2021高考数学一轮复习考点规范练09对数与对数函数(含解析)
高考数学专题《对数与对数函数》习题含答案解析
专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。
高三一轮复习精题组对数与对数函数(有详细答案)
§2.6 对数与对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质4.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若log2(log3x)=log3(log2y)=0,则x+y=5. ( √)(2)2log510+log50.25=5. ( ×)(3)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=2. ( √)(4)log2x2=2log2x. ( ×)(5)当x>1时,log a x>0. ( ×)(6)当x>1时,若log a x>log b x,则a<b. ( ×) 2.(2013·课标全国Ⅱ)设a=log36,b=log510,c=log714,则( ) A.c>b>a B.b>c>aC.a>c>b D.a>b>c答案 D解析a=log36=1+log32=1+1log23,b=log510=1+log52=1+1log25,c=log714=1+log72=1+1log27,显然a>b>c.3.(2013·浙江)已知x,y为正实数,则( )A .2lg x +lg y =2lg x+2lg yB .2lg(x +y )=2lg x·2lg yC .2lg x ·lg y=2lg x+2lg yD .2lg(xy )=2lg x ·2lg y答案 D 解析 2lg x·2lg y=2lg x +lg y=2lg(xy ).故选D.4.函数f (x )=log 5(2x +1)的单调增区间是________.答案 (-12,+∞)解析 函数f (x )的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间是(-12,+∞).5.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为________________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数,由f ⎝ ⎛⎭⎪⎫13=0,得f ⎝ ⎛⎭⎪⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12,∴x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).题型一 对数式的运算例1 (1)若x =log 43,则(2x-2-x )2等于( )A.94B.54C.103D.43(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f (log 312)的值是( )A .5B .3C .-1D.72思维启迪 (1)利用对数的定义将x =log 43化成4x=3; (2)利用分段函数的意义先求f (1),再求f (f (1));f (log 312)可利用对数恒等式进行计算.答案 (1)D (2)A解析 (1)由x =log 43,得4x=3,即2x=3,2-x =33,所以(2x -2-x )2=(233)2=43.(2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2. 因为log 312<0,所以f (log 312)=3-log 312+1=3log 32+1=2+1=3.所以f (f (1))+f (log 312)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为________.答案124解析 因为2+log 23<4, 所以f (2+log 23)=f (3+log 23), 而3+log 23>4,所以f (3+log 23)=(12)3+log 23=18×(12)log 23=18×13=124. 题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 213),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象;(2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的. 答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C. (2)log 213=-log 23=-log 49,b =f (log 213)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数, 且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<f (log 213)<f (log 47),即c <b <a .思维升华 (1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 答案 (1)A (2)2 2解析 (1)b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a .(2)f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1, ∴⎩⎪⎨⎪⎧b -1=1b =a,即⎩⎪⎨⎪⎧b =2a =2.题型三 对数函数的应用例3 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.思维启迪 f (x )恒有意义转化为“恒成立”问题,分离参数a 来解决;探究a 是否存在,可从单调性入手.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数, ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a (3-a )=1,即⎩⎪⎨⎪⎧a <32a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质 (1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f (x )=log 4(4x-1).(1)求f (x )的定义域;(2)讨论f (x )的单调性;(3)求f (x )在区间[12,2]上的值域.解 (1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上递增.(3)f (x )在区间[12,2]上递增,又f (12)=0,f (2)=log 415,因此f (x )在[12,2]上的值域为[0,log 415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a <b <c C .b <a <cD .a <c <bA .a >b >cB .b >a >cC .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解.解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .方法一 在同一坐标系中分别作出函数y =log2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.(3)因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数. 因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2, 所以0<log π3<20.2<log 39, 所以b >a >c ,选A. 答案 (1)C (2)C (3)A温馨提醒 (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.方法与技巧1.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.2.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 3.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定. 失误与防范1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).2.指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值A 组 专项基础训练一、选择题 1.函数y =2-xlg x的定义域是( )A .{x |0<x <2}B .{x |0<x <1或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1或1<x ≤2}答案 D解析 要使函数有意义只需要⎩⎪⎨⎪⎧2-x ≥0x >0lg x ≠0,解得0<x <1或1<x ≤2,∴定义域为{x |0<x <1或1<x ≤2}. 2.函数y =lg|x -1|的图象是( )答案 A解析 ∵y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1lg (1-x ),x <1.∴A 项符合题意.3.已知x =ln π,y =log 52,z =e 21-,则 ( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x答案 D解析 ∵x =ln π>ln e ,∴x >1.∵y =log 52<log 55,∴0<y <12.∵z =e21-=1e >14=12,∴12<z <1.综上可得,y <z <x .4.A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C⇒a >1或-1<a <0.5.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是 ( )A .(1,+∞)B .(0,1) C.⎝ ⎛⎭⎪⎫0,13D .(3,+∞)答案 D解析 由于a >0,且a ≠1,∴u =ax -3为增函数, ∴若函数f (x )为增函数,则f (x )=log a u 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D. 二、填空题 6.7.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +1,x ≤0,log 2x ,x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________________.答案 {x |-1<x ≤0或x >2}解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2.综上所述,x 的取值范围为-1<x ≤0或x >2.8.若log 2a 1+a 21+a<0,则a 的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫12,1 解析 当2a >1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a<1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1. 当0<2a <1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a>1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 三、解答题9.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.解 (1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1. 所以使f (x )>0的x 的解集是{x |0<x <1}.10.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13,=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,x =(12)-32=22∈[2,8],符合题意,∴a =12.B 组 专项能力提升1.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是 () A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,∴-1<x <0.2.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有()A .f (13)<f (2)<f (12) B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13) 答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2). 3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 015)=8,则f (x 21)+f (x 22)+…+f (x 22 015)=________.答案 16解析 f (x 1x 2…x 2 015)=log a (x 1x 2…x 2 015)=8,f (x 21)+f (x 22)+…+f (x 22 015) =log a x 21+log a x 22+…+log a x 22 015=log a (x 1x 2…x 2 015)2=2log a (x 1x 2…x 2 015)=16.4.设f (x )=|lg x |,a ,b 为实数,且0<a <b .(1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b ),求证:a ·b =1,a +b 2>1. (3)在(2)的条件下,求证:由关系式f (b )=2f (a +b 2)所得到的关于b 的方程g (b )=0,存在b 0∈(3,4),使g (b 0)=0.(1)解 由f (x )=1得,lg x =±1,所以x =10或110. (2)证明 结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab =1.又a +b 2=1b +b 2>21b ·b 2=1(因1b≠b ). (3)证明 由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b 2+b 2+2-4b =0, g (b )=1b 2+b 2+2-4b , 因为g (3)<0,g (4)>0,根据零点存在性定理可知,函数g (b )在(3,4)内一定存在零点,即存在b 0∈(3,4),使g (b 0)=0.5.已知函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 21 (x 2-ax +a )是由函数y =log 21t 和t =x 2-ax +a 复合而成.因为函数y =log 21t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减, 故函数y =log 21 (x 2-ax +a )在区间(-∞,a 2]上单调递增. 又因为函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎨⎧ a ≥22,2-2a +a ≥0,即22≤a ≤2(2+1).。
对数与对数函数——2021年高考文科数学一轮复习热点题型(附解析)
题型一 对数式的化简与求值.............................................................................................................................. 1 题型二 对数函数的图象及应用.......................................................................................................................... 2 题型三 对数函数的性质及应用.......................................................................................................................... 4
2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)
(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.
