20.1.2 中位数和众数(2) 教案.doc
《中位数和众数》名师教案
20.1.2 中位数和众数 (刘翔)一、教学目标 1.核心素养感受用样本平均数、中位数、众数估计总体的情况的统计思想,提高学生的统计能力,完善学 生的统计观念. 2.学习目标(1)20.1.2.1 认识中位数、众数,并会求出一组数据的中位数、众数.(2)20.1.2.2 理解中位数、众数的意义和作用,帮助人们在实际问题中分析并作出决策,在作出决策的过程中体会中位数、众数的作用;了解平均数、中位数、众数在描述数据时的差异. 3.学习重点掌握中位数、众数的概念,能利用中位数、众数的知识分析解决实际问题,了解平均数、中位数、众数之间的差异. 4.学习难点感受中位数、众数的特点及其与平均数的区别与联系,灵活运用这三个数据代表、解决问题. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P116—P120,思考:中位数的意义是什么?众数的意义是什么?中位数和众数作用是什么? 2.预习自测1.(2015•黔西南州)已知一组数据:﹣3,16,4,﹣1,0,14,则这组数据的中位数是( )A . 2B .23C . 0D .4 2.(2015•盐城)已知一组数据18,17,18,16,16,18,则这组数据的众数是( ) A .16 B .17 C . 17.5 D . 183.(2015•丹东)如果一组数据12,14,x ,13,15的众数是14,那么该组数据的平均数是( )A . 15.2B . 14.6C .14D . 13.6预习自测1.A 2.D3.D (二)课堂设计 1.知识回顾(1)如果有n 个数:x 1,x 2,x 3,……x n ,那么这组数据的平均数 nx x x x x n123++++=,这个平均数叫做这组数据的算术平均数.(2)一般地,在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…k x 出现k f 次(这里1f +2f +…k f =n )那么这n 个数的平均数是kkk f f f f f x f x f x f x x ............321332211+++++++=,x 也叫这k 个数的加权平均数,其中1f ,2f …k f 分别叫1x ,2x …k x 的权.2.问题探究问题探究一 认识中位数和众数●活动一 中位数的意义问题1:在一次数学测试中,全班数学平均成绩是78分,小明考了83分,小明说自己的成绩在班里是中上水平,你认为小明的说法合适吗?议一议:交流讨论,各抒己见,阅读教材相关内容,归纳出中位数的概念和确定方法.⑴将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.⑵求中位数的步骤:首先将数据按照由小到大(或由大到小)的顺序排列;然后数清数据个数是奇数还是偶数,如果数据个数为奇数,则取中间的数作为中位数,如果数据的个数为偶数,则取中间位置两数的平均值作为中位数.⑶一组数据的中位数是唯一的,中位数的优势在于受极端值的影响较小,故当一组数据中的个别数据的变化较大时,可用中位数描述其平均水平,中位数的缺点在于不能充分利用各数据的信息.●活动二 中位数的求法问题2:某班四个小组的人数如下:10,10,x ,8,已知这组数据的中位数与平均数相等,求这组数据的中位数.点拨:利用算术平均数的公式表示平均数,然后分类讨论当8≤x 时,当108<<x 时,当10≥x 时,三种情况的中位数。
20.1.2 中位数和众数(2)-wlyz
• 1.平均数的计算要用到所有的数据,它能够 充分利用数据提供的信息,在现实生活中较 为常用.但它受极端值的影响较大. 2.当一组数据中某些数据多次重复出现时, 众数往往是人们关心的一个量,众数不受极 端值的影响,这是它的一个优势.
3.中位数只需很少的计算,不受极端值的影
响,这在有些情况下是一个优点.
解:整理上面的数据得到图表如下:
销售额/万元
频数(人数) 销售额/万元
13
1 22
14
1 23
15
5 24
16
4 26
17
3 28
18
2
19
3 32
频数(人数)
人数
1
1
1
2
3
1
2
6 4 2 0 13 14 15 16 17 18 19 22 23 24 26 28 30 32 销售额/万元
(1)从表和图中可以看出,样本的数据的众数是15,中位数是18,求得这 组数据的平均数是20,可以推测,这个服装部营业员的月销售额为15万元的 人数最多,中间的销售额是18万元,平均销售额大约是20万元。
解:(1)平均数:320件,众数210件,中位数: 210件
(2)不合理。因为15人中只有2个销售额超 过了320件,而有13人达不到320件,尽管 320件是平均数,但它却不能反映营销人员的 一般水平,销售额定为210件更合适,因为 210既是众数,又是中位数,是大部分人都能 达到的定额
例:甲、乙两名运动员在6次百米跑训练中 的成绩如下:
运动员成绩的众数是1.75米,说明成绩为 1.75米的人数最多;运动员成绩的中位数是 1.70米,说明1.70米以下和1.70米以上的数 据各占一半;运动员成绩的平均数是1.69米, 说明所有参赛运动员的平均成绩是1.69米。
20.1.2中位数和众数
销售额/万元
本山公司月工资报表:
员工 总工 副经 技术 技术 技术 技术 技术 技术 临时 程师 理 员A 员B 员C 员D 员E 员F 员G 工资 5000 4000 1800 1700 1500 1200 1200 1200 400
你认为用什么数据反映一般技术员工的收入比较合适?
