土石坝渗流分析
土石坝渗流安全评价范本(2篇)
土石坝渗流安全评价范本1.引言本文旨在对土石坝渗流安全进行评价,并提供相关范本。
土石坝是一种常见的水利工程结构,其渗流安全性对于工程的可靠性至关重要。
渗流问题可能导致土石坝的稳定性受到影响,甚至引发灾难性的事故。
因此,对土石坝渗流安全进行全面的评价和监测至关重要。
2.渗流机理土石坝的渗流是指水从坝体内部透过孔隙、裂隙等通道以一定速度流出或流入的过程。
渗流机理与坝体材料的水文特性密切相关,包括坝体的渗透性、孔隙结构、裂隙分布等因素。
3.评价指标(1)渗透系数:渗透系数是评价土石坝渗流性质的重要指标,其数值越大,表示渗流能力越强。
(2)饱和线:饱和线是土石坝渗流安全评价中的关键参数。
饱和线上方的压力为正压力,下方为负压力,当负压力超过一定限度时,有可能引起剪切破坏。
(3)渗透流速:渗透流速是衡量土石坝渗流量的指标,其数值越大,表示渗流速度越快。
(4)渗流路径:渗流路径是评价土石坝渗流安全的关键要素,如果渗流路径直接穿越土石坝的主体结构,将对坝体的稳定性造成重大威胁。
4.评价方法(1)实地调查:对土石坝进行全面、细致的实地调查,收集关于岩石、土壤、地下水等方面的基本数据。
(2)室内试验:进行饱和渗透试验,测定土石坝材料的渗透系数等参数。
(3)数值模拟:利用数值模拟方法,对土石坝的渗透性、水力特性进行模拟计算,得出渗流路径、流速等参数。
(4)监测数据:通过对土石坝安装渗流监测仪器,实时监测渗流情况,并将监测数据与模拟结果进行对比分析。
5.评价结果(1)渗透系数:根据室内试验数据和数值模拟结果,确定土石坝的渗透系数,并与渗透性标准进行比较评价。
(2)饱和线:通过渗流模拟计算和监测数据分析,确定饱和线的位置和性质,并评价其对土石坝的稳定性的影响。
(3)渗透流速:根据监测数据和数值模拟结果,确定土石坝的渗透流速,评价其对工程安全的影响。
(4)渗流路径:通过数值模拟计算和监测数据分析,确定渗流路径的位置和分布情况,评价其对土石坝稳定性的影响。
第四节 土石坝的渗流分析
第四节土石坝的渗流分析
一、渗流的概念:水库蓄水后,由于上下游水位差的关系,水流会通过坝体土粒之间的空隙从上游向下游流动。
图6-13 渗流示意图
二、渗流分析的目的:
(1)确定坝体内浸润线的位置;
(2)确定坝体及坝基的渗流量,以估算水库的渗漏损失;
(3)确定坝体和坝基渗流逸出区的渗流坡降,检查产生渗透变形的可能性;
(4)为坝体稳定分析和布置观测设备提供依据。
常用的渗流分析方法:流体力学方法、水力学方法、流网法和试验法。
三、渗流基本方程
土坝渗流为层流,因此满足达西定律(Darcy’s Law), 渗流区内任一点势函数应满足拉普拉斯方程:
k x, k y——分别为x, y方向的渗透系数
对于简单的边界条件,上述方程能解,复杂边界条件,需借助数值方法。
四、渗流的水力学问题
假设: 均质, 层流, 稳定渐变流.
应用达西定律,并假定任一铅直过水断面内各点的渗透坡降相等,对不透水地基上的矩形土体,流过断面上的平均流速为:
单宽流量:
图6-14 不透水地基上矩形土体的渗流计算图
自上游向下游积分:
自上游向区域中某点(x,y)积分,得浸润线方程:
图6-15 土坝浸润线示意图五、流网法
图6-16 流网的绘制。
土石坝有限元分析(ANSYS)-渗流分析命令流
土石坝有限元分析(ANSYS)-渗流分析命令流土石坝渗流分析,采用非饱和土渗流参数,迭代计算浸润线,根据前次计算结果,不断修改单元的渗透系数和浸润逸出点位置,直到满足精度要求。
本算例的土石坝体型比较简单.采用非饱和渗流计算.即渗透系数为空隙压力的函数.首先建立一个数据文件PPPP.TXT,存储渗透系数函数关系,如下。
第一列为空隙压力值(水头M),第二列为渗透系数指数,渗透系数等于10^A(M/D)。
! -10.00 -4.0E+00! -9.00 -3.6E+00! -8.00 -3.2E+00! -7.00 -2.8E+00! -6.00 -2.4E+00! -5.00 -2.0E+00! -4.00 -1.6E+00! -3.00 -1.2E+00! -2.00 -8.0E-01! -1.00 -4.0E-01! 0.00 0.0E+00!土坝顶宽4M,上下游坡比均为1:2,总高12M,底宽52M。
上游水深8M,下游无水。
FINISH/CLEAR/TITLE, EARTHDAM SEEPAGE/FILNAME,SEEPAGE5/PLOPTS,DATE,0*DIM,TPRE,TABLE,11,1,1,PRESS,KKPE ! 定义水压与渗透系数的关系数组*TREAD,TPRE,PPPP,TXT ! 读入数组*DIM,NCON,ARRAY,4 ! 定义数组,用于存贮单元四个节点号/PREP7SMRT,OFFANTYPE,STATIC ! THERMAL ANALYSISET,1,PLANE55MP,KXX,1,1 ! 饱和状态下的渗透系数MP,KXX,2,1E-4 ! 完全干燥下的渗透系数,假设空隙水压力小于-10M时K,1,24,12K,2,24,0K,3,0,0K,4,28,12K,5,28,0K,6,52,0L,1,3L,1,2L,4,5L,5,6L,4,6LESIZE,ALL,,,24A,1,3,2A,1,2,5,4A,4,5,6MSHK,2 ! MAPPED AREA MESH IF POSSIBLEMSHA,0,2D ! USING QUADSAMESH,ALL ! MESH AREASNUMMRG,NODE ! MERGE NODES AT BOTTOM OF CAISSON*GET,N_MAX,NODE,,NUM,MAX ! 