02回归、方差分析

合集下载

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析和回归分析都是常用的统计方法,用于研究不同变量之间的关系。

虽然两种分析方法的目的和应用领域有所不同,但它们都有助于我们深入理解数据集,并从中获得有关变量之间关系的重要信息。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较三个或三个以上样本均值是否存在显著差异的统计方法。

方差分析的主要思想是通过比较组间方差与组内方差的大小来判断样本均值之间的差异是否具有统计学意义。

方差分析通常包括以下几个基本步骤:1. 设置假设:首先我们需要明确研究的问题,并设置相应的零假设和备择假设。

零假设通常表示各组均值相等,备择假设表示各组均值不全相等。

2. 计算统计量:利用方差分析的原理和公式,我们可以计算出F值作为统计量。

F值表示组间均方与组内均方的比值,用于判断样本均值之间的差异是否显著。

3. 判断显著性:通过查找F分布表,我们可以确定相应的拒绝域和临界值。

如果计算出的F值大于临界值,则可以拒绝零假设,认为样本均值存在显著差异。

4. 后续分析:如果方差分析结果显示样本均值存在显著差异,我们可以进行进一步的事后比较分析,比如进行多重比较或构建置信区间。

方差分析广泛应用于生物医学、社会科学、工程等各个领域。

通过方差分析可以帮助我们研究和理解不同组别之间的差异,并对实验设计和数据分析提供重要的指导和支持。

二、回归分析回归分析(Regression Analysis)是一种用于探究自变量与因变量之间关系的统计方法。

回归分析的目标是建立一个可信度高的数学模型,用以解释和预测因变量的变化。

回归分析可以分为线性回归和非线性回归两种类型。

线性回归基于一条直线的关系来建立模型,非线性回归则基于其他曲线或函数形式的关系进行建模。

进行回归分析的主要步骤如下:1. 收集数据:首先需要收集自变量和因变量的数据。

确保数据的准确性和完整性。

2. 确定模型:根据数据的特点和研究的目标,选择适当的回归模型。

方差分析与回归分析的原理

方差分析与回归分析的原理

方差分析与回归分析的原理方差分析和回归分析是统计学中常用的两种数据分析方法,它们都用于研究变量之间的相互关系,但是基于不同的背景和目的,其原理和应用也有所不同。

首先,我们来了解一下方差分析。

方差分析是一种用于比较两个或多个群体均值差异的统计方法。

它基于对总体方差的分解来分析不同因素对群体之间差异的贡献程度。

具体来说,方差分析将总体方差分解为组内变异和组间变异两部分,然后通过计算F统计量来判断组间变异是否显著大于组内变异。

方差分析可以用于很多场景,比如医疗研究中分析不同药物对疾病治疗效果的差异、教育研究中比较不同教学方法对学生成绩的影响等。

在进行方差分析时,需要明确一个自变量(也称为因素或处理)和一个因变量(也称为响应变量)。

自变量是被研究者主动操作或选择的变量,而因变量是根据自变量的不同取值而发生变化的变量。

方差分析的基本原理是通过对不同组之间的变异进行比较,来判断组间是否存在统计显著差异。

方差分析的核心思想是使用F统计量来判断组间变异与组内变异的比例是否显著大于1。

通过计算F值并与临界值进行比较,可以得出结论是否存在显著差异。

如果F值大于临界值,则可以拒绝原假设,表明不同组之间存在显著差异;如果F值小于临界值,则接受原假设,认为组间差异不显著。

接下来,我们来了解一下回归分析。

回归分析是统计学中用于研究变量之间关系的一种方法。

它研究的是一个或多个自变量对因变量的影响程度和方向。

回归分析可以用于预测未来趋势、解释变量之间的关系、探究因果关系以及确定主要影响因素等。

回归分析分为线性回归和非线性回归两种。

线性回归是最常用的一种回归方法,它假设自变量与因变量之间存在线性关系。

以一元线性回归为例,我们假设因变量Y可以用一个自变量X的线性函数来表示,即Y = β0 + β1X + ε,其中β0和β1是回归系数,ε是误差项,代表了未被自变量解释的因素。

