常见立体图形表面积习题

合集下载

小升初重点专题立体图形的表面积和体积(易错专项)-小学数学六年级下册

小升初重点专题立体图形的表面积和体积(易错专项)-小学数学六年级下册

小升初重点专题:立体图形的表面积和体积(专项训练)-小学数学六年级下册苏教版一、单选题1.做一节圆柱形烟囱,至少需要多少铁皮,是求圆柱的()。

A.侧面积B.表面积C.体积D.底面积2.一个圆锥的底面半径与高的比是1:4,它与同底等高的一个圆柱体的体积之比是()A.1:4B.3:4C.1:3D.1:83.圆柱的底面直径扩大到原来的3倍,高不变,它的体积扩大到原来的()倍。

A.3B.6C.9D.274.把一个棱长是20cm的正方体木块削成一个最大的圆柱,这个圆柱的体积是()cm3 A.6280B.628C.62.8D.31405.一个棱长4米的正方体鱼池,占地()平方米。

A.8B.16C.64D.966.将棱长为6厘米的一块正方体彩泥捏成一个底面积是48cm2的长方体,那么这个长方体彩泥的厚度是()厘米。

A.2B.3C.4.5D.5二、判断题7.圆锥的顶点到底面上任意一点的距离都是它的高。

()8.在不计算损耗的情况下,把一个长方体铁块熔铸成一个正方体,形状变了,所以所占空间的大小也变了。

()9.一个棱长6厘米的正方体,体积和表面积相等。

()10.一根长方体木料长2.8米,宽4分米,高4分米,如图所示把它锯成3段,表面积增加4×4×2=32平方分米。

()11.一个圆柱与一个圆锥等底等高,他们的体积和是36立方米,那么圆锥的体积是9立方米。

()三、填空题12.一个圆柱的底面半径是3分米,高是6分米,它的表面积是,体积是。

13.一个圆锥的体积是50.24立方米,底面半径是2米,它的高是米。

14.把一个体积是24立方米的圆柱削成一个最大的圆锥,削成的圆锥体积是。

15.用一根长60厘米的铁丝围成一个正方体形状的小铁筐,在外面贴上手工纸,需要平方厘米的手工纸。

16.一个正方体的棱长是6厘米,把它截成3个大小相等的长方体,表面积比原来增加平方厘米。

17.下图所示是一个长方体的平面展开图,这个长方体的长是15厘米,宽是12厘米,高是厘米。

2022-2023学年小学六年级奥数典型题测评卷15《立体图形的表面积》(解析版)

2022-2023学年小学六年级奥数典型题测评卷15《立体图形的表面积》(解析版)