获得最大节点号*GET,E_MAX,ELEM,,NUM,MAX ! 获得最大单元号*DIM,N_TEMP,ARRAY,N_MAX ! 定义节点温度变量-总水头*DIM,N_PRE,ARRAY,N_MAX ! 定义节点压力水头变量!定义上游面总水头值LSEL,S,LINE,,1NSLL,S,1NSEL,R,LOC,Y,0,8D,ALL,TEMP,8 !定义上游面总水头值!定义下游面总水头值LSEL,S,LINE,,6NSLL,S,1*GET,N_NUM2,NODE,,COUNT*DIM,N_NO2,ARRAY,N_NUM2II=0*DO,I,1,N_MAX*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中II=II+1N_NO2(II)=I ! 存储渗流可能逸出点节点编号*ENDIF*ENDDONSEL,R,LOC,Y,0,8 ! 第一次计算,假设浸润线逸出点在8M高位置,与上游同高*GET,N_NUM,NODE,,COUNT ! 获得渗流出口节点总数*DIM,N_NO,ARRAY,N_NUM ! 定义变量,存储渗流出口节点编号II=0*DO,I,1,N_MAX*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中N_NO(II)=I ! 存储渗流出口节点编号*ENDIF*ENDDO*DO,I,1,N_NUMD,N_NO(I),TEMP,NY(N_NO(I)) ! 定义下游面总水头值*ENDDOALLSEL,ALLFINISH/SOLUSOLVEFINISH!第一次计算完毕!------------------------------------------------------------------------- !迭代计算CONUTT=20 ! 最大循环次数DD_HEAT=0.001 ! 前后两次计算,总水头最大允许计算差CHUK_ST=3 ! 出口边界条件重新设定的起始点CHUK_MAXY2=10E5 ! 临时变量,用于存储浸润线出口坐标*DO,COM_NUM,1,CONUTTDD_H=0/POST1SET,1*DO,I,1,N_MAX*IF,COM_NUM,GT,CHUK_ST+1,THENDD1=N_TEMP(I)*IF,ABS(DD1-TEMP(I)),GT,DD_H,THENDD_H=ABS(DD1-TEMP(I))*ENDIF*ENDIFN_TEMP(I)=TEMP(I) ! 计算节点温度(总水头)N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标*ENDDO*IF,COM_NUM,GT,CHUK_ST+1,THEN*IF,DD_H,LE,DD_HEAT,THEN*EXIT*ENDIF*ENDIF/PREP7! 重新给每个单元设定材料MATNUM=2*DO,I,1,E_MAX*DO,KK,1,4*GET,NCON(KK),ELEM,I,NODE,KK ! 获取单元四个节点编号*ENDDOTEMP_Y=(N_TEMP(NCON(1))+N_TEMP(NCON(2))+N_TEMP(NCON(3))+N_TEMP(NCON (4)))/4 !计算单元中心点平均温度RESS_T=TEMP_Y-CENTRY(I)*IF,PRESS_T,GT,0,THENRESS_T=0MPCHG,1,I*ELSEIF,PRESS_T,LT,-10,THENRESS_T=-10MPCHG,2,I*ELSEMP,KXX,MATNUM+1,10**TPRE(PRESS_T)MPCHG,MATNUM+1,IMATNUM=MATNUM+1*ENDIF*ENDDO! 重新设定出口边界条件*IF,CONUTT,GT,CHUK_ST,THEN !前CHUK_ST次采用原边界条件LSEL,S,LINE,,6NSLL,S,1DDELE,ALL,TEMP ! 删除原边界条件II=0CHUK_MAXY=0*DO,JJ,1,N_NUM2*IF,N_TEMP(N_NO2(JJ)),GE,NY(N_NO2(JJ)),THEND,N_NO2(JJ),TEMP,NY(N_NO2(JJ)) ! 总水头=Y坐标*IF,NY(N_NO2(JJ)),GT,CHUK_MAXY,THENCHUK_MAXY=NY(N_NO2(JJ))*ENDIF*ENDIF*ENDDO*IF,CHUK_MAXY2,NE,CHUK_MAXY,THEN ! 判断前后两次计算的浸润线出口位置是否相同NSEL,R,LOC,Y,CHUK_MAXY ! 选择最高节点*IF,CHUK_MAXY,GT,0,THENDDELE,ALL,TEMP ! 删除出口最高节点边界条件*ENDIFCHUK_MAXY2=CHUK_MAXY*ENDIF*ENDIFALLSEL,ALLFINI/SOLUSOLVEFINISH*ENDDOSAVE!迭代计算完毕,进入后处理FINISH/POST1/CLABEL,,1/EDGE,,0/CONTOUR,,8,0,1,8PLNSOL,TEMP ! 显示总水头云图PLVECT,TF, , , ,VECT,ELEM,ON,0PLVECT,TF, , , ,VECT,NODE,ON,0LSEL,S,LINE,,6NSLL,S,1PRRSOL,HEAT ! PRINT FLOWRATE THROUGH SOIL FSUM,HEAT ! 计算渗流量*GET,Q_DAY,FSUM,0,ITEM,HEATALLSEL,ALLSAVE*DO,I,1,N_MAXN_TEMP(I)=TEMP(I) ! 计算节点总水头(温度)N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标DNSOL,I,TEMP,,N_PRE(I) ! 将压力水头值复制到节点*ENDDOPLNSOL,TEMP ! 显示压力水头云图FINI。
