求得a b +的最小值,把问题转化为()m f x ≥恒成立的类型,求解()f x 的最大值即可.【详解】9a b ab +=,191a b∴+=,且a ,b 为正数, 199()()1010216b a b a b a b a b a b a ∴+=++=+++, 当且仅当9b a a b=,即4,12a b ==时,()16min a b +=, 若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则216218x x m ≥-++-对任意实数x 恒成立,即222m x x ≥-++对任意实数x 恒成立,2222(1)33x x x -++=--+,3m ∴≥,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.二、填空题 7.设1x >-则231x x y x ++=+的最小值为________【答案】1##【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值.【详解】由1x >-,可得10x +>.可令()10t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =,1x =时,等号成立.故答案为:1.8.若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为______.【答案】2的最大值即可. 【详解】因,0x y >,则()x a x y a +≤+⇔,()222222x y x x y x yx y ++⋅+=≤==++,当且仅当2x y =时取“=”,则2a ≥, 所以实数a 的最小值为2.故答案为:2 9.,,a b c 是不同时为0的实数,则2222ab bc a b c +++的最大值为________. 【答案】12【分析】 先变形得22222222ab bc ab bc a b c a b b c ++=+++++,再利用重要不等式得到222a b ab +≥,222b c bc +≥,代入即可求解.【详解】22222222ab bc ab bc a b c a b b c ++=+++++, 222a b ab +≥,222b c bc +≥当且仅当a b c ==时取等号,所以222222212222ab bc ab bc ab bc a b c a b b c ab bc +++=≤=++++++ ∴2222ab bc a b c +++的最大值为12. 故答案为:12.10.已知1m ,0n >,且223m n m +=,则214m m n +-的最小值为_______. 【答案】94【分析】首先变量替换为223n m m =-,变形后得()22114123m m n m m +=+---,再利用换元,结合基本不等式求最值.【详解】因为223m n m +=,所以223n m m =-,因为0n >,1m ,所以2230n m m =->,得13m <<, 所以()()2222114112323m m m n m m m m m +=+=+-----, 记1,3a m b m =-=-,所以132a b m m +=-+-=, 所以12a b +=,且0,0a b >>, 所以()221215141232444m a b a b b a m n m m a b a b a b +++=+=+=+=++---5944≥+,当且仅当4a b b a =即24,33b a ==等号成立, 此时73m =,4977929n -==. 故答案为:9411.若0,0,2,a b a b >>+=则下列不等式对一切满足条件的a ,b 恒成立的是___________.(写出所有正确命题的序号)①1ab ≤;≤③222a b +≥;④333a b +≥;⑤112a b+≥. 【答案】①③⑤【分析】根据基本不等式逐序号分析即可.【详解】 ①212a b ab +⎛⎫≤= ⎪⎝⎭,取等号时1a b ==,故正确;②224a b =++=+,2≤,取等号时1a b ==,故错误;③()222242422a b a b ab ab +≥+-=-≥-=,取等号时1a b ==,故正确;④()()()()()23322232432432a b a b a b ab a b ab ab ⎡⎤+=++-=+-=-≥⨯-=⎣⎦,取等号时1a b ==,故错误; ⑤112221a b a b ab ab ++==≥=,取等号时1a b ==,故正确; 故答案为:①③⑤12.若,0x y >,24x y +=,则()()2112x y xy++的最小值为___________. 【答案】9【分析】将所求代数式展开,将24x y +=代入化简,由基本不等式求出xy 的最大值,即可求所求代数式的最小值. 【详解】 因为24x y +=, 所以()()()()21122122252104x y x y xy xy xy xy xy xy++++++===+,因为42x y =+≥≤=2xy ≤,当且仅当242x y x y +=⎧⎨=⎩即21x y =⎧⎨=⎩时等号成立,xy 取得最大值为2,所以()()211210104492x y xy xy ++=+≥+=,所以()()2112x y xy++的最小值为9,故答案为:9.13.若3a b +=,0b >,则13a a b+的最小值为__________. 【答案】59【分析】结合基本不等式的应用条件对a 进行讨论,利用基本不等式求最值,计算即可得结果. 【详解】 因为13a a b+有意义,所以0a ≠, 而3a b +=,0b >,因此3a <且0.a ≠ (1)当0<<3a 时,因此111173399999a a ab a b a a b a b a b a b ++=+=+=++≥+=, 当且仅当3b a =,即34a =,94b =时,等号成立, 所以13a a b +的最小值为79. (2)当0a <时,则0ab <,0b a<, 因此11133999a a a b a b a a b a b a b a b +⎛⎫+=--=--=-+-- ⎪⎝⎭1599≥-+=,当且仅当3b a =-,即32a =-,92b =时,等号成立,所以13a a b +的最小值为59. 综上所述,13a a b +的最小值为59. 故答案为:59.14.正数,a b 满足912a b+=,若22a b x x +≥+对任意正数,a b 恒成立,则实数x 的取值范围是___________【答案】{}42x x -≤≤ 【分析】先利用基本不等式求解出a b +的最小值,然后解一元二次不等式可求得结果. 【详解】因为()191191022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭,所以()1110=106822a b ⎛+≥++= ⎝, 取等号时3912a ba b =⎧⎪⎨+=⎪⎩,即62a b =⎧⎨=⎩,所以228x x +≤,解得{}42x x -≤≤, 故答案为:{}42x x -≤≤.15.已知正实数a ,b 满足1a b +=,则11a ab+的最小值是______.【答案】3+【分析】利用“1”的代换,转化为()211a b a b a ab a ab+++=+23b a a b =++,利用基本不等式求解. 【详解】()2221121a b a b b a b ab a ab a ab a ab+++++=+=++,2333b a a b =++≥=+2a =1b =时取等号.所以则11a ab+的最小值是3+故答案为:3+16.若正实数x 、y 满足2610x y x y +++=,则52y x-的最大值是______. 【答案】4 【分析】分析可得出254110x y x y x y -=+++-,利用基本不等式可得出25x y-的最小值,即可得出52y x -的最大值. 【详解】 由题意可得26100x y x y+++-=,所以,254110104x y x y x y -=+++-≥=-,所以,524y x -≤,当且仅当21x y =⎧⎨=⎩时,等号成立,此时有524y x -=.因此,52y x-的最大值是4. 故答案为:4.17.已知0x >,0y >,22x y +=,则22524x y x yxy+++的最小值为___________.【答案】4 【分析】利用22x y +=代入,将式子进行齐次化处理,变为()22252x y x y xy+++,进一步使用均值不等式即可. 【详解】()222222222225252454544x y x y x y x y x y x y x xy y xy xy xy xy++++++++++++===2229294444x y x yxy y x+=+=++≥= 当且仅当222922x y x y ⎧=⎨+=⎩时,等号成立.所以22524x y x y xy+++的最小值为4.故答案为:4. 【点睛】易错点睛:值得注意的是,如果直接将式子拆分化简,变成两个式子分别求最值的话,会发现等号是取不到的,所以我们采用“齐次化”的方法,将()224x y +=代入处理.18.已知正实数,x y 满足()24,xy x y +=则2x y +的最小值为_______________.【答案】【分析】根据22340x y xy -=+,利用一元二次方程的解法结合0x >,0,y >得到2y x =-2x y +=. 【详解】因为正实数,x y 满足()24xy x y +=,所以22340x y xy -=+,解得2y x ==-±因为0x >,0,y >所以2y x =-所以2x y +=当且仅当12x y =-=,取等号,所以2x y +的最小值为故答案为:【点睛】关键点点睛:本题关键是利用方程思想,由条件解得x ,将问题转化为2x y +=决.三、解答题19.有一种变压器铁芯的截面是如图所示的正十字形,为保证磁通量的稳定性,要求十字形铁芯的面积为2.为节约成本,需使用来绕铁芯的铜线最省,即正十字形外接圆周长最短.问当正十字形的长()CD 和宽()AB 为多少厘米时,正十字形外接圆周长最短,最短是多少厘米?【答案】,宽为3cm时,正十字形外接圆周长最短,最短是.