【六年级奥数举一反三—全国通用】测评卷15《立体图形的表面积》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)如图,一个长8厘米、宽6厘米、高10厘米的长方体木块中,挖去一个棱长为3厘米的正方形的孔,木块现在的表面积是()平方厘米.A.367 B.376 C.412 D.430【分析】由题意可知:挖去一个棱长为3厘米的正方形的孔,木块的表面积减少了1个小3×3的面,增加了5个3×3的面,实际相当于只增加了4个面;所以木块现在的表面积为原来长方体的表面积再加上中间的正方体的4个面的面积即可.【解答】解:(8×6+8×10+10×6)+3×3×4=376+36=412(平方厘米)答:木块现在的表面积是412平方厘米.故选:C.2.(2007•创新杯)把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形,如图将图中标有字母A的一个小正方体搬去,这时外表含有的小正方形个数与搬动前相比()A.不增不减B.减少1个C.减少2个D.减少3个【分析】根据图形,搬动前小正方体A外表含有3个小正方形,搬动后A所在的位置有3个小正方形作为外表露出解答.【解答】解:由图可知,搬动前小正方体A外表含有3个小正方形,搬动后A所在的位置有3个小正方形作为外表露出,所以小正方形的个数与搬动前相比不增不减.故选:A.3.正方体的棱长扩大2倍,它的表面积就()A.扩大2倍B.扩大4倍C.扩大6倍【分析】正方体的表面积=棱长×棱长×6;由此利用积的变化规律:一个因数不变,另一个因数扩大几倍积就扩大几倍,即可解决问题.【解答】解:正方体的表面积=棱长×棱长×6;正方体的棱长扩大2倍,根据积的变化规律可得:表面积扩大了2×2=4倍;故选:B.4.(2012•其他杯赛)一个长方体,它的高和宽相等,若把长去掉2.5厘米,就成为表面积是150平方厘米的正方体,长方体的长是宽的()倍.A.1.5 B.2 C.2.5 D.3【分析】已知长方体的宽和高相等,把长去掉2.5cm,就成为表面积150平方厘米的正方体,根据正方体的表面积公式:S=6a2,据此可以求出正方体的一个面的面积,进而求出正方体的棱长(长方体的宽和高),用正方体的棱长加上2.5厘米就是长方体的长,然后根据求一个数是另一个数的几倍用除法解答.【解答】解:正方体的一个的面积是:150÷6=25(平方厘米),正方体的棱长是:因为5的平方是25,所以正方体的棱长是5厘米,长方体的长是:5+2.5=7.5(厘米),长是宽的:7.5÷5=1.5倍;故选:A.5.把三个棱长为1厘米的正方体拼成一个长方体,这个长方体的表面积比原来三个正方体的表面积的和减少()A.2平方厘米B.3平方厘米C.4平方厘米【分析】3个小正方体拼成一个长方体只有一种拼组方法:一字排列法,拼组后长方体的表面积比原来减少了4个小正方体的面的面积,据此即可解答.【解答】解:1×1×4=4(平方厘米)故选:C.6.正方体的棱长扩大2倍,表面积就扩大()倍.A.2 B.4 C.6 D.8【分析】设正方体的棱长为a,则扩大后的棱长为2a,利用正方体的表面积公式求出扩大前后的表面积,即可求得表面积扩大的倍数.根据正方体表面积扩大的倍数是棱长扩大倍数的平方求解即可.【解答】解:设正方体的棱长为a,则扩大后的棱长为2a,原正方体的表面积:a×a×6=6a2,现在的正方体的表面积:2a×2a×6=24a2,表面积扩大24a2÷6a2=4倍;故选:B.7.(2011•华罗庚金杯模拟)如图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长1厘米的正方体,做成一种玩具,它的表面积是x平方厘米,那么x等于()A.114 B.120 C.126 D.132【分析】这个玩具的表面积是大正方体的面积,加上6个边长为1厘米的小正方体的4个侧面的面积,据此解答即可.【解答】解:玩具的表面积:4×4×6+1×1×6×4=96+24=120(平方厘米).答:它的表面积是120平方厘米.故选:B.二.填空题(共11小题,满分33分,每小题3分)8.(2016•其他杯赛)如图是棱长10厘米的两个正方体果盒,用一张长4分米,宽3分米的长方形彩色纸包装(接头处忽略不计).这张彩色纸够吗?够.【分析】两个正方体拼成了一个长方体,表面积总和减少了两个正方形的面,即还剩下6×2﹣2=10个正方形的面,即需要包装的面,然后根据正方形和长方形的面积公式进一步解答即可.【解答】解:6×2﹣2=10(个)10厘米=1分米1×1×10=10(平方分米)4×3=12(平方分米)12>10所以,这张彩色纸够了.