2021年高考数学一轮复习第二章函数考点规范练9对数与对数函数文新人教B版
2021年高考数学一轮复习第二章函数考点规范练9对数与对数函数文新人教B版1.函数y=的定义域是()A.[1,2]B.[1,2)C. D.2.(xx广西名校联考)已知x=ln π,y=lo,z=,则()A.x<y<zB.z<x<yC.z<y<xD.y<z<x3.函数f(x)=lg(|x|-1)的大致图象是()4.(xx安徽淮南一模)已知e是自然对数的底数,a>0,且a≠1,b>0,且b≠1,则“log a2>log b e”是“0<a<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数f(x)=则f(f(1))+f的值是()A.5B.3C.-1D.6.已知函数f(x)=a x+log a x(a>0,a≠1)在[1,2]上的最大值与最小值之和为log a2+6,则a的值为()A. B.C.2D.47.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)等于()A.log2xB.C.lo xD.2x-28.(xx福建龙岩模拟)已知y=log a(2-ax)(a>0,且a≠1)在区间[0,1]上是减函数,则a的取值范围是()A.(0,1)B.(0,2)C.(1,2)D.[2,+∞)9.若a>b>0,0<c<1,则()A.log a c<log b cB.log c a<log c bC.a c<b cD.c a>c b10.若不等式f(x)≤0(x∈R)的解集为[-1,2],则不等式f(lg x)>0的解集为.11.函数f(x)=log2·lo(2x)的最小值为.12.已知函数f(x)=log a(ax2-x+3)在[1,3]上是增函数,则a的取值范围是.能力提升13.已知f(x)=lg是奇函数,则使f(x)<0的x的取值范围是()A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)14.设a,b,c均为正数,且2a=lo a,=lo b,=log2c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c15.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+,则f(log220)等于()A.1B.C.-1D.-16.(xx北京,文8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg 3≈0.48)A.1033B.1053C.1073D.109317.方程log2(9x-1-5)=log2(3x-1-2)+2的解为.高考预测18.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<cB.a=b>cC.a<b<cD.a>b>c参考答案考点规范练9对数与对数函数1.D解析由lo(2x-1)≥0,可得0<2x-1≤1,即<x≤1.2.D解析x=lnπ>1,y=lo<lo,z=.∴x>z>y.故选D.3.B解析易知f(x)为偶函数,故只需考虑x>0时,f(x)=lg(x-1)的图象.将函数y=lg x的图象向右平移一个单位得到f(x)=lg(x-1)的图象,再根据偶函数性质得到f(x)的图象.4.B解析当a>1,0<b<1时,log a2>0,log b e<0,推不出0<a<b<1,不是充分条件;当0<a<b<1时,log a2>log b2>log b e,是必要条件,故选B.5.A解析由题意可知f(1)=log21=0,f(f(1))=f(0)=30+1=2,f+1=+1=2+1=3,故f(f(1))+f=5.6.C解析显然函数y=a x与y=log a x在[1,2]上的单调性相同,因此函数f(x)=a x+log a x在[1,2]上的最大值与最小值之和为f(1)+f(2)=(a+log a1)+(a2+log a2)=a+a2+log a2=log a2+6,故a+a2=6,解得a=2或a=-3(舍去).故选C.7.A解析由题意知f(x)=log a x.∵f(2)=1,∴log a2=1.∴a=2.∴f(x)=log2x.8.C解析因为y=log a(2-ax)(a>0,且a≠1)在[0,1]上单调递减,u=2-ax在[0,1]上是减函数,所以y=log a u是增函数,所以a>1.又2-a>0,所以1<a<2.9.B解析对于A,log a c=,log b c=.∵0<c<1,∴对数函数y=log c x在(0,+∞)内为减函数,∴若0<b<a<1,则0<log c a<log c b,,即log a c>log b c;若0<b<1<a,则log c a<0,log c b>0,,即log a c<log b c;若1<b<a,则log c a<log c b<0,,即log a c>log b c.故A不正确;由以上解析可知,B正确;对于C,∵0<c<1,∴幂函数y=x c在(0,+∞)内为增函数.∵a>b>0,∴a c>b c,故C不正确;对于D,∵0<c<1,∴指数函数y=c x在R上为减函数.∵a>b>0,∴c a<c b,故D不正确.10.解析因为不等式f(x)≤0(x∈R)的解集为[-1,2],所以f(x)>0的解集为(-∞,-1)∪(2,+∞).所以不等式f(lg x)>0的解集为即.11.- 解析由题意可知x>0,故f(x)=log2·lo(2x)=log2x·log2(4x2)=log2x·(log24+2log2x)=log2x+(log2x)2=≥-.当且仅当x=时,有f(x)min=-.12.∪(1,+∞)解析令t=ax2-x+3,则原函数可化为y=f(t)=log a t.当a>1时,y=log a t在定义域内单调递增,故t=ax2-x+3在[1,3]上也是单调递增,所以可得a>1;当0<a<1时,y=log a t在定义域内单调递减,故t=ax2-x+3在[1,3]上也是单调递减,所以可得0<a≤,故a>1或0<a≤.13.A解析由f(x)是奇函数可得a=-1,故f(x)=lg,定义域为(-1,1).由f(x)<0,可得0<<1,即-1<x<0.14.A解析∵a>0,∴2a>1.∴lo a>1,∴0<a<.又b>0,∴0<<1,∴0<lo b<1,∴<b<1.又>0,∴log2c>0,∴c>1,∴0<a<<b<1<c,故选A.15.C解析由f(x-2)=f(x+2),得f(x)=f(x+4).因为4<log220<5,所以f(log220)=f(log220-4)=-f(4-log220)=-f=-=-1.16.D解析设=x=,两边取对数,得lg x=lg=lg3361-lg1080=361×lg3-80≈93.28,所以x≈1093.28,即与最接近的是1093.故选D.17.2解析设3x-1=t(t>0),则原方程可化为log2(t2-5)=log2(t-2)+2,即解得t=3.故x=2.18.B解析因为a=log23+log2=log23log23>1,b=log29-log2=log23=a,c=log32<log33=1,所以a=b>c.。
高考数学一轮复习考点知识专题讲解9---对数与对数函数
高考数学一轮复习考点知识专题讲解对数与对数函数考点要求1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y =a x 与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识梳理 1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 以10为底的对数叫做常用对数,记作lg N . 以e 为底的对数叫做自然对数,记作ln N . 2.对数的性质与运算性质(1)对数的性质:log a 1=0,log a a =1,log a N a =N (a >0,且a ≠1,N >0). (2)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R ).(3)换底公式:log a b =log c blog c a(a >0,且a ≠1,b >0,c >0,且c ≠1). 3.对数函数的图象与性质y =log a x a >1 0<a <1图象定义域 (0,+∞)值域R性质过定点(1,0),即x =1时,y =0当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0 在(0,+∞)上是增函数 在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 常用结论1.log a b ·log b a =1,log nm b a =nmlog a b . 2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0且a ≠1)的图象恒过点(1,0),(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.(×) (3)函数y =log a 1+x1-x 与函数y =ln(1+x )-ln(1-x )是同一个函数.(×)(4)函数y =log 2x 与y =121log x的图象重合.(√) 教材改编题1.函数y =log a (x -2)+2(a >0且a ≠1)的图象恒过定点. 答案(3,2) 解析∵log a 1=0, 令x -2=1,∴x =3, ∴y =log a 1+2=2,∴原函数的图象恒过定点(3,2). 2.计算:(log 29)·(log 34)=. 答案4解析(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4. 3.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =. 答案12或2解析当a >1时,log a 4-log a 2=log a 2=1, ∴a =2;当0<a <1时,log a 2-log a 4=-log a 2=1, ∴a =12,综上有a =12或2.题型一 对数式的运算例1(1)设2a =5b =m ,且1a +1b=2,则m 等于()A.10B .10C .20D .100 答案A解析2a =5b =m , ∴log 2m =a ,log 5m =b ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5 =log m 10=2, ∴m 2=10,∴m =10(舍m =-10). (2)计算:log 535+212log 2-log 5150-log 514=. 答案2解析原式=log 535-log 5150-log 514+12log (2)2=log 535150×14+12log 2=log 5125-1=log 553-1=3-1=2. 教师备选计算:(1-log 63)2+log 62·log 618log 64=.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1(1)已知a >b >1,若log a b +log b a =52,a b =b a ,则a +b =.答案6解析设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2.又a b =b a , 所以b 2b=2b b ,即2b =b 2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)计算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.题型二对数函数的图象及应用例2(1)已知函数f(x)=log a(2x+b-1)(a>0,且a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1答案A解析由函数图象可知,f(x)为增函数,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,解得1a<b<1.综上有0<1a<b<1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为.