【分析】设AB a,CD b=,由十字形铁芯的面积22ab a-=b半径的平方可表示为22222a bR⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,代入b化简可得22258116R aa⎛⎫=+⎪⎝⎭,利用均值不等式可得minR【详解】设正十字形的宽AB a厘米,长CD b=厘米,且0,0a b>>,则由题意得:十字形铁芯的面积22ab a-=所以2ab=,正十字形外接圆周长最短,则圆半径最短,圆半径()22222221224142a bR a baa⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎢⎥=+⎢⎥⎝⎭⎣⎦2258116aa⎛⎫=+⎪⎝⎭20,0a a>>,228118aa∴+≥2225815181616R aa⨯⎛⎫∴=+⎪⎝⎭当且仅当2281aa=时即3cma=时,2minR,此时,32b =,min R =,正十字形外接圆周长最短为:22l R ππ==.答:,宽为3cm 时,. 20.某天数学课上,老师介绍了基本不等式的推广:()12212,,0nn n a a a a a a a n+++≤≥.小明由此得到启发,在求33x x -,[)0,x ∈+∞的最小值时,小明给出的解法是:3331132323322x x x x x x x -=++--≥-=--=-,当且仅当1x =时,取到最小值-2.(1)请你模仿小明的解法,研究44x x -,[)0,x ∈+∞上的最小值; (2)求出当0a >时,3x ax -,[)0,x ∈+∞的最小值.【答案】(1)-3;(2)【分析】(1)根据小明解法44411143x x x x -=+++--,利用均值不等式求解;(2)转化条件33x ax x ax -=,应用均值不等式求解.【详解】(1)由0x ≥,知44411143434433x x x x x x x -=+++--≥-=--=-, 当且仅当1x =时,取到最小值-3; (2)由0a >,0x ≥,知33x ax x ax ax -=ax ax =-=当且仅当3x =21.生命在于运动,运动在于锻炼.其中,游泳就是一个非常好的锻炼方式.游泳有众多好处:强.身健体;保障生命安全;增强心肺功能;锻炼意志,培养勇敢顽强精神;休闲娱乐,促进身心健康.近几年,游泳池成了新小区建设的标配.家门口的“游泳池”,成了市民休闲娱乐的好去处.如图,某小区规划一个深度为2m ,底面积为21000m 的矩形游泳池,按规划要求:在游泳池的四周安排4m 宽的休闲区,休闲区造价为200元2/m ,游泳池的底面与墙面铺设瓷砖,瓷砖造价为100元2/m .其他设施等支出大约为1万元,设游泳池的长为m x .(1)试将总造价y (元)表示为长度x 的函数; (2)当x 取何值时,总造价最低,并求出最低总造价.【答案】(1)()100020001128000y x x x ⎛⎫=++> ⎪⎝⎭;(2)当x =时,总造价最低,且最低总造价为()112800元. 【分析】(1)求出游泳池的宽,分别计算出铺游泳池的花费和休闲区的花费,即可得出总造价y (元)关于x 的函数;(2)利用基本不等式可求得y 的最小值,利用等号成立可得出结论. 【详解】(1)因为游泳池的长为m x ,所以游泳池的宽为1000m x, 铺游泳池的花费为1000100010010002222400250x x x x ⎛⎫⎛⎫⨯+⨯+⨯⨯=++ ⎪ ⎪⎝⎭⎝⎭, 休闲区的花费为()1000100020088100016008x x x x ⎡⎤⎛⎫⎛⎫⨯++-=++⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以,总造价为100010001000400250160082000112800y x x x x x x ⎛⎫⎛⎫⎛⎫=+++++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中0x >;(2)由基本不等式可得100020001128002000112800112800y x x ⎛⎫=++≥⨯= ⎪⎝⎭(元),当且仅当x =.因此,当x =时,总造价最低,且最低总造价为()112800元.22.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米. 【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可; (2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x=. 因为矩形草坪的长比宽至少大9米,所以4009x x+,所以294000x x +-,解得2516x -. 又0x >,所以016x <. 所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.23.一个圆心为O 的半圆形如图所示,C 、D 在半圆弧AB 上,AC BD =,AD 与BC 交于点P ,且10AC BC +=.(1)设AC x =,CP y =,求y 关于x 的函数关系式; (2)求APC △面积的最大值:【答案】(1)501010xy x-=-()05x <<;(2)最大值为75-【分析】(1)在直角 APC △中222AP AC CP =+,得501010xy x-=-,再由边长大于零得定义域可得解析式;(2)250575APC S t t ⎛⎫=-+- ⎪⎝⎭△,由基本不等式求最值可得答案. 【详解】(1)因为10AC BC +=,所以10BC x =-,又CP y =,AC BD =,所以AC BD =,90ACP BDP ∠=∠=, 又APC BPD ∠=∠,所以CAP DBP ∠=∠ 所以ACP BDP ≅, 所以10PB PA x y ==--. 依题意可得CA CB ⊥,在直角 APC △中,222AP AC CP =+, 即222(10)x y x y --=+,整理可得501010xy x-=-,由010********x x x x ⎧⎪>⎪->⎨⎪-⎪>-⎩得05x <<, 所以501010xy x-=-()05x <<.(2)115010(255)221010APC x x x S xy x x x--==⋅=--△, 令10x t -=,则10x t =-,因为05x <<,所以510t <<,所以(10)(255)25025057575275APC t t S t t t---⎛⎫==-+--=- ⎪⎝⎭△当且仅当2505t t=,即t =10x =-. 故APC △面积的最大值为75-24.如图所示,某市现有自市中心O 通往正西和东北方向的两条主要公路,为了解决该交通拥挤问题,市政府决定修建一条环城公路,分别在通往正西和东北方向的公路上选取A 、B 两点,使环城公路在A 、B 间为直线,要求AB 路段与市中心O 的距离为10km ,且使A 、B 间的距离||AB 最小,请你确定A 、B 两点的最佳位置(不要求作近似计算).【答案】A 、B 两点的最佳位置是离市中心O 均为处. 【分析】先以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立直角坐标系.设(,0)A a -、(,)B b b ,则可得直线AB 的方程,再根据点到直线的距离公式可得2222100(22)a b a b ab =++,进而求得ab 的范围,再根据两点间的距离求得10abAB =,进而可得||AB 的范围及最小值.当||AB 取最小值时可求得a ,b 的值,进而求出||OA 和||OB ,确定A ,B 的位置. 【详解】以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立如下图所示的直角坐标系设(,0)A a -、(,)B b b (其中0a >,0)b >,则AB 的方程为b ab y x a b a b=⋅+++, 即()0bx a b y ab -++=.2222100(22)100(22)a b a b ab a ab ∴=++200(1ab =.0ab >,200(21)ab ∴+.当且仅当“222a b =”时等号成立,而10ab AB ==, 20(21)AB ∴+.当222a b =,ab =||AB 取最小值,即a =b =此时OA a ==,OB =A ∴、B 两点的最佳位置是离市中心O 均为处.25.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为4000 m 2矩形市民休闲广场.全国文明城市是中国大陆所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:m 2), 矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)当休闲广场东西距离为40m 时,用地最小值为4880 m 2.【分析】(1)由广场面积可得矩形广场的南北距离为4000xm ,进而可求得结果;(2)根据基本不等式可求得结果.【详解】(1)因为广场面积须为40002m ,所以矩形广场的南北距离为4000xm , 所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知1600040401040404040800=4840S x x =++≥++,当且仅当40x =时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为48802m .26.某旅游公司在相距为100km 的两个景点间开设了一个游船观光项目.已知游船最大时速为50/km h ,游船每小时使用的燃料费用与速度的平方成正比例,当游船速度为20/km h 时,燃料费用为每小时60元.其它费用为每小时240元,且单程的收入为6000元.(1)当游船以30/km h 航行时,旅游公司单程获得的利润是多少?(利润=收入-成本) (2)游船的航速为何值时,旅游公司单程获得的利润最大,最大利润是多少?【答案】(1)4750元;(2)游轮的航速应为40/km h ,最大利润是4800元.【分析】(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),根据利润=收入-成本建立函数关系式,所以24000600015(050)y v v v=--<,代入30/v km h =即可求得; (2)利用基本不等式求出最大利润即可.