水利工程土石坝工程渗漏原因及施工中的渗流控制措施
水利工程土石坝工程渗漏原因及施工中的渗流控制措施摘要:水利工程中,土石坝是常见的工程项目,在施工过程中土坝及地基中的渗流,由于其机械或化学作用,可能使土体产生局部破坏,称为“渗透破坏”,严重的渗透破坏可能导致工程失事,因此必须加以控制本文就针对土石坝的渗流进行分析,并给出了防治措施。
关键词:土石坝;渗流;控制理论土石坝是目前水利工程建设工程中应用最为广泛和发展最快的一种坝型。
与其他坝型相比较,无论从经济方面还是从施工方面,土石坝具有绝对的优势,据不完全统计,中国土石坝数量占到大坝总数的 93%。
但土石坝建设最大的病害即是渗漏,如何控制和预防渗漏是土石坝工程建设中最主要的工作之一。
1.土石坝工程渗漏的常见类型及原因分析1.1 土石坝坝体渗漏的原因随着水利工程的大力开发建设,工程的质量问题时有发生,特别是水库、坝体的渗漏问题,在洪水来临之时无法形成很好的挡护,给人们的生命和财产安全带来了很大的危害。
坝体渗漏,因坝身防渗体裂缝或者坝体施工质量等问题形成渗漏的集中通道,从而形成管涌,渗水逸出点或逸出面通常出现在下游坝坡和坝脚。
引起坝体渗漏产生的主要原因有:一是坝体单薄或土料透水性大;二是筑坝质量差,如铺碾压不实或漏压、土过厚、粘土心墙或斜墙层面结合不好等;三是反滤设施质量差,未按设计要求铺设反滤层,土石混合坝未设过渡层;四是坝后反滤排水体高度不够;五是坝下涵管、埋管的外壁与土体结合部回填不密实,涵洞未做截流环;六是坝体不均匀沉降引起的横向或水平裂缝,可能引起坝体集中渗透破坏。
1.2 土石坝坝基渗漏的原因坝基渗漏通常是由于强透水性的坝基处理不当,或坝基未作防渗处理,或坝基防渗设施失效而产生的。
引起坝基渗漏产生的主要原因有:一是缺少合理的防渗措施,在砂卵石基础上坝前未做铺盖,或铺盖长度及厚度不够、质量不好被水压击穿,或者对强透水基础,坝体与坝基部位未做截水槽、截水墙;二是库内粘土铺盖下未设反滤层,渗水压力破坏了铺盖;三是坝基清理不彻底,在进行坝基施工前未按相关规定把坝基清理干净,部分杂草、树根残留,严重影响了层面之间的贴合度,所以导致渗水发生;四是水库管理问题:由于非法施工和人为原因造成了水库天然铺盖的破坏,导致坝基渗水。
第三节-土石坝的渗流分析
第三节 土石坝的渗流分析一、渗流分析的目的1) 确定浸润线的位置; 2) 确定坝体和坝基的渗流量; 3) 确定渗流逸出区的渗透坡降。
二、渗流分析方法常用的渗流分析方法:流体力学方法、水力学方法、流网法和试验法。
三、水力学方法水力学方法基本假定: 均质, 层流, 稳定渐变流。
1)渗流计算的基本公式图4-19表示一不透水地基上的矩形土体,土体渗透系数为k ,应用达西定律和假定,全断面内的平均流速v 等于:dxdykv -= (4-8) 设单宽渗流量为q ,则:dx dykyvy q -== (4-9)将上式分离变量后,从上游面(x=0,y=H 1)至下游面(x=L ,y=H 2)积分,得:L kqH H 22221=- 即: LH H k q 2)(2221-= (4-10)若将式(5-9)积分限改为:x 由0至x ,y 由H 1至y ,则得浸润线方程:xy H k q 2)(221-=即: x kqH y 221-= (4-11) 2)水力学法渗流计算用水力学法进行土坝渗流分析时,关键是掌握两点:一是分段,根据筑坝材料、坝体结构及渗流特征,把复杂的土坝形状通过分段,划分为几段简单的形状。
二是连续,渗流经上游面渗入、下游面渗出,通过坝体各段渗流量相等。
以此建立各段渗流之间的联系。
一、不透水地基上土坝的渗流计算 (一)均质土坝的渗流计算1.下游有水而无排水设备或有贴坡排水的情况如图4-20所示,可将土石坝剖面分为三段,即:上游三角形段AMF 、中间段AFB″B′以及下游三角形B″B′N。
根据流体力学原理和电模拟试验结果,可将上游三角形段AMF 用宽度为△L 的矩形来代替,这一矩形EAFO 和三角形AMF 渗过同样的流量q ,消耗同样的水头。
△L 值可用下式计算: 11121H m m L +=∆ (4-12)式中:m 1为上游边坡系数,如为变坡可采用平均值。
于是可将上游三角形和中间段合成一段EO B″B′,根据式(4-10),可求出通过坝身段的渗流量为:L H a H k q '+-=2])([220211 (4-13)式中:a 0 为浸润线逸出点距离下游水面的高度;H 2 为下游水深;L '为EO B″B′的底宽,见图5-20。
土石坝渗流分析范文
土石坝渗流分析范文土石坝是一种以土石材料为主要构建材料的坝体结构。
在水库工程中,土石坝是常见且重要的一种坝型。
为了确保土石坝的安全运行,需要对其渗流特性进行研究和分析。
本文将介绍土石坝的渗流分析方法和关键因素,并提出一些改进建议。
渗流是流体通过孔隙介质的过程,土石坝的渗流问题是指水从坝底或坝体渗透、穿透到坝体下游的行为。
对这种渗流行为进行分析,可以帮助我们了解土石坝内部水流的路径、速度和压力变化等重要参数,从而为工程设计提供依据。
需要注意的是,土石坝的渗流行为与坝体的材料性质、坝体结构、坝中水流条件以及渗透压力等多个因素有关。