答案⎝⎛⎦⎥⎤0,22解析若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 教师备选已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,则1e x +ln x 2的值为() A .e 2+ln2B .e +ln2 C .2D .4 答案C解析根据题意,已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,函数f (x )=e x +x -2的零点为函数y =e x 的图象与y =2-x 的图象的交点的横坐标, 则两个函数图象的交点为(x 1,1e x ),函数g (x )=ln x +x -2的零点为函数y =ln x 的图象与y =2-x 的图象的交点的横坐标,则两个函数图象的交点为(x2,ln x2),又由函数y=e x与函数y=ln x互为反函数,其图象关于直线y=x对称,而直线y=2-x也关于直线y=x对称,则点(x1,1e x)和(x2,ln x2)也关于直线y=x对称,则有x1=ln x2,则有1e x+ln x2=1e x+x1=2.思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练2(1)已知函数f(x)=log a x+b的图象如图所示,那么函数g(x)=a x+b的图象可能为()答案D解析结合已知函数的图象可知,f (1)=b <-1,a >1,则g (x )单调递增,且g (0)=b +1<0,故D 符合题意.(2)(2022·西安调研)设x 1,x 2,x 3均为实数,且1e x -=ln x 1,2e x -=ln(x 2+1),3e x -=lg x 3,则()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 3<x 1D .x 2<x 1<x 3 答案D解析画出函数y =⎝ ⎛⎭⎪⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示.数形结合,知x 2<x 1<x 3.题型三 对数函数的性质及应用 命题点1比较指数式、对数式大小 例3(1)设a =log 3e ,b =e 1.5,c =131log 4,则() A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案D 解析c =131log 4=log 34>log 3e =a . 又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2022·昆明一中月考)设a =log 63,b =log 126,c =log 2412,则() A .b <c <a B .a <c <b C .a <b <c D .c <b <a 答案C解析因为a ,b ,c 都是正数, 所以1a=log 36=1+log 32,1b =log 612=1+log 62,1c=log 1224=1+log 122,因为log 32=lg2lg3, log 62=lg2lg6,log 122=lg2lg12,且lg3<lg6<lg12,所以log 32>log 62>log 122, 即1a >1b >1c,所以a <b <c .命题点2解对数方程不等式例4若log a (a +1)<log a (2a )<0(a >0,a ≠1),则实数a 的取值范围是. 答案⎝ ⎛⎭⎪⎫14,1解析依题意log a (a +1)<log a (2a )<log a 1, ∴⎩⎨⎧a >1,a +1<2a <1或⎩⎨⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3对数性质的应用 例5已知函数f (x )=ln 2x +12x -1,下列说法正确的是________.(填序号) ①f (x )为奇函数; ②f (x )为偶函数;③f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减;④f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递增.答案①③解析f (x )=ln 2x +12x -1,令2x +12x -1>0,解得x >12或x <-12,∴f (x )的定义域为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞, 又f (-x )=ln-2x +1-2x -1=ln2x -12x +1=ln ⎝⎛⎭⎪⎫2x +12x -1-1=-ln2x +12x -1=-f (x ),∴f (x )为奇函数,故①正确,②错误; 又f (x )=ln2x +12x -1=ln ⎝⎛⎭⎪⎫1+22x -1, 令t =1+22x -1,t >0且t ≠1,∴y =ln t , 又t =1+22x -1在⎝ ⎛⎭⎪⎫12,+∞上单调递减, 且y =ln t 为增函数,∴f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减,故③正确;又f (x )为奇函数,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,故④不正确.教师备选1.(2022·安徽十校联盟联考)已知a =log 23,b =2log 53,c =13log 2,则a ,b ,c 的大小关系为() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案B解析∵a =log 23>1,b =2log 53=log 59>1,c =13log 2<0,∴a b =log 23log 59=lg3lg2×lg5lg9=lg3lg2×lg52lg3=lg52lg2=lg5lg4=log 45>1,∴a >b ,∴a >b >c .2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为() A .[1,2) B .[1,2]C .[1,+∞) D.[2,+∞) 答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减, 则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是() A .a <b <c B .b <a <c C .c <b <a D .a <c <b 答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.(2)若函数f (x )=⎩⎨⎧log a x ,x ≥2,-log a x -4,0<x <2存在最大值,则实数a 的取值范围是.答案⎝⎛⎦⎥⎤0,22解析当a >1时,函数f (x )=log a x 在[2,+∞)上单调递增,无最值,不满足题意, 故0<a <1.当x ≥2时,函数f (x )=log a x 在[2,+∞)上单调递减,f (x )≤f (2)=log a 2; 当0<x <2时,f (x )=-log a x -4在(0,2)上单调递增,f (x )<f (2)=-log a 2-4, 则log a 2≥-log a 2-4,即log a 2≥-2=log a a -2, 即1a 2≥2,0<a ≤22, 故实数a 的取值范围是⎝⎛⎦⎥⎤0,22.课时精练1.(2022·重庆巴蜀中学月考)设a =12,b =log 75,c =log 87,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b 答案D解析a =12=log 77>b =log 75,c =log 87>log 88=12=a , 所以c >a >b .2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数且f (2)=1,则f (x )等于() A .log 2x B.12x C .12log x D .2x -2答案A解析函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.3.函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①②B.①④C.②③D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y=0得log a(x+c)=0,x+c=1,x=1-c,由图象知0<1-c<1,∴0<c<1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m2)表示,但在实际测量时,声音的强度水平常用L1=10lg II0 (单位:分贝,L1≥0,其中I0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I的取值范围是()A .(-∞,10-7)B .[10-12,10-5)C .[10-12,10-7)D .(-∞,10-5) 答案C解析由题意可得,0≤10·lg II 0<50, 即0≤lg I -lg(1×10-12)<5, 所以-12≤lg I <-7, 解得10-12≤I <10-7,所以声音强度I 的取值范围是[10-12,10-7). 5.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log (-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案C解析由题意得⎩⎪⎨⎪⎧ a >0,log 2a >12log a或⎩⎪⎨⎪⎧a <0,12log (-a )>log 2(-a ),解得a >1或-1<a <0.6.(2022·汉中模拟)已知log 23=a ,3b =7,则log 2156等于()A.ab+3a+abB.3a+ba+abC.ab+3a+bD.b+3a+ab答案A解析由3b=7,可得log37=b,所以log2156=log3(7×23)log3(3×7)=log37+log323log33+log37=b+3×1a1+b=ab+3a+ab.7.(2022·海口模拟)log327+lg25+lg4+7log27+13(8)-的值等于.答案7 2解析原式=log3323+lg52+lg22+2+133(2)⨯-=32+2lg5+2lg2+2+(-2)=32+2(lg5+lg2)+2+(-2)=32+2+2+(-2)=7 2 .8.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是.答案(4,-1)解析令x -3=1,则x =4, ∴y =log a 1-1=-1, 故点P 的坐标为(4,-1).9.设f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212. (1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值. 解(1)因为f (x )=log 2(a x-b x), 且f (1)=1,f (2)=log 212, 所以⎩⎨⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212,即⎩⎨⎧a -b =2,a 2-b 2=12,解得a =4,b =2.(2)由(1)得f (x )=log 2(4x -2x ), 令t =4x -2x ,则t =4x -2x =⎝ ⎛⎭⎪⎫2x -122-14,因为1≤x ≤2,所以2≤2x ≤4, 所以94≤⎝ ⎛⎭⎪⎫2x -122≤494,即2≤t ≤12,因为y =log 2t 在[2,12]上单调递增, 所以y max =log 212=2+log 23, 即函数f (x )的最大值为2+log 23.10.(2022·枣庄模拟)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)判断f (x )的奇偶性并予以证明;(2)当a >1时,求使f (x )>0的x 的解集. 