通常,回归分析的目标是估计出回归系数的值,并利用这些系数来解释因变量与自变量之间的关系。

概率统计中的回归分析和方差分析

概率统计中的回归分析和方差分析

概率统计中的回归分析和方差分析回归分析是概率统计中一种重要的分析方法,用于研究自变量与因变量之间的关系。

它可以通过建立一个数学模型,来预测和解释两个或多个变量之间的关系。

而方差分析则是用于比较两个或多个总体均值差异的统计方法。

这两种方法在概率统计领域中具有广泛的应用,本文将对回归分析和方差分析进行介绍和探讨。

一、回归分析回归分析是一种统计方法,主要用于建立一个数学模型以描述自变量和因变量之间的关系。

它常用于预测、解释和分析数据,为研究者提供有关变量之间关系的信息。

回归分析中最常用的模型是线性回归模型,它假设自变量和因变量之间存在线性关系。

在回归分析中,我们首先要选择适当的自变量和因变量。

自变量通常是研究者认为可能影响因变量的变量,而因变量是研究者希望通过自变量来解释和预测的变量。

然后,我们通过收集一定数量的数据来建立数学模型,并进行回归分析。

回归分析的核心目标是通过估计回归系数来确定自变量与因变量之间的关系。

回归系数可以告诉我们两个变量之间的相关性和影响程度。

在线性回归模型中,回归系数表示当自变量的单位变化引起因变量的变化时,因变量的平均变化量。

回归系数的显著性测试可以告诉我们该变量是否对因变量有显著影响。

此外,回归分析还可以进行多元回归和非线性回归等分析。

多元回归用于分析多个自变量和一个因变量之间的关系,非线性回归用于分析自变量和因变量之间的非线性关系。

这些分析方法可以进一步深入研究变量之间的关系。

二、方差分析方差分析是用于比较两个或多个总体均值差异的统计方法。

它通过分析不同组别之间的方差来推断总体均值是否存在显著差异。

方差分析适用于多组数据的比较,常用于实验设计和质量控制等领域。

方差分析将总体的方差分解成组间方差和组内方差,然后通过计算F统计量来进行假设检验。

如果F统计量大于临界值,则拒绝原假设,认为组别之间存在显著差异;否则,接受原假设,认为组别之间没有显著差异。

方差分析可以分为单因素方差分析和多因素方差分析。

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析统计学是数学的一个分支,研究数据的收集、分析和解释。

在统计学中,方差分析和回归分析是两个重要的方法,用来评估数据之间的关系和解释变量之间的差异。

本文将重点探讨这两种方法的应用和原理。

一、方差分析方差分析(Analysis of Variance,ANOVA)是一种统计方法,用于比较两个或两个以上组之间的均值差异。

它将总变异分解为由组内变异和组间变异引起的部分,进而帮助我们判断是否存在显著差异。

方差分析通常用于研究实验设计、调查研究和质量控制。

其中最常用的是单因素方差分析,即只考虑一个自变量对因变量的影响。

例如,我们想了解不同药物剂量对患者血压的影响。

我们可以将患者随机分为不同剂量组,然后对比各组患者的平均血压。

在方差分析中,有三个关键概念:平方和、自由度和F值。

平方和用于衡量数据间的差异程度,自由度用于衡量数据独立的程度,而F值则是对组间差异和组内差异进行比较的统计量。

二、回归分析回归分析(Regression Analysis)是一种用于研究因果关系的统计方法,它通过建立数学模型,分析自变量和因变量之间的关系,并用于预测和解释变量之间的差异。

回归分析常用于预测和解释现象,如市场销售额、人口增长和股票价格等。

回归分析可以分为简单线性回归和多元回归。

简单线性回归是通过一条直线模拟自变量和因变量之间的关系,而多元回归则考虑多个自变量对因变量的影响。

回归分析可以帮助我们了解变量之间的相关性、预测未来的结果以及控制其他变量时对结果的影响。

在回归分析中,常用的指标包括回归系数、截距、R平方值和标准误差等。

回归系数用于衡量自变量对因变量的影响程度,截距表示在自变量为0时的因变量值,R平方值衡量模型的拟合优度,而标准误差则表示模型预测的精确度。

三、方差分析与回归分析的区别方差分析和回归分析都用于评估数据之间的差异和关系,但它们有一些重要的区别。

首先,方差分析主要用于比较两个或多个组之间的均值差异,而回归分析则用于建立和解释变量之间的关系。

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。

它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。

本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。

一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。

它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。

在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量的情况。

例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。

双因素方差分析适用于有两个自变量的情况。

例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。

多因素方差分析适用于有多个自变量的情况。

例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。

方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。

通过与临界F值比较,可以确定差异是否显著。

方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。

二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。

它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。

回归分析分为简单线性回归和多元线性回归两种类型。

简单线性回归适用于只有一个自变量和一个因变量的情况。

例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。

多元线性回归适用于有多个自变量和一个因变量的情况。

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较统计学是以搜集、整理、分析数据的方法为研究对象的一门学科,随着现代科技的不断进步,统计学在许多领域中都扮演着至关重要的角色。

在统计学的研究中,方差分析和回归分析都是两种常见的方法。

然而,这两种方法之间的区别是什么?它们各自的优缺点又是什么呢?本文将就这些问题进行探讨。

一、方差分析是什么?方差分析,也称为ANOVA (analysis of variance),是一种用于分析各个因素对于某一变量影响力大小的方法。

在统计数据分析中,可能有多个自变量(影响因素),这时我们需要检验这些因素中哪些是显著的,即在该因素下所得的计算值与总计算值之间是否存在显著性差异。

因此,方差分析的基本思想是对总体方差进行分析,检验各个因素是否会对总体造成显著影响。

二、回归分析是什么?回归分析则是研究两个变量之间关系的一种方法。

一个自变量(independent variable)是已知的、独立的变量,一个因变量(dependent variable)是需要预测或解释的变量。

回归分析的主要目的是利用自变量对因变量进行预测,或者解释自变量与因变量之间的关系。

回归分析一般有两种,即简单线性回归和多元回归。

三、方差分析与回归分析的比较1. 适用范围方差分析适用于多个自变量之间的比较;回归分析则适用于对单个因变量的预测。

2. 关心的变量在方差分析中,我们关心的是各个自变量对总体造成的显著影响程度;在回归分析中,我们关心的是自变量与因变量之间的相关性。

3. 变量类型方差分析和回归分析处理的数据类型也不相同。

在方差分析中,自变量通常为分类变量(catogorical variable),而因变量通常为连续量(continuous variable)。

而在回归分析中,自变量和因变量都为连续量。

4. 独立性假设方差分析的独立性假设要求各组之间是相互独立、没有相关的,而回归分析的独立性假设要求各个观测或实验之间是独立的。

方差分析与回归

方差分析与回归

方差分析的应用场景
总结词
方差分析适用于处理多组数据,当需要比较不同组之间的均值差异时,可以使用方差分析。
详细描述
方差分析广泛应用于各种领域,如社会科学、医学、经济学等。例如,在心理学中,研究者可以使用方差分析比 较不同年龄段的人在智力测试中的得分差异;在医学研究中,方差分析可以用于比较不同药物治疗对患者的疗效。
数据降维
通过回归分析找出影响因变量的关键因素, 从而降低数据的维度。
回归分析的优缺点
优点
能够找出自变量和因变量之间的关系,并建立数学模型进行预测;能够处理多个自变量和因变量之间 的关系;能够量化自变量对因变量的影响程度。
缺点
假设数据符合线性关系,对于非线性关系的数据拟合效果可能不佳;对于异常值和离群点敏感,容易 影响模型的稳定性;对于共线性问题处理不够理想,可能导致模型失真。
它通过选择合适的数学模型和参数, 使因变量的预测值与实际值之间的误 差最小化,从而得到最佳的预测结果 。
回归分析的应用场景
预测模型
利用已知的自变量数据来预测因变量的未来 值,如销售预测、股票价格预测等。
因素分析
研究自变量对因变量的影响程度,如研究广 告投入对销售额的影响程度。
分类问题
将因变量进行分类,如根据多个特征将客户 进行分类。
3
指导实践
分析结果可以为实际工作提供指导,例如在市场 营销中预测销售量、在医学中预测疾病发病率等。
方差分析与回归的未来发展
算法改进
多变量分析
随着计算能力的提升,未来会有更高效的 算法出现,提高分析的准确性和速度。
目前许多方差与回归分析集中在二元或三 元关系上,未来会有更多研究关注多变量 之间的关系。
回归分析实例