【详解】解:(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),因为游船的燃料费用为每小时2·k v 元,依题意2·2060k =,则320k =. 所以23100100240006000(?240?)600015(050)20y v v v v v v=-+=--<. 30/v km h =时,4750y =元;(2)2400060001560004800y v v =---=, 当且仅当2400015v v=,即40v =时,取等号. 所以,旅游公司获得最大利润,游轮的航速应为40/km h ,最大利润是4800元.27.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100km ,按交通法规定:这段公路车速限制在40~100(单位:km/h)之间.假设目前油价为7.2元/L ,汽车的耗油率为2(3)360x +L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资)【答案】租车的总费用最少是280元,车速为70km/h .【分析】设总费用为y 元,再根据题意求出y 与x 的关系式,再利用基本不等式求解即可【详解】解设总费用为y 元.由题意,得()2100100980076.47.23240100360x y x x x x x⎛⎫=⨯+⨯⨯+=+≤≤ ⎪⎝⎭.因为98002280y x x =+≥=. 当且仅当98002x x=,即x =70时取等号. 所以这次租车的总费用最少是280元,此时的车速为70km/h .28.为应对疫情需要,某医院需要临时搭建一处占地面积为2300m 的矩形隔离病区,拟划分6个工作区域,布局示意图如下.根据防疫要求,所有内部通道(示意图中细线部分)的宽度为2m ,整个隔离病区内部四周还要预留宽度为3m 的半污染缓冲区(示意图中粗线部分),设隔离病区南北长x m .(1)在满足防疫要求的前提下,将工作区域的面积表示为南北长x 的函数()f x ,并写出x 的取值范围;(2)应该如何设计该隔离病区的边长,才能使工作区域的总占地面积最大?(结果精确到0.1m )【答案】(1) ()f x =30003808x x ⎛⎫-+ ⎪⎝⎭,7562x ⎛⎫<< ⎪⎝⎭;(2) 隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.【分析】(1)根据长方形面积计算公式,求出各边边长,然后用总面积减去内部通过到面积和半污染缓冲区面积即可;(2)根据第一问表达式,结合基本不等式求最值即可.【详解】(1)南北长x ,则东西长300x , 300300()300[32(6)32][(6)2822]f x x x x x ⎛⎫=-⨯+-⨯⨯--⨯+-⨯⨯ ⎪⎝⎭=30003808x x ⎛⎫-+ ⎪⎝⎭ ,7562x ⎛⎫<< ⎪⎝⎭ .(2)由(1)可得: 753000682x x x <<+≥, 当且仅当30008,x x x==.此时工作区域面积达到最大,故隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.29.某水库堤坝因年久失修,发生了渗水现象,当发现时已有2200m 的坝面渗水.经测算知渗水现象正在以每天24m 的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积22m ,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水21m 的损失为250元.现在共派去x 名工人,抢修完成共用n 天. (1)写出n 关于x 的函数关系式;(2)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).【答案】(1)1002n x =-,3x ≥,x N +∈;(2)52名工人. 【分析】(1)根据已经渗水的面积和扩散的面积之和等于x 名维修工人抢修n 天所抢修的面积列方程即可;(2)设总损失为y ,则125502502y nx x nx =++⨯,将其整理为关于x 的函数,再利用基本不等式即可求最值.【详解】(1)由题意知:抢修n 天时,维修工人抢修的面积之和为2nx ,而渗水的面积为2004n + 所以有22004nx n =+,可得:1002n x =-,3x ≥,x N +∈. (2)设总损失为y ,则125502502y nx x nx =++⨯62550nx x =+100625502x x x =⋅+-()1250225001250505022x x x x x x -+⎛⎫⎛⎫=+=+ ⎪ ⎪--⎝⎭⎝⎭ 25005012502x x ⎛⎫=++ ⎪-⎝⎭250050212522x x ⎛⎫=+-+ ⎪-⎝⎭()50125250250125267600⎛⎫≥=⨯+= ⎪ ⎪⎝⎭,当且仅当250022x x =--时,即52x =时,等号成立. 所以应派52名工人去抢修,总损失最小.30.设002a b a b >>+=,,.(1)证明:(1)(1)4a b ab++≥; (2)证明:332a b +≥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)把(1)(1)a b ab++展开化简,利用基本不等式即可得证;(2)结合已知条件,利用两数和的立方公式展开,再用基本不等式即可得证.【详解】(1)证明:因为0a >,0b >,2a b +=.()()13111ab a b ab a a bb ab +++++==+. 且()214a b ab +≤=(当且仅当a b =时取等号), 故331141ab +≥+=. 所以()()114a b ab++≥ (2)证明:()3322333a b a a b ab b +=+++()333a b ab a b =+++336a b ab =++()23333664a b a b a b +++⋅=++≤当且仅当1a b ==时取等号,又()3328a b +==,故332a b +≥.31.若实数x ,y ,m 满足||||x m y m -<-,则称x 比y 接近m ,(1)若231x +比3接近1,求x 的取值范围;(2)证明:“x 比y 接近m ”是“231x y m x y+-<--”的必要不充分条件; (3)证明:对于任意两个不相等的正数a 、b ,必有22a b ab +比33+a b接近2【答案】(1)x -<<(2)见解析;(3)见解析.【分析】(1)根据定义可得232x <,从而可求x 的取值范围.(2)通过反例可得“x 比y 接近m ”是“231x y m x y +-<--”不充分条件.利用不等式的性质可证明“x 比y 接近m ”是“231x y m x y+-<--”的必要条件,故可得所证结论. (3)利用基本不等式结合分析法可证结论成立.【详解】(1)因为231x +比3接近1,故231131x +-<-, 故232x <,故28x <,所以x -<(2)取1,2,02x y m =-==, 则1||2||2x m y m -=<=-,故x 比y 接近m . 但23120215922x y m x y +--++==->----, 故“x 比y 接近m ”推不出“231x y m x y +-<--”. 所以“x 比y 接近m ”是“231x y m x y +-<--”不充分条件. 若231x y m x y +-<--,则330x m x y-<-,故()()0x m x y --<, 所以00x m x y -<⎧⎨->⎩或00x m x y ->⎧⎨-<⎩, 若00x m x y -<⎧⎨->⎩,则y x <且x m <,故2x y m x m +<+<, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,也就是“x 比y 接近m ”.若00x m x y ->⎧⎨-<⎩,则x y <且m x <,故2x y m x m +>+>, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,故“x 比y 接近m ”是“31x y m x y+-<--”必要不充分条件.(3)对于任意两个不相等的正数a 、b ,要证22a b ab +比33+a b 接近2即证:223322-++<-a b ab a b ,即证:332ab a b a b -<+-+即证:22a b b aa b ++-<-,因为2222a b b a a b b a +++≥=+,因为a b ,故22a b a b b a +>+>220a b a b b a+-+-,所以22a b b aa b ++-<-成立,故22a b ab +比33+a b 接近2【点睛】关键点点睛:本题属于新定义背景下的不等式的求解与证明问题,其中必要不充分条件的证明应依据充分条件和必要条件的定义来展开,证明不等式恒成立要结合不等式的性质,也要结合基本不等式.32.若对任意的[]1,5x ∈,对任意的[)4,a ∈+∞,不等式2a x b x≤++恒成立,求-a b 的最大值.【答案】33【分析】设(),15a f x x b x x =++≤≤,对a 讨论,分45a ≤≤,525a <≤,25a >,判断()f x 的单调性,求得最值,由不等式的性质和不等式的解法,可得所求最大值.【详解】设()a f x x b x=++,当45a ≤≤时,()()15f f ≤,可得()f x 的最小值为f b = ,最大值为55a b ++,由题意可得2b ≥,即为2b ≥-23a b a -≤+≤+ ;当525a <≤时,()()15f f >,可得()f x 的最小值为f b =,最大值为1a b ++,由题意可得2b ≥,即为2b ≥-22510233a b a -≤+≤+-=.5>即25a >时,()f x 在[]1,5递减,可得()f x 的最大值为()11f a b =++,最小值为55a b ++, 由题意可得525a b ++≥,即为35a b ≥--,则63355a a a b a -≤++=+, 由25a >,可得-a b 无最大值.综上可得-a b 的最大值为33.【点睛】思路点睛:本题考查了对勾函数的单调性,利用单调性求函数的最值,考查了分类讨论的思想,属于难题。