解(1)f (x )是奇函数,证明如下: 因为f (x )=log a (x +1)-log a (1-x ), 所以⎩⎨⎧x +1>0,1-x >0,解得-1<x <1,f (x )的定义域为(-1,1).f (-x )=log a (-x +1)-log a (1+x ) =-[log a (1+x )-log a (-x +1)]=-f (x ), 故f (x )是奇函数.(2)因为当a >1时,y =log a (x +1)是增函数,y =log a (1-x )是减函数,所以当a >1时,f (x )在定义域(-1,1)内是增函数,f (x )>0即log a (x +1)-log a (1-x )>0, log a x +11-x >0,x +11-x >1,2x 1-x >0,2x (1-x )>0,解得0<x <1, 故使f (x )>0的x 的解集为(0,1).11.设a =log 0.20.3,b =log 20.3,则() A .a +b <ab <0B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.12.若实数x ,y ,z 互不相等,且满足2x =3y =log 4z ,则() A .z >x >y B .z >y >x C .x >y ,x >z D .z >x ,z >y 答案D解析设2x =3y =log 4z =k >0, 则x =log 2k ,y =log 3k ,z =4k , 根据指数、对数函数图象易得4k >log 2k , 4k >log 3k ,即z >x ,z >y .13.函数f (x )=log 2x ·2x )的最小值为. 答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.14.已知函数f(x)=|log2x|,实数a,b满足0<a<b,且f(a)=f(b),则a+b的取值范围是________.答案(2,+∞)解析∵f(x)=|log2x|,∴f(x)的图象如图所示,又f(a)=f(b)且0<a<b,∴0<a<1,b>1且ab=1,∴a+b≥2ab=2,当且仅当a=b时取等号.又0<a<b,故a+b>2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3ba=f(a),=3a+log3∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,(2x-4)>2,得log2得2x-4>4,得2x>8,解得x>3.故不等式f(x)>2的解集是(3,+∞).(2)因为函数f(x)=log2(2x+k)(k∈R)的图象过点P(0,1),所以f(0)=1,即log(1+k)=1,2解得k=1.所以f(x)=log2(2x+1).因为关于x的方程f(x)=x-2m有实根,(2x+1)=x-2m有实根.即log2所以方程-2m=log2(2x+1)-x有实根.令g(x)=log2(2x+1)-x,则g (x )=log 2(2x+1)-x=log 2(2x +1)-log 22x=log 22x+12x =log 2⎝ ⎛⎭⎪⎫1+12x .因为1+12x >1,log 2⎝ ⎛⎭⎪⎫1+12x >0,所以g (x )的值域为(0,+∞). 所以-2m >0,解得m <0.所以实数m 的取值范围是(-∞,0).。
专题09 对数函数、幂函数、对勾函数与双刀函数——2021年高考数学专项复习训练含真题及解析
秒杀高考数学题型之必考的几类初等函数(对数函数、幂函数、对勾函数与双刀函数)【秒杀题型四】:对数及对数函数。
【题型1】:对数的性质。
『秒杀策略』:①两个同底的恒等式:ⅰ.b a ba =log ; ⅱ.b a b a =log ;②换底公式:b nmb a ma n log log =; a b b c c a log log log =。
③传递性质:c c b a b a log log log =⋅。
1.(高考题)20lg 5lg +的值是_______。
2.(高考题)552log 10log 0.25+等于 ( )A.0B.1C.2D.43.(高考题)计算121(lg lg 25)100=4--÷ 。
4.(高考母题)82log 9log 3的值是 ( ) A.23 B.1 C.32D.2 5.(高考题)23log 9log 4⨯= ( )A.14 B.12C.2D.4 6.(高考母题)若2510,a b==则11a b+= 。
7.(高考母题)设,,a b c 都是正数,且346abc==,那么 ( )A.111c a b =+ B.221c a b =+ C.122c a b =+ D.211c a b=+ 8.(高考题)已知11.21000,0.01121000,a b==则11a b-= ( )A.1B.2C.3D.49.(高考题)设25a bm ==,且112a b+=,则m = ( )10.(高考母题)证明:234567log 3log 4log 5log 6log 7log 83⨯⨯⨯⨯⨯=。
推广:()()1log 1log 5log 4log 3log 2432+=+⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯n n n 。
当前一个对数的真数是后一个对数的底数连续相乘时,结果是以第一个对数的底数为底数,最后一个对数的真数为真数的对数。
在对数相乘时,尽量找前一个对数的真数是后一个对数的底数相乘。
2021版高考数学导与练一轮复习(浙江版)知识梳理第三章第二节 对数与对数函数
第二节对数与对数函数复习目标学法指导1.对数与对数运算(1)对数的概念.(2)常用对数与自然对数.(3)对数的运算性质.(4)对数的换底公式.2.对数函数及其性质(1)对数函数的概念.(2)对数函数的图象.(3)对数函数的性质.(4)指数函数与对数函数的关系.会求一些与对数函数有关的简单的复合函数的定义域、值域、单调性.(发展要求) 1.通过对数的概念,明确对数来源于指数,利用指数的知识理解与掌握对数.2.在同底的条件下,对数只能进行加、减运算,注意应用的顺序.3.掌握对数函数的图象与性质,一定要坚持分类讨论的思想.4.应用对数函数的性质解决对数类问题要遵循定义域优先的原则.一、对数如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做底数,N叫做真数底数的限制a>0,且a ≠1 对数式与指数式的互化:a x =N ⇔log a N=x负数和零没有对数1的对数是零,log a 1=0 底数的对数是1,log a a=1 对数恒等式:log a Na=Nlog a (M ·N)=log a M+log a Na>0,且a ≠1,M>0,N>0log a M N =log a M-log a N log a M n =nlog a M(n ∈R)公式:log a b=log log c cb a(a>0,且a ≠1;c>0,且c ≠1;b>0) 推广:log am b n =nm log a b(a>0且a ≠1,b>0);log a b=1log ba(a>0且a ≠1;b>0且b ≠1)1.法则理解应用法则log a M+log a N=log a (M ·N)时,注意M>0,且N>0,而不能只考虑到M ·N>0,导致增解. 2.与换底公式有关的结论 log a b ·log b c ·log c d=log a d. 二、对数函数1.对数函数的概念、图象与性质 概念 函数y=log a x(a>0,且a ≠1)叫做对数函数底数a>10<a<1图象定义域(0,+∞)值域R过定点(1,0),即x=1时,y=0性质在(0,+∞)上是增函数在(0,+∞)上是减函数2.指数函数与对数函数的关系指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.概念理解(1)对数函数的定义是形式定义,其解析式的特征为①系数为1;②次数为1;③底数a>0且a≠1;④真数只能是自变量x.(2)对数函数解析式中只有一个参数a,所以只需已知函数图象上一点坐标,即可确定一个对数函数.2.与对数函数图象相关的知识点(1)如图是对数函数①y=log a x;②y=log b x;③y=log c x;④y=log d x的图象,则a,b,c,d与1的大小关系是0<a<b<1<c<d.(2)对数函数图象之间的位置关系:在第一象限,图象从左到右,底数由小到大;(3)对数函数图象以y 轴为渐近线,进行图象变换时,渐近线也应随之变换;(4)底数互为倒数的对数函数的图象关于x 轴对称; (5)画对数函数图象应抓住三个关键点: (1a,-1),(1,0),(a,1). 3.与对数函数性质的应用相关联的知识(1)对数类函数的问题求解时要树立定义域优先的意识; (2)比较幂、对数大小的常用方法 ①单调性法:构造函数,利用其单调性;②中间量法:通过与特殊值比较大小判定结论,常见的有a 0=1,log a 1=0,log a a=1; ③数形结合法.1.函数12log x (D )(A){x|x>0} (B){x|x ≥1} (C){x|x ≤1} (D){x|0<x ≤1} 解析:要使得函数12log x 12log 0,0,x x ≥⎧⎪⎨⎪>⎩ 所以0<x ≤1,因此可知函数的定义域为{x|0<x ≤1}.选D.2.(2019·天津卷)已知a=log 52,b=log 0.50.2,c=0.50.2,则a,b,c 的大小关系为( A )(A)a<c<b (B)a<b<c(C)b<c<a (D)c<a<b解析:因为y=log5x是增函数,所以a=log52<log因为y=log0.5x是减函数,所以b=log0.50.2>log0.50.5=1.因为y=0.5x是减函数,所以0.5=0.51<c=0.50.2<0.50=1,即0.5<c<1.所以a<c<b.故选A.3.函数y=log a(3x-2)(a>0,且a≠1)的图象经过定点A,则A点坐标是( C )(A)(0,23) (B)(23,0)(C)(1,0) (D)(0,1)解析:当3x-2=1,即x=1时,y=log a1=0,故定点A为(1,0).4.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰·纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即a b=N⇔b=log a N.现在已知2a=3,3b=4,则ab= .解析:因为2a=3,3b=4,所以a=log23,b=log34,所以ab=log 23·log 34=ln3ln 2×ln 4ln3=ln 4ln 2=2. 答案:25.已知定义域为R 的偶函数f(x)在区间[0,+∞)上是增函数,若f(1)<f(lg x),则实数x 的取值范围是 . 解析:因为f(x)是偶函数,并且在区间[0,+∞)上是增函数, 所以f(x)在区间(-∞,0]上是减函数, 所以由f(1)<f(lg x)得|lg x|>1, 所以lg x>1或lg x<-1,所以x>10或0<x<110.所以实数x 的取值范围为{x|x>10或0<x<110}. 答案:{x|x>10或0<x<110}考点一 对数的基本运算[例1] (1)已知log a 2=m,log a 3=n,求a 2m+n ;(2)计算26666(1log 3)log 2log 18log 4-+⋅;(3)计算(log 32+log 92)·(log 43+log 83). 解:(1)法一 因为log a 2=m,log a 3=n, 所以a m =2,a n =3,所以a 2m+n =(a m )2·a n =22×3=12. 法二 因为log a 2=m,log a 3=n, 所以a 2m+n =(a m )2·a n =(log 2a a)2·log 3a a=22×3=12.(2)原式=266666612log 3log 3log log (63)3log 4-++⋅⨯() =26666612log 3log 3(1log 3)(1log 3)log 4-++-+()=22666612log3log 31(log 3)log 4-++-()=6621log 32log 2-() =666log 6log 3log 2- =66log 2log 2=1. (3)原式=(lg 2lg3+lg 2lg9)·(lg3lg 4+lg3lg8) =(lg 2lg3+lg 22lg 3)·(lg 32lg 2+lg 33lg 2) =3lg 22lg 3·5lg 36lg 2=54. 