高二上半期考试

合集下载

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

A. 2
2
B. 3 2
C. 10 5
D. 15 5
8.已知 O 为坐标原点,双曲线 C:
x2 a2
-
y2 b2
= 1(a
> 0,b
> 0) 的左、右焦点分别是 F1,F2,离
心率为 6 ,点 P ( x1, y1 ) 是 C 的右支上异于顶点的一点,过 F2 作 ÐF1PF2 的平分线的垂线,
2
垂足是 M,| MO |=
线 l 恰有 2 条,则 p 的取值范围为( )
A. 0 < p < 1
B. 0 < p < 2
C. p > 1
D. p > 2
5.已知椭圆 T
:
x2 a2
+
y2 b2
= 1(a
>b
>
0) 的右焦点为 F
,过 F
且斜率为 1 的直线 l 与T
交于
A, B
试卷第11 页,共33 页
两点,若线段 AB 的中点 M 在直线 x + 2 y = 0 上,则T 的离心率为( )
5
6
7
8
答案 A
B
D
A
D
B
C
A
题号 11
12
答案 ABD BC
1.A 【分析】先解出集合 M,再由子集关系求解集合 N 即可.
【详解】由 ln x < 0 得 0 < x < 1,所以 M = {x 0 < x < 1} ,
因为 M Í N ,所以 a < ex 对 "x Î(0,1) 恒成立,
所以 a £ 1 .

重庆市2024-2025学年高二上学期期中考试英语试题(无答案)

重庆市2024-2025学年高二上学期期中考试英语试题(无答案)

重庆市高2026届高二(上)半期考试英语试卷(考试时间: 120 分钟满分: 150 分)注意事项:1. 答第I卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。

2. 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动, 用橡皮擦干净后, 再选涂其他答案标号。

不能答在本试卷上, 否则无效。

第一部分听力(共两节, 满分30分)第一节听下面 5 段对话。

每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. How much should the girl pay?A. £2.50.B. £4.00.C. £5.00.2. What does the woman's sister look like?A. She has short black hair.B. She wears a brown hat.C. She wears glasses.3. What is the woman doing?A. Asking for directions.B. Having a driving test.C. Studying road signs.4. Where does the conversation most probably take place?A. In a classroom.B. In a restaurant.C. In a supermarket.5. What are the speakers mainly talking about?A. A football match.B. TV programs.C. Tea.第二节听下面 5 段对话或独白。

每段对诺或独白后有几个小题, 从题中所给的A、B、C三个选项中选出最佳选项。

2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析

2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析

2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。

福建省龙岩市名校2023-2024学年高二上学期期中考试语文试题

福建省龙岩市名校2023-2024学年高二上学期期中考试语文试题

2023~2024学年第一学期半期考高二语文试卷考生注意:1.本试卷共150分,考试时间 150 分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:部编版选择性必修上册。

一、现代文阅读(31分)(一)现代文阅读Ⅰ(本题共 4 小题,15分)阅读下面的文字,完成1~2题。

墨家一向以“贵义”自许。

如《贵义》有言:“万事莫贵于义。

”然墨家所论之“义”,其实为“利”。

《经上》说“义,利也”。

但墨家所说之“利”,非一己之私利,而是天下之公利。

这种天下之公利,又具体表现为人口之众、国家之富、刑政之治等治道现实。

墨家孜孜追求“天下之利”,从动机的角度来看,墨家所述的“兼爱”“天志”“节用”等说法,在根本上还是为了维护民生民利。

“兼爱”要求统治者应当像爱利自身、自家、自国那样去爱利他人、他家、他国,尤其是要普遍地爱利天下民众。

“天志”则悬设一大公无私、竭诚为民、能赏善罚暴的至高无上之天,以规约君主的言行,使其能实行“兼爱”的义政义事。

“节用”则从民生基本所需的衣、食、住、行、葬、乐等角度,规劝统治者应当厉行节约之道,“去无用之费”以实现对民生民利的保全。

同时,墨家还为统治者树立了保民、爱民、利民的以大禹为典范的古时圣王形象,作为统治者爱利万民的义政义事之历史经验。

而对那些极端戕害民生民利的如桀、纣、幽、厉一般的暴君,墨家又提出了“不非诛”的革命主张,从而保留了以武力来维护民生民利的底线。

由此可见,墨家所论的“天下之利”,应当还是以民生民利为主流。

爱民、利民还是墨家最为根本的技术价值观念。

在先秦诸家中,墨家一向以重视科技而为中国科技史家所推崇。

《法仪》等篇记述了墨子对百工从事生产技术活动的认识。

墨子认为,百工从事之法就是“为方以矩,为圆以规,直以绳,衡以水,正以县”。

《墨经》诸篇更是记载了诸多关于科学方面的朴素认识,论述了当时制造和使用器械以便利民生实践的工作原理。

但墨家对技术活动的认识与实践是为了便利民生。

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

湖北省新高考协作体2024-2025学年高二上学期11月期中考试语文试题含答案

湖北省新高考协作体2024-2025学年高二上学期11月期中考试语文试题含答案

2024—2025学年度上学期高二期中考试高二语文试卷(答案在最后)考试时间:2024年11月13日上午9:00—11:30试卷满分:150分注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:中国传统水墨画与西方古典油画不同,对于画面中空白的认识存在着很大的差异。