故答案为:够.9.(2016•学而思杯)如图,将一个棱长为4cm的正方体从中间切开,再拼成一个长方体,那么,表面积增加了16cm2.【分析】把正方体切成完全一样的两块长方体后,它的表面积比原来增加了2个正方体的面的面积;再拼成一个长方体,那么,表面积又减少了1个正方体的面的面积;综合上述,实际相当于只增加了1个正方体的面的面积;由此即可解答问题.【解答】解:根据分析可得,表面积增加了1个正方体的面的面积:4×4=16(平方厘米)答:表面积增加了16平方厘米.故答案为:16.10.(2015•小机灵杯)把一个正方体切成27个相等的小正方体.这些小正方体的表面积之和比大正方体的表面积大432平方厘米.那么,大正方体的体积是216立方厘米.【分析】能把一个正方体切成27个相等的小正方体,说明在上下、左右和前后各切2次,共切6次;每切一次就多出2个大正方形1个面的面积,共多出12个大正方形的一个面的面积.由432÷12=36平方厘米,得其边长是6厘米.再运用正方体的体积公式,即可求出此题.【解答】解:432÷12=36(平方厘米)正方体的边长:=6(厘米)6×6×6=216(立方厘米)故:答正方体的体积是216立方厘米.11.(2018•学而思杯)一个长为4厘米,宽和高均为2厘米的长方体,从中间切一刀分成两个完全相同的小正方体,那么这两个小正方体的表面积之和与原来的长方体表面积相比增加了8平方厘米.【分析】由题意,锯成的正方体的棱长是2厘米,会增加两个面,每个面的面积是2×2平方厘米,所以再乘以2就是增加的面积.【解答】解:2×2×2=8(平方厘米)故答案为:8.12.(2016•其他杯赛)如图,把一根长方体木料,锯成大小不等的三个小长方体,则表面积比原来增加160平方厘米.【分析】由题意可知:把该长方体木料沿虚线平均截成3段后,表面积比原来增加了4个长为8厘米、宽为5厘米的长方形的面积,由此解答即可.【解答】解:8×5×4=160(平方厘米)故答案为:160.13.(2016•迎春杯)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是88平方厘米.【分析】可以设小长方体的长为a,宽为b,高为c,根据表面积公式,可以列出关系式,2×(b+c)×(b+b+b)+2×(b+c)×a+2×a×(b+b+b)=360,又3b=2a,a=3c,即可求出a、b、c的值进而可以求得小正方体的表面积.【解答】解:根据分析,设小长方体的长为a,宽为b,高为c,如下图所示,则有:3b=2a,a=3c故大长方体的表面积=2×(b+c)×(b+b+b)+2×(b+c)×a+2×a×(b+b+b)=360⇒3b2+3bc+4ab+ac =180又3b=2a,a=3c,可解得:a=6,b=4,c=2,则一个小长方体的表面积是:2×6×4+2×6×2+2×4×2=88平方厘米.故答案是:88平方厘米.14.(2015•创新杯)如图,在一个棱长40厘米的正方体的上、下两个底面的正中间,各有一个直径为6厘米的圆孔,孔深15厘米,则这个几何体的表面积是10165.2平方厘米,体积是63152.5立方厘米.(π取3.14)【分析】表面积比原来正方体的表面积多了两个圆柱的侧面积,体积比原来的正方体少了两个圆柱的体积.【解答】解:正方体的表面积40×40×6=9600(平方厘米)一个圆柱的侧面积6×3.14×15=282.6(平方厘米)这个几何体的表面积9600+282.6×2=10165.2(平方厘米)正方体的体积40×40×40=64000(立方厘米)圆柱的半径6÷2=3(厘米)两个圆柱的体积3.14×3×3×15×2=847.8(立方厘米)几何体的体积64000﹣847.9=63152.2(立方厘米)故填10165.2和63152.515.(2016•其他杯赛)将表面积分别为150平方分米、54平方分米、96平方分米的三个正方体铁块熔铸成一个大正方体铁块,这个大正方体铁块的表面积是216平方分米.【分析】根据正方体的特征,它的12条棱的长度都相等,6个面的面积都相等;正方体的表面积=棱长×棱长×6,正方体的体积=棱长×棱长×棱长;已知三个正方体的表面积分别是54平方分米、96平方分米、150平方分米,先分别求出三个正方体的棱长,把它们熔铸成一个大的正方体铁块,体积不变,由此再求三个正方体的体积之和即可.【解答】解:54÷6=9(平方分米),因为:3×3=9,所以:棱长是3分米;96÷6=16(平方分米),因为:4×4=16,所以:棱长是4分米;150÷6=25(平方分米),因为:5×5=25,所以:棱长是5分米;3×3×3+4×4×4+5×5×5=27+64+125=216(立方分米);因为:6×6×6=216,所以:大正方体的棱长是6分米;6×6×6=216(平方分米);故答案为:216.16.