你认为用什么数据反映多数技术员工的收入比较合适?
1、一组数据的平均数一定只有一个。(对) 2、一组数据的中位数一定只有一个。(对) 3、一组数据的众数一定只有一个。( 错 ) 4、一组数据的中位数一定是这组数据中的 某一个数。(错 ) 5、一组数据的平均数、中位数、众数可以 是同一个数。( 对 )
1、下列两组数据中,中位数是多少? (1)5、6、2、3、7 (2)4、0、2、-5 2、在一次数学竞赛中,5名学生的成绩从低到高排列依 次是 55,57,61,62,98,那么他们的中位数是多少? 3、样本8、8、9、10、12、12、12、13的中位数和 众数分别是(11 )(12 )。 4、数据92、96、98、100、x 的众数是96,则其中 位数和平均数分别是( 96 )、(96.4 )。 你认为求中位数和众数的一般步骤是什么?
试一试
1、在一次数学竞赛中,5名学生的成绩从低到高排列依 次是 55,57,61,62,98,那么他们的中位数是多少? 2、10名工人某天生产同一零件,生产的件数是 15, 17,14,10,15,19,17,16,14,12,求这一天 10名工人生产的零件的中位数。 15 3、某班一组12人的英语成绩如下: 84,73,89,78,83,86,89,84,100,100,78, 87 85 100.则这12个数的平均数是_____,• 位数是______. 中 4、一组数据按从小到大顺序排列为:13、14、 19、x、23、27、28、31,• 中位数是22,则 其 21 x为_______.
20.1.2 中位数和众数(2)学案
20.1.2中位数和众数(2)学习目标:1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
重点、难点1、重点:了解平均数、中位数、众数之间的差异。
2、难点:灵活运用这三个数据代表解决问题。
学习过程一、课前准备1、平均数、众数和中位数的定义2、平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。
平均数是应用较多的一种量。
平均数计算要用到所有的数据,它能够充分利用的数据信息,但它受.影响大。
众数是当一组数据中某一数据较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受的影响.中位数仅与数据的有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用描述其趋势.注意:实际问题中求得的平均数,众数,中位数应带上单位.3、某公司有15名员工,他们所在的部门及相应每人所创的年利润(万元/人·年)如下表所示:(1)该公司每人所创年利润的平均数是___________万元,中位数是_________万元,众数是__________万元.(2)你认为应该使用平均数还是中位数来描述该公司每人所创年利润的一般水平?二、随堂练习1.已知数据x1,x2,…,x n的平均数是x,则一组新数据x1+8,x2+8,…,x n+8的平均数是________.2.若3,4,5,6,a,b,c的平均数为12,则a+b+c=________.3.某同学参加了5科考试,平均成绩是68分,他想在下一科考试后使6科考试的平均成绩为70分,那么他第6科考试要得的分数应为( )A.72分B.74分C.78分D.80分4.小华同学为了丰富暑假生活,骑自行车到某景点旅游.开始出发时以20千米/时的速度行驶,1小时后,由于天气情况及体力原因,骑车速度变为15千米/时,这样又行驶了1.5小时到达景点,那么小华去时的平均速度是______千米/时.5、在一次环保知识竞赛中,某班50名学生成绩如下表所示:6、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17。
掌握众数与中位数的教案
掌握众数与中位数的教案一、教学目标1.了解众数与中位数的含义和计算方法2.掌握众数与中位数在数据分析中的应用二、课前准备1.教师:准备讲义、课件、实例2.学生:预习教材,掌握初步概念三、教学内容与方法1.引入教师将常见的数据统计问题提出,引导学生思考和讨论,如何去计算数据的中心趋势值。
2.概念讲解教师介绍众数和中位数的概念,并解释这两个值对数据有何作用。
(1)众数:出现次数最多的值称为众数(2)中位数:将一组数据按照大小的顺序排列,位于中间的那个数就是中位数3.计算方法教师介绍如何对一组数据进行众数和中位数的计算:(1)众数的计算方法:寻找出现次数最多的数,每一组数据必须进行排列。