在中国画家的认识中,画面里的留白,要让人产生对空间的联想,那里面有云烟、有雾气、有山峦、有溪水,甚至有牧童哼着乡间小调牧牛的场景。

然而,这些丰富的虚景又通通被缥缈的水雾笼罩在了“空白”之中,让人浮想联翩。

这便是中国画留白“意到笔不到”的魅力。

中国画的留白淋漓尽致地表现了“无生于有,有生于无”的老庄思想,由此亦可窥见中国道家及禅宗哲学所带来的深远影响。

明代画家董其昌曾以禅言艺,将中国画分为南北二宗,尤其推崇南宗的顿悟,认为其参悟方式同文人画的雅逸士气相契合。

其中,从“看山是山”到“山在心中”的透悟过程,也点明了化眼前之有为无,方能达智慧神明之心境。

留白还有一个非常优雅的别名——“余玉”,以布白凸显灵动,以虚空诠释丰盈,类似音乐演奏中某一刻的“悄然无声”。

恰如其分地处理画面中的留白,不仅可以营造画面的审美意境和作品氛围,体现艺术家独特的审美情怀,还反映出艺术家对蕴于宇宙万物之中的“道”的解读。

这正是中国画与西方绘画在本质上的差异。

中国画的创作和鉴赏都讲究“气”。

在历代画论中,皆以“气韵”作为品评作品的重要标准。

南北朝绘画理论家谢赫在“六法论”中提到的重要法则“气韵生动”,即画面中必须有“气韵”才可能变得生动。

重庆市第一中学校2022-2023学年高二上学期半期考试地理试题

重庆市第一中学校2022-2023学年高二上学期半期考试地理试题

秘密★启用前【考试时间:11月25日10:30—12:00】2022年重庆一中高2024届高二上期半期考试地理测试试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将答题卡交回。

一、选择题:本大题共30小题,每小题2分,共计60分。

在每小题列出的四个选项中,只有一项是最符合题目要求的。

我国第五个南极科学考察站选址在恩克斯堡岛,该地是考察南极冰盖雪被、陆缘冰及海冰的理想之地。

海洋永冰界是指夏季海洋冰封区域与流冰间的界线。

读图完成1-2小题。

1.重庆(30°N,106°E)在恩克斯堡岛的()A.东北方B.东南方C.西北方D.西南方2.近年来,图示区域海洋永冰界不斯向高纬退缩,这将导致该区域()A.地面辐射增强B.海水蒸发减少C.太阳辐射增多D.大气温度下降2022年11月上旬,重庆市某中学的陈老师去当地某高校参加教研活动。

下左图为高校的部分校园平面图,下右图为陈老师当天某时刻看到广场上旗杆影子示意图。

据此完成3-4小题。

3.陈老师上午到达该高校广场后,看到影子投影在广场上的建筑最有可能是()A.教学楼I B.教学楼ⅡC.办公楼D.科技楼4.陈老师看到上右图旗杆日影时,正值当天()A.早晨B.上午C.下午D.正午小海坨山位于北京冬奥会延庆赛区,建有国家高山滑雪中心,滑道落差近900米。

小海坨山半山腰位置出现一定厚度的低云,且停留时间较长,对滑雪赛事有一定影响,山地背风坡下沉气流与爬坡湿气流的相互作用是促进半山腰云层形成的关键因素。

下图示意小海坨山及附近地形,据此完成5-7小题。

5.对材料信息的理解,正确的是()A.图示比例尺为1:30000B.图中只可以看到小海坨山主峰一座山峰C.低云位于山脊线东北侧D.去掉图中指向标不会影响方位的判断6.小海坨山半山腰低云的水汽主要来自()A.北冰洋B.太平洋C.大西洋D.印度洋7.为了赛事的顺利进行,气象部门预报半山腰云最需要精准观测滑雪场附近的()①相对湿度②气温垂直分布③气温水平分布④气压变化A.①②B.②③C.③④D.②④下图中甲地位于金沙江谷地,其缓坡上发育了一定厚度的黄土状物质。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

四川省泸县第四中学2022-2023学年高二上学期期中考试生物试题及答案

四川省泸县第四中学2022-2023学年高二上学期期中考试生物试题及答案

泸县四中2022-2023学年高二(上)半期考试生物试题注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

2.考试结束后,将本试卷自己保管好,答题卡交回。

3.本次考试物理化学生物同堂分卷考试,物理110分,化学100分,生物90分第I卷选择题(45分)一.选择题:本题共9小题,每小题5分,共45分。

在每小题给出的四个选项中只有一项符合题目要求1.下列说法正确的是A.植物和微生物也能对外界的刺激做出反应,属于反射活动B.某人眼球受到意外撞击,产生金星四溅的感觉是反射C.在完成反射活动的过程中,兴奋在神经纤维上的传导方向是双向的D.一个完整的反射活动至少需要2个神经元完成2.下列有关叙述中正确的是A.内环境主要由血液、组织液和淋巴组成B.O2、CO2、血红蛋白都是内环境的组成成分C.血浆是内环境中最活跃的部分D.细胞质基质、线粒体基质是内环境的一部分3.下列有关神经系统的分级与人脑的高级功能的描述,错误的是A.人脑的高级功能有语言、学习、记忆和情绪等B.维持身体平衡的中枢在小脑,维持生命的呼吸中枢在下丘脑C.患者若S区受损则不能说话,若H区受损则听不懂别人讲话D.一般成年人可以“憋尿”,这说明高级中枢可以控制低级中枢4.如图为对刚收获的种子所做的一系列处理。