方差分析和回归分析

方差分析和回归分析

方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。

它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。

本文将对方差分析和回归分析进行介绍和比较。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。

方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。

方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。

方差分析可以分为单因素方差分析和多因素方差分析。

单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。

多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。

方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。

通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。

二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。

回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。

回归分析可用于预测、解释和探索自变量与因变量之间的关系。

回归分析可以分为线性回归和非线性回归。

线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。

非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。

回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。

回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。

三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。

主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。

2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。

高级统计学中的方差分析和回归分析

高级统计学中的方差分析和回归分析

高级统计学中的方差分析和回归分析统计学是一门非常重要的学科领域,它通过对数据的采集、分析、整理与解释来揭示数据背后的规律和本质。

在统计学中,方差分析和回归分析是两个重要的概念,它们可以用来解释和预测数据的变化趋势,为其他学科领域提供有力的支持。

一、方差分析方差分析是一种用于比较两个或多个样本的平均值差异的方法。

比如,在实验室进行了一项研究,需要比较两个或多个不同处理方式下的数据表现,我们可以采用方差分析的方法。

方差分析的基本思想是将总方差分解为几个部分,其中各部分代表了一些特定的因素,比如不同处理方式、实验误差等。

我们通过对这些因素的方差分析,可以得到它们对总方差的贡献度,从而确定哪些因素是显著的,哪些是不显著的。

在实践中,方差分析可以用于各种不同的领域,比如教育、医学、社会科学等。

例如,我们可以采用方差分析的方法来研究不同教学方法对学生成绩的影响,或者研究不同药物对患者治疗效果的差异。

二、回归分析回归分析是一种用于建立变量之间关系模型的方法。

在回归分析中,我们可以通过对自变量与因变量的相关性研究,来预测因变量对自变量的响应情况。

回归分析可以归为简单线性回归和多元回归两种类型。

简单线性回归是指只有一个自变量和一个因变量的情况,它的数学模型可以用一条直线来表示。

在实际应用中,简单线性回归可以用来研究不同变量之间的关系,比如温度和空调使用时间的关系。

多元回归是指有两个或两个以上自变量和一个因变量的情况,它的数学模型可以用一个多项式来表示。

在实际应用中,多元回归可以用来研究多个变量之间的关系,比如气温、湿度、风力等因素对空调使用时间的影响。

总体来说,方差分析和回归分析是统计学领域中非常重要的概念。

通过对这两个概念的深入研究和应用,我们能够更好地揭示数据背后的规律和本质,为其他学科领域提供更好的支持。

方差分析回归分析

方差分析回归分析

案例二:不同地区教育水平的方差分析
总结词
通过比较不同地区的教育水平,了解各 地区教育发展的差异,为政府制定教育 政策提供科学依据。
VS
详细描述
收集不同地区的教育水平数据,包括学校 数量、教师质量、学生成绩等。利用方差 分析方法,分析各地区教育水平是否存在 显著差异,并探究影响教育水平的因素。 根据分析结果,提出针对性的教育政策建 议,促进教育公平和发展。
应用范围
方差分析主要应用于实验设计、质量控制等领域,而回归 分析则广泛应用于预测、建模和决策等领域。
04
方差分析的实际应用案例
案例一:不同品牌电视销量的方差分析
总结词
通过对比不同品牌电视的销量,分析品牌、型号、价格等因素对销量的影响,有助于企业了解市场需 求和竞争态势。
详细描述
选取市场上不同品牌、型号、价格的电视,收集其销量数据。利用方差分析方法,分析各品牌电视销 量是否存在显著差异,并进一步探究价格、功能等变量对销量的影响。根据分析结果,为企业制定营 销策略提供依据。
05
回归分析的实际应用案例
案例一:预测股票价格与成交量的回归分析
总结词
股票价格与成交量之间存在一定的相 关性,通过回归分析可以预测股票价 格的走势。
详细描述
通过收集历史股票数据,分析股票价 格与成交量之间的相关性,建立回归 模型。利用该模型,可以预测未来股 票价格的走势,为投资者提供决策依 据。
详细描述
方差分析在许多领域都有广泛的应用,如心理学、社会科学、生物统计学和经济学等。它可以用于比较不同组数 据的均值差异,探索因子对因变量的影响,以及处理分类变量和连续变量的关系。通过方差分析,研究者可以更 好地理解数据结构和关系,为进一步的数据分析和解释提供依据。