(2)中位数的计算方法:将一组数据按照大小的顺序排列,若数据的个数为奇数,则中位数为排序后处于中间位置的数值;若数据的个数为偶数,则中位数为排序后中间位置两个数的平均值。
4.应用实例教师通过实例进行应用练习,以帮助学生掌握众数和中位数在实际问题中的应用:(1)一所学校的年级总人数为200人,各班级的人数如下:50,90,30,10,20,其中的众数是多少?(2)某班学生的数学分数如下:76,55,89,66,90,70,87,72,86,64。
请问这组数据的中位数是多少?5.归纳总结教师让学生自行总结众数与中位数的概念、计算方法和应用,帮助学生加深对知识点的理解和记忆。
6.拓展延伸教师提供更多的问题和练习,让学生继续掌握和熟练运用众数与中位数。
四、教学评估1.通过课堂练习,对学生的应用能力进行检测2.对学生针对性提出问题,促进学生的认知升华3.对教学过程中的实例和讲义进行定期评价,完善教材素材五、教学反馈教师在教学过程中要发现学生的掌握程度及问题,及时进行调整。
同时,还可以与学生进行交流,听取他们的看法和建议,为下一次教学改进和提升提供充足的保障。
20.1.2中位数和众数
20.1.2中位数和众数1.理解平均数、中位数和众数的区别与联系,并能根据具体问题,选择合适的统计量表示数据的集中程度.2.能对日常生活中的有关问题与现象做出一定的评判.学习重点:理解中位数与众数所代表数据的意义。
学习难点: 能否准确描述出具体问题中位数和众数的意义。
你认为该公司总经理、工会主席、普通职工将分别关注职工月工资数据的平均数、中位数和众数中的哪一位?说说你的理由.平均数、中位数和众数它们都有什么各自的优缺点. 平均数:中位数:众数:思考:某员工月工资为1000元,那么他属于公司中等偏上水平还是中等偏下水平?说说理由. 2(1)请填写下表: (2)965432(2)请从下列三个不同角度对测试结果进行分析:①从平均数和中位数结合看,谁的成绩好些?;②从平均数和9环以上(包括9环)的次数看,谁的成绩好些?; ③从折线图两人射击环数的走势看,谁更有潜力? 三、巩固练习1.一组数据按从小到大顺序排列为:13、14、19、x 、23、27、28、31,•其中位数是22,则x 为 . 2.小明调查了学校八年级(1)班的40名学生上学路上所花的时间,数据如下:(min ) 10,40,10,30,30,30,30,10,20,20,20,20,10,20, 30,50,30,10,30,10,20,30,60,60,10,20,20,20, 20,40,10,40,20,30,30,40,40,40,50,20.求这组数据的平均数、中位数和众数.你认为用哪一个数据表示该校八年级(1)班全体名学生上学路上所花的时间的“集中程度”更合适?3求这组数据的平均数、中位数和众数,并指出哪个指标是鞋厂最感兴趣的?4.某市为增强学生的法律意识,开展了对全市学生的普法教育活动.为检验活动效果,组织全市八年级学生参加法律知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制了如下“频数分布直方图”.请回答:(1)参加全市法律知识测试的学生有 名同学.(2)中位数落在 分数段内.(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全市均分约是多少?(分)。
20.1.2 中位数与众数
课题名称
20.1.2中位数和众数
教材版本
人教版八年级数学下册第二十章《数据的分析》
教学目标
知识与技能:认识中位数和众数,并会求出一组数据中的众数和中位数。
过程与方法:理解中位数和众数的意义和作用。学生经历收集、整理、描述和分析数据得出结论,并对结论进行解释或思辨的过程。经历从统计概念、方法、原理统一到数据处理的活动过程中,使学生更好地体会统计的思想。
1.中位数:一组数据按大小顺序排列,位于最中间的一个数据叫做这组数据的中位数。(当偶数个数据时,为最中间两个数据的平均数)
2.众数:一组数据中,出现次数最多的那个数据叫做这组数据的众数。
二、教材P118例5的意图
(1)通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
6000
4000
1600
1500
1400
10ቤተ መጻሕፍቲ ባይዱ0
1000
1000
500
问题1:经计算,该公司的月平均工资是2000元,公司经理是否欺骗了小明?
问题2:月平均工资能否客观地反映员工的实际收入?
问题3:再仔细观察表中的数据,你认为用什么样的统计量反映员工的实际收入比较合适?