据图分析有关说法正确的是A.④和⑤是同一种物质,但是在细胞中存在形式不同B.①和②均能萌发形成幼苗C.③在生物体内主要以化合物形式存在D.点燃后产生CO2中C的只来自于种子中的糖类5.某水稻种群中AA个体占30%,aa个体占10%,由于某种病害导致aa个体全部死亡,则病害发生前后该种群中a的基因频率分别为A.40%、40% B.60%、66.6% C.40%、33.3% D.40%、60%6.下列是促胰液素发现过程中的一些实验操作。

有关叙述正确的是①稀盐酸→小肠肠腔→胰腺分泌胰液;②稀盐酸→静脉血液→“?”;③稀盐酸→小肠肠腔(去除神经)→胰腺分泌胰液。

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。

2024-2025学年高二上学期期中模拟考试语文试题(天津专用)含解析

2024-2025学年高二上学期期中模拟考试语文试题(天津专用)含解析

2024-2025学年高二语文上学期期中模拟卷(含解析)(考试时间:150分钟试卷满分:150分)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。

用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。

将条形码粘贴在答题卡“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.测试范围:统编版选必上册第1-4单元。

5.难度系数:0.62。

6.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共33分)评卷人得分一、(9分)阅读下面的文字,完成下面小题。

当一种美,美得让我们()时,人就会意识到自身的局限。

“山阴道上,目不暇接”之时,我们不就能体验到渺小的()与有限的感官无福消受这天赐的过多福祉吗?读庄子,我们也往往被庄子拨弄得(),有时只好手之舞之,足之蹈之。

除此以外,我们还能用什么方式来表达内心的感动?这位“天仙方子”,他幻化无方,意出尘外,鬼话连篇,奇怪迭出。

他永远有着我们不懂的地方,山重水复,柳暗花明;他永远有着我们不曾涉及的境界,仰之弥高,钻之弥坚。

“造化钟神秀”,造化究竟是把何等的神秀聚焦在这个“槁项黄馘”的哲人身上啊!一部《庄子》,一言以蔽之,就是对人类的怜悯!庄子似因无情而坚强,实则因最多情而最脆弱!胡文英这样评价庄子:“庄子眼极冷,心肠极热。

眼冷,故是非不管;心肠热,故悲慨万端。

虽知无用,而未能忘情,到底是热肠挂住;虽不能忘情,而终不下手,到底是冷眼看穿。

”这是庄子自己的“哲学困境”。

此时的庄子,徘徊两端,在内心的矛盾中作团兽之斗。

2024-2025学年高二上学期期中模拟考试地理试题(新高考通用)01含解析

2024-2025学年高二上学期期中模拟考试地理试题(新高考通用)01含解析

2024-2025学年高二地理上学期期中模拟卷01(含解析)(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章—第三章第二节(人教版(2019)选择性必修1)5.考试结束后,将本试卷和答题卡一并交回。

6.难度系数:0.8第Ⅰ卷一、选择题:本题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项符合题目要求。

图1示意我国东部季风区某区域地形剖面。

图2示意地壳物质循环,①②③④代表不同的地质作用。

据此完成下面小题。

1.图1中山脉的地质构造类型是()A.地堑B.背斜C.向斜D.地垒2.图1中盆地形成的原因是()A.流水侵蚀B.冰川堆积C.板块挤压D.断层下陷3.花岗岩的形成对应图2中的地质作用是()A.①B.②C.③D.④【答案】1.C2.D3.A【解析】1.结合山脉的岩层形态,岩层向下凸出,为向斜,C正确;背斜岩层向上凸出,B错误;地垒、地堑岩层发生断裂、位移,AD错误。

故选C。

2.结合盆地处的地质构造可知,盆地与台地的交界处存在断层,岩层断裂下陷,形成盆地,D正确;流水侵蚀、冰川堆积、板块挤压不是形成该处盆地的原因,ABC错误。

故选D。

3.花岗岩是岩浆岩(侵入岩),结合图2可知,甲为岩浆,乙为变质岩,丙为沉积岩,丁为侵入岩、戊为喷出岩,花岗岩的形成对应图2中的地质作用是①,岩浆侵入,A正确,②是重熔再生,③是变质作用,④是外力作用,BCD错误。

故选A。

云贵川三省交界处发育有独特的喇叭状河谷,向上游方向敞开。

由于地壳运动剧烈,周边山体常有石块崩塌进入喇叭状河谷。

广东省湛江市部分学校2024-2025学年高二上学期期中联考地理试题

广东省湛江市部分学校2024-2025学年高二上学期期中联考地理试题

高二地理本试卷满分100分,考试用时75分钟。

注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:选择性必修一第1章至第3章第2节、必修一、必修二。

一、选择题:本题共16小题,每小题3分.共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

青岛市地处山东半岛南部,市南区是其最核心区;平度区和莱西区为其外围区;其他各市区构成核心区。

2010—2020年青岛市各市区间人口流动频繁,人口增长率差异明显。

图1示意2010—2020年青岛市各市区人口增长率。

据此完成1—3题。

图11.青岛市黄岛新区人口增长率较高的主要影响因素是( )A.面积较小B.环境优美C.经济发展D.交通便捷2.2010-2020年青岛市市南区迅速发展的产业最可能是( )A.纺织业B.高端制造业C.食品工业D.旅游业3.根据青岛各市区的人口变化趋势,政府政策应引导( )A.各市区间人口均衡分布B.核心区发展劳动密集型产业C.最核心区疏散核心功能D.外围区流出人口返乡创业天安门广场国旗的升降时间是根据北京日出、日落时间确定的。