统计学中的方差分析与多元回归分析比较研究

统计学中的方差分析与多元回归分析比较研究

统计学中的方差分析与多元回归分析比较研究在统计学中,方差分析和多元回归分析是两种常用的方法。

它们都用来解析变量间的关系,但在具体应用中存在一些差异。

方差分析是一种用于检测几个因素是否对其它变量产生显著影响的统计分析方法,适用于因变量为连续性变量的情形。

如果有两个甚至更多的因素(也称作处理或因素水平)对因变量造成的影响需要被研究,那么方差分析就是一个比较好的工具。

例如,Coke和Pepsi这两种可口的品牌,它们的价格、促销策略、发行渠道等诸多因素都会影响到它们的销售量。

结合方差分析方法,我们可以探究这些因素与销售量之间的关系。

同样地,多元回归分析也是一种用于研究变量关系的常用统计方法。

不同于方差分析,多元回归分析是用于研究一个或多个自变量与一系列连续型因变量之间的关系。

例如,在一次调查中,人们希望研究祖宗居住的地区、教育水平、职业体面度、月收入、婚姻状态等变量与其健康状况的关系。

这时,多元回归分析也是一个比较好的方法。

在实际应用中,方差分析和多元回归分析的应用场景略有不同。

方差分析常用于一个或几个自变量,一项被研究的因变量的研究。

例如,在药物研究中,药物剂量是唯一一个自变量,而药效是唯一一个因变量。

在这种情况下,方差分析是一种比较好的选择。

另一方面,多元回归分析通常用于探究多个自变量与多个因变量的关系。

例如,研究一个人的身体健康状况可能会涉及到多个指标,如生活习惯、心理状况、饮食习惯等,这时,多元回归分析就比较合适。

虽然方差分析和多元回归分析之间存在区别,但它们有一个共同的特点,就是都要求数据符合一定的假设条件。

例如,方差分析通常要求数据满足正态性、独立性、方差齐性等假设。

而多元回归分析则要求数据满足线性假设、同方差假设等。

对于数据不满足假设条件的情况,需要进行数据处理或采用其他方法来分析数据。

总之,方差分析与多元回归分析都是在统计学中常用的分析方法,它们分别适用于处理不同类型的问题。

在实际工作中,需要根据具体问题的性质来选择合适的方法,并注意数据符合假设条件。

回归分析和方差分析的原理与应用

回归分析和方差分析的原理与应用

回归分析和方差分析的原理与应用回归分析和方差分析是数据分析中常用的方法,它们可以帮助解决许多实际问题。

在本文中,我们将探讨回归分析和方差分析的原理和应用。

一、回归分析的原理与应用回归分析是一种用来研究变量之间关系的方法。

它可以帮助我们预测一个变量如何随着其他变量的变化而变化。

回归分析的基本原理是寻找一个数学函数,将多个自变量和一个因变量联系起来。

回归分析可以在市场研究、医疗研究和金融分析等领域中得到广泛应用。

例如,在市场研究中,回归分析可以帮助分析产品的销售情况与促销活动之间的关系。

在医疗研究中,回归分析可用于预测患者疾病的风险因素。

在金融分析中,回归分析可以用来预测股票价格的变化。

二、方差分析的原理与应用方差分析是用来比较两个或更多组数据平均值之间差异的一种方法。

它可以帮助我们确定差异是否由于随机误差引起,还是由于其他因素所引起的。

方差分析可以用于许多实际问题中,如比较不同城市的空气质量,确定不同教学方法对学生成绩的影响等。

在这些应用中,方差分析可以帮助我们确定哪些因素对结果有显著影响,从而指导我们做出正确的决策。

三、回归分析和方差分析的应用案例回归分析和方差分析可以共同应用于许多实际问题中。

例如,在一项市场研究中,我们可以用回归分析来探索某种产品的销售情况与其价格之间的关系。

然后,我们可以使用方差分析来确定是否有其他因素,如促销活动或竞争产品,对销售情况产生显著影响。

在另一个实例中,我们可以使用回归分析来探索一个患者的体重、血糖和胆固醇水平之间的关系。

然后,我们可以使用方差分析来确定是否有其他因素,如年龄、性别或药物使用,对这些因素之间的关系产生显著影响。

四、结论回归分析和方差分析是解决实际问题中常用的方法。

回归分析可以帮助我们预测一个变量如何随着其他变量的变化而变化,而方差分析则可以帮助我们确定数据的差异是否由于随机误差引起,还是由于其他因素所引起的。

在实际问题中,我们可以将这两种方法组合起来,并根据结果做出正确的决策。

回归分析与方差分析

回归分析与方差分析

回归分析与方差分析的异同比较回归分析与方差分析是统计学中两种常用的统计分析方法,比较分析它们的不同和相似之处,无论对把握两种方法的基本原理,还是对拓广其应用范围,无疑都是十分重要的。

一、两种方法的联系回归分析与方差分析之间有许多相似之处,这体现了两者之间的内在联系。

我们把这种相似性具体归纳为如下几个方面。

(一)在概念上具有相似性回归分析是为了分析一个变数如何依赖其它变数而提出的一种统计分析方法。

运用回归分析法,可以从变数的总变差中分解出回归因子解释的变差和未被解释的变差。

回归分析的目的是要确定引起应变数变异的各个因素。

而方差分析是为了分析实验数据而提出的一种统计分析方法。

运用方差分析,可以从变数的总变差中分解出 因子的效应和随机因子的效应。

方差分析的目的是要确定产生变差的有关各种因素。

两种分析在概念上所具有的相似性是显而易见的。

(二)在目的实现上具有相似性回归分析确定因素X 是否为Y 的影响因素时,从实现程序上先进行变数X 与变数y 的相关分析,然后建立变数间的回归模型,最后进行对参数的统计显著性检验。

方差分析确定因素X 是否是Y 的影响因素时,从实现程序上,先从实验数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行统计显著性检验。

实现程序显然是相近的。

(三)在假设条件上具有相似性回归分析有四条基本假定:(1)线性假定,即模型为Y a bX u =++;(2)随机性、零均值、同方差、正态性假定,即2(0,)u N μδ ;(3)独立性假定,即(,)0i j Cov μμ=;(4)扰动项与解释变量无关假定,即(,)0Cov X μ=。

方差分析对试验数据也有四条假定:(1)线性假定,即数据模型为ij j ij Y Y ε=+(j Y 为影响因素X 在i X 水平上变数Y 的试验均值);(2)正态假定,即2(,)ij j j Y N Y σ ;(3)独立性假定,即所有数据都是独立取得的;(4)方差齐次性假定,即22212...σσσ===。

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析与回归分析是统计学中常用的两种分析方法,用来研究变量之间的关系和影响。