因此,在进行渗流分析时需要考虑以下几个关键因素:1.材料性质:土石坝的渗透性主要取决于其材料的孔隙性质和渗透系数。
通常情况下,通过实验测定的材料渗透系数可用于渗流模型分析。
2.坝体结构:土石坝的结构类型可以分为心墙坝、重力坝和填料坝等。
不同结构类型的渗流行为有所不同。
在渗流分析中需要对坝体结构进行合理的几何划分和边界条件设定。
3.坝中水流条件:坝中水流条件是指坝体内部的水流强度和流动路径。
一般来说,坝底渗流和坝体侧面渗流是土石坝内渗流的两个重要方面。
基于以上关键因素,我们可以采用一些常见的渗流分析方法进行土石坝的渗流分析。
其中,渗流模型和数值模拟是两种常用的方法。
渗流模型是一种基于物理实验的方法,通过构建一个与土石坝实际情况相似的实验模型,来观察和分析渗流行为。
这种方法可以控制实验条件、减小模型尺寸和保持模型的相似比,从而提供直观的渗流过程和参数变化。
但是,渗流模型方法的缺点是成本较高且实验周期较长。
数值模拟方法是一种基于计算机软件的数值计算方法,通过建立数值模型和模拟土石坝渗流过程来研究和分析渗流行为。
这种方法可以模拟复杂的物理现象,通过不同的数值模型和参数设定,准确的预测渗流过程和关键参数变化。
这种方法的优点是计算速度快且成本低廉,可以方便地进行不同条件下的敏感性分析和优化设计。
第三节土石坝的渗流分析
第三节土石坝的渗流分析土石坝是一种常见的水工结构,用于拦截水流,形成水库储存水资源。
而土石坝在水库的稳定性和安全性方面的最关键问题之一就是渗流问题。
土石坝的渗流分析是为了确定渗流路径和渗流量,从而评估土石坝的稳定性。
土石坝渗流分析的基本理论是达西定律和渗流理论。
根据这两个理论,土石坝的渗流规律可以用渗流方程描述:Q=K×A×i其中,Q是坝体中的渗流量,K是渗透系数,A是渗透面积,i是渗透坡度。
渗透系数是描述土体渗透性质的重要参数,可以通过实验或采样测试得到。
渗透面积是指单位时间内的水流面积,可以通过计算得到。
渗透坡度是指单位长度内的水头差,可以通过坝体的水头测量得到。
土石坝的渗流分析可分为两种情况:一种是均匀渗流情况,另一种是非均匀渗流情况。
对于均匀渗流情况,可以通过渗透方程计算渗流量。
首先需要确定渗透系数,可以采用实验数据或经验公式计算。
然后确定渗透面积和渗透坡度,可以通过坝体的几何和水头测量来计算。
最后代入渗透方程计算出渗流量。
对于非均匀渗流情况,渗流路径复杂,需要进行更详细的分析。
可以采用有限元或有限差分等数值方法进行渗流分析。
首先需要建立坝体的几何模型,包括土石的分层结构、渗透性质等。
然后根据渗透方程和边界条件进行数值计算,得到各点的水头和渗流量分布。
通过分析水头和渗流量的分布,可以评估渗流路径和渗流量,为土石坝的稳定性和安全性评估提供依据。
总之,土石坝的渗流分析是土石坝设计和安全评估的重要内容。
通过理论分析和数值计算,可以得到土石坝的渗流路径和渗流量,评估土石坝的稳定性和安全性,为工程设计和运行提供科学依据。
同时,渗流分析还可以指导渗流控制和排水措施的设计,提高土石坝的渗流性能。
第七章渗流分析
6.6.1渗流分析说明渗流分析的目的在于:①土中饱和程度不同,土料的抗剪强度等力学特性也相应地发生变化,渗流分析将为土石坝中各部分土的饱水状态的划分提供依据;②检验坝的初选形式与尺寸,确定渗流力以核算坝坡稳定;③进行坝体防渗布置与土料配置,根据坝内的渗流参数与逸出坡降,检验土体的渗流稳定,防止发生管涌和流土,在此基础上确定坝体及坝基中防渗体的尺寸和排水设施;④确定通过坝和河岸的渗水量损失,并计算排水系统的容量。
依据《碾压土石坝设计规范》(SL274-2001 )中8.1.2,渗流计算应包括以下水位组合情况:①上游正常蓄水位与下游相应的最低水位;②上游设计洪水位与下游相应的水位;③上游校核洪水位与下游相应的水位;④库水位降落时上游坝坡稳定最不利的情况;6.6.2渗流分析计算积石峡库区周边均为不透水岩层,封闭条件良好,因此渗流分析计算模型为不透水地基均质坝。
对均质坝在不透水地基上,有排水设备的情况, 不考虑均质坝上游坝壳料部分对渗流的影响。
对棱体排水,浸润线逸出部分如图所示。
y 「在一单宽渗流量和均质坝下游坡渗流水深h可由下面两式联立解除:2 2q k[H i -(H2 h o)]一2L'h o 二L'2 (H i -出)2 -L'式中k——坝体的渗透系数,cm/s,其中k=0.45x 10 cm/s ;H——坝前水深,mH――坝后水深,mH——棱体前水深,mL ‘——透水区域,m。
1. 正常蓄水位时的渗流分析上游水位为1856m下游相应水位假设为1791m则上游水深H1 =1856-1782=74m,下游水深H2 =1791-1782=11m.L L —1—H174 = 30.83m1+2g 1+2 汉2.5L =(1865.07 -1856) 2.5 13 (1865.07 -1798)2.5 -(1798 -1791) 1 =196.35mL^L L L =42.59 169.59 = 227.18m代入式h0二• L'2(巴-H2)2 -L'2 2k[H1 ~(H^h0)]ho=14.85m,代入式2L' ,k=0.45x10 -6cm/s渗流量为:q=5.1x10 -8—/S,带入浸润线方程:将渗流曲线坐标值列入下表中表6.6.2-1正常蓄水位渗流曲线坐标值2. 设计洪水位时的渗流分析上游水位为1858.22m,下游相应水位假设为1793m则上游水深H, =1858.22-1782=76m,下游水深H2=1793-1782=11m.|_ L ―1— H1 —76 = 31.7 m1+2m 1+2沢2.5L =(1865.07 -1858.55) 2.5 13 (1865.07 -1798)2.5 -(1798 -1793) 1 =198.35mL^L L L =31.7 198.35 = 230.02m代入式h。