早晨,当太阳的上部边缘与天安门广场所见地平线相平行时,为升旗时间。

表1示意2024年天安门广场连续几天升旗和降旗的时间。

据此完成4—6题。

表1升旗时间降旗时间6:11 17:566:12 17:546:13 17:526:14 17:516:15 17:496:16 17:48( )A.地球自转运动B.地球公转速度不同C.黄赤交角存在D.太阳直射点移动5.该次天安门广场连续几天升旗和降旗时,太阳直射点位于( )A.北半球且向北运动B.北半球且向南运动C.南半球且向北运动D.南半球且向南运动6.下列节日中,天安门广场升旗时间最早的是( )A.劳动节B.国庆节C.妇女节D.元旦2024年奥运会网球女单决赛于北京时间8月3日21时30分开始,中国选手顺利夺金。

四川省绵阳市2024-2025学年高二上学期期中考试数学试题含答案

四川省绵阳市2024-2025学年高二上学期期中考试数学试题含答案

绵阳2024年秋季高2023级半期考试数学试题(答案在最后)本测评题分试题卷和答题卷两部份,试题卷共4页,满分150分,时间120分钟.注意事项:1、答题前,请将本人的信息用0.5毫米的黑色墨水签字笔或黑色墨水钢笔填在答题卡的对应位置上;2、选择题的答案,必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑;3、请用0.5毫米的黑色墨水签字笔或黑色墨水钢笔将每个题目的答案答在答题卷上每题对应的位置上,答在试题卷上的无效.作图一律用2B 铅笔或0.5毫米黑色签字笔;第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.直线020233=+-y x 的倾斜角是()A.︒30 B.︒60 C.︒120 D.︒1502.在ABC ∆中,,6),0,2(),0,2(=+-AC AB C B 则顶点A 的轨迹方程()A.)3(15922±≠=+x y xB.)2(14922±≠=+x y x C.15922=+y x D.14922=+y x 3.已知B 为)1,2,1(-A 在坐标平面Oyz 内的射影,则=OB ()A.3B.5C.2D.64.直线1sin cos :-+θθy x l 与圆22:1O x y +=的位置关系为()A .相离B .相交C .相切D .无法确定5.与椭圆13622=+y x 共焦点且过)1,2(P 的双曲线方程为()A .2214x y -=B .2212y x -=C .2212x y -=D .2213x y -=6.在平行六面体1111D C B A ABCD -中,,311MC AC =若,,,1c AA b AD a AB ===则1MD =()A.c b a --31B.c b a 323231--C.c b a 3131-+D.a c b 323131-+7.已知四棱锥P ABCD -的底面为正方形,PA ⊥平面ABCD ,1==PA AB ,点E 是BC 的中2024年11月点,则点E 到直线PD 的距离是()A .45B .25 C.423D .228.在平面直角坐标系Oxy 中,点)1,0(),0,1(),0,4(C B A ,若点P 满足2PA PB =,则22PC PO +的最大值为()A .7B .9C .11D .13二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错项得0分.9.下列关于空间向量的命题中,是真命题的有()A.将空间所有的单位向量平移到一个起点,则它们的终点构成一个球面B.若非零向量c b a ,,,满足,//,//c b b a 则有c a //C.与一个平面法向量共线的非零向量都是该平面的法向量D.设OC OB OA ,,为空间的一组基底,且,2121OC OB OA OD ++=则D C B A ,,,四点共10.若方程11522=-+-m y m x 所表示的曲线为C ,则()A .曲线C 可能是圆B.当2=m 时,表示焦点在x 轴上的椭圆,焦距为2C .若51<<m ,则C 为椭圆D .若C 为椭圆,且焦点在x 轴上,则31<<m 11.过点()()0,R P t t ∈的直线与圆22:(2)3C x y -+=相切,切点分别为B A ,,则()A .当0t =时,3=AB B .存在R t ∈,使得65π=∠APB C .直线AB 经过点)0,21(D .直线PC 与直线AB 的交点在定圆上三、填空题:本大题共3小题,每小题5分,共15分.请将答案填写在答题卷中的横线上.12.双曲线112422=-y x 的左右焦点分别是21,F F ,M 是双曲线左支上一点,且,51=MF 则=2MF .13.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 作x 轴垂线交椭圆于P ,若︒=∠3021PF F ,则该椭圆的离心率是.14.如图所示,在四面体ABCD 中,BCD ∆为等边三角形,2π=∠ADB ,则平面ABD 与平面ACD 夹角的最大值是.四、解答题:本题共5小题,满分77分.解答应写出必要文字说明、证明过程或演算步骤.15.(13分)如图,矩形ABCD 的两条对角线相交于点)5,3(M ,AB 边所在直线的方程为,083=+-y x 点)6,0(N 在AD 边所在直线上.(Ⅰ)求AD 边所在直线的方程;(Ⅱ)求对角线AC 所在直线的方程.16.(15分)已知圆C 与y 轴相切,其圆心在x 轴的正半轴上,且圆C 被直线x y =截得的弦长为22.(Ⅰ)求圆C 的标准方程;(Ⅱ)若过点()0,3P 的直线l 与圆C 相切,求直线l 的方程.第14题图17.(15分)如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,1EG =,平面ABCD ABFE 平面⊥M 、N 分别为DG 、EF 的中点.(Ⅰ)求证://MN 平面CFG ;(Ⅱ)求直线AN 与平面CFG 所成角的正弦值.18.(17分)在平面直角坐标系Oxy 中,椭圆2222:1(0)x y C a b a b+=>>的右焦点为)0,3(F ,短轴长为2.过点F 且不平行于坐标轴的直线l 与椭圆C 交于,A B 两点,线段AB 的中点为M .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)证明:直线OM 的斜率与直线l 的斜率的乘积为定值;(Ⅲ)求AOB ∆面积的最大值.19.(17分)定义:M 是圆C 上一动点,N 是圆C 外一点,记MN 的最大值为m ,MN 的最小值为n ,若2m n =,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“E F -”的“钻石点”.已知圆A :()()221113x y +++=,P 为圆A 的“黄金点”(Ⅰ)求点P 的轨迹方程;(Ⅱ)已知圆B :1)2()2(22=-+-y x ,P ,Q 均为圆“A B -”的“钻石点”.(ⅰ)求直线PQ 的方程;(ⅱ)若圆H 是以线段PQ 为直径的圆,直线31:+=kx y l 与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分IWJ ∠?若存在,求出点W 的坐标;若不存在,请说明理由.绵阳2024年秋季高2023级半期考试数学试题参考答案一、选择题题号1234567891011选项AABCCDCDABCADACD三、填空题12.913.32-14.3π四、解答题15.解:(Ⅰ)法一:因为AB 边所在直线的方程为083=+-y x ,所以31=AB k .又因为矩形ABCD 中,AB AD ⊥,所以3-=AD k ,所以由点斜式可得AD 边所在直线的方程为:)0(36--=-x y ,即063=-+y x ;法二:因为AB AD ⊥,设AD 边所在直线的方程为:03=++m y x 又因为直线AD 过点)6,0(N ,所以将点)6,0(N 代入上式得:6-=m .所以AD 边所在直线的方程为:063=-+y x ;(Ⅱ)由⎩⎨⎧=-+=+-063083y x y x ,得:)3,1(A ,得AC 所在直线的方程:131353--=--x y ,即02=+-y x .16.解:(Ⅰ)由题可设圆C 的方程为)0()(222>=+-a a y a x ,则有2222(2(a a =+,解得)(2舍负=a ;所以圆C 的标准方程为:4)2(22=+-y x ;(Ⅱ)因为43)20(22>+-,所以过P 的切线有两条,当l 斜率存在时,设切线方程为:3+=kx y 即03=+-y kx ,所以有:21322=++k k ,解得:125-=k ;所以l 的方程为:0036125==-+x y x 或。