基本不等式之1的代换

基本不等式之1的代换

专题:均值不等式应用中“1的代换〞不等式是高中数学的重要内容之一,利用均值不等式求最值以与证明不等式是重中之重.纵观近几年全国各省的高考题与竞赛题,可以发现均值不等式中与“1〞有关的试题频频出现,好学教育老师对此总结如下,以供大家参考.[题引][XX 省皖江名校2016届高三12月联考数学〔理〕试题]已知实数,x y 满足22020220x y x y x y --≤⎧⎪+-≤⎨⎪-+≥⎩,若目标函数5(0,0)z ax by a b =++>>的最小值为2,则23a b+的最小值为〔 〕8214.3A +426.3B +9215.3C +1046.3D + [答案]D[解析] 首先作出可行域,如下图所示,42246551015z =ax +by -5A (-2,-2)-33-2-1-1211Oyx2x -y +2=0x +y -2=0x -2y -2=0把目标函数5(0,0)z ax by a b =++>>,变形可得5az y x bbb=-+-,斜率为负数,当z 取得最小值时,联立求出交点A 的坐标220220x y x y -+=⎧⎨--=⎩(2,2)A ∴--,当目标函数5(0,0)z ax by a b =++>>过点A 时取最小值,代入得32a b +=,即2()13a b += 所以232232231046()()(5)333b a a b a b a b a b ++=++=++≥32a b =时,23a b+取最小值,故选D .[考点]线性规划;基本不等式之1的代换.[点评]这道题目除了考查线性规划外,还考查了常数的代换,或称为“1的代换〞,更具体的说,其与一般代换还是不同的,它更像是在所求的式子后面乘以一个1,或者是一个常数,因此,我们把此类解题技巧定义为“1的代换〞. [使用情景]使用“1的代换〞解题的结构特征:①都可转化为条件求最值问题,且已知是“和式〞,所求也是“和式〞,同时要求两和式是一整式,一分式〔或化为分式〕; ②已知“和式〞可变为常数“1〞;③两个“和式〞都是齐次式或可变为齐次式。

应用基本不等式解题的常用方法分析

应用基本不等式解题的常用方法分析

课程篇应用基本不等式解题的常用方法分析孙天贶(湖南省平江县一中高467班)在高中数学中,基本不等式作为重点知识内容,在实际运用的过程中,需要掌握相应的解题技巧与方法,进而为实现对基本不等式知识的有效掌握奠定了基础,同时,实现对这一知识点的有效掌握,也是学好其他相关知识的基础。

通常而言,基本不等式解题的常用方法为:“1”的代换法、换元法、适当拼凑组合法、待定系数法、换元法、消元法以及多次应用不等式法。

一、“1”的代换法例题1:若点A (1,1)在直线mx+ny-2=0上,其中,m ,n >0,1m +1n的最小值为()解析:从本题的题意中,存在m+n -2=0,即m+n 2=1,则=1m+1n =(1m +1n )·m+n 2=12(2+m n +n m )≥12(2+2m n ·n m √)=2,当m=n =1时等号成立,所以1m +1n的最小值为2。

评析:基于“1”的巧妙利用下,则是以1乘以任何数,相应值都不会发生改变的性质,通过整体代换的方式,将代数式化成齐次式,进而促使在应用不等式的过程中,两数相乘具备定值,此种方式还能够用来求1m 2+1n2的最小值。

二、换元法的运用例题2:已知x ,y ∈R +,且x+y +1x +1y =5,则x+y 的最大值为()A.3B.72C.4D.92解析:设t=x+y >0,则有已知5-(x+y )=x+y xy ≥(x+yx+y 2)=4x+y,即5-t ≥4t ,整理得t 2-5t +4≤0,解得1≤t ≤4,因此,x+y ≤4,当x=y =2时等号成立,因此答案为C 。

评析:在这一题目中,涉及了x+y 与xy ,借助基本不等式,可将xy 沟通到目标式x+y ,通过换元法的运用进行换元,再以解不等式的方式,将x+y 的取值范围求出。

同样,在相同的条件下,能够求出xy 的最大值为4。

事实上,在实际解题的过程中,采用换元法的目的是将问题简单化,进而促使不会的问题转变为会的问题,在此基础上,就能轻而易举地得到答案。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