(2016•陈省身杯)如图,用6个完全相同的小正方体组成了一个长方体,如果每个小正方体的表面积均为48平方厘米,那么整个长方体的表面积为208平方厘米.【分析】每个小正方体的表面积均为48平方厘米,则每个面的面积是48÷6=8平方厘米;用6个完全相同的小正方体组成了一个长方体,减少了2×5=10面,所以还剩下6×6﹣10=26个面,然后再乘每个面的面积即可.【解答】解:48÷6=8(平方厘米)8×(6×6﹣5×2)=8×26=208(平方厘米)答:整个长方体的表面积为208平方厘米.故答案为:208.17.(2012•其他杯赛)一块正方体木块棱长为8厘米,从上面向下挖一个棱长为2厘米的小正方体(如图)后,余下部分的表面积是400平方厘米.【分析】根据题意,并结合正方体的切割特点可知:挖去一个棱长为2厘米的小正方体后,增加了4个侧面的面积,然后根据正方体的表面积=棱长×棱长×6,求出正方体的表面积,然后加上4个边长为2厘米的正方形的面积即可.【解答】解:8×8×6+2×2×4=384+16=400(平方厘米)故答案为:400.18.(2014•希望杯)如图,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是90.【分析】求这个几何体的表面积,就要数出这个图形中小正方体露在外面的面数,从前、后、左、右、上、下方向上来数面的个数,然后用一个面的面积乘面的个数即可.【解答】解:从前、后、左、右、上、下方向,看到的面的个数分别为:14、14、16、16、15、15.表面积是:1×1×(14+14+16+16+15+15)=1×90=90.答:这个几何体的表面积(含底面积)是90.故答案为:90.三.解答题(共10小题,满分46分)19.(4分)从一个棱长为4厘米的正方形的每个面的中心位置分别挖去一个底面半径为1厘米、高为1.5厘米的圆柱.求挖去后的图形的表面积是多少平方厘米?【分析】每挖去一个圆柱,表面积就增加一个圆柱的侧面积,由题意可知,挖的四个圆柱没有接触.【解答】解:4×4×6+3.14×1×2×1.5×4=96+37.68=133.68(平方厘米)答:挖去后的图形的表面积是133.68平方厘米.20.(4分)从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?【分析】图1剩下部分的表面积比原来正方体的表面积减少了两个边长是2厘米的小正方形的面积;图2剩下部分的表面积比原来正方体的表面积增加了两个长是10厘米,宽是2厘米的长方形面积,同时又减少了两个边长是2厘米的小正方形的面积;图3剩下部分的表面积比原来正方体的表面积增加了四个长是10厘米,宽是2厘米的长方形的面积,再减去两个边长是2厘米的小正方形的面积,据此解答即可.【解答】解:图1:10×10×6﹣2×2×2=592(平方厘米)图2:10×10×6+10×2×2﹣2×2×2=632(平方厘米)图3:10×10×6+10×2×4﹣2×2×2=672(平方厘米)21.(4分)用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?【分析】这个图形的表面积等于露在外面的面的面积,只要求出分别从正面、侧面、上面看到的面的个数,据此解答即可.【解答】解:从正面可以看到:2+2+3=7(个)从左面可以看到:2+2+3=7(个)从上面可以看到:3+3+3=9(个)所以这个图形的表面积是:(7+7+9)×2×1×1=46(平方厘米)答:这个图形的表面积是46平方厘米.22.(4分)(2016•华罗庚金杯)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?【分析】这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题.【解答】解:图中几何体露出的面有:10×4+16×2=72(个)所以这个几何体的表面积是:1×1×72=72(平方米)答:这个立体图形的表面积等于72平方米.23.(5分)有一个长方体的铁块,这个铁块正好可以锯成三个正方体的铁块,表面积会增加20平方厘米,那么,这个长方体铁块原来的表面积是多少?【分析】把一个长方体木块正好横锯成三个大小相等的小正方体,切了2次,增加了4个小正方形的面积,增加了20cm2,用“20÷4”求出一个小正方形的面积,可以把原来的长方体的表面积理解为是14个小正方形面的面积之和,进而求出14个小正方形的面积之和即可.