重庆八中高2024级高二上半期数学试题-含答案

重庆八中高2024级高二上半期数学试题-含答案

重庆八中2022—2023学年度(上)半期考试高二年级数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.倾斜角为120°的直线经过点(和()3,a ,则a =A .0B .CD 2.经过点()5,0A ,且与直线210x y +-=垂直的直线方程为A .250x y +-=B .250x y --=C .210x y --=D .2100x y +-=3.若圆221:1C x y +=与圆222:860C x y x y m +--+=内切,则m =A .25B .9C .9-D .11-4.油纸伞是中国传统工艺品,使用历史已有1000多年。

以手工削制的竹条做伞架,以涂刷天然防水桐油的皮棉纸做伞面。

油纸伞是世界上最早的雨伞,纯手工制成,全部取材于天然,是中国古人智慧的结晶。

在某市开展的油纸伞文化艺术节中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子,此时阳光照射方向与地面的夹角为75 ,若伞柄底端正好位于该椭圆的左焦点位置,则该椭圆的长轴长为AB C .D 5.在正方体1111ABCD A B C D -中,E 为AB 的中点,则直线CE 与1AD 所成的角的余弦值为A B C D 6.已知圆22100x y y +-=,过点(2,2)P 的直线被该圆所截得的弦的长度的最小值为A .B .C .D .7.设12,F F 分别是椭圆22221x y a b +=()0a b >>的左、右焦点,若椭圆上存在点P ,使得22()0,OP OF F P +⋅=,其中O 为坐标原点,且12||||PF PF a =+,则该椭圆的离心率为A B C .12D8.已知双曲线2222:1x y C a b-=,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若3AB AF =,则C 的离心率为A .2B .2C .3D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线:230l ax y a +++=在x 轴和y 轴上的截距相等,则a 的值可能是A .12B .12-C .3D .3-10.已知P 是椭圆2212516x y +=上一点,椭圆的左、右焦点分别为12,F F ,122co 1s F PF ∠=,则下列结论正确的是A .12F PF △的周长为16B .123F PF S =VC .点P 到xD .2183PF PF ⋅=uuu r uuu r 11.已知正三棱柱111ABC A B C -,各棱长均为4,且点E 为棱1CC 上一动点(包含棱的端点),则下列结论正确的是AB .三棱锥1B ABE -C .直线1AB 与直线BE 恒不垂直D .直线BE 与平面11ABB A 所成角的正弦值范围是⎣⎦12.1675年法国天文学家卡西尼在研究土星及其卫星的运行规律时发现了一种特殊的曲线——卡西尼卵形线,卡西尼卵形线是平面内到两定点距离之积为常数的点的轨迹.已知在平面直角坐标系xOy 中,()3,0M -,()3,0N ,动点P 满足12PM PN ⋅=,其轨迹为一条连续的封闭曲线C.则下列结论正确的是A .曲线C 关于y 轴对称B .曲线C 与x 轴交点为()-,()C .PMN △面积的最大值为6D .OP 的取值范围是三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.双曲线22124y x -=的渐近线方程为______________.14.已知双曲线C :22221x y a b-=(0a >,0b >)离心率为5,A 、B 分别为左、右顶点,点P 为双曲线C 在第一象限内的任意一点,点O 为坐标原点,若PA 、PB 的斜率分别为1k 、2k ,则12k k ⋅=_______________.15.在直三棱柱111ABC A B C -中,12,4AB AC BC AA ====,则该直三棱柱的外接球的表面积为_______________.16.已知直线1l :()1kx y k R +=∈与直线2l :340x ky k -+-=相交于点M ,点N 是圆()()22:3109C x y +++=上的动点,则MN 的最大值为______________.四、解答题:本大题共6小题,共70分.把答案填写在答题卡相应位置上,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知P 为椭圆2222:1(0)x y E a b a b+=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135 ,经过()2,1-且与椭圆交于,A B 两点,求弦长AB 的值.18.