在对数运算中, 要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.1.(1)计算log 22的值是 ;(2)计算lg 4+lg 50-lg 2的值是 . 解析:(1)log 2=log 2=log 2 122-=-12. (2)lg 4+lg 50-lg 2=lg(4×50÷2)=lg 100=2. 答案:(1)-12(2)2 2.(2019·杭州市期末检测)设a=log 23,b=log 38,则2a = ;ab= . 解析:由a=log 23得2a=3,ab=log 23×log 38=ln3ln2×ln8ln 3=3ln 2ln 2=3ln 2ln 2=3.答案:3 3考点二 对数函数的图象及应用[例2] (1)已知函数y=log a (x+b)(a,b 为常数,其中a>0,且a ≠1)的图象如图,则下列结论成立的是( )(A)a>1,b>1 (B)a>1,0<b<1 (C)0<a<1,b>1 (D)0<a<1,0<b<1(2)设方程10x =|lg(-x)|的两个根分别为x 1,x 2,则( ) (A)x 1x 2<0 (B)x 1x 2=0 (C)x 1x 2>1 (D)0<x 1x 2<1解析:(1)函数y=log a (x+b)递减,所以0<a<1.同时log (1)0,log 0aa b b +<⎧⎨>⎩⇒11,01,b b +>⎧⎨<<⎩⇒0<b<1,故选D. (2)作出y=10x ,与y=|lg(-x)|的大致图象,如图. 显然x 1<0,x 2<0. 不妨设x 1<x 2,则x1<-1<x2<0,所以110x=lg(-x1),210x=-lg(-x2),此时110x<210x,即lg(-x1)<-lg(-x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想. (2)常将一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2018·绍兴市柯桥区二模)若log a2<log b2<0,则( B )(A)0<a<b<1 (B)0<b<a<1(C)a>b>1 (D)b>a>1解析:log a2<log b2<0,所以a,b都小于1,log a2<log b2⇒lg2lg a <lg2lg b⇒lg a>lgb⇒a>b,综上0<b<a<1.故选B.2.(2019·温州适应性测试)已知实数a>0,b>0,a≠1,且满足lna 则下列判断正确的是( C )(A)a>b (B)a<b(C)log a b>1 (D)log a b<1解析:由a aa得aa=0,设f(x)=ln x-x +1x(x>0), 则f ′(x)=1x-12x-12x x =2(1)2x x x--,则函数f(x)=ln x-x +1x在(0,+∞)上单调递减,且f(1)=0,所以当0<x<1时,ln x-x +1x>0,即ln x>x -1x;当x>1时,ln x-x +1x<0,即ln x<x -1x,在平面直角坐标系内画出函数y=ln x 与y=x -1x的图象如图所示,由图易得若ln b=1a a-=a-1a,则0<b<a<1或1<a<b,A,B 错误;当a>1时,1<a<b,函数y=log a x 为增函数,则log a b>log a a=1,当0<a<1时,0<b<a<1,函数y=log a x 为减函数,则log a b>log a a=1,C 正确,D 错误,故选C.考点三 对数函数的性质及应用 [例3] 已知函数f(x)=12log (x 2-2ax+3).(1)若f(-1)=-3,求f(x)的单调区间;(2)是否存在实数a,使f(x)在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解:(1)由f(-1)=-3,得12log (4+2a)=-3.所以4+2a=8,所以a=2. 这时f(x)= 12log (x 2-4x+3),由x 2-4x+3>0, 得x>3或x<1,故函数的定义域为(-∞,1)∪(3,+∞). 令g(x)=x 2-4x+3,则g(x)在(-∞,1)上单调递减, 在(3,+∞)上单调递增.又y=12log x 在(0,+∞)上单调递减,所以f(x)的单调递增区间是(-∞,1), 单调递减区间是(3,+∞).(2)不存在满足题意的实数a,理由:令h(x)=x 2-2ax+3,要使f(x)在(-∞,2)上为增函数,应使h(x)在(-∞,2)上单调递减,且恒大于0.因此2,(2)0,a h ≥⎧⎨>⎩即2,740,a a ≥⎧⎨->⎩a 无解.所以不存在实数a,使f(x)在(-∞,2)上为增函数.(1)利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题时,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的. (2)利用对数性质比较大小的解题策略①能化为同底数的对数值可直接利用其单调性进行判断.②既不同底数,又不同真数的对数值,先引入中间量(如-1,0,1等),再利用对数函数的性质进行比较.③底数不同,真数相同的对数值,可利用函数图象或比较其倒数大小来进行.1.(2018·江苏卷)函数2log 1x -的定义域为 .解析:由20,log 10x x >⎧⎨-≥⎩解得x ≥2,所以函数2log 1x -{x|x ≥2}.答案:{x|x ≥2} 2.函数f(x)=log 2x·log 2(4x)的最小值为 ,此时x 的值是 . 解析:f(x)=log x log 2(4x)=12log 2x ·(2+log 2x),可令log 2x=t,t ∈R,则y=12t ·(2+t)=12t 2+t, 当t=-1时,函数取到最小值为-12, 此时x=12. 答案:-1212考点四 易错辨析[例4] (2018·天津卷)已知a=log 2e,b=ln 2,c=121log 3,则a,b,c 的大小关系为( )(A)a>b>c (B)b>a>c (C)c>b>a (D)c>a>b 解析:c=121log 3=log 23>log 2e=a>1,即c>a. 又b=ln 2=21log e<1<log 2e=a,即a>b. 所以c>a>b.故选D.(1)由于a 与c 既不同“底”又不同“真”,所以无法直接比较大小,造成思维受阻;(2)在利用对数函数的单调性比较大小时因函数的单调性判断错误而致误.1.已知a=2log 3.45,b=4log 3.65,c=3log 0.315(),则( C )(A)a>b>c (B)b>a>c (C)a>c>b (D)c>a>b解析:c=3log 0.315()=3log 0.35=310log 35.法一 在同一坐标系中分别作出函数y=log 2x,y=log 3x,y=log 4x 的大致图象,如图所示.由图象知,log 23.4>log 3103>log 43.6. 由于y=5x 为增函数. 所以2log 3.45>310log 35>4log 3.65.即2log 3.45>3log 0.315()>4log 3.65,故a>c>b.故选C.法二 因为103<3.4, 所以log 3103<log 33.4<log 23.4. 因为log 43.6<log 44=1,log 3103>log 33=1, 所以log 43.6<log 3103. 所以log 23.4>log 3103>log 43.6. 由于y=5x为增函数.所以2log 3.45>310log 35>4log 3.65.即2log 3.45>3log 0.315()>4log 3.65,故a>c>b.故选C.2.(2018·全国Ⅲ卷)设a=log 0.20.3,b=log 20.3,则( B ) (A)a+b<ab<0 (B)ab<a+b<0 (C)a+b<0<ab (D)ab<0<a+b 解析:因为a=log 0.20.3>log 0.21=0, b=log 20.3<log 21=0,所以ab<0.因为a b ab +=1a +1b =log 0.30.2+log 0.32=log 0.30.4,1=log 0.30.3>log 0.30.4>log 0.31=0,所以0<a b ab +<1,所以ab<a+b<0.故选B.类型一 对数的基本运算 1.已知x,y 为正实数,则( D ) (A)2lg x+lg y =2lg x +2lg y (B)2lg(x+y)=2lg x ·2lg y (C)2lg x ·lg y =2lg x +2lg y (D)2lg(xy)=2lg x ·2lg y 解析:2lg x+lg y =2lg x ·2lg y ,选项A 错; 2lg x ·2lg y =2lg x+lg y =2lg(xy),选项B 错; 令x=10,y=10,则2lg x ·lg y =2, 2lg x +2lg y =4,选项C 错.故选D. 2.已知函数f(x)=123e 1,2,1log ,2,3x x x x -⎧-<⎪⎨-≥⎪⎩则f(x)的零点为( A )(A)1,2 (B)1,-2(C)2,-2 (D)1,2,-2解析:当x<2时,令f(x)=e x-1-1=0, 即e x-1=1,解得x=1满足x<2; 当x ≥2时,令f(x)=log 3213x -=0, 则213x -=1,即x 2=4,得x=-2(舍)或x=2. 因此,函数y=f(x)的零点为1,2,故选A.3.已知函数f(x)= 311log (3),2,3,2,x x x x -+-<⎧⎪⎨≥⎪⎩则f(-6)+f(log 312)= ,满足f(x)>3的x 的取值范围是 . 解析:f(-6)=1+log 39=3, 因为log 312>log 39=2, 所以f(log 312)=4; 则f(-6)+f(log 312)=7;当x<2时,1+log 3(3-x)>3,解得x<-6, 当x ≥2时,3x-1>3,解得x>2,所以f(x)>3的x 的取值范围为(-∞,-6)∪(2,+∞). 答案:7 (-∞,-6)∪(2,+∞) 类型二 对数函数的图象及应用4.函数y=2log 4(1-x)的图象大致是( C )解析:函数y=2log 4(1-x)的定义域为(-∞,1),排除A,B; 函数y=2log 4(1-x)在定义域上单调递减,排除D.故选C.5.(2019·嘉兴市、丽水市、衢州市高三模拟测试)函数y=ln(x+21x +)·cos 2x的图象可能是( D )解析:设f(x)=y=ln(x+21x +)·cos 2x,则易得函数的定义域为R,且f(-x)=ln[-x+2()1x -+]·cos2(-x)=ln[21()1x x +-+]·cos2x=-ln(x+21x +)·cos 2x=-f(x),所以函数f(x)=ln(x+21x +)·cos2x 为奇函数,则函数图象关于原点中心对称,排除A,B;f ′(x)=22111x x x x ++++·cos2x-2ln(x+21x +)·sin 2x=211x +·cos 2x-2ln(x+21x +)·sin 2x,f ′(0)=1,即函数f(x)=ln(x+21x +)·cos2x 在原点处的切线的斜率为1,不为0,排除C,故选D.6.若不等式(x-1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围是 . 解析:设f 1(x)=(x-1)2,f 2(x)=log a x,要使当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,只需f 1(x)=(x-1)2在(1,2)上的图象在f 2(x)=log a x 图象的下方.当0<a<1时,显然不成立; 当a>1时,如图所示,要使x ∈(1,2)时,f 1(x)=(x-1)2的图象在f 2(x)=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2]. 答案:(1,2]7.已知x 1,x 2,x 3分别为方程2x =12log x, 1()2x=log 2x, 1()2x=12log x 的根,则x 1,x 2,x 3的大小关系是 (从小到大排列).解析:作出y=2x ,y=12log x,y=1()2x,y=log 2x 的大致图象,由图象知x 1<x 3<x 2.