4(2)土石坝(:渗流分析)
xx年xx月xx日
目录
• 引言 • 土石坝基本知识与概述 • 土石坝渗流分析原理和方法 • 土石坝渗流分析案例 • 土石坝渗流安全与防护ቤተ መጻሕፍቲ ባይዱ施 • 结论与展望
01
引言
背景介绍
土石坝是一种由土料、石料或混合料等材料组成,并主要依 靠坝体自身重量来抵抗坝下游水流的推力以保持稳定的水工 建筑物。
应急预案
制定应急预案,如发生渗流事故时,及时启动应急预案 ,组织抢险救援。
06
结论与展望
研究成果总结
建立了适用于本工程实际地质条件的渗流模型; 分析了不同工况下的坝体渗流场分布;
确定了坝体和坝基的渗透系数; 预测了坝体的渗流量。
存在问题和改进建议
1
模型参数的确定受地质条件影响较大,需进一 步开展相关研究;
结构形式
土石坝的结构形式可分为重力坝、拱坝和重力拱坝。重力坝是依靠坝体自重 和地基承载能力来维持稳定的坝体,拱坝则是通过拱形的结构形式利用地基 反力来维持稳定。重力拱坝则是结合了重力坝和拱坝的特点。
土石坝的渗流特性
渗流现象
渗流是指水在坝体内流动的现象。由于坝体材料的透水性,水会在压力作用下渗 透过坝体,形成渗流。
THANKS
感谢观看
影响渗流的要素
渗流的影响因素包括坝体材料的透水性、水压力、坝体结构形式等。这些因素的 变化会导致渗流量和渗流路径的变化。
03
土石坝渗流分析原理和方法
渗流分析的基本原理
1 2
饱和液体
在一定温度下,固体颗粒在一定压力下完全润 湿,此时液体和固体表面之间存在一个平衡压 力,称之为饱和压力。
土石坝材料的物理性质
计算步骤
包括前处理、计算、后处理三个步骤,其中前处理和后处理主要是对计算结果进行可视化 、分析和整理,计算则是根据渗流基本方程进行求解。
4(2)土石坝(:渗流分析)
连续性方程
描述了液体在多孔介质中流动时的质量守 恒原理。
势能方程
描述了液体在多孔介质中流动时的势能变 化。
渗流的边界条件与初始条件
边界条件
描述了液体在多孔介质中流动时边界对流动的影响,如库岸、河岸等边界条件。
初始条件
描述了液体在多孔介质中流动开始时的状态,如初始水位、初始流量等。
03
土石坝渗流分析方法
等参数,计算渗流情况。
斯托克斯定律
02
在一定条件下,水在土壤中的渗透服从斯托克斯定律,通过实
验确定相关参数进行计算。
柯西定律
03
基于柯西定律,通过实验确定渗透系数等参数,计算渗流情况
。
04
土石坝渗流风险评估与控 制
渗流风险评估方法
理论模型
根据土石坝的几何形状、材料性质和边界条件, 建立数学模型来预测渗流风险。
物理模型试验方法
相似材料模型
使用与实际土石坝相似的材料 制作模型,通过试验模拟实际
渗流情况。
离心模型
利用离心机将模型材料按比例放 大,模拟实际土石坝的渗流情况 。
压力浸透试验
在模型上施加一定的压力,观察水 在模型中的渗透情况,以模拟实际 渗流。
经验公式方法
达西定律
01
基于水在土壤中的渗透服从达西定律,通过实验确定渗透系数
变形监测
流量监测
在土石坝表面和内部设置变形监测点,监测 土石坝的变形情况,评估渗流对坝体稳定性 的影响。
在土石坝上游和下游设置流量监测点,监测 渗透水流的数量和速度,评估渗流风险。
05
土石坝渗流分析案例
工程案例一:某大型水库土石坝渗流分析
背景介绍
某大型水库是一座以灌溉、发电、防洪等综合利 用为目的的大型水利工程,土石坝是该工程的主 要坝型。
土石坝渗流安全评价
土石坝渗流安全评价土石坝是一种利用土石材料和建筑材料修建的堆石坝,广泛应用于水利、发电等领域。
然而,土石坝在长期使用过程中容易发生渗流问题,导致坝体的安全性受到威胁。
因此,对土石坝的渗流安全评价显得十分重要。
本文将从土石坝的渗流机理、渗流评价指标、渗流安全评价方法等方面,对土石坝渗流安全评价进行论述。
土石坝渗流机理主要包括压实渗流机理和渗透渗流机理两个方面。
压实渗流是指土石坝中的水分经过坝体的孔隙空隙进行传导和透过现象。
渗透渗流是指水分通过土石坝中的裂隙和裂缝渗透并流出。
土石坝渗流机理的了解可以为渗流安全评价提供科学依据。
土石坝渗流安全评价的指标可以分为定量指标和定性指标。
定量指标主要包括渗流量、水流速度、渗流压力等参数,定性指标则包括渗流路径、坝体内溶质迁移和岩土结构的稳定性等。
通过对这些指标的评估,可以对土石坝的渗流安全性进行分析。
在土石坝的渗流安全评价中,可以采用传统的计算方法和现代的模拟方法。
传统的计算方法主要包括数学解析法和经验公式法。
数学解析法是根据土石坝的渗流机理,利用数学方程建立渗流模型,通过求解方程得到渗流参数。
经验公式法则是根据大量的实测数据和经验总结出的公式进行计算。
这些方法在渗流安全评价中具有一定的适用性,但对坝体内复杂渗透渗流路径的评价效果较差。
而现代的模拟方法,如有限元方法和数值模拟方法,可以对土石坝的渗流安全性进行全面的分析和评估,有效地解决了传统方法的不足。
除了定量评价指标和评价方法外,渗流安全评价还需要考虑到土石坝的设计参数、施工质量、运行管理等因素的综合影响。
在土石坝的设计中,需要考虑到渗流安全性,并采取相应的防渗措施。
而在施工过程中,需要严格控制土石坝的压实质量和质量控制点,以保证坝体的密实度。
在运行管理中,需要定期检查坝体的渗漏情况,及时采取修复措施,以保证坝体的渗流安全性。
综上所述,土石坝的渗流安全评价是一个综合性的研究课题,需要考虑到渗流机理、评价指标、评价方法、设计参数、施工质量和运行管理等因素的综合影响。