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,14AA =,,E F 分别为1,AB A C 的中点.(1)证明:11//EF AA D D 平面;(2)求点1C 到平面1ACE 的距离.19.(本小题满分12分)已知圆22:4C x y +=.(1)若圆C 与直线:320l x my m -+-=相切,求m 的值;(2)已知点()1,0M ,过点P 作圆C 的切线,切点为Q ,再过P 作圆22:(1)(1)12C x y '-+-=的切线,切点为R ,若||||PQ PR =,求||MP 的最小值.20.(本小题满分12分)已知12(3,0),(3,0)F F -,点P 满足124PF PF -=,记点P 的轨迹为曲线C .斜率为k 的直线l 过点2F ,且与曲线C 相交于,A B 两点.(1)求曲线C 的方程;(2)求斜率k 的取值范围;(3)在x 轴上是否存在定点M ,使得无论直线l 绕点2F 怎样转动,总有0AM BM k k +=成立?如果存在,求出定点M ;如果不存在,请说明理由.21.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 是平行四边形,2AC CD ==,AD =PD =,3PC =.(1)求证:AD PC⊥(2)求平面PAB 与平面PCD 的夹角的正弦值.22.(本小题满分12分)定义:若点00(,)x y ,00(,)x y ''在椭圆2222:1(0)x y M a b a b +=>>上,并满足0000220x x y y a b''+=,则称这两点是关于M 的一对共轭点,或称点00(,)x y 关于M 的一个共轭点为00(,)x y ''.已知点(2,1)A 在椭圆22:163x y M +=上,O 是坐标原点.(1)求点A 关于M 的所有共轭点的坐标;(2)设点P ,Q 在M 上,且PQ OA∥,求点A 关于M 的所有共轭点和点P ,Q 所围成封闭图形面积的最大值.。

重庆市第一中学校2022-2023学年高二上学期期中数学试题

重庆市第一中学校2022-2023学年高二上学期期中数学试题
A.数列 的通项公式为
B.数列 的最大值为
C. 的面积为
D.四边形 的面积为
12.已知双曲线 的左右焦点分别为 ,且 ,点 是双曲线第一象限内的动点, 的平分线交 轴于点 垂直于 交 于 ,则以下正确的是()
A.当点 到渐近线的距离为 时,该双曲线的离心率为
B.当 时,点 的坐标为
C.当 时,三角形 的面积
(1)证明:平面 平面 ;
(2)求直线 与平面 所成角的正弦值.
20.已知抛物线 的焦点为 到双曲线 的渐近线的距离为1.
(1)求抛物线 的标准方程;
(2)过动点 作抛物线 的切线 (斜率不为0),切点为 ,求线段 的中点 的轨迹方程.
21.已知椭圆 的右顶点为 ,左、右焦点分别为 ,直线 与椭圆 交于 ,当 与 重合时,点 在 轴上的射影为
(1)求椭圆 的标准方程;
(2)当 时,求 的最值.
22.设数列 的前 项和为 .若对任意 ,总存在 ,使得 ,则称 是“ 数列”.
(1)若数列 ,判断 是不是“ 数列”,并说明理由;
(2)设 是等差数列,其首项 ,公差 ,且 是“ 数列”,
①求 值;
②设数列 ,设数列 的前 项和为 ,若 对任意 成立,求实数 的取值范围.
A.若 ,则 B.若 ,则
C.若 相交,则 相交D.若 ,则
10.已知平面上点 ,动点 ,以下叙述正确的是()
A.若 ,则 的轨迹是一条直线
B.若 ,则 的轨迹是双曲线的一支
C.若 ( 为正常数,且 ),则 轨迹一定是圆
D.若 ,则 的轨迹是椭圆
11.单增数列 满足 ,点 ,对于任意 都有 ,则()
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《文化生活》高二政治期中测试题制卷人卢利君第工卷(选择题共50分)一、选择题(在每小题给出的四个选项中。

只有一项最符合题目要求。

每小题2分,共50分)1 中国象形文字源远流长,是世界上唯一从古至今仍在流行,通用并充满生机和活力的古老文字。

这启示我们()A文化是自然产生的 B 中华文化具有强大的生命力C 文化具有意识形态的性质D 文化就是语言文字2 近几年,世界各地出现的“汉语热”折射出中国经济持续增长的巨大潜力。

这个观点肯定了()A经济发展是文化发展的基础 B 文化与政治相互交融C 文化是一种精神力量D 文化教育对经济具有重大影响3 中国,俄罗斯和意大利三国都十分重视中俄文化年,中意文化年的举办。