内容主体
一、从探究活动得出统计量中位数和众数的定义
情感态度与价值观:通过活动,突出数据处理的基本过程,建立统计观念;课程选取丰富的素材,体现统计与生活的密切联系。
情境导入
情境引题:小明今年大学毕业,为了实现自己的理想,决定去某公司参加工作,于是特别关注招聘信息。该公司员工的月薪如下:
员工
经理
副经理
职员A
职员B
20.1.2.2平均数、中位数和众数的应用+教案(表格式)2023-2024学年人教版数学八年级下册
第2课时平均数、中位数和众数的应用教学设计课题平均数、中位数和众数的应用授课人素养目标1.进一步认识平均数、中位数、众数都是数据的代表,能根据所给信息求出相应的数据代表.2.结合具体情境体会平均数、中位数、众数在描述数据时的差异,能根据具体问题选择适当的统计量来代表,并做出自己的评判.3.经历整理、描述、分析数据的过程,发展统计意识,提高分析问题和解决问题的能力.教学重点根据具体问题选择适当的统计量来分析数据.教学难点能灵活应用这三个统计量解决实际问题.教学活动教学步骤师生活动活动一:设置疑问,导入新课设计意图通过实际情境引发学生思考,为导入新课作准备.【情境导入】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄(单位:岁)如下:甲群:13,13,13,14,15,15,16,17,17,17.乙群:3,4,4,5,5,6,6,6,54,57.(1)分别求甲、乙两群游客年龄的平均数、中位数和众数;(2)能较好反映甲、乙两群游客的年龄特征的各是什么统计量?解:(1)甲群游客年龄的平均数为13×3+14+15×2+16+17×310=15(岁),中位数为15+152=15(岁),众数为13岁、17岁;乙群游客年龄的平均数为3+4×2+5×2+6×3+54+5710=15(岁),中位数为5+62=5.5(岁),众数为6岁.(2)能较好反映甲群游客的年龄特征的统计量是平均数或中位数;能较好反映乙群游客的年龄特征的统计量是中位数或众数.这里为什么不能用众数来反映甲群游客的年龄特征?为什么不能用平均数来反映乙群游客的年龄特征?对于“三数”我们应该如何在一个实际问题中合理选用?让我们一起进入本课时的学习.【教学建议】学生在实际生活情境中回顾平均数、中位数和众数的求法,教师引导学生思考对平均数、中位数和众数三种统计量意义的认识.活动二:实践探究,引出新知探究点平均数、中位数和众数的应用阅读教材P119,120,回答下列问题:(1)教材P119例6第(1)问分别问的是什么统计量?答:分别是众数、中位数和平均数.(2)这里为了让大家容易找到数据的中位数和众数,分别用统计表和条形统计图描述了样本数据,你认为较高的销售目标应该根据哪个统计量来确定?教学步骤师生活动设计意图通过提问的方式引发学生思考,结合具体问题深化对平均数、中位数和众数三种统计量意义的认识. 答:由(1)知这组样本数据的众数是15,中位数是18,平均数约是20,三个统计量中平均数最大为20.可以估计,销售目标定为每月20万元时大约有13的营业员可以完成,所以较高的销售目标应该根据平均数来确定.(3)看到题目中出现一半左右我们首先想到什么统计量?这里的销售目标应该根据哪个统计量来确定?答:首先想到中位数,这里的销售目标应该根据中位数来确定.归纳总结:平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.这三种统计量的意义(优势)与不足,如表所示:【对应训练】1.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)这组数据的平均数是780,中位数是680,众数是640.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估计合适吗?不合适;②选择一个你认为最合适的数据估计这个小吃店一个月的营业额.解:用该小吃店这一周的营业额的平均数估计一个月的营业额,则估计一个月的营业额为30×780=23 400(元).2.教材P121练习.【教学建议】引导学生由例题理解平均数、中位数和众数各自的特点,在实际应用中要根据具体情况选择适当的统计量反映数据的集中趋势.【教学建议】针对这个表,教师可向学生口头强调:若想要知道一组数据的平均水平,则往往利用平均数反映;若个别数据偏差较大,则常利用中位数反映数据的集中趋势;众数反映的是一组数据的多数水平,若某些数据重复出现,则众数往往是人们关心的统计量.活动三:知识运用,巩固提升设计意图巩固学生对平均数、中位数和众数三者之间区别与联系的认知例在学校组织的科学知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分、80分、70分、60分,学校将八年级(1)班和(2)班的成绩整理并绘制成如下的统计图:教学步骤师生活动活动三:知识运用,巩固提升设计意图加深学生对求解组中值与用样本平均数估计总体平均数的理解与运用.(1)求此次竞赛中八年级(2)班成绩不低于70分的人数;(2)补全下表:(3)请根据上述图表对这次竞赛成绩进行分析,并写出两个结论.解:(1)八年级(1)班参赛人数为6+12+2+5=25.因为两班参赛人数相同,所以此次竞赛中八年级(2)班成绩不低于70分的人数为25×(44%+4%+36%)=21.