土石坝渗流
土石坝渗流土石坝泛指由当地土料、石料或混合料,经过抛填、辗压等方法堆筑成的挡水坝。
当坝体材料以土和砂砾为主时,称土坝、以石渣、卵石、爆破石料为主时,称堆石坝;当两类当地材料均占相当比例时,称土石混合坝。
土石坝是历史最为悠久的一种坝型。
土石坝渗流基本概况:渗透变形是指在坝体及坝基中的渗流作用下,由于其机械或化学作用,使土体颗粒流失、产生局部破坏的变形(如管涌或流土等)。
渗透变形的形式与土料性质、土粒级配、水流条件以及防渗、排渗措施等多个因素有关;管涌和流土的发生与散粒土渗透变形破坏坡降的大小有关。
诸多学者根据力学平衡原理,通过理论推导,得出一些管涌和流土的临界水力坡降模型公式。
如太沙基模型公式、伊斯托明娜管涌型土的抗渗坡降公式、扎马林模型公式等,遗憾的是这些公式都未考虑与级配特征有关的参数,导致这些理论公式与实测值之间尚存在一些差距。
土石坝渗流基本目的:土石坝渗流分析的目的是:①确定坝体浸润线和下游逸出点位置,绘制坝体及地基内的等势线或流网图;②计算坝体和坝基渗流量,以便估算水库的渗漏损失和确定坝体排水设备的尺寸;③确定坝坡出逸段和下游地基表面的出逸比降,以及不同土层之间的渗透比降,以判断该处的渗透稳定性;④确定库水位降落时上游坝壳内自由水面的位置,估算孔隙压力,供上游坝坡稳定分析之用。
土石坝渗流基本形式:渗透变形的型式及其发生发展过程,与土料性质、土粒级配、水流条件以及防渗、排水措施等因素有关,一般有管涌、流土、接触冲刷和接触流失等类型。
工程中以管涌和流土最为常见。
(1)管涌坝体或坝基中的无黏性土细颗粒被渗透水流带走并逐步形成渗流通道的现象称为管涌,多发生在坝的下游坡或闸坝下游地基面渗流逸出处。
黏性土因颗粒之间存在凝聚力且渗透系数较小,所以一般不易发生管涌破坏,而在缺乏中间粒径的非黏性土中极易发生。
(2)流土在渗流作用下,产生的土体浮动或流失现象。
发生流土时土体表面发生隆起、断裂或剥落。
它主要发生在黏性土及均匀非黏性土体的渗流出口处。
土石坝渗流分析
he L ( H1 t ) L
2 2
k[ H he t ] q 2L
2 1 2
2019/2/12
13
(二)心墙坝的渗流计算 心墙土料的渗透系数很小,比坝壳小10E4倍以上,可不 考虑上游楔形体降落水头的作用。下游坝壳的浸润线也较平 缓,水头主要在心墙部位损失。下游有排水时,可假定浸润 线的出逸点为下游水位与堆石内坡的交点A。 将心墙简化为等厚的矩形,δ =(δ 1+δ 2)/2,则可求通 过心墙段的单宽流量q1和心墙下游坝壳的单宽流量q2,联立 求得心墙后浸润线高度h和q
2019/2/12
20
流网的画法: 浸润线和不透水地基的表面都是流线;上下游水下 边坡都是等势线;下游边坡出逸点至下游水位既是等势 线又是流线。出逸段和浸润线上各点压力均为大气压力。 根据经验初拟浸润线位置及出逸点,然后将上、下游落 差等分,等分的水平线与浸润线的交点即为等势线与浸 润线的交点,由交点绘制与等势线,一端垂直浸润线, 一端垂直于地基表面,然后绘制流线,反复修正。
2019/2/12 4
土石坝的渗流为无压渗流,有浸润面,可视为稳定层 流,满足达西定律,简化为平面问题。水位急降时产生不 稳定流,需考虑浸润面随时间变化对坝坡稳定的影响。 达西定律:
H v x k x J k x x 连续条件: vx v y 0 x y
H v y k y J k y y
下游有排水时可假定浸润线的出逸点为下游水位与堆石内坡的交点a2则可求通过心墙段的单宽流量q1和心墙下游坝壳的单宽流量q2联立求得心墙后浸润线高度h和q20204415三斜墙坝的渗流计算将斜墙简化为等厚的矩形则可求通过斜墙的单宽流量q20204416四有限深透水地基土石坝的渗流计算1均质坝的渗流计算均质坝透水地基深度为t渗透系数为k坝体渗透系数为k可将坝体和坝基分开计算
土石坝渗流安全评价(三篇)
土石坝渗流安全评价1坝基渗流安全评价要点如下:1砂砾石层(包括砂层、砂砾石层、砾卵石层等)的渗透稳定性,应根据土的类型及其颗粒级配等情况判别其渗透变形形式,核定其相应的允许渗透比降,与工程实际渗透比降相比,判断渗流出口有无管涌或流土破坏的可能性,以及渗流场内部有无管涌、接触冲刷等渗流隐患。
2覆盖层为相对弱透水土层时,应复核其抗浮动稳定性,其允许渗透比降宜由试验法或参考流土指标确定;对已有反滤盖重者,应核算盖重厚度和范围是否满足要求。
3接触面的渗透稳定性主要有以下两种型式:1)复核粗、细散粒料土层之间有无接触冲刷(流向平行界面)和接触流土(流向从细到粗垂直界面)的可能性;粗粒料层能否对细粒料层起保护作用。
2)复核散粒料土体与刚性结构物体(如混凝土墙、涵管和岩石等)界面的接触渗透稳定性。
应注意散粒料与刚性面结合的紧密程度、出口有无反滤保护,以及与断层破碎带、灰岩溶蚀带、较大张性裂隙等接触面有无妥善处理及其抗渗稳定性。
2坝体渗流安全评价要点如下:1均质坝。
复核坝体的防渗性能是否满足规范要求、坝体实际浸润线和下游坝坡渗出段高程是否高于设计值,还需注意坝内有无横向或水平裂缝、松软结合带或渗漏通道等。
2组合(分区)坝:1)防渗体(心墙、斜墙、铺盖、各种面板等)。
复核防渗体的防渗性能是否满足规范要求,心墙或斜墙的上、下游侧有无合格的过渡保护层,以及水平防渗铺盖的底部垫层或天然砂砾石层能否起保护作用。
2)透水区(上、下游坝壳及各类排水体等)。
复核上、游坝坡在库水骤降情况下的抗滑稳定性和下游坝坡出逸段(区)的渗透稳定性,下游坡渗出段的贴坡保护层应满足反滤层的设计要求。
3)过渡区。