本文将分别介绍方差分析和回归分析的基本原理、应用场景以及相关注意事项。

**方差分析**方差分析(ANOVA)是一种用来比较两个或多个总体均值是否相等的统计方法。

它主要用于处理两个或多个组之间的变量差异性比较。

方差分析将总体方差分为组间方差和组内方差,通过比较组间方差与组内方差的大小来判断组间均值是否存在显著差异。

方差分析的应用场景包括但不限于医学研究、实验设计、市场调研等领域。

通过方差分析,研究者可以判断不同组之间是否存在显著差异,从而得出结论或制定决策。

在进行方差分析时,需要注意一些问题。

首先,要确保各组数据符合方差分析的假设,如正态性和方差齐性。

其次,要选择适当的方差分析方法,如单因素方差分析、多因素方差分析等。

最后,要正确解读方差分析结果,避免误解导致错误结论。

**回归分析**回归分析是一种用来研究自变量与因变量之间关系的统计方法。

通过构建回归方程,可以预测因变量在给定自变量条件下的取值。

回归分析主要包括线性回归和非线性回归两种方法,用于描述自变量与因变量之间的相关性和影响程度。

回归分析的应用领域广泛,包括经济学、社会学、医学等。

通过回归分析,研究者可以探究变量之间的复杂关系,找出影响因变量的主要因素,并进行预测和控制。

在进行回归分析时,需要考虑一些重要问题。

首先,要选择适当的回归模型,如线性回归、多元回归等。

其次,要检验回归方程的拟合度和显著性,确保模型的准确性和可靠性。

最后,要谨慎解释回归系数和预测结果,避免过度解读和误导性结论。

综上所述,方差分析与回归分析是统计学中常用的两种分析方法,分别用于比较组间差异和探究变量关系。

通过正确应用这两种方法,可以帮助研究者得出准确的结论和有效的决策,推动学术研究和实践应用的发展。

统计学中的方差分析和回归分析

统计学中的方差分析和回归分析

统计学中的方差分析和回归分析统计学是一门研究数据分析的学科,其中两种常见的分析方法是方差分析和回归分析。

这两种方法都用于研究变量之间的关系,而在实际应用中,它们经常被用来预测未来的趋势和结果。

本文将介绍方差分析和回归分析的基础知识和应用。

一、方差分析方差分析是一种用于分析实验数据的统计工具,它用来确定不同因素之间的差异是否显著。

在实践中,它通常被用来比较两个或多个样本之间的差异,而这些样本可能受到某些因素的影响。

例如,假设一个制药公司想要比较三种不同的药物的疗效,那么它可以在不同的药物组中进行实验,并测量不同药物的疗效水平。

使用方差分析,公司可以确定哪种药物的疗效最好,并是否有任何其他因素(如年龄、性别等)对疗效的影响。

二、回归分析回归分析是一种用于研究变量之间关系的统计工具。

通常,它用来建立一个数学模型来描述变量之间的关系,以便预测未来的趋势和结果。

回归分析可以用来预测一个变量(称为因变量)受一个或多个其他变量(称为自变量)的影响程度。

例如,假设一家保险公司想要预测其客户的寿命,那么它可以使用回归分析来确定哪些因素(如年龄、性别、吸烟情况等)对客户寿命的影响最大,并建立一个数学模型来预测寿命。

三、方差分析和回归分析的区别尽管方差分析和回归分析都用于研究变量之间的关系,但它们之间存在一些重要的区别。

首先,方差分析通常用来比较两个或多个样本之间的差异,而回归分析则用于建立变量之间的数学模型。

其次,方差分析通常用来确定不同因素之间的差异是否显著,而回归分析则用来预测变量之间的关系并进行预测。

最后,方差分析可以用来确定哪些因素最影响一个变量,而回归分析可用来量化这些影响,以及据此进行预测。

四、总体结论方差分析和回归分析是统计学中两个重要的分析工具,它们都用于研究变量之间的关系,而在实际应用中,它们经常被用来预测未来的趋势和结果。

方差分析通常用来比较两个或多个样本之间的差异,而回归分析则用于建立变量之间的数学模型和预测。

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析(Analysis of Variance,缩写为ANOVA)与回归分析(Regression Analysis)是统计学中常用的两种数据分析方法。

它们在不同领域的研究中有着重要的应用,用于探究变量之间的关系以及预测、解释和验证数据。

一、方差分析方差分析是一种用于比较两个或多个样本均值是否差异显著的统计方法。

它通过计算各组之间的离散程度来揭示变量之间的关系。

方差分析常用于实验设计和实验结果的分析,可以帮助研究人员确定各因素的影响程度。

在方差分析中,我们首先将数据进行分组,然后计算每个组的方差。

通过比较各组之间的方差,我们可以判断其是否有显著差异。

方差分析根据研究设计的不同,可以分为单因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量(因素)的情况,而多因素方差分析则适用于多个自变量(因素)的情况。

方差分析的结果一般通过计算F值来判断各组之间的差异是否显著。

如果F值大于临界值,则可以拒绝原假设,认为各组之间存在显著差异。

反之,如果F值小于临界值,则无法拒绝原假设,即各组均值没有显著差异。

二、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它根据自变量(独立变量)与因变量(依赖变量)之间的相关性,建立一个预测模型来预测或解释因变量的变化。