例谈“1”在解高中数学题中的妙用

例谈“1”在解高中数学题中的妙用

知识导航“1”是自然数中最基本、最简单的数字,看似不起眼,但在高中数学解题中却有着非常巧妙的用处.在解题中,巧妙利用“1”进行代换,往往能够起到“四两拨千斤”的效果.本文重点探讨了“1”在解答三角函数、函数、不等式问题中的应用,旨在帮助同学们掌握一种解题的技巧.一、“1”在解答三角函数问题中的妙用三角函数问题的命题方式千变万化,在进行三角恒等变换和化简函数式时,经常需要灵活运用不同的公式,而巧妙运用“1”进行代换,能有效地简化运算,提升解题的效率.解答三角函数问题常用到的“1”的代换式有sin2α+cos2α=1、tanπ4=1等.例1.已知α为第三象限角,且tanα=2,求sinα.解:{sinα=2cosα,sin2α+cos2α=1,解得sinα=.又因为α为第三象限角,所以sinα=.题目中给出的已知条件有限,要求得sinα的值,需要进行“1”的代换,运用同角的基本关系sin2α+cos2α=1,建立关于sinα、cosα的方程组,解方程组便可求得sinα的值.例2.求值:1+tan15°1-tan15°.解析:15o不是特殊角,很难求得目标函数式的值,需要借助特殊角45o将其转化,可将“1”替换成tan45°,运用两角和的正切公式tan()α+β=tanα+tanβ1-tanαtanβ来求值.解:1+tan15°1-tan15°=tan45°+tan15°1-tan45°tan15°=tan()45°+15°=tan60°=3.例3.求函数f()x=sin2x+2sin x cos x+3cos2x的最大值,并求出此时x的值.解析:这是一道三角函数的最值问题,需首先利用同角的基本关系sin2α+cos2α=1、正弦的二倍角公式以及辅助角公式将其化简,然后运用三角函数的性质求得最值.解:f()x=sin2x+2sin x cos x+3cos2x=sin2x+cos2x+2cos2x+2sin x cos x=sin2x+cos2x+2=2sinæèöø2x+π4+2,当2x+π4=2kπ+π2,即x=kπ+π8()k∈Z时,y max=2+2.在解答三角函数问题时,同学们只要注意联想,将函数式与“1”相关的式子关联起来,合理进行转化、代换,就能快速解题.二、“1”在解答函数问题中的妙用我们知道,log a1=0()a>0,a≠1、a0=1()a>0,a≠1、y=1()x∈R表示的是一条的直线,因此“1”在解答函数问题中扮演着一个非常重要的角色.在解函数题时,我们可以根据“1”的这些性质、特点,来比较函数值的大小、判断函数的增减性等.例4.判断log41.5的正负.解析:判断log41.5的正负,实际上就是比较log41.5和0的大小,由于log a1=0()a>0,a≠1,所以只需要比较log41.5和log41的大小即可.由于对数函数log a x()a>0,a≠1在a>1时是增函数,且1.5>1,所以log41.5>log41,由此可以判断log41.5为正数.例5.设b>a>1,若x1a≥x2b>1,证明:log a x1>log b x2.解析:两个函数式的底数、真数均不相同,直接比较这两个数的大小较为困难,我们需将“1”作为中间值,借助“1”来进行转化、代换,运用指数函数的单调性来判断两数的大小.证明:设x1a=k1,x2b=k2,则k1≥k2>1,由b>a>1可知y=log a x、y=log b x均为增函数,所以log a x1=log a()ak1=1+log a k1≥1+log a k2>1+log b k2,又1+logbk2=log b()bk2=log b x2,所以logax1>log b x2.三、“1”在解答不等式问题中的妙用不等式证明问题是历年来高考数学试题中的重点题目.由于不等式问题中的条件、结论缺乏,指向不明确,常常让同学们一筹莫展.如果根据已知条件,巧妙地利用“1”进行代换,如构造a∙1a=1、ln1=0、ln e=141解题宝典等,可能收到意想不到的效果.例6.已知a ,b ∈()0,+∞且a +b =1,求证:æèöø1+1a ⋅æèöø1+1b ≥9.证明:æèöø1+1a æèöø1+1b =æèöø1+a +b a æèöø1+a +b b =æèöø2+b a æèöø2+a b =4+2a b +2b a +1=5+2æèöøa b +b a ≥5+9,当且仅当a =b 时等号成立.这里将不等式中“1a ”“1b ”的分子“1”用“a +b ”来代替,通过化简得到a b +ba,然后利用基本不等式求得æèöø1+1a æèöø1+1b 的最值,证明不等式成立.例7.已知正数x ,y 满足x +3y =5xy ,求证:3x +4y ≥5.证明:因为x ,y 为正数,可将x +3y =5xy 等式两边同时除以5xy 得:x +3y5xy=1,即15y +35x=1,则3x +4y =1∙()3x +4y =æèçöø÷15y +35x ()3x +4y =135+3x 5y +12y 5x ≥135+125=5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立,故3x +4y ≥5,命题得证.我们首先将已知关系式变形,构造出常数“1”,再将“1”进行代换,化简3x +4y ,利用基本不等式求得3x +4y 的最小值,进而证明不等式成立.总之,“1”在解高中数学题中发挥着重要的作用.同学们在日常学习中,要注意多积累解题经验,总结与“1”有关的代数式,在解题时将其进行代换,合理进行恒等变换,便能有效地提高解题的正确率和速度.(作者单位:江苏省东海县石榴高级中学)函数最值问题一直是高考数学试题中的热点题目,近几年浙江省数学高考试题中多次出现含绝对值的函数最值问题.此类问题不仅考查了函数的图象和性质、处理绝对值的方法,还考查了求最值的方法,属于综合性较强的一类问题.解答此类问题的关键去掉绝对值符号,将问题转化为常规函数最值问题来求解.下面,笔者结合一道例题来谈一谈求解含绝对值的函数最值问题的方法.例题:已知a ∈R ,函数f (x )=||||||x +4x-a +a 在区间[1,4]上的最大值是5,则a 的取值范围是______.本题中的函数含有绝对值,为了将其转化为常规函数问题,我们可以从绝对值和函数两个角度来寻找解题的思路,有以下5种方法.方法一:分段讨论法此方法是解答含绝对值问题的常用方法,首先,将定义域划分为几个区间段,然后分别求出各个区间段上函数的表达式,根据函数的图象和性质讨论函数的最值.对于本题,可先求出对勾函数y =x +4x 在[1,4]上的值域,然后对a 进行分类讨论,去掉绝对值后再求每个区间段上函数的最大值,建立关系式,便可求得a 的取值范围.解:∵x ∈[1,4],∴x +4x∈[4,5],①当a ≥5时,f (x )=a -x -4x +a =2a -x -4x,函数f (x )的最大值2a -4=5,解得a =92,不符合题意,舍去;②当a ≤4时,f (x )=x +4x -a +a =x +4x≤5,符合题意;③当4≤a ≤5时,f (x )max =max{|4-a |+a ,|5-a |+a },则{|4-a |+a ≥|5-a |+a ,|4-a |+a =5,或{|4-a |+a <|5-a |+a ,|5-a |+a =5,解得a =92或a <92.综上可得,a 的范围是(-∞,92].绝对值函数本质上是一个分段函数,可根据绝对值的定义去掉绝对值符号,将问题转化为分段函数的42。

“1”的代换在基本不等式中的拓展应用

“1”的代换在基本不等式中的拓展应用

“1”的代换在基本不等式中的拓展应用
作者:程鹏
来源:《新高考·高二数学》2018年第01期
“整式和为定值求分式的最值”,或者“分式和为定值求整式的最值”这两类问题我们一般考虑用“1”的代换,再利用基本不等式求最值.这种方法,同学们一般不容易想到,即使想到了,又不会变形,转化为熟悉的问题来处理,問题的根源还是在于对“1”的代换这种方法理解不深刻,方法运用不熟练.追根溯源,下面从一道练习题说起,
点评求分式的最值,如果整式可以用分母及常数来线性表示,且其和为定值的形式,即ax +by =c(a,b,c为常数,x,y可以是变量也可以是一个式子),那么就可以用“1”的代换结合基本不等式求最值,
分析因2m+(1-2m) =l,即分母的线性和运算为定值,故可以考虑用“1”的代换.
分析因a+(b+1)=3,即分母的线性和运算为定值,故可以考虑用“1”的代换.
分析求整式的最值,如果整式可以用分母及常数来线性表示,且分式和为定值的形式,即a/x十b/y=c(a,b,c为常数,x,y可以是变量也可以是一个式子),那么就可以用“1”的代换结合基本不等式求最值.解题过程同例1(略).
分析如果xy能用分母及常数线性表示,那么该问题也可以用“1”的代换.
小结一是无论求整式还是分式的最值,第一步都可以考虑将整式用分母和常数线性表示,通过换元法(换分母,换变量,换条件,换问题),最终将问题转化为熟悉的两类基本题型,再使用“1”的代换顺利解决;二是在“三相等”这一步验证等号是否成立时,选取的方程是基本不等式成立的条件对应的一个方程,另一个是整式方程,这个整式方程可能是条件直接给的如类似例1的题目,还有可能是式子取最值对应的方程如类似例2的题目.最终的目的就是让方程组求解尽可能简单.。

基本不等式中“1”代换的各种应用

基本不等式中“1”代换的各种应用

一 一
基 本 不 等 式 中 “1"代 换 的 各 种 应 用
邓 明 星
(贵 州 大 学 附 属 中 学 ,贵州 贵 阳 550000)
基 本 不 等 式 在 高 考 中具 有 重 要 的 地 位 。主 要 是 作 为 一 种 工 具 求 最 值 问题 ,且 常 与 函数 、数 列 、解 析 几 何 等 知 识 结 合 在 一 起 进行 考 查 .解 决 此 类 问 题 通 常 要 求 具 有 扎 实 的基 础 知 识 和 较 强 的 技 巧 性 。属 于 难 度 系 数 较 大 的 一 类 题 目.下 面就 在 教 学 中 遇 到 的 几 类 典 型 问 题 进 行 介 绍 ,希 望 能对 同 学 们 解 题 能 力 的提 高 有 所 帮 助 .