这说明()A文化是经济和政治的体现 B 文化越来越成为综合国力竞争的重要因素C 文化是人类社会特有的现象D 经济发展是文化发展的前提和基础4 2010年8月2日,第34届世界遗产大会批准了“登封天地之中”历史建筑群和中国丹霞为世界遗产,这既能促进中国传统文化和自然景观的保护,开发和利用,丰富人们的文化消费,也能大大促进当地旅游经济的发展。

由此可见()A文化对经济发展具有重要影响 B 文化与经济同步发展C 文化对经济发展具有推动作用D 文化与经济相互决定5 美国《时代周刊》评选出影响人类社会文明发展进程的100件事中,长征是其中之一。

《人民日报》社论指出:伟大的长征精神是永远值得珍惜的精神财富,我们要弘扬长征精神。

国外媒体关注长征精神,是因为()A优秀文化是引领人们前进的旗帜 B 优秀文化是开拓进取的思想观念C 优秀文化能够增强人们的精神力量D 优秀文化能够推动社会全面发展6 2010年11月10日,英国新任首相卡梅伦在访华期间,第一次登上长城,卡梅伦一行备长城的宏伟和壮观所震撼,无不为中国古代劳动人民的聪明才智所折服,留下了这样的感叹:“长城太了不起了!精彩之旅永难忘!”这说明()A文化对人的影响具有潜移默化的特点B文化对人的影响是有形的,强制的,积极地C 文化对人的影响是消极被动,无目的接受的D文化对人的影响是深远持久的7 对于韩国人来说,泡菜已超越小菜成为韩国文化的一部分。

许多离家在外的韩国人认为回家陪妈妈腌泡菜是一种孝道,有人甚至从腌泡菜中悟出“幸福婚姻之道”。

这反映了()①文化是人类社会实践的产物,为人类特有②一定的精神文化活动有相应的物质载体③文化对人的影响来自于特定的文化环境④文化影响人们的行为方式与交往方式A①② B②③ C①④ D②④8 文化对人的影响具有潜移默化的特点。

下列诗词的寓意体现这一特点的是()A 忽如一夜春风来,千树万树梨花开B 少小离家老大回,乡音无改鬓毛衰C 随风潜入夜,润物细无声D 度尽劫波兄弟在,相逢一笑泯恩仇9 2010年中国国际孔子文化节期间,第五届“孔子教育奖”在曲阜孔子文化会展中心南广场举行了颁奖仪式,以奖励在国际社会中为传播中华文化做出巨大贡献的教育人士。

设立教育奖,是因为教育是()①文化传播的主要手段②文化交流和传播的重要途径③文化发展的重要因素④文化传承的载体A①②③B②③④C①③④D①②④10 下列关于文化继承,文化发展和文化创新三者的关系的理解,正确的是()A文化自身的继承和发展,是一个新陈代谢,不断创新的过程B文化在交流中传播,在继承的基础上发展C社会实践是文化创新的源泉和动力 D 文化发展的实质就在于文化创新11 我国城市建设中“南方北方一个样,大城小城一个样,城里城外一个样”,这种“千城一面”现象()A.体现了当代世界建筑文化的发展趋势B.是批判继承中国传统建筑文化的结果C.不符合人们对城市建筑文化多样化的需求D.符合城市建设统一规划的需要12 温家宝总理在谈到两岸关系说,不要因为50年的政治而丢掉5000年的文化。

对此应理解为()A.文化对人们具有深远持久的影响B.文化可以超越、脱离政治C.文化是对经济、政治的反映D.文化是永恒的,政治是短暂的13 2011年各地将热烈纪念辛亥革命100周年。

“伴随着辛亥革命推翻了封建的清王朝,中国文化也开始了一次大规模的革命。

”这句话告诉我们()A 社会实践决定文化创新B 文化创新推动社会实践的发展C 文化创新促进民族文化的繁荣D 文化创新与社会实践在时间上具有一致性14 祖国几千年的传统文化,如果我们不开发,不使其形成具有特色的产业,随着我国融入国际社会的发展,就会被别的国家开发利用,反过来向我国出口。

前几年,美国根据花木兰的故事制作的动画片在全国热播就说明了这一点。

这段材料给我们的启示是( )A.大力发展对外文化贸易,积极引进具有市场竞争力的文化产品B.树立品牌意识,加大对民族文化的保护力度C.充分开发我国文化资源,提升民族文化的竞争力和国际影响力D.拒绝外来文化,维护国家的文化安全“同一个世界,同一个梦想”。

2008年8月8日~24日,北京成功举办第二十九届夏季奥运会。

16天的奥运会成为全世界人民的共同的盛大节日。

据此回答15_16题。

15 北京奥运会得到我国人民的大力支持,也得到世界人民的积极响应。

奥运会开、闭幕式中对中国五千年文化的诠释以及中国人民热情与真诚的笑脸征服了世界。

这表明( )①奥运会既是体育盛会,同时也是文化盛会②文化不仅属于本民族,而且属于全世界③北京奥运会可以向世界展现中华文化的魅力④奥运会可以成为文化传播的途径A.①②③B.①②④C.①②③④D.①③④16 北京奥运会通过各种方式展现世界不同民族、不同地域文化的独特魅力,体现奥林匹克文化的包容精神。

这是因为( )①尊重文化差异是繁荣世界文化的前提②文化融合是文化发展的必然趋势③各国都遵循各种文化一律平等的原则④文化交流有利于维护世界文化的多样性A.①② B.②③ C.①④ D.③④17 一位美国游客看到财神赵公明一手举钢鞭、一手托金元宝的塑像,感叹道:“抢夺资源还受到如此尊重,这种思维与美利坚没有什么区别。