答案:x 1<x 3<x 2类型三 对数函数的性质及应用8.(2019·浙江省教育绿色评估联盟)已知a=121()3-,b=32,c=121log3,则( C )(A)a>b>c (B)c>a>b (C)a>c>b (D)c>b>a 解析:因为a=121()3-=3,b=32,c=121log 3=log 23,则a>b,又322=8<3,则log 2322=32<log 23,即b<c;构造函数f(x)=log 2x-x,则f ′(x)=1ln 2x 2x2ln 2x -因此函数f(x)在区间(0,4(e 2log )2)上单调递增,在区间 (4(e 2log )2,+∞)上单调递减,由f(4)=0,知f(3)<0,即 a>c,故选C.9.函数f(x)=12log (x 2-4x)的单调递减区间是 ;单调递增区间是 .解析:由x 2-4x>0,解得x>4或x<0,即函数定义域为(-∞,0)∪(4,+∞),根据复合函数的单调性知f(x)= 12log (x 2-4x)的单调递减区间是(4,+∞),单调递增区间是(-∞,0). 答案:(4,+∞) (-∞,0) 10.关于函数f(x)=lg 21xx+ (x ≠0),有下列结论: ①其图象关于y 轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数; ③f(x)的最小值是lg 2;④f(x)在区间(-1,0)和(1,+∞)上是增函数. 其中所有正确结论的序号是 . 解析:因为函数f(-x)=lg 2()1x x -+-=lg 21x x+=f(x),所以函数为偶函数,即图象关于y 轴对称,故①正确.因函数y=x+1x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以函数y=|x|+1x在(-∞,-1)和(0,1)上单调递减,在(-1,0)和(1,+∞)上单调递增,从而函数f(x)在区间(-1,0)和(1,+∞)上是增函数,在区间(-∞,-1)和(0,1)上是减函数,故②错,④正确.因为21x x +=|x|+1x≥所以f(x)≥lg 2,即最小值为lg 2,故③正确. 答案:①③④11.已知f(x)是定义在R 上的偶函数,且在[0,+∞)上为增函数,f(13)=0,则不等式f(18log x)>0的解集为 .解析:因为函数f(x)是偶函数,所以f(x)=f(|x|),所以f 18log x)>0⇔f(|18log x|)>f(13). 因为f(x)在[0,+∞)上为增函数, 所以|18log x|>13, 即18log x<-13或18log x>13. 因为18log x=-log 8x=-13log 2x, 所以不等式可转化为log 2x>1或log 2x<-1, 所以x>2或0<x<12. 答案:(0,12)∪(2,+∞) 类型四 易错易误辨析12.若log a 43<2,则a 的取值范围是( D )(C)(0,1)∪) (D)(0,1)∪∞)解析:log a 43<2等价于log a 43<log a a 2, 201,43a a <<⎧⎪⎨>⎪⎩或21,4,3a a >⎧⎪⎨<⎪⎩ 解得0<a<1或, 故选D.13.已知函数f(x)=|ln(x-1)|,满足f(a)>f(4-a),则实数a 的取值范围是( A ) (A)(1,2) (B)(2,3) (C)(1,3) (D)(2,4)解析:函数f(x)=|ln(x-1)|的定义域为(1,+∞),由f(a)>f(4-a)可得|ln(a-1)|>|ln(4-a-1)|=|ln(3-a)|,两边平方得[ln(a-1)]2>[ln(3-a)]2⇔[ln(a-1)-ln(3-a)][ln(a-1)+ln(3-a)]>0,则ln(1)ln(3)0,ln(1)ln(3)0,10,30,a aa aaa--->⎧⎪-+->⎪⎨->⎪⎪->⎩①或ln(1)ln(3)0,ln(1)ln(3)0,10,30,a aa aaa---<⎧⎪-+-<⎪⎨->⎪⎪->⎩②解①得a无解,解②得1<a<2,所以实数a的取值范围是(1,2), 故选A.。
2021高考数学一轮复习专练9对数与对数函数含解析理新人教版
2021-4-29 20XX年复习资料教学复习资料班级:科目:专练9 对数与对数函数命题范围:对数的意义与运算;对数函数的定义、图象与性质.[基础强化]一、选择题1.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=( )A .1B .-1C .3D .-32.函数y =log 123x -2的定义域是( )A .[1,+∞] B.⎝ ⎛⎭⎪⎫23,+∞ C.⎣⎢⎡⎦⎥⎤23,1 D.⎝ ⎛⎦⎥⎤23,1 3.函数f (x )=log 12(x 2-2x )的单调递增区间是( )A .(-∞,0)B .(1,+∞)C .(2,+∞) D.(-∞,1)4.若函数f (x )=(m -2)x a是幂函数,则函数g (x )=log a (x +m )(a >0且a ≠1)的图象过点( )A .(-2,0)B .(2,0)C .(-3,0)D .(3,0)5.[2020·全国卷Ⅲ]已知55<84,134<85,设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b6.[2019·全国卷Ⅱ]若a >b ,则( )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0 D .|a |>|b |7.已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称8.[2020·益阳一中测试]若函数y =log a x (a >0且a ≠1)的图象如图所示,则下列函数图象正确的是( )9.若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >3,-2x +8,x ≤3存在最小值,则实数a 的取值范围为( )A .(1,+∞) B.[3,+∞)C .(1,3] D.⎝⎛⎦⎥⎤0,33二、填空题10.已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.11.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +4)在区间[-2,2]上的最大值为________.12.函数f (x )=log 2(-x 2+22)的值域为________.[能力提升]13.[2020·全国卷Ⅰ]若2a +log 2a =4b+2log 4b 则( ) A .a >2b B .a <2bC .a >b 2D .a <b 214.[2020·山西临汾测试]若函数f (x )=log m 4x 2+mx(m >0且m ≠1)在[2,3]上单调递增,则实数m 的取值范围是( ) A .(1,36] B .[36,+∞)C .(1,16]∪[36,+∞) D.(1,16]15.[2020·荆州一中测试]若函数f (x )=⎩⎪⎨⎪⎧log a x ,a >0且a ≠1,x >2,-x 2+2x -2,x ≤2的值域为(-∞,-1],则实数a 的取值范围是________.16.已知函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],若函数g (x )=a x +m-3的图象不经过第一象限,则m 的取值范围为________.专练9 对数与对数函数1.B 原式=lg 52+lg 4-2=lg 52×4-2=1-2=-1.2.D 由题意得log 12(3x -2)≥0,即0<3x -2≤1.∴23<x ≤1. 3.A 函数f (x )=log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞),由复合函数的单调性可知,函数f (x )=log 12 (x 2-2x )的单调增区间为(-∞,0).4.A ∵f (x )=(m -2)x a为幂函数,∴m -2=1,m =3, ∴g (x )=log a (x +3),又g (-2)=0, ∴g (x )的图象过(-2,0).5.A a =log 53∈(0,1),b =log 85∈(0,1),则a b =log 53log 85=log 53·log 58<⎝ ⎛⎭⎪⎫log 53+log 5822=⎝ ⎛⎭⎪⎫log 52422<1,∴a <b . 又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45,∴c >45.又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885,即log 85<45,∴b <45.综上所述,c >b >a ,故选A.6.C 本题主要考查函数的性质,意在考查考生的逻辑思维能力、运算求解能力,考查的核心素养是逻辑推理、数学运算.通解:由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.优解:当a =0.3,b =-0.4时,ln(a -b )<0,3a >3b,|a |<|b |,故排除A ,B ,D.故选C.7.C f (x )的定义域为(0,2),f (x )=ln x +ln(2-x )=ln[x (2-x )]=ln(-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增, 在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln(-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A 、B 错误;∵f (x )=ln x +ln(2-x )=f (2-x ), ∴f (x )的图象关于直线x =1对称, ∴选项C 正确;∵f (2-x )+f (x )=[ln(2-x )+ln x ]+[ln x +ln(2-x )]=2[ln x +ln(2-x )],不恒为0,∴f (x )的图象不关于点(1,0)对称, ∴选项D 错误.8.B 由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x=⎝ ⎛⎭⎪⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误; 对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误. 故选B.9.C 当x ≤3时,f (x )=-2x +8单调递减,则f (x )≥f (3)=2;当x >3时,f (x )=log a x ,必须满足a >1,且log a 3≥2,得1<a ≤ 3.故选C.10.-7解析:∵f (3)=log 2(9+a )=1,∴9+a =2,a =-7. 11.8解析:因为函数y =⎝ ⎛⎭⎪⎫13x,y =-log 2(x +4)在区间[-2,2]上都单调递减,所以函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +4)在区间[-2,2]上单调递减,所以函数f (x )的最大值为f (-2)=⎝ ⎛⎭⎪⎫13-2-log 2(-2+4)=9-1=8.12.⎝⎛⎦⎥⎤-∞,32 解析:∵0<-x 2+22≤22,∴log 2(-x 2+22)≤log 222=32.13.B 2a +log 2a =22b +log 2b <22b+log 2(2b ),令f (x )=2x+log 2x ,则f (a )<f (2b ), 又易知f (x )在(0,+∞)上单调递增, 所以a <2b ,故选B.14.D 由题意,知f (x )的定义域为{x |x >0}.不妨设g (x )=4x 2+m x =4x +mx,x >0,则g ′(x )=4-m x 2=4x 2-mx2,当g ′(x )≤0时,g (x )为减函数,此时m ≥4x 2,又y =4x 2在[2,3]上单调递增,所以y max =4×32=36,所以m ≥36,而此时函数y =log m x 为增函数,由复合函数的单调性可知f (x )在[2,3]上单调递减,故不符合题意;当g ′(x )≥0时,g (x )为增函数,此时m ≤4x 2,又y =4x 2在[2,3]上单调递增,所以y min =4×22=16,所以m ≤16,而当m >1时,函数y =log m x 为增函数,因此当1<m ≤16时,满足题意.故选D.15.⎣⎢⎡⎭⎪⎫12,1 解析:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1, f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时,log a x ≤-1,故0<a <1,且log a 2≤-1,∴12≤a <1,故答案为⎣⎢⎡⎭⎪⎫12,1.16.[-1,+∞) 解析:∵函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],而f (0)=0,∴f (-2)=log a 3=-1,∴a =13,∴g (x )=⎝ ⎛⎭⎪⎫13x +m-3,令g (x )=0,得x =-m -1,则-m -1≤0,求得m ≥-1,故m 的取值范围为[-1,+∞).结束语同学们,相信梦想是价值的源泉,相信成功的信念比成功本身更重要,相信人生有挫折没有失败,相信生命的质量来自决不妥协的信念。