 ̄la=、/ bS ̄]R等号,故 +三的最小值为 +、/广芝I.

2b
a b

二 、与 线 性 规 划 结 合
2y 3≤D ,
(3+ b2 + )≥三-I- 、/ 当且 仅当a2=2b 时等号成立取

2 、 a b 2 2 ’ , ’
’ 。
得 最 小 值 ,所 1)Af(x)=(2V 一2) +1. 五 、总 结
参考 文献 :
次 得 分 的期 望 是 2,则 二 + 取得 最小 值 时 ,求 不 得 分 的 概 率c.
a 3b
[1]普 通 高 中课 程 标 准 实 验 教 科 书 《数 学》必 修5.人 民 教 育 出版 社.
解 :由期 望 的计 算 公 式 可 知 3a+2b+0xc=2。
[2]高考 一本 解 决 方 案 .湖 南教 育 出版 社 .

基本不等式之_1的代换_任卫兵

基本不等式之_1的代换_任卫兵

基本不等式之“1”的代换利用基本不等式求最值是高考的基本考点,高考主要求最值、判断不等式、解决不等式有关的问题.运用基本不等式需要注意“一正、二定、三相等”的条件,为了得到“定值”,往往需要对目标式进行恰当的“配”“奏”.“1的代换”是一种常用的方法,可用来创造使用基本不等式的条件.此类问题通常有 如下特点:1.变量a 、b 是正实数;2.有一个代数式①的值已知,求另一个代数式②的最小值,其中两个代数式一个是整式,ma nb +一个是分式,p qa b+也有其它的变形形式. 通过“1 的代换”奏出可以使用基本不等式的齐次式:b aa bμλ+1 看得见的“1”例 1 已知 0,0,1,a b a b >>+= 则 11a b+ 的最小值为 .分析 为了构造齐次式,可将11a b+的分子“1”代换为“a b +".112a b a b b a a b a b a b+++=+=++24,+=当且仅当12a b ==时取等号. 即11a b+ 的最小值为4 注也可以将11a b +“乘1”构造,即11a b +=11()2b a a b a b a b ⎛⎫++=++ ⎪⎝⎭变式 1已知110,0,4,a b a b>>+= 则a +b 的最小值为 .解由 114a b+=可得111111 1.()2444424424b a b a b a b a b a b a b a ⎛⎫+=+=++=+++= ⎪⎝⎭1 当且仅当12a b ==时取等号.即a b +的最小值为1. 变式2已知0,0,23,a b a b >>+=则21a b+的最小值为解由23a b +=可得2211.33a b a b+=+=2124442333333a b b aa b a b ⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭8,3=当且仅当322a b ==时取等号.即2a 1b +的最小值为83. 变式3 已知10,0,21,a b a b >>+=则2a+b 的最小值为 .221225b b a a a b ab ⎛⎫⎛⎫+=+⋅+=++ ⎪ ⎪⎝⎭⎝⎭22529,ab ab += 当且仅当22,ab ab =即1=,33a b =时取等号,即2a+b 的最小值为9. 2 看不见的“1””例2已知10,2a <<则1812a a+-的最小值为分析 题目中没有已知的“1",但观察分母,可以配奏出“1”: 2121a a +-=解:18282(12)16(212)1012212212a a a a a a a a a a-⎛⎫+=+⋅+-=++ ⎪---⎝⎭18 =,当且仅当2(12)2a a -=1612a a -时,即16a =时取等号 故1812a a+-的最小值为18. 例3 设正数,,a b c 满足,abc a b c =++求证:4936ab bc ac ++证明:由abc a b c =++可得1111ab bc ac++=. 49(49)ab bc ac ab bc ac ++=++111494914a c b c b a ab bc ca c a c b a b ⎛⎫++=++++++ ⎪⎝⎭14236a c +=当且仅当2,3,1a b c ===时取等号. 例4 设正项等差数列{}n a 的前n 项和为n S , 若20194038S =,则10201019a a +的最小值为 . 解由等差数列的前n 项和公式,得()1201920191201920194038, 42a a S a a +==+=则由等差数列的性质得1020104,a a +=所以()102010102010102010191194a a a a a a ⎛⎫+=++ ⎪⎝⎭=20101010201091110(1044a a a a ⎛⎫+++= ⎪⎝⎭4, 当且仅当2010103a a =时等号成立. 3 将1看成21,构造齐次式 例5已知0,0,1,a b a b >>+=则111a b ab++的最小值为 . 分析目标111a b ab ++中1a 和分母为一次式,可与例1相同的方法处理,但1ab分母为二次式,为了构造齐次式,将1看成“1”代换. 解 2111()a b a b a b a b ab a b ab+++++=++= 42448b a b a b a ⎛⎫+++⋅= ⎪⎝⎭,当且仅当12a b ==时取等号即111a b ab++的最小值为8. 例6已知0,0,1,a b a b >>+=求221111 a b ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的最小值 ..分析 题目中有己知的“1”,观察分母为二次式,为了构造齐次式,考虑将1看成看成21.解:222222111111a ba b a b --⎛⎫⎛⎫--=⋅= ⎪⎪⎝⎭⎝⎭222222()()(2)(2)a b a a b b a b a b a b ab +-+-++⋅= 2225529b a b a b a =+++=,当且仅当12a b ==时取等号. 即221111 a b ⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭的最小值为9.例7 已知,a b 均为正数,且20,ab a b --=则22214a b a b-+-的最小值为 .解 由20ab a b --=可得211a b+= 222221144a ab b a b -+-=+-分子为二次形式,为了构造齐次式,可将分式乘以21 22222222141144a a b b b a b a ⎛⎫⎛⎫+-=+⋅+-= ⎪ ⎪⎝⎭⎝⎭2222441244a b a b b a b a ++++⋅1=7 当且仅当2a b =,即4,2a b ==时等号.即22214a b a b-+-的最小值为7.4 局部“1”的代换 例8 已知0,0,1,a b a b >>+=则1aa b +的最小值为 . 分析本题与例1的不同之处在于a b 已经是齐次式,只需将1a进行“1的代换".解111a a b a b a a b a b a b ++=+=+++3=,当且仅当12a b ==时取等号.即 1a +ab 的最小值为3.例9 设2,0,a b b +=>则当a = 时,1||2||a a b+取得最小值. 解1||||2||4||4||4||a a b a a b a b a b a a ++=+=+||13244a b +-+= 当且仅当||4||b a a b=且0a <时取等号.即2,4a b =-=时, 1||3 .2||4a ab +取最小值 5 多变量问题中的“1的代换”例10已知0,0,0,1a b c a b c >>>++=则111a b c++的最小值为解1 113a b c a b c a b c b a a c c b a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫++=++=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3+2+2+2=9.当且仅当13a b c ===时取等号.即111a b c++的最小值为9. 变式 已知正数123,,,,n a a a a 满足1231n a a a a ++++=,求证:22212122311 2n n a a a S a a a a a a =++++++ 分析 观察待求证式的分母,()()()()122311222n n a a a a a a a a a ++++++=+++=再运用“1”的代换即 求得最小值. 证明 因为()()(1223n a a a a a +++++)()11222,n a a a a +=+++=所以22212122312nn a a a S a a a a a a ⎛⎫=+++ ⎪ +++⎭⎝()()1223a a a a ++++⎡⎣()1n a a ++⎤⎦()2222123na a a a =++++()()221223121223a a a a a a a a a a ⎡⎤+++⋅++⎢⎥++⎦⎣()21231n a a a a ++++=,当且仅当121n a a a n ====时取到等号,所以1 2S . 备注 本题关键是配凑出基本不等式所需要的两项,如()()221223121223a a a a a a a a a a ⋅+⋅+++与相加 相加,利用基本本不等式有()212312a a a a a ⋅+++()221212232a a a a a a a ⋅++,从而最终得出()212321n Sa a a a ++++=例11 已知,,a b c 为互不相等的正实数,且1abc = 求证:111a b c<++.证明111abc abc abc ab bc ac a b c a b c++=++=++=1[()()()]2ab bc ab ac bc ac +++++12= 又因为,,a b c 为互不相等的正实数,所以等号取不到,111a b c++. 运用“1的代换”求最值的步骤:(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,配凑成齐次式: b aa b μλ+; (4)利用基本不等式求解最值.解题过程中要根据表达式的具体特点,选择“部分1的代换”或者“将1看成21",并且要注意基本不等式成立的前提条件.。