在回归分析中,我们首先收集自变量和因变量的数据,然后通过建立数学模型来描述它们之间的关系。

常用的回归模型包括线性回归、多项式回归、逻辑回归等。

通过回归分析,我们可以估计自变量对于因变量的影响程度,并根据模型进行预测和解释。

在回归分析中,我们通常使用R方(R-squared)来衡量模型的拟合程度。

R方的取值范围在0到1之间,越接近1表示模型的拟合效果越好。

此外,回归分析还可以通过计算标准误差、系数显著性、残差分析等指标来评估模型的质量。

结论方差分析与回归分析是统计学中常用的两种数据分析方法。

方差分析适用于比较多个样本均值的差异性,而回归分析用于研究变量之间的关系和预测。

回归分析方差分析

回归分析方差分析

回归分析方差分析回归分析和方差分析是统计学中两种重要的数据分析方法。

回归分析用于研究两个或多个变量之间的关系,并预测一个变量对另一个或多个变量的影响。

方差分析则用于比较三个或更多个组或处理之间的均值差异。

本文将分别介绍回归分析和方差分析的基本原理和应用。

回归分析是一种通过建立数学模型来研究两个或多个变量之间关系的方法。

回归模型用来预测一个因变量(响应变量)对一个或多个自变量的依赖关系。

回归分析可以分为简单线性回归和多元回归。

简单线性回归是一种建立在一个自变量和一个因变量之间的关系上的模型。

多元回归则是一种包含多个自变量和一个因变量之间关系的模型。

回归分析的基本原理是通过最小二乘法来估计模型的参数。

最小二乘法的目标是找到最佳拟合线,使得观测数据点与拟合线之间的误差最小。

回归分析可以用来评估变量之间的关系强度和方向。

相关系数用来衡量变量之间的线性关系强度,其取值范围在-1到1之间。

回归方程用来预测因变量的值,可以根据自变量的值来计算。

回归分析的应用广泛,包括但不限于以下几个领域。

在经济学中,回归分析可以用来研究经济变量之间的关系,如GDP和失业率之间的关系。

在医学研究中,回归分析可以用来探索疾病与风险因素之间的关系,如吸烟与肺癌之间的关系。

在市场营销中,回归分析可以用来预测销售额与广告支出之间的关系。

在社会科学中,回归分析可以用来研究人口统计学变量与社会行为之间的关系。

方差分析是一种用来比较三个或更多个组或处理之间的均值差异的方法。

方差分析的基本原理是通过分解总方差为组间方差和组内方差来进行检验。

组间方差衡量了不同组之间的均值差异,而组内方差则衡量了同一组内的个体之间的差异。

方差分析通常用来比较不同处理或实验条件下的均值之间是否存在显著差异。

方差分析的假设是每个组内个体之间的差异是相同的,只有组间的差异是不同的。

方差分析可以用来比较多个组之间的均值差异,如不同药物治疗组的疗效比较,或不同教学方法对学生成绩的影响。

方差分析与回归分析在统计学中的作用

方差分析与回归分析在统计学中的作用

方差分析与回归分析在统计学中的作用统计学作为一门研究数据收集、分析和解释的科学,涵盖了各种数据分析方法和技术。

在统计学中,方差分析和回归分析是两种常用的数据分析方法,它们在推断统计和相关领域内具有重要的作用。

一、方差分析的作用方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或多个样本均值差异的方法。

它基于方差的性质,通过对数据的方差进行分解,判断不同来源的变异对总变异的贡献程度。

方差分析在统计学中的作用主要体现在以下几个方面:1.比较多个样本均值:方差分析通过比较多个样本的均值,确定它们是否差异明显。

这对于研究人员来说至关重要,因为它能够帮助他们确定是否存在一个或多个处理组的均值与其他组有显著差异。

2.评估解释变量的效果:方差分析可以用来评估解释变量对响应变量的效果。

通过分析方差组成,并计算F统计量来判定解释变量是否对响应变量有显著影响。

这对于找出影响变量之间关系的因素非常重要。

3.确定处理组间的差异:方差分析可以帮助识别处理组间的差异。

如果方差分析表明不同处理组之间存在显著差异,则可以进行进一步的多重比较分析或后续实验。

这对于研究人员来说非常有用,因为它能够帮助他们深入了解实验结果。

二、回归分析的作用回归分析是一种用于建立变量之间关系模型和预测的方法。

它通过对自变量与因变量之间的线性关系进行建模,来解释和预测因变量的变化。

回归分析在统计学中的作用主要体现在以下几个方面:1.探究变量之间的关系:回归分析可以帮助研究人员理解不同变量之间的关系。

通过对因变量和自变量之间的回归方程进行分析,可以确定变量之间的相关性,从而解释它们之间的关系。

2.预测和预测分析:通过回归分析,可以构建一个预测模型,用于预测因变量的值。

这对于研究人员来说非常有用,因为它可以帮助他们预测未来的趋势和结果,并作出相应的决策。

3.变量重要性评估:回归分析可以评估不同自变量对因变量的重要性。

通过回归系数和显著性检验,可以确定哪些自变量对因变量的解释最为重要。

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析

统计学中的方差分析与回归分析统计学是一门研究数据收集、分析和解释的学科。

在统计学中,方差分析和回归分析是两个重要的方法。

它们可以帮助我们理解数据之间的关系,并进行预测和推断。

一、方差分析方差分析是一种用于比较两个或多个样本均值差异的统计方法。

它可以帮助我们确定不同因素对于观测值的影响程度。

方差分析的基本原理是通过比较组间变异与组内变异的大小来判断不同因素之间的差异是否显著。

在方差分析中,我们需要将数据分成不同的组别,然后计算每个组别的均值和方差。

通过计算组间变异和组内变异的比值,我们可以得到一个统计量,称为F 值。

如果F值大于某个临界值,我们就可以认为不同组别之间的差异是显著的。

方差分析可以应用于各种领域,例如医学研究、社会科学和工程领域。

它可以帮助我们确定不同因素对于某种现象的影响程度,从而指导我们做出决策或制定政策。

二、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它可以帮助我们理解自变量对因变量的影响,并进行预测和推断。

回归分析的基本原理是通过建立一个数学模型来描述自变量与因变量之间的关系。

在回归分析中,我们首先需要确定自变量和因变量之间的函数形式,例如线性关系、非线性关系或多项式关系。

然后,我们使用最小二乘法来估计模型的参数,从而得到一个最优的拟合曲线或平面。

通过回归分析,我们可以得到自变量对于因变量的影响程度,以及其他统计指标,如回归系数、标准误差和显著性水平。

这些指标可以帮助我们解释数据的变异,并进行预测和推断。

回归分析可以应用于各种领域,例如经济学、金融学和市场营销。

它可以帮助我们理解市场需求、预测销售额,并制定相应的营销策略。

三、方差分析与回归分析的区别方差分析和回归分析在统计学中有着不同的应用和目的。

方差分析主要用于比较不同组别之间的均值差异,以确定不同因素的影响程度。

而回归分析主要用于研究变量之间的关系,以理解自变量对因变量的影响。

此外,方差分析和回归分析在数据处理和模型建立上也有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 回归分析、方差分析实验名称:回归分析、方差分析 实验类型:验证性实验 学 时:2适用对象: 信息与计算科学一、实验目的与要求1.理解线性回归分析和方差分析的模型、统计推断等方法。

2.能够使用SAS 做回归分析和方差分析。

二、线性回归分析的基本理论与方法 2.1 线性回归模型2.1.1 线性回归模型的矩阵表示设Y 是一个可观测的随机变量,它受到p-1个非随机因素X 1,X 2,…,X p -1和随机误差ε的影响。

若Y 与X 1,X 2,…,X p -1有如下线性关系:011-1-1p p Y X X βββε=++++ , (1)其中01-1p βββ ,,,是未知参数,()2~0N εσ,。

该模型称为线性回归模型。

我们进行n (n ≥p )次独立观测,得到n 组样本()12-112i i i p i x x x y i n = ,,,;,,,,,应满足(1)式:()011-1-1 12i i p ip i y x x i n βββε=++++= ,,,, (2)其中12,,,n εεε…相互独立均服从2(0,)N σ分布。