(3)①平均数相同的情况下,从众数来看,八年级(2)班的成绩更好一些.②平均数相同的情况下,从中位数来看,八年级(1)班的成绩更好一些.(答案不唯一)【对应训练】某校举行了垃圾分类知识测试,并从该校七年级和八年级中各随机抽取40名学生的测试成绩,整理如下:小明将抽取的学生的测试成绩进行了分析,如表为其中的一部分:根据图表,解答问题:(1)填空:表中的a=7,b=7.5,c=7.5;(2)若规定6分及6分以上为合格,该校七年级和八年级共1 200名学生参加了此次测试,则估计本次测试成绩合格的学生人数是1 050;(3)本次测试哪个年级学生的成绩较好?说明理由.解:本次测试八年级学生的成绩较好.理由:因为七、八年级学生的平均成绩相等,而八年级学生的成绩的众数、中位数均大于七年级学生的成绩的众数、中位数,所以八年级学生的成绩较好.【教学建议】学生独立解答,教师进行指导并提醒学生:要解答活动三的例题,主要是要将统计图中的信息进行有效提取.注意例题中有个关键信息是每班参加比赛的人数相同,这样可推知八年级(2)班的人数,这个是算出题中八年级(2)班各等级人数的基础.另外,第(3)问要注意看学生是否注意到平均数相同这一细节.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:平均数、中位数和众数都是反映数据哪方面特征的统计量?这三个统计量的意义(优势)和不足分别是什么?教学步骤师生活动解题方法:平均数、中位数和众数都可以作为一组数据的代表,它们有各自的特点和求法,而且能从不同的角度提供信息,帮助人们去分析、决策,提出意见或建议,因此在实际应用中要根据具体问题的情况,选择适当的统计量来代表数据.为了较全面、科学地分析一组数据,要对这三个方面都加以考虑,避免只从一个方面考虑,在具体题目中通过灵活选择恰当的统计量对数据做出正确的评判.例1 已知一组数据:x ,10,12,6的中位数与平均数相等,则x 的值是4或8或16. 分析:x 的值未知,需要分情况讨论,再列方程求解.解析:这组数据的平均数为x +10+12+64=x +284,中位数分以下四种情况讨论:(1)将这组数据按从大到小的顺序排列为12,10,6,x ,则中位数是10+62=8.因为数据12,10,6,x 的中位数与平均数相等,所以x +284=8,解得x =4,符合题意.(2)将这组数据按从大到小的顺序排列为12,10,x ,6,则中位数是10+x2.因为数据12,10,x ,6的中位数与平均数相等,所以10+x 2=x +284,解得x =8,符合题意.(3)将这组数据按从大到小的排序排列为12,x ,10,6,则中位数是x +102.因为数据12,x ,10,6的中位数与平均数相等,所以x +102=x +284,解得x =8,不符合题意.(4)将这组数据按从大到小的顺序排列为x ,12,10,6,则中位数是12+102=11.因为数据x ,12,10,6的中位数与平均数相等,所以x +284=11,解得x =16,符合题意.【知识结构】【作业布置】1. 教材P123习题20.1第8,9,10题.2.相应课时训练.板书设计20.1.2 中位数和众数第2课时 平均数、中位数和众数的应用 平均数、中位数和众数的区别与联系教学反思本节课首先从平均数、中位数和众数的计算导入,再通过比较三种统计量的大小,结合其实际意义,从不同角度分析数据,加深对统计量优势与不足的理解,最后通过实际问题的解答让学生学会选择合理的统计量进行决策或评价.通过本节课的学习,锻炼学生客观全面地看待问题,并培养了学生的科学态度.综上,x 的值为4或8或16.故答案为4或8或16. 例2 某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生50人,并将条形统计图补充完整; (2)捐款金额的众数是10元,中位数是12.5元; (3)估计八年级600名学生共捐款多少元?解:(1)解析:本次共抽查学生14÷28%=50(人).故答案为50.捐款10元的学生有50-9-14-7-4=16(人),补全条形统计图如图所示. (2)解析:由条形统计图可得,捐款金额的众数是10元,中位数是(10+15)÷2=12.5(元).故答案为10元、12.5元.(3)150×(5×9+10×16+15×14+20×7+25×4)×600=150×655×600=7 860(元), 即估计八年级600名学生共捐款7 860元.例1 某公司有A ,B ,C 三种型号电动汽车出租,每种车每天租金分别为300元、380元、500元.阳阳家打算从该公司租一辆电动汽车外出旅游一天,往返行程为210 km ,为了选择合适的型号,通过网络调查,获得三种型号电动汽车充满电后的里程数据如图所示.(1)阳阳对B ,C 型号电动汽车充满电后能行驶里程的数据统计如表,请继续求出A 型号电动汽车充满电后能行驶里程的平均数、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.