界于坝体粗、细填料之间的过渡区以及棱体排水、褥垫排水和贴坡排水等,应复核反滤层设计的保土条件和排水条件是否合格,以及运行中有无明显集中渗流和大量固体颗粒被带出等异常现象。
8.3.3应复核两坝端填筑体与山坡结合部的接触渗透稳定性,以及两岸山脊中的地下水渗流是否影响天然岩土层的渗透稳定和岸坡的抗滑稳定。
2012一级建造师《水利水电》课本知识点(14)
2012一级建造师《水利水电》课本知识点
(14)
熟悉渗流分析
一、土石坝的渗流分析
渗流分析的内容包括:①确定浸润线的位置;②确定渗流的主要参数——渗流流速与坡降;③确定渗流量。
进行渗流分析的方法较简单的有水力学法和流网法。
(一)水力学法
水力学方法可以用来近似确定浸润线的位置,计算渗流量、平均流速和坡降。
水力学方法假定坝体内土质是均质的,各方向的渗透系数相同;渗流是层流,符合达西定律,任一铅直线上的流速和水头是常数。
(二)流网法
流网法是一种图解法,渗流场内由流线和等势线构成的网格称为流网,如图1F411025(a)、(b)所示。
二、闸基的渗流分析
间基渗流计算的目的是计算水闸间基地下轮廓线各点的渗透压力、渗透坡降、渗透流速及渗流量。
进行渗流分析的近似方法有直线比例法(又称渗径系数法)、直线展开
法、加权直线法、柯斯拉独立变数法、巴莆洛夫斯基分段法、丘加也夫阻力系数法、改进阻力系数法、流网法等,其中较为常用的方法有直线比例法、流网法和改进阻力系数法。
水力学方法可以用来近似确定浸润线的位置,计算渗流量、平均流速和坡降。
水力学方法假定坝体内土质是均质的,各方向的渗透系数相同;渗流是层流,符合达西定律,任一铅直线上的流速和水头是常数。
(二)流网法
流网法是一种图解法,渗流场内由流线和等势线构成的网格称为流网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kc [ H12 − h 2 ] q1 = 2δ
k[h 2 − t 2 ] q2 = 2L
2011-11-10
14
(三)斜墙坝的渗流计算 将斜墙简化为等厚的矩形,δ=(δ1+δ2)/2,则可求通 过斜墙的单宽流量q1和斜墙坝壳的单宽流量q2,联立求得h和q
kc [ H12 − h 2 ] q1 = 2δ sinθ
2011-11-10 9
通过第一段EOB B 的渗流量为:
’ ’’
k[( H12 − (a0 + t ) 2 ] q1 = 2 L' 第二段B’B’’ N,可以下游水面为界,分为水上和水下两部 分,应用达西定律,可得通过第二段的渗流量为: ka 0 a0 + t q2 = (1 + ln ) m2 t
根据水流连续条件q=q1=q2,联立以上两式,可求得a0 和q。浸润线方程可以用(△)求得,求出后还应对浸润线进 口进行修正:自A点引与坝坡AM正交的平滑曲线,曲线下端 与计算所得的浸润线相切于A’。 坝体为贴坡排水对坝身浸润线位置没有影响,计算方法 与下游无排水相同。
2011-11-10 10
②下游有褥垫排水 根据流体力学计算表面,浸润线可由一通过E并以排水 起点为焦点的抛物线来表示。焦点处的高度为he,抛物线的 原点在排水起点后he/2处,可得抛物线的公式为:
2011-11-10
19
三、流网法 复杂剖面和边界条件,用计算方法求解土石坝浸润 线比较困难,且不准确。流网法可求出渗流区任一点的 渗透压力、坡降、流速及渗流量。 流网的概念: 渗流场:渗流运动的水质点所充满的空间. 流 线:水质点运动的轨迹. 等势线:渗流场中势能相等的各点连线 流 网:流线与等势线组成的网格
2011-11-10
28
渗透稳定和渗透坡降及土的组成有关,增加抗渗 稳定的工程措施:降低渗透坡降;增加渗流出口处土 体的抗渗能力。 具体有:①增大渗径,降低渗透破坏或截阻渗流; ②设排水沟或减压井,降低下游渗流出口处的渗透压 力。在可能发生管涌地段,需设反滤层,拦截细粒; 可能发生流土地段,加设盖重。
2011-11-10
3
渗流计算应包括以下水位组合情况: 渗流计算应包括以下水位组合情况: 上游正常蓄水位与下游相应的最低水位; 上游设计洪水位与下游相应的水位; 上游校核洪水位与下游相应的水位; 库水位降落时上游坝坡稳定最不利的情况。 渗流计算应考虑坝体和坝基渗透系数的各向异性。计算 渗流量时宜采用土层渗透系数的大值平均值,计算水位降落 时的浸润线宜采用小值平均值。 对1、2级坝和高坝应采用数值法计算确定渗流场各因素, 其它可采用公式计算。 岸边的绕坝渗流和高山峡谷的高土石坝应按叁维渗流用 数值法计算。
§3 土石坝渗流分析
一、概述 二、水力学法 三、流网法 四、渗透变形及防止措施
2011-11-10
1
一、渗流分析概述 分析目的: 分析目的: 检验坝的初选形式与尺寸,确定渗流力以核算坝坡 稳定 进行防渗布置与土料配置,根据坝内的渗流参数与 逸出坡降,检验土体的渗流稳定,防止发生管涌和流 土,确定坝体及坝基中防渗体和排水设施。 确定通过坝及两岸的渗流量并设计排水系统的容量
2011-11-10
24
流土:指在渗流作用下,粘性土及均匀无粘性土体被浮 动的现象。流土常见于下游逸出处。 接触冲刷:渗流沿着两种不同介质的接触面流动时,把 其中颗粒层的细粒带走。 接触流土:渗流垂直于两种不同介质的接触面流动时, 把其中一层的细粒,移入到另一层中去。例如反滤层的 淤塞。 化学管涌:指土体中的盐类被渗流水溶解带走的现象。
2011-11-10
29
he = L + ( H1 − t ) − L
2 2
k[ H − (he + t ) ] q= 2L
2 1 2
2011-11-10
13