基本不等式1的代换例题

基本不等式1的代换例题

基本不等式1的代换例题英文回答:Substitution is a technique commonly used in inequality problems. By substituting one expression with another, we can simplify the inequality and make it easier to solve. Here are a few examples to illustrate how substitution can be applied to basic inequalities:Example 1:Solve the inequality: `x 5 > 2`。

Solution:We can substitute `y` for `x 5`. Then the inequality becomes:y > 2。

This is a simple inequality that can be easily solved. We can add 5 to both sides to get:y + 5 > 2 + 5。

x > 7。

Therefore, the solution to the original inequality is `x > 7`.Example 2:Solve the inequality: `(x 3)^2 < 4`。

Solution:We can substitute `y` for `(x 3)^2`. Then the inequality becomes:y < 4。

This is a simple inequality that can be easily solved.We can take the square root of both sides to get:√y < √4。

基本不等式常数代换法

基本不等式常数代换法

基本不等式常数代换法基本不等式常数代换法是一种在解决数学不等式问题中常用的方法。

它的基本思想是通过进行变量替换,将原始的不等式转化为更简单的形式,从而更容易求解。

本文将详细介绍基本不等式常数代换法的原理和应用方法。

一、基本不等式常数代换法的原理基本不等式常数代换法的原理是基于不等式的基本性质。

对于一个不等式,我们可以通过引入新的变量,并进行恰当的变量替换,使得不等式的形式更加简单。

常用的变量替换方式包括代入法、换元法等。

其中,代入法是将一个常数或者一个表达式代入到不等式中,从而得到一个新的不等式。

二、基本不等式常数代换法的应用方法1. 代入法:代入法是通过将一个常数代入到不等式中来简化问题。

假设我们需要解决一个不等式2x+1≥5,可以将常数4代入到不等式中,得到2×4+1≥5,然后计算出结果为9≥5。

因此,原始不等式的解为x≥2。

2. 换元法:换元法是通过引入一个新的变量来进行代换,从而简化不等式。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以引入一个新的变量y = x - 2,将原始不等式转化为y^2 - 1 > 0,进一步化简为(y - 1)(y + 1) > 0。

根据乘积大于0的性质,我们可以得到y > 1 或 y < -1,再将y代换回原来的变量x,得到x > 3 或x < 1,即为原始不等式的解。

三、基本不等式常数代换法的实例分析为了更好地理解基本不等式常数代换法的应用,我们举一个具体的例子进行分析。

假设我们需要解决不等式2x^2 + 5x + 3 > 0。

1. 代入法:我们可以尝试将一些常数代入到不等式中,从而简化问题。

例如,将x = 1代入到不等式中,得到2×1^2 + 5×1 + 3 = 10 > 0。

因此,我们可以得出对于所有的x,不等式都成立。

2. 换元法:我们可以引入一个新的变量y = x + 1,将原始不等式转化为2(y - 1)^2 + 5(y - 1) + 3 > 0,进一步化简为2y^2 + y - 2 > 0。

基本不等式常数代换法

基本不等式常数代换法

基本不等式常数代换法基本不等式是数学中的重要概念之一,常常被用于解决各种实际问题。

在解题过程中,我们可能会遇到一些复杂的不等式,此时使用常数代换法可以帮助我们更好地理解和解决问题。

本文将介绍基本不等式常数代换法的基本原理以及应用方法,希望能够对读者有所启发。

首先,让我们来了解一下基本不等式。

基本不等式是指一些基本的数学不等式关系,如三角不等式、柯西不等式、均值不等式等。

这些不等式关系在数学推导中起到了重要的作用,可以帮助我们求解各种问题。

常数代换法是解决不等式问题的一种常用方法。

它的基本思想是通过引入一个合适的代换常数,将原始不等式转化为一个更简单的形式,从而更方便地进行分析和求解。

具体而言,常数代换法可分为几个步骤。

首先,我们需要对原始不等式进行观察和分析,找出其中的特点和规律。

其次,通过引入一个合适的常数代换,将原始不等式转化为一个更简单、更易于处理的形式。

这个常数代换应该能够把原始不等式中的某些变量或特征与新不等式中的常数或函数关联起来。

最后,利用新的不等式进行分析和求解,可以得到原始不等式的解集或满足条件的特定解。

举个例子来说明常数代换法的应用。

假设我们需要证明以下不等式:对于任意实数a,b,c满足a+b+c=0,证明a^2+b^2+c^2≥ab+ac+bc。

我们可以使用常数代换法来解决这个问题。

首先,我们观察到a+b+c=0,这意味着a,b,c中至少有两个数为正,两个数为负。

接下来,我们引入一个常数k,使得a=k(x-y),b=k(y-z),c=k(z-x),其中x,y,z为实数。

通过这样的常数代换,我们可以将原始不等式变为k^2[(x-y)^2+(y-z)^2+(z-x)^2]≥k^2[(x-y)(y-z)+(y-z)(z-x)+(z-x)(x-y)]。

接下来,我们可以对新不等式进行化简和分析。

首先,我们展开并化简右侧的表达式,得到-[(x-y)^2+(y-z)^2+(z-x)^2]≥0。

基本不等式常数代换法

基本不等式常数代换法

基本不等式常数代换法1. 介绍基本不等式常数代换法是解决一元一次不等式的一种常用方法。

通过将不等式中的常数进行代换,可以简化不等式的求解过程,使得问题更易处理。

本文将介绍基本不等式常数代换法的原理、步骤以及应用示例。

2. 原理基本不等式常数代换法的原理是通过将不等式中的常数进行代换,将不等式转化为更简单的形式,从而方便求解。

常用的常数代换包括将不等式中的常数替换为0或1,使得不等式的求解更加直观和简单。

3. 步骤基本不等式常数代换法的步骤如下:步骤1:观察不等式首先,我们需要仔细观察给定的不等式,确定不等式中的常数和变量。

步骤2:选择合适的常数代换根据不等式的形式和要求,选择合适的常数代换。

常见的常数代换包括将常数替换为0或1。

步骤3:进行常数代换将不等式中的常数进行代换,将不等式转化为更简单的形式。

步骤4:求解代换后的不等式根据代换后的不等式,进行求解。

可以使用常见的解不等式的方法,如图像法、分析法等。

步骤5:还原变量将求解得到的代换后的不等式结果还原为原始的不等式,得到最终的解。

4. 应用示例下面通过一个具体的例子来演示基本不等式常数代换法的应用。

例子:解不等式3x−2>4步骤1:观察不等式,确定不等式中的常数和变量。

不等式中的常数为4,变量为x。

步骤2:选择合适的常数代换。

由于不等式中的常数为4,我们选择将常数替换为1,即将不等式转化为3x−2>1。

步骤3:进行常数代换,得到代换后的不等式3x−2>1。

步骤4:求解代换后的不等式。

我们可以通过分析法求解该不等式。

首先,将不等式转化为等式,得到3x−2=1。

然后,解这个等式,得到x=1。

由于要求解的是不等式,所以我们需要确定解的范围。

将解代入不等式,得到3⋅1−2>1,即1>1。

由于不等式不成立,所以解集为空集。

步骤5:还原变量,将代换后的不等式结果还原为原始的不等式。

将代换后的不等式3x−2>1还原为原始的不等式3x−2>4,得到最终的解为解集为空集。

巧用“1”的代换运用基本不等式+专题课件-2021-2022学年高一下学期数学人教A版必修5

巧用“1”的代换运用基本不等式+专题课件-2021-2022学年高一下学期数学人教A版必修5
8
3
4
3
1

∴ 当 = , = 时, +
故选B.
1
9
的最小值为 .
4
16
+

4
+

16
注意:当条件和式不为常
数1时,应作如下变形:
1
1= × +
4
例3.若正数, 满足 + 3 = 5,则3 + 4的最小值是(
A.
24
5
28
5
B.
C.
5
D.
).
6
1
5
+
3
5