解:(1)由统计图可知,A 型号电动汽车充满电后能行驶里程的平均数x A =190×3+195×4+200×5+205×6+210×23+4+5+6+2=200(km),A 型号电动汽车充满电后能行驶里程由小到大排序,中间的两个数(第10,11个数据)是200,200,故中位数为200+2002=200(km),充满电后能行驶里程数据出现次数最多的是205 km ,共出现6次,故众数为205 km.(2)选择B 型号电动汽车.理由:A 型号电动汽车充满电后能行驶里程的平均数、中位数、众数均低于210 km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号电动汽车充满电后能行驶里程的平均数、中位数、众数都超过210 km ,其中B 型号电动汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且租用B 型号电动汽车比租用C 型号电动汽车更经济实惠,故建议选择B 型号电动汽车.例2 端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是1,七年级活动成绩的众数为8分; (2)a =2,b =3;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.解:(1)解析:根据扇形统计图,七年级活动成绩为7分的学生数的占比为1-50%-20%-20%=10%,所以样本中,七年级活动成绩为7分的学生数是10×10%=1.根据扇形统计图,可知七年级活动成绩的众数为8分.故答案为1,8.(2)解析:因为八年级10名学生活动成绩的中位数为8.5分,所以第5名学生的活动成绩为8分,第6名学生的活动成绩为9分,所以a =5-1-2=2,b =10-1-2-2-2=3.故答案为2,3.(3)优秀率高的年级不是平均成绩也高.理由如下:七年级优秀率为20%+20%=40%,平均成绩为7×10%+8×50%+9×20%+10×20%=8.5(分).八年级优秀率为3+210×100%=50%>40%,平均成绩为110×(6×1+7×2+8×2+9×3+10×2)=8.3(分)<8.5分,所以优秀率高的年级为八年级,但平均成绩七年级更高,所以优秀率高的年级不是平均成绩也高.。
八年级数学 第数据的分析 数据的集中趋势 .2 中位数和众数(第2课时)教材
〔解析(jiě 〕 xī) 以众数(中位数)作为家庭月用水量 较为合理.因为这样可以满足大多数家庭的月用 水量.
12/11/2021
第二十一页,共三十三页。
解:①以平均数6作为家庭月用水量不合理. 因为不能满足大多数家庭的月用水量. ②以众数(中位数)7作为家庭月用水量较为合理. 因为这样(zhèyàng)可以满足大多数家庭的月用水量.
A.40<m≤50 B.50<m≤60
C.60<m≤70 D. m>70
解析:∵一共有100名学生参加测试,∴中位数应该 是第50名和第51名学生成绩的平均数,∵第50名和 第51名学生的成绩均在50<x≤60范围(fànwéi)内,∴这次 测试成绩的中位数m满足50<m≤60.故选B.
12/11/2021
甲厂利用(lìyòng)了平均数或中位数;乙厂利用了平均数
或中位数;丙厂利用了平均数、众数或中位数.
(3)如果你是顾客,应该选哪个厂家的产品?为什么?
选丙厂的产品.因为无论从哪种数据看都是最大的,且
多数的使用寿命达到或超过8年.
12/11/2021
第五页,共三十三页。
平均数的大小与课一组堂数(kè据táng中) 的每个 数据均有关系,任何一个小数结据的变动都
12/11/2021
第二十四页,共三十三页。
2.100名学生进行20秒钟跳绳测试,测试成绩统 计如下表所示(跳绳的个数用x表示):
x 20<x≤30 30<x≤40 40<x≤50 50<x≤60 60<x≤70 x>70
人数 5
2
13
31
20.1.2 中位数和众数(2)
说一说 请你对这三种估计结果进行评价,这些结果是否比 较客观地反映了这些家庭的年收入水平?
结合此题,请说说平均数、众数和中位数这三个统 计量的各自特点.
说一说 平均数、众数和中位数这三个统计量的各自特点.
平均数:计算要用到所有的数据,任何一个数据的变动都会 相应引起平均数的变动,它能够充分利用所有的数据信息,但它 受极端值的影响较大. 众数是当一组数据中某一数据重复出现较多时,人们往往关 心的一个量,众数不受极端值的影响,这是它的一个优势,缺点 是当众数有多个且众数的频数相对较小时可靠性小,局限性大. 中位数仅与数据的排列位置有关,不易受极端值影响,中位 数可能出现在所给数据中,也可能不在所给的数据中.当一组 数据中的个别数据变动较大时,可用中位数描述其趋势,中位 数的计算很少.
当堂反馈
下面是某校八年级(2)班两组女生的体重(单位: kg): 第1组 35 36 38 40 42 42 75 第2组 35 36 38 40 42 42 45 (1)分别求这两组数据的平均数、众数、中位数, 并解释它们的实际意义(结果取整数); (2)比较这两组数据的平均数、众数、中位数,谈 谈你对它们的认识.
(3)如果想让一半左右的营业员都能达到销售目标, 你认为月销售额定为多少合适?说明理由.
小结反思
知识点:
(1)结合本节内容谈谈你对平均数、众数、中位数三者的特 点和意义的认识. (2)在选择适当的量时,你有什么样的心得体会? (3)你有办法减少极端数据对平均数的影响吗?请举例说 明.