(二)心墙坝的渗流计算 心墙土料的渗透系数很小,比坝壳小10E4倍以上,可不 考虑上游楔形体降落水头的作用。下游坝壳的浸润线也较平 缓,水头主要在心墙部位损失。下游有排水时,可假定浸润 线的出逸点为下游水位与堆石内坡的交点A。 将心墙简化为等厚的矩形,δ=(δ1+δ2)/2,则可求通 过心墙段的单宽流量q1和心墙下游坝壳的单宽流量q2,联立 求得心墙后浸润线高度h和q
积分(*),可得浸润线方程:
2q H −y = x (△) k
2 1 2
7
(一)不透水地基上均质土坝的渗流计算 1、均质坝的渗流计算 20世纪20年代前苏联学者提出,以浸润线两端为分界线, 将均质土坝分为3段:上游楔形体、中间段和下游楔形体, 分别列出计算公式,再根据水流连续原理求解,称为“三段 法”。
y −h L= +x 2he
2 2 e
2011-11-10
11
抛物线通过E(x=0,y=H1),代入可得
H −h L= 2he
2 1
2 e
he = L2 + H12 − L
代入流量公式,可得单宽流量:
k (H − H ) q= 2L
2 1 2 e
2011-11-10
12
③下游棱体排水 当下游无水时和褥垫式相同,下游有水时,可将下游水 面以上部分按照无水情况处理。
2011-11-10
20
流网的画法: 浸润线和不透水地基的表面都是流线;上下游水下 边坡都是等势线;下游边坡出逸点至下游水位既是等势 线又是流线。出逸段和浸润线上各点压力均为大气压力。 根据经验初拟浸润线位置及出逸点,然后将上、下游落 差等分,等分的水平线与浸润线的交点即为等势线与浸 润线的交点,由交点绘制与等势线,一端垂直浸润线, 一端垂直于地基表面,然后绘制流线,反复修正。
2011-11-10
21
2011-11-10
22
2011-11-10
23
四、渗透变形及防止措施 1、渗透变形: 定义:土石坝及地基中的渗流,由于物理和化学作用, 土体颗粒流失,导致土壤发生局部破坏,称为渗透变形。 渗透变形及其发展过程与土料性质、颗粒级配及水流条 件、防渗、排水措施等因素有关。 2、常见渗透变形的型式: 管涌、流土、接触冲刷、剥离、化学管涌等。 管涌:在一定渗流作用下,土体中的细颗粒沿骨架颗粒 所形成的孔隙管道移动或被渗流带走,发生于无粘性土中 (沙砾料)。
2011-11-10 4
土石坝的渗流为无压渗流,有浸润面,可视为稳定层 流,满足达西定律,简化为平面问题。水位急降时产生不 稳定流,需考虑浸润面随时间变化对坝坡稳定的影响。 达西定律:
∂H v x = k x J = −k x ∂x 连续条件: ∂v x ∂v y + =0 ∂x ∂y
2
∂H v y = k y J = −k y ∂y
2011-11-10
25
渗透变形的判别: 1、用土料的不均匀系数η; 2、用土体的孔隙直径与填料粒径之比; 3、用土体的细粒含量来判别。
2011-11-10
26
2011-11-10
27
3、渗透变形破坏标准及防止措施 土体在渗流作用下是否发生渗透破坏,主要取决 于土体本身的抗渗强度。通常用临界坡降作为判定标 准。 临界坡降指土体中的细粒随着渗流的加剧,由静 止转化为运动状态的坡降,可通过试验和计算确定。
2011-11-10
6
∂y v = kJ = −k ∂x 单宽流量:
平均流速:
∂y q = v ⋅ y = −ky ∂x
(*)
自上游面(x=0,y=H1)至下游 面(x=L,y=H2)积分得:
2q H −H = L k 2 k ( H12 − H 2 ) q= 2L
2 1 2 2
2011-11-10
k[h 2 − t 2 ] q2 = 2L
2011-11-10
15
(四)有限深透水地基土石坝的渗流计算 1、均质坝的渗流计算 均质坝透水地基深度为T,渗透系数为KT,坝体渗透系数 为k,可将坝体和坝基分开计算。坝体部分按不透水地基计算。 可假定坝体不透水,按下式计算坝基的渗流量:式中n为流线 弯曲对渗径的影响,可查表。 k HT
2011-11-10
8
①下游无排水 用一个等效矩形体代替上游楔形体,把此矩形体与原三 段法的中间段和而为一,成为第一段,下游楔形体为第二段。 虚拟上游面为铅直的,距原坝坡与设计水位交点A的水平距 离为ΔL m1 ∆L = H1 1 + 2m1 上式根据流体力学和电拟试验得到,式中m1为上游坝坡 坡率;H1为坝 H kx + ky =0 2 2 ∂x ∂y
2
分析法:流体力学法、水力学法、图解法和试验法,最常 用的是水力学法和流网法(图解法)。 2011-11-10 5
二、水力学法 基本假定: 基本假定: 土料均一,各向同性 渗流属稳定流 看作平面问题 渗流看作层流 渗流符合连续定律 基本要点: 基本要点: 将坝内渗流分成若干段(即分段法),应用达西定律 和杜平假定(假定任一铅直过水断面内各点的渗透坡降相 等),建立各段的运动方程,根据水流连续性求解流速、 流量和浸润线等。
q′ =
T
1
nL0
2011-11-10
16
2、心墙坝的渗流计算 透水地基上筑有混凝土防渗墙。渗流计算分防渗体段和墙 后段两部分。通过防渗心墙和地基防渗墙的渗流量为:
联立求得q和h。 2011-11-10
17
3、斜墙坝的渗流计算 有截水墙的斜墙坝计算分为斜墙截水墙和墙后坝体及地 基两部分,分布用平均厚度代替变厚的斜墙和截水墙。斜墙 和截水墙的渗流量q1和斜墙、截水墙后的渗流量q2,联立可 求得q和h。
kc H − h k c (H − h ) q1 = T + 2δ sin θ δ1
2 1 2
(
)
k h 2-t 2 kT (h − t ) q2 = + T 2 L1 L + 0.44T