简写为矩阵形式:Y = X β + ε, (3) 其中Y 为观测变量,X 为设计矩阵,它们由观测数据得到,是已知的,并假定Rank(X )=p 。

β是待估计的未知参数向量,ε是不可观测的随机误差向量。

式(3)称为线性回归模型的矩阵形式。

2.1.2 β及σ2的估计 (1) β的最小二乘估计选择β使误差项的平方和()()()21210p nTT i ij j i i j S Y X Y X y x βεεεβββ−==⎛⎞===−−=−⎜⎟⎝⎠∑∑∑达到最小,其中0 1 (1,2,,)i x i n ==…,则为此分别对求偏导并令其等于零,得1100, 0,1,,1p n i ij j ik i j k Sy x x k p ββ−==⎛⎞∂=−−==−⎜⎟∂⎝⎠∑∑ , 即 11110010,1,,1p p n n n i ik ij ik j ij ik j i i j j i y x x x x x k p ββ−−=====⎛⎞===−⎜⎟⎝⎠∑∑∑∑∑ ,。

其矩阵形式 X TX β = X TY ,称此方程为正规方程。

解此方程,即得β的最小二乘估计ˆβ为 ˆβ= (X T X )T X T Y , 将其代入式(1)并略去误差,则称011-1-1ˆˆˆˆp p Y X X βββ=+++ 为回归方程。

利用回归方程,可由自变量X 1,X 2,…,X p -1的观测值求出因变量Y 的估计值。

(2) 误差方差σ2的估计残差向量:()()1ˆˆT T e Y YY X I X X X X Y I H Y β−⎡⎤=−=−=−=−⎢⎥⎣⎦,其中H = X (X TX )-1X T为对称幂等矩阵,I 为单位向量。

残差平方和:()TTT T T ˆe e YI H Y Y Y X Y β=−=−。

由于E(Y )=X β ,(I – H ) X =0,则由()()()()TT TE E e e Y Y I H Y Y I H εε=−−−=−⎡⎤⎡⎤⎣⎦⎣⎦解得σ2的估计2ˆσ为 ()2T 1ˆE e e n pσ=−。

2.1.3 有关的统计推断(1)回归关系的统计推断 离差平方和:()21ni i SST y y ==−∑,反映了数据y 1,y 2,…,y p -1波动性的大小;残差平方和:()21ˆnii i SSE yy==−∑,反映了回归以外因素引起的波动; 回归平方和:()21ˆni i SSR yy ==−∑,反映了由变量X 1,X 2,…,X p -1引起的波动。

检验假设:()012-11001-1p i H H i p ββββ====↔≠≤≤ : :至少有一个检验统计量:MSRF MSE =,其中1SSR SSE MSR MSE p n p==−−,。

当H 0不真时(回归关系显著),F 有偏大趋势;当H 0真时,()~1F F p n p −−,, 当{}00H p P F F α=≥<时,拒绝H 0,否则接受H 0。

(2) 回归参数的统计推断检验假设: ()0100k k H H k ββ=↔≠: :某个检验统计量:()()ˆˆ~k k t s t n p ββ=−,其中()()1ˆT k s MSE X X β−=当{00H p P t t α=≥<时,则拒绝H 0,kβ的1α−置信区间为:()()()()()/2/2ˆˆˆˆ,kk k kt n p s t n p s ααββββ−−+−。

(3) 关于预报值的统计推断给定()01020-1p x x x ,,,,利用回归方程可得因变量Y 的预报值0ˆy,则有 ()()000ˆ~ˆyy t n p s y−−, 其中()()()120000010-1ˆ11T T T p s y MSE x X X x x x x −⎡⎤=+=⎢⎥⎣⎦,,,,。

从而可得到置信度为1α− 的置信区间为()()()()()0/200/20ˆˆˆˆ,y t n p s y y t n p s y αα−−+−。

2.2 残差分析2.2.1 误差项的正态性检验(1)频率检验若()2~0,i N εσ,则()~0,1i N εσ,所以若模型正确,则2211ˆn i i e MSE n p σ===−∑,从而(i =1,2,…,n )是近似N(0,1)的样本,由此可检验在(-1,1)或(-1.5,1.5),(-2,2)内的取值频率。

(2)QQ 图检验1)残差的QQ 图作法1o将残差12,,,n e e e …由小到大排列为()()()12,,,n e e e …;2o计算()0.3750.25i i q n −⎛⎞=⎜⎟+⎝⎠,称()i q 为()i e 的期望值,其中()Z i 表示标准正态分布的下侧i()2•2x Z edx −−∞=i ,其中的常数0.375和0.25是修正值;3o以残差、期望值描出点()()()i i q e ,,1,2,,i n =…,得到残差的正态QQ 图。

2)直观检验法若QQ 图不在一条直线上,则怀疑正态性。

3)相关系数检验法()(1ni i i r e q ==∑1r ≈,则()()()i i q e ,近似在一条直线上,认为正态。

2.3 回归方程的选取:逐步回归法给定两个小概率值,E D αα,分别用作选取自变量和剔除自变量的显著性水平。

第一步 对每个X k (1≤k ≤M ),拟合仅包含X k 的线性回归模型Y = β0 + βk X k + ε。

对每个k 计算()()()1kk k F SSR X MSE X =,1,2,,k M =…。

设()(){}1111max k kk MF F ≤≤=,若()()1E 1F 1n 2k F α>−,,则选择含1k X 的回归模型为当前模型;否则,没有自变量进入模型,选择过程结束。

这时认为所有自变量对Y 的影响不显著。

第二步 在第一步选出的含1k X 的模型基础上,再将其余M -1个自变量逐个加入此模型中,并计算()()()1121|kk k k k F SSR X X MSE X X k k =≠,, 。

设()(){}2122max k kk k F F ≠=,若()()2E 21n 3k F F α≤−,,则选择过程结束。

第一步选出的模型为最优模型。

若()()2E 21n 3k F F α>−,,则将2k X 加入到第一步所选的模型中,即有11220k k k k Y X X βββε=+++。

(*)进一步考察,当2k X 进入模型后,1k X 是否可被剔除。

为此计算,()()()112122|k k k k k F SSR X X MSE X X =,,若()()1D 21n 3k F F α≤−,,则剔除1k X ,这时仅含2k X 的回归模型为当前模型。

否则式(*)为当前模型。

第三步 继续考察其余M -2个变量的逐个加入情况。

计算()()()12123312|k k k kk k k SSR X X X F k k k MSE XX X =≠,,,,,。

设()()()31233,max k kk k k F F ≠=,若()()3314Ek F Fn α≤−,,则选择结束,(*)为最优;否则,3kX 进入模型,即有1122330k k k k k k Y X X X ββββε=++++。