”这表明( )①中国人与美国人的思维方式基本相同②部分美国人对中国文化存在误读③中国人与美国人的思维方式完全不同④文化背景差异影响人的认识活动A.①② B.①④ C.②③ D.②④18 近年来,我国在许多国家成功举办的“中国文化周”、“中国文化月”、“中国文化年”活动受到普遍欢迎。

当你看到反映我国文化走向世界的成就展后要写一篇读后感,需要确定一组符合我国对外文化交流的政策或主张的关键词。

你认为下列各组中最准确的一组是 ( ) A.相互借鉴求同存异提升文化实力 B.尊重差异平等协商认同外来文化C.加强交流文化共享汲取各国文化 D.理解个性积极创新舍弃传统文化19 京剧是我国戏剧之大成,是源远流长的戏剧“国粹”。

教育部决定在北京等10个省区市试点,在中小学音乐课程中增加京剧教学内容。

将京剧纳入中小学音乐课程的意义在于( ) ①有利于中华民族优秀传统文化的保护和传承②有利于促进学生的全面发展③有利于消除流行文化对校园的冲击④有利于弘扬和培养民族精神A.①②③B.②③④C.①②④ D.①③④20 “要想剪除旷野的杂草,方式只有一种,那就是在上面种庄稼。

想让灵魂无纷扰,唯一的方法就是用美德去占据它。

”这启示我们( )A.文化对社会实践的发展起促进作用 B.文化对人的影响具有潜移默化的特点C.美德是人们文化素养的核心和标志 D.应该主动、自觉地接受健康向上的文化影响21 中国的舞龙、西班牙的斗牛、巴西的桑巴舞等表明文化的表现形式具有( )①民族性②多样性③交融性④独特性A.①②③B.②③④C.①②④D.①③④22 自2008年1月1日起施行的《国务院关于修改全国年节及纪念日放假办法的决定》,将除夕、清明、端午和中秋四个民族传统节日纳入国家法定节假日。

国家之所以重视民族节日,主要是因为( )①有利于增强民族认同感和爱国热情②可以进一步推动“黄金周”旅游业的发展③庆祝民族节日是民族文化的集中展示,是民族情感的集中表达④民族节日是一个国家和民族历史文化成就的重要标志A.①④ B.③④ C.①③ D.②③23 2008年6月7日,国务院公布了第二批国家级非物质文化遗产名录,八达岭长城、杨家将、牛郎织女等传说榜上有名。

国家如此重视非物质文化遗产,说明( )①非物质文化遗产是传统文化的重要组成部分②重视非物质文化遗产只是为了经济利益③非物质文化遗产有利于增强民族凝聚力④非物质文化遗产能满足人们的物质需求A. ①③B.②③C. ①②D. ①④24 在经济全球化的形势下,英语在亚洲各国日渐流行。

与此同时,亚洲各国纷纷开设使用本民族语言的国际广播频道。

这表明( )A.亚洲文化与世界文化日渐融合B.亚洲各国注重推动民族文化走向世界C.文化发展与经济发展亦步亦趋D.亚洲各国用本民族语言消解英语的影响25 文化的影响不仅取决于内容是否具有独特魅力,而且取决于是否具有先进的传播手段和强大的传播能力。

现代大众传媒在文化传播中的功能是( )①创造文化②文化传递③文化沟通④文化共享A.①②③B. ①②④C. ①③④D. ②③④第II卷(非选择题,共50分)二、非选择题(共50分)26阅读材料,回答下列问题。

2011年初,随着“中国国家形象片”——《人物篇》和《角度篇》在一些国家的热播,“中国形象”成为媒体热议的话题。

话题一文化是国家形象的灵魂文化在中国国家形象的塑造和推广中发挥这重要作用,如蕴含着团圆、和谐理念的中国春节,日益成为中外文化交流的平台,也带来了新的商机;孔子学院的发展使越来越多的外国人了解中国;“杂交水稻之父”袁隆平的科技创新成就赢得了世界赞誉----中华文化的发展和传播扩大了中国的影响力,提升了国家形象,增强了炎黄子孙的民族自豪感。

(1)运用文化作用的知识,谈谈你对上述材料的理解。

(12分)27 “十年企业靠经营,百年企业靠文化。

”优秀企业文化承载着企业全体员工的价值标准和行为取向,能够增强员工对企业的认同感和归属感,产生巨大的感召力和凝聚力;能够激发员工工作热情,促进员工素质提高。

企业文化在构建和谐稳定的劳动关系、促进企业发展中扮演着不可或缺的角色。

请从文化对人影响的角度,说明重视企业文化建设的必要性。

(9分)28 2008年9月27日—29日,第一届世界儒学大会在曲阜隆重举行。

来自中国、韩国、新加坡、美国等22个国家和地区参加了大会。

该次大会既是儒学研究的盛会,也是文化交流的平台。

其宗旨是在世界范围内组织、举办儒学研究活动,推动各国、各地区儒学研究的深入发展,传承、弘扬中国优秀传统文化,促进人类不同文明之间的对话与交流,增强各国各民族人民之间的相互理解和信任。

有人认为,文化唯有交流才能创新。

请谈谈你对这一观点的看法。

(12分)29.看漫画,运用《文化生活》的知识,回答下列问题。

2008年7月6日,联合国教科文组织第32届世界遗产大会在加拿大魁北克城召开,随着福建土楼、江西三清山的申遗成功,中国世界遗产数量已达37处。

相关文档
最新文档