【审题视点】由于已知 + 3 = 5可变形为
∴ + 的最小值为12.
错因分析:
解法中两次连用基本不等式,
1

9
+≥2
9
1
等号成立的条件是


9
= ,即 = 9,
+ ≥ 2 等号成立的条件是 = ,
取等号的条件的不一致,产生错误.
总结:
以上解法正确吗?为什么?
在利用基本不等式处理问题时,列出等号成立条件是解题的
必要步骤,而且是检验转换是否有误的一种方法.
8
【解答】 ∵ > 0, > 0,且 + = 2,
1

∴ +

8
=
当且仅当
+
2

2
4
3
=
+

8
1
2
= +

2
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十 )一 1
听以 一专十 一吉c“+ ,(÷卜 )一 吉(计 导)≥÷(… )一苦,
/f 等 』I= 1_IIi_。 解 :I太1为 、(). ,◆ ().所 以 + 一
、r" j.仪 、r1
,即 一 ,,J一 时 等 号 成
,J

.j

(÷十÷)· 一(÷ ÷)· z : + 以÷卜一 一自9M:小 址导。
分 析 : 知 条 件 c + ,J一 2 一I·,虽 然 没 彳『
』 『I1“1”的 代 换 攻 川 进 行 r 结 I Jl类 ,Jf:腱
钏 x寸一H ll约:,化 解 『叫l :仃J H}{-f,I',J堆 。

直接 用 “l”的代 换
侧 , I卜数 , 满 足 +2-v— 1.
v 一 3sin

题 型 二 :在 方 程问题 中 的应用 侧 2 已知 函数 ,( )一 j 一 2 I+ l,
何 意 义 后 可 知 ,点 (z , )在 半 圆 j’ + 一 9(0 < ≤ 1)上 移 动 ,问 题 转 化 为 :直 线 .),一 一’+ ,) 与 半 圆 .1’ + !一 9(O< ≤ 1)有 公 共 点 。
义 ,利 用 函 数 图 像 的 性 质 来 解 决 代 数 问 题 ,这
是 数 形 结 合 的 一 个 重 要 体 现 ,在 解 题 中 应 注
解 析 : 若 ( ’, ) 满 足 集 合 意 适 当 使 用 。
。∞ ’
{l (.r.Y )l 《l
c(0< < )},则 赋 予 几
集 合 M 表 示 以 3为 半 径 的 圆 在 ’轴 上 方
g( )一 k.z ,若 方 程 .,( )一 g(J’)有 两 个 小 相 等 的 实 根 ,则 实 数 是 的 取 值 范 同 是 ( )。
验 淡 谈 函 数 图 像 在 解 题 中 的 几 种 应 用 。
题 型 一 :在 集 合 问 题 中 的 应 用
1 ,
若 集 合 M —
{f ( l f. 、一3cOs 0,
l , )JI {I
(0< < ),集 合 N —
y 一 3sin 6『
{( )l y— + b},且 M N N 一 ,则 6 的 取 值 范 同 为 。
h … 十 1. 一
时 等 号 成 应 用
1. 』 数 的 。
所 以 .t+ 2 的 山女小 价 3卜2 ̄/

数 一“ ㈨ ( ,0)的
鞴麟———

.-i- … t ,1
函 数 图 像 在 解 题 中 的 应 用
■ 河 南 省 许 昌 高 级 中 学 张 文 龙
经 典 题 突 破 方 法 高 考 数学 2¨】8年 :{月
仞I析





中 lI ^ ,, I

代 换 及 应 用
■ 南 京 市 程 桥 高级 中 学 李 素 文
数 复 j』以 0 题 形 腱 ,将 、
,J‘法 、数 学 心 逊 " 梳 .他 叫 f『J拥 打 体 系



分 析 :条 什
…I r“1”的 等 式 ,若 按
j{《{ J l n,j,J‘ 做 , 臼皂 々化 JJ I四 数 (内币【1为
变式: 知『】I 数 , 满址÷-¨÷一1。则 定 他 的 肜 』 . I /f 能 利 州 小 等 。 转 换 心 路 ,利 川t换 几 法 求 斛 。 令 “ /J 一
函 数 图 像 在 高 中 函 数 学 习 中 的 运 用 其 实 的 部 分 ,集 合 N 则 表 示 一 条
是 非 常 普 遍 的 ,其 目 的 主 要 是 提 高 解 题 速 度 直 线 ,其 斜 率 是一 1,纵 截 距 为
和 解 题 的 准 确 性 。 本 文 主 要 就 笔 者 的 切 身 经
化 }J 架 构 卡¨址 常 题 的 解 题 仪 式 .提
高 ,、 :f『J的 能 J。 离
fi 瓜 课 本 的 flI1
二 、 变 秧 杀 仵 崩 “ 的 代 殃
侧 2 知 “> 0, > 0 + — 2,则
}÷的 小他为——。


I. 爿 小 小 等 』 、r.笔 符 钊 埘 坫 小 小 等
?’ +寺V ≥。+2√V .z’ ·寺、, : }2 .、-1 f I仪
、r 型 }fIJ. 一 一1。 .== 丝 H寸等 .成


. ’
三 构 造条 件用 …I’的代 换
侧 了
(), 十
+ 1的 山量/j、fI|『为


1.!J!lJ
所 以 十 一I的 小 为 川 2
一 卜2 的 最 小 f『.I_为

2I*.【J!lJ“一,, 斗导. 詈,I J{u问题转化为:
解 析 :
0,_V> 0.所 以 + 2 一
一 ,· 十z ·(÷ )一: +
I.求 卜 的 最 小
" l
,}
fl。f Jf≥ · J例 l十¨似 。
十寺 +一z√ ·÷一 卜z 。、l,II‘仪 四、基 本 不 等 式 “1” 的 代 换 的 综 合
b,如 图 1所 示 。 欲 使 M n N ≠ ,即 直 线 一 + 『) 半 圆 有 公 共 点 ,由 图 形 可 知 ,6 的 最 小 逼 近 值 是 一 3,最 大 值
o /

图 1
是 3√2,即 一 3< ≤ 3√2。
评 注 :将 代 数 形 式 的 解 析 式 赋 予 几 何 意
现 “1,,的 等 式 .ff【通 过 变 形 可 以 化 为 ( + )
一 1
解 :lN 为 (
0. :> t).I{I “ _r 一 2,僻
1J=!U 一_T 的 山{,卜f

、1
— — 一一
分 析:h:接 埘 f 十一i 1乘 以 1,然 将
\ -
V ,
“l”换 成 条 I"I f 的 公 , 化 简 ,利 J{{ 小
相关文档
最新文档