数学方法: ①样本估计总体 ②利用平均数、中位数、众数分析 数据的集中趋势
中位数 95 98 85
众数 98 62 99
典例分析
人教版数学八年级下册20.1.2中位数和众数优秀教学案例
1.讲解中位数的定义:将一组数据从小到大排列后,位于中间位置的数称为这组数据的中位数。
2.通过示例,讲解如何求一组数据的中位数,并强调中位数的性质和作用。
3.引入众数的概念:一组数据中出现次数最多的数称为这组数据的众数。
4.讲解众数的求法,并通过示例让学生理解众数在实际生活中的应用。
(三)学生小组讨论
2.采用自主探究、合作交流的学习方式,引导学生发现中位数和众数的求法,培养学生的问题解决能力。
3.设计具有梯度的练习题,让学生在实践中巩固中位数和众数的概念,提高学生的数学技能。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的积极性,使学生感受到数学的趣味性与魅力。
2.通过对实际问题的分析,让学生体会数学在生活中的重要性,提高学生的数学应用意识。
1.让学生分成小组,讨论以下问题:
a.中位数和众数在描述数据集中趋势方面有什么区别?
b.在实际生活中,中位数和众数有哪些应用场景?
c.怎样确定一组数据的中位数和众数?
2.各小组汇报讨论成果,教师点评并给予指导。
(四)总结归纳
1.教师引导学生总结本节课所学的中位数和众数的概念、求法及应用。
2.强调中位数和众数在数据分析中的重要性,以及它们在解决实际问题中的应用。
3.引导学生认识到,掌握中位数和众数的方法能够帮助我们更好地理解数据,做出合理的判断和决策。
(五)作业小结
1.布置作业:求一组数据的中位数和众数,并写出解题思路。
2.要求学生在作业中运用所学知识,解决实际问题,提高学生的应用能力。
3.教师对学生的作业进行批改,及时给予反馈,帮助学生巩固所学知识。
五、案例亮点
在实际教学中,我以学生的生活经验为切入点,设计了一系列具有实际背景的问题,让学生在解决问题的过程中,自然地接触到中位数和众数的概念,并理解它们的含义和作用。例如,我设计了一个关于班级学生身高的问题,让学生通过计算中位数和众数,来了解班级学生的身高分布情况。通过这样的设计,学生能够更加直观地理解中位数和众数在实际生活中的应用,提高他们的学习兴趣和积极性。
20.1.2中位数和众数(第2课时)
6. 为了了解开展“孝敬父母,从家务事做起”活动 的实施情况,某校抽取八年级某班50名学生,调查他 们一周做家务所用时间,得到一组数据,并绘制成下 表, 请根据下表完成各题:
每周做家务的 0 时间(小时) 2 人数 1 1.5 2 2.5 3 3.5 4 合计
2
6
8
12
13 4
3
50
1)填写图中未完成的部分, 2)该班学生每周做家务的平均时间是 3)这组数据的中位数是
(2) 如果想让一半左右的营业员都能达到目标 ,你认 (1) 月销售额在哪个值的人数最多?中间的月 为月销售额定为多少合适?说明理由.
销售额是多少?平均的月销售额是多少?
(3)如果想确定一个较高的销售目标,你认为 月销售额定为多少合适?说明理由.
1.平均数的计算要用到所有的数据,它能够
充分利用数据提供的信息,在现实生活中较 为常用.但它受极端值的影响较大.
1.求中位数要将一组数据 按大小顺序,顾名思义, 中位数就是位置处于 2 最中间的一个数(或最 中间的两个数的平均数), 排序时,从小到大或从大到小都可以.
2.众数是一组数据中出现次数最多的数据, 是一组数据中的原数据,而不是相应的次数. 众数有可能不唯一,注意不要遗漏.
⑴中位数、众数的定义。(注意:确定中 位数时要分数据个数是奇数个还是偶数个;众 数的个数可能不止一个。)
④ 某商场服装部为了调动营业员的积极性,决定实 行目标管理,即确定一个月销售目标,根据目标完成 情况对营业员进行适当的奖励。 为了确定这个适当的目标,商场统计了每个营业 员在某月的销售额,经计算得出销售额的平均数是20 万元/月,中位数是18万元/月,众数是15万元/月, 如果你是该商场的管理人员, ⑴你想让一半左右的营业员能够达标,这个目标 可定为______ ; ⑵你想确定一个较高的目标,这个目标可定 ______ 。
20.1.2 第2课时 众数
第2课时 众数
解:(3)所抽查的学生中,不低于27分的有44人,所占的百分比为4840×100%, ∴720×4840×100%=396(人). 答:这720名学生中,成绩为优秀的学生大约是396人.