(**)进一步考察1k X 、2k X 是否因3k X 的进入可被剔除,即计算()()()()()()1232131212312333||k k k k k k k k k k k k k k SSR X X X SSR XX X F F MSE XX X MSE X X X ==,,,,,,,。

若()(){}()12D33min 14k k F F Fn α<−,,,则先剔除()()1233k k F F 和中较小的一个所对应的变量12k k X X 或,再检验另一个是否可被剔除。

若12k k X X 和不能被剔除,则(**)即为当前模型。

重复以上步骤,直到没有变量能进入且模型中变量均不能被剔除,则选择过程结束。

最后一个模型即认为是最优的。

三、方差分析的基本理论与方法3.1 单因素方差分析因素的水平: 因素的不同状态; 因素A 的a 个水平: 12,,,a A A A , 等等. 例如某农作物产量Y , 作物品种A , 化肥品种B ,123,,A A A ; 1234,,,B B B B主要思想为显著性检验, 即 Y 的总变化量=各因素各水平及交互影响+随误影响1. 单因素方差分析模型设所关心变量为Y ,影响Y 的因素为A ,有a 个水平, 假设如下表: (各样本独立, 同方差)因素A 的水平总 体样本12aA A A 21222(,)(,)(,)a N N N µσµσµσ12111212122212,,,,,,,,,an n a a an y y y y y y y y y令,1~ij ij i i y j n εµ=−=, 1~i a =则有(相当于a 个回归模型)2,1~,1~~(0,),ij i ij i ij ij y j n i aN µεεσε=+==⎧⎨⎩且诸相互独立(3.1), 称 1ni i n n ==∑为总容量;11ni i i n n µµ==∑为总平均;,1~i i i a δµµ=−=为水平i A 的效应(影响度)且满足10ai ii n δ==∑, 最后归结为21,1~,1~~(0,),0ij i ij i ij ij ai ii y j n i aN n µδεεσεδ==++===∑且诸相互独立(3.2)2. 因素效应的显著性检验对于单因素, 目标之一: 该因素各水平对Y 取值有无显著差异. 即检验如下假设012:a H µµµ===↔ 1:(1~)i H i a µ=不全相等(3.3)等价地, 对模型(3.2), 检验假设012:0a H δδδ====↔ 1:H 至少有某个0i δ≠(3.4)分解影响且设计统计量 令11in i ijj in εε==∑i , 则2(0,1~i iN i a n σε=i ∼11111i n a a ij i i i j i n n n εεε=====∑∑∑i , 则2(0,N n σε∼,1111()iin n i ijiij i i j j ii y y n n µδεµδε====++=++∑∑i i 即,11111i n a aij i i i j i y y n y n n =====∑∑∑i , 则y µε=+数据的总变化量总平方和:分解为展开交叉项=0)221111()()i in n a a ij i i i j i j y y y y =====−+−∑∑∑∑i i()()E A A SS SS + 误差平方和因素的平方和,基本分析1) ij i ij i ij y y y µε−≈−=i ,2) A SS 随1212,,,,,,a a y y y µµµ≈i i i 差异小而小,E A SS SS 的统计性质令2211()1in iij i j i s y y n ==−−∑i , 则22E()i s σ=, 从而 2211E()E((1))(1)a aE i ii i i SS n s n σ===−=−∑∑2()n a σ=−,无论0H 成立否, E SS n a−是2σ的一个无偏估计. 另一面, 因21(aA i i i i SS n µδεµε==++−−∑i22111()2()a a ai i i i i i i i i i n n n δεεδεε====+−+−∑∑∑i i221(1)ai i i a n σδ==−+∑所以2211E 11a A i i i SS n a a σδ=⎛⎞=+⎜⎟−−⎝⎠∑, 从而可知: 当0:0,1~i H i a δ==为真, 1A SS a −是2σ无偏估计. 否则, 有偏大趋势, 构造统计量当0H 为真, 则F 应在1波动, 否则趋大. 因为22222111()~(1)in i iiji i j n s yy n χσσ=−=−−∑i(1~i a =)又由各总体样本的相互独立性、2χ的可加性, 得22222111~(1)()aa i Eii i i n SS s n n a χχσσ==−⎛⎞=−=−⎜⎟⎝⎠∑∑另有(参见[4]) 22~(1)ASS n χσ=−且与E SS 独立,故当0H 真,检验的p 值为0()((1,))H p P F f P F a n a f =≥=−−≥对给出的α,若p α<, 则拒绝0H , 各水平的效应有显著差异; 否则, 不能拒绝,认为各水平的效应无显著差异.3.2 两因素等重复实验下的方差分析⎪⎩⎪⎨⎧===+=且相互独立,:方差分析模型可表示为两因素等重复试验下的),,0(~),...,2,1,,...,2,1,,...,2,1(2σεεµN c k b j a i y ijk ijk ij ijk ⎪⎪⎪⎩⎪⎪⎪⎨⎧=======++++=∑∑∑∑====bj ija i ijb j j a i i ijk ijk ij j i ijkN c k b j a i y 11112,0,0,0,0),,0(~),...,2,1,,...,2,1,,...,2,1()21.3(γγβασεεγβαµ且相互独立,等价于:方差分析模型两因素等重复试验下的 如下三个假设检验问题21112 (11)1222 (1)1112.111()(()()()())()()()()a b cT ijk i j k bcaijk ij i j ij i j j k i ababi j ij i j i j i j bcaijk ij j k i A B A SS y y y y y y y y y y y y bc y y ac y y c y y y y y y SS SS SS ==============−−+−+−−++−==−+−+−−+−+=++∑∑∑∑∑∑∑∑∑∑∑∑∑B ESS +0:0...:1210≠↔====j B b B H H ββββ至少某个0:0...:1210≠↔====i A a A H H αααα至少某个0:0,:10≠↔=ij AB ij AB H H γγ至少某个2..12..12 (112).111(),A ()B (),(),aA i i bB j j abAB ij i j i j bcaijk ij E j k i SS bc y y SS ac y y SS c y y y y y y SS ========−=−=−−+−=∑∑∑∑∑∑∑因素的平方和;,因素的平方和;交互效应平方和;误差平方和。

相关文档
最新文档