2021年高考数学高分套路 对数及对数函数(解析版)
对数及对数函数一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M .二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.对数函数的图象与性质3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40= . (2)若3a=5b=225,则1a +1b = 。
(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。
【答案】(1)1 (2)12 (3)40【解析】(1)lg 22·lg 250+lg 25·lg 40=lg 22·⎝ ⎛⎭⎪⎫lg1 0004+(1-lg 2)2·(2lg 2+1) =lg 22·(3-2lg 2)+(lg 22-2lg 2+1)·(2lg 2+1)=1.(2)∵3a =5b =225∴a =log 3225, b =log 5225则1a +1b =log 2253+log 2255=log 22515=12(3)∵log a 2=m ,log a 5=n ,∴a m =2,a n =5 ∴a 3m+n =a 3m ⋅a n =23⋅5=40【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为 . 【答案】 a -2【解析】 log 38-2log 36=log 323-2(log 32+log 33) =3log 32-2(log 32+1)=3a -2(a +1)=a -2. 2.若3x =4y=36,则2x +1y= .【答案】 1【解析】 3x=4y=36,两边取以6为底的对数,得x log 63=y log 64=2, ∴2x =log 63,2y =log 64,即1y =log 62,故2x +1y=log 63+log 62=1.3.设2a =5b=m ,且1a +1b=2,则m = .【答案】 10【解析】 由已知,得a =log 2m ,b =log 5m ,则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.4.计算:(1-log 63)2+log 62·log 618log 64= .【答案】 1【解析】 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.【答案】1【解析】 令a x =b y =c z=k .由已知k >0且k ≠1,于是x lg a =y lg b =z lg c =lg k ,故1x =lg a lg k ,1y =lg b lg k ,1z =lg c lg k .因为1x +1y +1z =0,所以lg a +lg b +lg c lg k =0,即lg (abc )lg k =0.故lg(abc )=0,得abc =1.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.【答案】±55. 【解析】由题意,得⎩⎪⎨⎪⎧log a C +log b C =3,log a C ·log b C =1,即⎩⎪⎨⎪⎧1log Ca +1log Cb =3,1log Ca ·log Cb =1,于是有⎩⎪⎨⎪⎧log C a +log C b =3,log C a ·log C b =1,(log C a -log C b )2=(log C a +log C b )2-4log C a ·log C b =32-4=5,故log C a -log C b =± 5.于是log a bC =⎝⎛⎭⎪⎫log C a b -1=1log C a -log C b =±55.7.方程33x -56=3x -1的实数解为 .【答案】 x =log 32【解析】 原方程可化为2(3x )2+5·3x-18=0,即(3x-2)(2·3x+9)=0,3x=2(2·3x=-9舍去),得x =log 32.考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38 【答案】B【解析】因为函数f(x) 为对数函数,所以函数f(x)系数为1,即a 2+a −5=1,即a =2或−3,因为对数函数底数大于0,所以a =2,f(x)=log 2x ,所以f (18)=−3。
高考数学一轮复习 第9讲《对数与对数函数》热点针对训练 理.pdf
1.(改编)(log227)·(log38)=( D ) A. B.3 C.6 D.9 解析:log227×log38=×=×=9,故选D. 2.(改编)函数y=log3的图象( A ) A.关于原点对称 B.关于直线y=-x对称 C.关于y轴对称 D.关于直线y=x对称 解析:由于定义域为(-3,3)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,故选A. 3.(2012·唐山市期末统一考)函数y=的定义域为( B ) A.(0,8] B.(-2,8] C.(2,8] D.[8,+∞) 解析:由,得, 所以-2<x≤8,故选B. 4.若x(,1),a=ln x,b=2ln x,c=ln3x,则( C ) A.a<b<c B.c2ln x,即b0时,logm1;当m<0时,log2(-m)<log(-m),解得-1<m0的解集为(-∞,1)(3,+∞),得2a=1+3,所以a=2,即实数a的值为2. (2)函数f(x)的值域为(-∞,-1],则f(x)max=-1, 所以y=x2-2ax+3的最小值为ymin=2, 由y=x2-2ax+3=(x-a)2+3-a2,得3-a2=2, 所以a2=1,所以a=±1. (3)f(x)在(-∞,1]上为增函数,则y=x2-2ax+3在(-∞,1]上为减函数,且y>0, 所以?1≤a<2. 所以实数a的取值范围是[1,2). 9.(2013·山东省聊城)已知函数f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x). (1)求F(x)的定义域; (2)判断函数F(x)的奇偶性,并予以证明; (3)若a,b(-1,1),猜想F(a)+F(b)与F()之间的关系并证明. 解析:(1)由题意可知,,解得-1<x<1, 所以F(x)的定义域为{x|-1<x<1}. (2)定义域关于原点对称, 且F(-x)=log2(1+x)-log2(1-x)=-F(x), 所以F(x)为奇函数. (3)当x(-1,1)时,F(x)=log2. F(a)+F(b)=log2+log2 =log2 =log2, 又F()=log2=log2, 所以F(a)+F(b)=F().。
2021年高考数学一轮复习 第09讲 对数与对数函数
M loga =logaM-logaN
N
a>0,且 a≠1,M>0,N>0
logaMn=nlogaM(n∈R)
换底公式:logab=logcb(a>0,且 a≠1;c>0,且 c≠1;b>0) logca
2.对数函数的定义、图象与性质
定义
函数 y=logax(a>0,且 a≠1)叫做对数函数
a>1
0<a<1
3.反函数 指数函数 y=ax(a>0,且 a≠1)与对数函数 y=logax(a>0,且 a≠1)互为反函数,它们 的图象关于直线 y=x 对称.
[常用结论]
1.换底公式的两个重要结论
1 (1)logab= ;
logba (2)logambn=nmlogab.
其中 a>0 且 a≠1,b>0 且 b≠1,m,n∈R.
论成立的是( )
A.a>1,c>1
B.a>1,0<c<1
C.0<a<1,c>1
D.0<a<1,0<c<1
D [由图象可知 y=loga(x+c)的图象是由 y=logax 的图象向左平移 c 个单位得到的, 其中 0<c<1.再根据单调性可知 0<a<1.]
3 4.(教材改编)若 loga <1(a>0,且 a≠1),则实数 a 的取值范围是( )
用及变形应用;
4 利用常用对数中的 lg 2+lg 5=1.
对数函数的图象及应用
【例 1】 (1)(2019·大连模拟)函数 y=lg|x-1|的图象是( )
A
B
C
D
-4-
(2)(2019·厦门模拟)当 0<x≤1时,4x<logax,则 a 的取值范围是( ) 2
2 0, A. 2
2 ,1 B. 2
第09讲-对数与对数函数-2021年新高考数学一轮专题训练含真题及解析
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1】
(1)计算:
lg1-lg 25 4
÷100-1=________.
3
log64
=1-2log63+(log63)2+1-(log63)2 log64
=2(1-log63)=log66-log63=log62=1.
2log62
log62
log62
规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最
简,然后正用对数运算法则化简合并.
(2)当 x∈(1,2)时,不等式(x-1)2<logax 恒成立,则 a 的取值范围是( )
A.(0,1)
B.(1,2)
C.(1,2]
0,1 D. 2
【解析】 (1)由 f(x)在 R 上是减函数,知 0<a<1.
又 y=loga(|x|-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).
∴当 x>1 时,y=loga(x-1)的图象由 y=logax 向右平移一个单位得到.因此选项 D 正确.
(2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么
①loga(MN)=logaM+logaN; ②logaMN =logaM-logaN; ③logaMn=nlogaM(n∈R); ④loga mMn=mn logaM(m,n∈R,且 m≠0). (3)换底公式:logbN=llooggaaNb(a,b 均大于零且不等于 1). 3.对数函数及其性质
河北省2021届高考数学一轮复习知识点攻破习题:对数与对数函数do