课件目录
首页
末页
第2课时 众数
10.(数据分析)[2019 ·镇江]陈老师对他所教的九(1)、九(2)两个班级的学生进行了 一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下 表),并绘制了如图20-1-21所示的每班各类别得分人数的条形统计图(不完整). 各类别的得分表
全 效学 习
数学八年级下册[RJ]
第二十章 20.1.2 第2课时
第2课时 众数
第二十章 数据的分析
20.1 数据的集中趋势
20.1.2 中位数和众数
第2课时 众数
学习指南
归类探究
当堂测评
分层作业
课件目录
首页
末页
第2课时 众数
教学目标
学习指南
1.认识众数,并会求一组数据的众数.
2.理解中位数、众数的意义和作用,能结合实际问题的情境进行分析和决策.
当堂测评
1.[2019 ·扬州]有一组数据3,2,4,5,2,则这组数据的众数是( A )
A.2
B.3
C.3.2
D.4
课件目录
首页
末页
第2课时 众数
2.[2019·淮安]2019年淮安市“周恩来读书节”的活动主题是“阅读,遇见更美好
的自己”.为了了解同学们课外阅读的情况,王老师对某学习小组10名同学5月份
[2019·毕节] 在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额
(单位:元)分别为800,820,930,860,820,850,这组数据的众数和中位数820,930
中位数和众数 教学设计 第二课时
中位数和众数教学设计第二课时教学目标1.知识与技能:描述众数的概念,会求一组数据的众数;能结合具体情境体会平均数、中位数、众数三者的区别,能初步选择恰当的数据代表对数据作出自己的评判。
2.过程与方法:通过实际背景,区分刻画“平均水平”的三个数据代表,形成获取数据、继续巩固对各种图表信息的识别与获取能力,养成对生活中所见到的统计图表进行数据处理和评判的主动意识。
3.情感态度与价值观:统计作为处理现实世界数据信息的一个重要数学分支,必然要求素材本身的真实性,以形成求真务实的科学态度。
将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,认识到数字与现实的联系。
通过同学间的交流与合作,培养大家的合作精神。
教学重点:众数的意义教学难点:众数、中位数、平均数三者的差别,并能在具体情境中选择适当的数据代表对数据作为评判。
教学方法:探究法教学媒体:幻灯片课件(一)教学过程还记得刚上课时关于某公司员工的月工资情况吗?员工经理副经理职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资/元6000 4000 1700 1300 1200 1100 1100 1100 500经理曾经说:“我公司员工收入很高,月平均工资为2000元”。
职员C曾经说:“我的工资是1200元,在公司中算中等收入。
”职员D听了后说:“我们的好几个人的工资都是1100元。
”请你想想职员D说的能反映这个公司员工的收入情况吗?(引出众数的概念)小练习:下面这组数据的众数是多少?解释它的意义:5,2,6,7,6,3,3,4,3,7,6答:在这组数据中,5的频数是1,2的频数是1,6的频数3,7的频数是2,4的频数是1,3的频数是3。
所以出现次数最多的数有两个,由于它们的频数一样,所以6和3都是这组数据的众数。
例5 一家鞋店在一段时间内销售某种女鞋30双,各种尺码鞋的销售量如下表所示:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1 你能根据上面的数据为这家鞋店提供进货建议吗?练习P145(见幻灯片)例6见课本146页确定一个适当的月销售目标是一个关键问题,如果目标定得过高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.2 中位数和众数
第二课时
教学目的
1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
重点、难点和突破难点的方法
1、重点:了解平均数、中位数、众数之间的差异。
2、难点:灵活运用这三个数据代表解决问题。
较多的一种量。
另外要注意:
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
例习题的意图分析
教材P146例6的意图
(1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例。
教师在授课过程中也应注意,对已学知识的巩固复习。
(2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同。
(3)、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。
(4)、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
课堂引入
本节课的课堂引入可以通过复习平均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。
例习题的分析
例题6中第一问是在巩固平均数定义、中位数定义和众数的定义。
可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?
例题6中的第二问学生一般不易想到,教师要将“较高目标”衡量标准引向三个数据代表身上,这样学生就不难回答了。
第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。
即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。
随堂练习
1
分别求出这些学生成绩的众数、中位数和平均数.
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。
其中能较好反映乙群游客年龄特征的是。
答案:1. 众数90 中位数 85 平均数 84.6
2.(1)15、15、15、众数(2).15、5.5、6、中位数
课后练习
1
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
根据表中的信息填空:
(1)该公司每人所创年利润的平均数是万元。
(2)该公司每人所创年利润的中位数是万元。
(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答
答案:1.(1).2090 、500、1500
(2).3288、1500、1500
(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。
2.(1)
3.2万元(2)2.1万元(3)中位数
作业:练习册。