河北省2021届高考数学一轮复习知识点攻破习题:对数与对数函数do对数与对数函数时间:45分钟得分:100分一、选择题(每小题5分,共30分)1.如果函数y=f(x)的图像和函数y=log2x-1的图像关于线y=x对称,那么f(x-1)=()+a、 4xb.4x1+c、 2xd.2x1图1分析:函数y=log2x-1的反函数是y=f(x)=4x+1,然后f(x-1)=4x,所以选择A2.(2021深圳调研)若函数f(x)=loga(x+b)的图象如图1,其中a,b为常数,则函数g(x)=ax+b的大致图象是()从问题的意义上得到0答案:dx+33.(2021北京高考)为了得到函数y=lg的图象,只需把函数y=lgx的图象上所有的点十()a.向左平移3个单位长度,再向上平移1个单位长度b.向右平移3个单位长度,再向上平移1个单位长度c.向左平移3个单位长度,再向下平移1个单位长度d.向右平移3个单位长度,再向下平移1个单位长度十、x+3分析:y=LG(x+3)-1由y=LG得到,y=LG(x+3)的图像由y=lgx的图像向左平移3个单位得到10下平移一个单位得y=lg(x+3)-1的图象.故选c.回答:C4.(2021全国卷ⅱ)设a=log3π,b=log23,c=log32,则()a.a>b>cb.a>c>bc.b>a>cd.b>c>a1.一百一十一,1,c=log32=log32∈?0,?,故有a>b>c.解析:a=log3π>1,b=log23=log23∈??2??2?22答:a15.(2022年湖南高考)如果log2a<0且()b>1,则()2a、 a>1,b>0b.a>1,b<0c.00d.01?b分析:从log2a<0?01? B<0,所以选择D6.函数f(x)=loga(x2-ax+2)在区间(1,+∞)上恒为正值,则实数a的取值范围为()a.(1,2)b.(1,2]c、(0,1)∪(1,2)5d、(1,)2分析:当a>1时,x2 ax+2>1,即x2 ax+1>0在X上始终为真∈ (1, + ∞) 1-A+1≥ 0 A.≤ 2 10和x2 ax+1≤ 0在X上始终有效∈ (1, + ∞), 没有解决办法。
2021届高考理科数学必刷题考点09 对数与对数函数(解析版)
2021届高考理科数学必刷题考点考点9 对数与对数函数-1.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是()A.lg5·lg7 B.lg35 C.35 D.【答案】D2.函数的定义域是A.(1,+∞) B.(2,+∞)C.(-∞,2) D.(1,2]【答案】D【解析】要使函数有意义,需满足,解得,故函数的定义域为,故选D. 3.若点的坐标满足,则点的轨迹图象大致是()A.B.C.D.【答案】B【解析】由知,可排除选项C,D,又因为,所以,即,排除选项A,故选B.4.设集合,集合为函数的定义域,则()A.B.C.D.【答案】D【解析】,,故,选D.5.设表示两者中较小的一个,若函数,则满足的的取值范围是()A.B.C.D.【答案】B6.已知集合,,则的真子集的个数为()A.3 B.4 C.7 D.8【答案】C【解析】由题意得,,∴,∴的真子集的个数为个.故选C.7.已知函数与互为反函数,函数的图象与的图象关于轴对称,若,则实数的值为()A.B.C.D.【答案】D8.若函数的图象过两点(-1,0)和(0,1),则( )A.a=2,b=2 B.a=,b=2 C.a=2,b=1 D.【答案】A【解析】若函数的图象过两点(-1,0)和(0,1),则:,据此可知:,则a=2,b=2.本题选择A选项.9.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A.B.C.D.【答案】C【解析】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.10.若,则()A.B.C.D.【答案】B【解析】,,故选B.11.若实数,满足,,,,则,,的大小关系为()A.B.C.D.【答案】A12.若实数,满足,,,,则,,的大小关系为()A.B.C.D.【答案】B13.已知对任意不等式恒成立(其中,是自然对数的底数),则实数的取值范围是()A.B.C.D.【答案】A【解析】由得在上恒成立,即在上恒成立.令,则,∴当时,,单调递增,当时,,单调递减.∴,∴,∴.故实数的取值范围是.选A.14.已知,则不可能满足的关系是()A.B.C.D.【答案】D15.函数(1)若,求函数在(2,+∞)上的值域;(2)若函数在(-∞,-2)上单调递增,求的取值范围. 【答案】(1);(2)16.已知函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为,求的值。
考点10 对数函数(练习)(解析版)-2021年高考数学复习一轮复习笔记
考点10:对数函数【题组一 定义辨析】1.下列函数是对数函数的个数 。
①log (2)a y x = ②2log 2xy =③2log 1y x =+④lg y x =【答案】1【解析】由对数函数的定义:形如log (0a y x a =>且1)a ≠的形式,则函数为对数函数,只有④符合. 2.已知对数函数()()233log m f x m m x =-+,则m =______。
【答案】2【解析】由对数函数的定义,可得233101m m m m ⎧-+=⎪>⎨⎪≠⎩,解得2m =。
故答案为:2.3.若函数y =(a 2-3a +3)log a x 是对数函数,则a 的值为______. 【答案】2【解析】由对数函数的定义结合题意可知:233101a a a a ⎧-+=⎨>≠⎩且,据此可得:2a =.4.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫ ⎪⎝⎭等于 。
【答案】-3【解析】因为函数()f x 为对数函数,所以函数()f x 系数为1,即251a a +-=,即2a =或3-,因为对数函数底数大于0,所以2a =,()2log f x x =,所以138f ⎛⎫=- ⎪⎝⎭. 5.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为 。
【答案】(3,4)∪(4,+∞)【解析】由函数的解析式可得103031x x x +>⎧⎪->⎨⎪-≠⎩,解得3<x<4,或x>4..【题组二 定义域】1.函数()()lg 2f x x =+的定义域是 。
【答案】(]2,5-【解析】由()()lg 2f x x =++,得5020x x -≥⎧⎨+>⎩,即52x x ≤⎧⎨>-⎩,所以(]2,5x ∈-.2.函数2()log (1)f x x =+-的定义域为 。
【答案】()(]1,22,4U【解析】由题意402010x x x -≥⎧⎪-≠⎨⎪->⎩得142x x <≤≠且.3.函数y =的定义域为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[-1,1)内单调递减,故函数 f(x)的单调递增区间是[-1,1).故选 C.
(e2x - 1)x2
g
9.(2019 广西崇左天等高级中学高三下学期模拟)已知函数 g(x)=
ex
,若实数 m 满足 g(log m)-g(lo 1m)≤2g(2),
5
5
则 m 的取值范围是( )
A.(0,25]
B.[5,25]
( ) 故 f(f(1))+f
log 1
32
=5.
6.已知函数 f(x)=ax+log x(a>0,a≠1)在区间[1,2]上的最大值与最小值之和为 log 2+6,则 a 的值为( )
a
a
A.12
B.14
C.2
D.4
答案:C
解析:显然函数 y=ax 与 y=log x 在区间[1,2]上的单调性相同,因此函数 f(x)=ax+log x 在区间[1,2]上的最大值与最
D.(-3,-1]
答案:C
解析:由题意,得-x2-2x+3>0,即-3<x<1.由
f(0)=log 3<0,可得
a
0<a<1.根据复合函数的单调性可知,函数
f(x)的单调
递增区间即为二次函数 y=-x2-2x+3 在区间(-3,1)内的单调递减区间,结合二次函数的图象可得,y=-x2-2x+3 在区间
y
log A
2
log A=log 2+2log 7=log 98=2,故 A2=98.又 A>0,故
7
A
A
A
A= 98=7 2.
12.函数 f(x)=log 2
x·log 2(2x)的最小值为 .
1
答案:-4
解析:由题意可知 x>0,故 f(x)=log 2
x·log
1
1
2(2x)=2log2x·log2(4x2)=2log2x·(log24+2log2x)=log2x+(log2x)2=
a
a
小值之和为 f(1)+f(2)=(a+loga1)+(a2+loga2)=a+a2+loga2=loga2+6,故 a+a2=6,解得 a=2 或 a=-3(舍去).故选 C.
7.(2019 天津部分区期末)已知函数 f(x)=2|x|,且 f(log m)>f(2),则实数 m 的取值范围为( ) 2
或
log m<-2,解得 2
m>4
或
0<m<14.
( ) ∴实数 m 的取值范围为
0,1
4
∪ (4,+∞).故选 D.
8.(2019 山西晋城一模)已知函数 f(x)=loga(-x2-2x+3),若 f(0)<0,则该函数的单调递增区间是( )
A.(-∞,-1]
B.[-1,+∞) C.[-1,1)
a
A.0<a-1<b<1 B.0<b<a-1<1 C.0<b-1<a<1 D.0<a-1<b-1<1 答案:A 解析:由函数图象可知,f(x)在 R 上单调递增,故 a>1.
1
函数图象与 y 轴的交点坐标为(0,logab),由函数图象可知-1<logab<0,解得a<b<1.
1
综上有 0<a<b<1.
2021 高考数学一轮复习考点规范练:09 对数与对数函数(含解析)
基础巩固
log (2x - 1)
1.函数 y=
2 3Biblioteka 的定义域是( )A.[1,2]
B.[1,2)
[ ] C.
1,1
2
( ] D.
1,1
2
答案:D
g
1
解析:由 lo
2(2x-1)≥0,可得
3
0<2x-1≤1,即2<x≤1.
2.(2019 湖北武汉部分学校高三调研)已知 a=log 0.08,b=log 0.3,c=log 3,则 a,b,c 的大小关系是( )
( ) log x 2
+
1 2
2
-
1 4
≥
-14.当且仅当
x=
2
2 时,有
f(x)min=-14.
能力提升
( ) 13.已知 f(x)=lg
1
2 -
x
+
a
是奇函数,则使 f(x)<0 的 x 的取值范围是( )
0.04
0.2
2
A.a<b<c
B.b<a<c
C.a<c<b
D.c<b<a
答案:B
1
解析:a=log0.040.08=2log0.20.08=log0.2 0.08<1,
b=log 0.3<log 0.08=a,c=log 3>log 2=1,所以 b<a<c.
0.2
0.2
2
2
3.函数 f(x)=lg(|x|-1)的大致图象是( )
答案:B 解析:易知 f(x)为偶函数,故只需考虑当 x>0 时 f(x)=lg(x-1)的图象.
将函数 y=lgx 的图象向右平移一个单位得到 f(x)=lg(x-1)的图象,再根据偶函数性质得到 f(x)的图象. 4.已知函数 f(x)=log (2x+b-1)(a>0,a≠1)的图象如图所示,则 a,b 满足的关系是( )
C.[25,+∞)
[ ] D.
1,5
5
答案:A
g
解析:由 g(x)=(ex-e-x)x2,可知 g(x)为奇函数,且在 R 上单调递增,所以 g(log m)-g(lo 1m)≤2g(2)可化为 2g(log m)
5
5
5
≤2g(2),所以 log m≤2,所以 m 的取值范围是(0,25]. 5
10.(2019 河北武邑中学期末)曲线 y=log (x-3)+3(a>0,且 a≠1)恒过点 .
( ) { log x,x > 0,
2
5.已知函数 f(x)=
3
-
x
+
1,x
≤
0,则 f(f(1))+f
log 1
32
的值是( )
A.5
B.3
C.-1
D.27
答案:A
解析:由题意可知 f(1)=log 1=0, 2
( ) f(f(1))=f(0)=30+1=2,f
log 1
32
= 3 - log321+1=3log32+1=2+1=3,
a
答案:(4,3)
解析:当 x=4 时,log (x-3)的值恒为 0,故曲线 y=log (x-3)+3 恒过点(4,3).
a
a
1
11.(2019 河南郑州月考)已知 2x=72y=A,且x
+
1
y=2,则 A 的值是 .
答案:7 2
1
1+1= 1 + 2
解析:由 2x=72y=A,得 x=log2A,y=2log7A,则x
A.(4,+∞)
( ) B.
0,1
4
( ) C.
- ∞,1
4
∪ (4,+∞)
( ) D.
0,1
4
∪ (4,+∞)
答案:D
解析:由题意知,函数 f(x)=2|x|为偶函数,且在区间(-∞,0)内单调递减,在区间(0,+∞)内单调递增.
∵f(log m)>f(2),∴|log m|>2,即
2
2
log m>2 2