【解答】解:(20÷4)×(6×3﹣4)=5×14=70(平方厘米)答:原来长方体的表面积是70平方厘米.24.(5分)一个长方体,如果长减少2cm,则体积减少80cm3;如果宽增加3cm,则体积增加150cm3;如果高增加4cm,则体积增加320cm3.原来这个长方体的表面积是多少?【分析】根据题意,长方体的体积=长×宽×高,一个长方体,如果长减少2cm,则体积减少80cm3,则宽×高即左右侧面的面积是80÷2=40cm2,如果宽增加3cm,则体积增加150cm3,则长×高即前后面的面积是150÷3=50cm2,如果高增加4cm,则体积增加320cm3,则长×宽即上下侧面的面积是320÷4=80cm2,所以根据长方体的表面积=(长×宽+宽×高+长×高)×2,据此回答.【解答】解:宽×高:80÷2=40(cm2)长×高:150÷3=50(cm2)长×宽:320÷4=80(cm2)表面积:(40+50+80)×2=340(cm2)答:这个长方体的表面积是340cm2.25.(5分)(2012•奥林匹克)如图所示,有一个长方体,先后沿不同方向切了三刀.切完第一刀后得到的两个小长方体的表面积之和是472平方厘米,切完第二刀后得到的四个小长方体的表面积之和是632平方厘米,切完第三刀后得到的八个小长方体的表面积之和是752平方厘米.那么在原来长方体的6个面中,面积最小的面是多少平方厘米?【分析】切完三刀之后,表面积之和是原来大长方体表面积的2倍,所以原来的大长方体的表面积是:752÷2=376,切完第一刀,增加的两个面的面积是472﹣376=96平方厘米,一个面的面积是96÷2=48平方厘米;切完第二刀,又增加的两个面的面积是632﹣472=160,一个面的面积是160÷2=80平方厘米;切完第三刀,又增加两个面的面积是752﹣632=120平方厘米,一个面的面积是120÷2=60平方厘米,然后比较即可.【解答】解:752÷2=376(平方厘米)(472﹣376)÷2=48(平方厘米)(632﹣472)÷2=80(平方厘米)(752﹣632)÷2=60(平方厘米)48<60<80答:在原来长方体的6个面中,面积最小的面是48平方厘米.26.(5分)(2012•奥林匹克)欧欧收到一个长方体礼物盒,如果礼物盒的长增加4厘米,则体积增加80立方厘米;如果宽增加6厘米,则体积增加180立方厘米;如果高增加8厘米,则体积增加192立方厘米.请问:这个长方体的表面积是多少平方厘米?【分析】根据题意,用增加的体积除以增加的长、宽、高可得对应的三种面的面积,然后再用三个面积和乘2就是表面积.【解答】解:80÷4=20(平方厘米)180÷6=30(平方厘米)192÷8=24(平方厘米)(20+30+24)×2=74×2=148(平方厘米)答:这个长方体的表面积是148平方厘米.27.(5分)(2016•希望杯)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【分析】(1)先找到小正方体个数的规律,不难求出图⑥的正方体的个数;(2)先推测出图⑩所示的立体图形的小正方体的个数,再求表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.28.(5分)将一个表面积为30cm2的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,求大长方体的表面积.【分析】正方体的每个面面积为30÷6=5平方厘米,切开后增加了两个面,又拼成一个长方体后正好减少了一个面,所以最后相当于增加了一个面,表面积为30+5=35平方厘米.【解答】解:30÷6=5(平方厘米)30+5=35(平方厘米)答:这个大长方体的表面积是35平方厘米.。

数学题目立体几何的表面积与体积练习题

数学题目立体几何的表面积与体积练习题

数学题目立体几何的表面积与体积练习题数学题目:立体几何的表面积与体积练习题1. 题目一:计算一个半径为3厘米的球体的表面积和体积。

解答:首先计算球的表面积。

球的表面积公式为S=4πR²,其中R 为球的半径。

代入半径为3厘米,得到表面积S=4π×3²=36π cm²。

接下来计算球的体积。

球的体积公式为V=4/3πR³,代入半径为3厘米,得到体积V=4/3π×3³=36π cm³。

2. 题目二:一个长方体的长、宽和高分别为5厘米、4厘米和6厘米。

求该长方体的表面积和体积。

解答:长方体的表面积公式为S=2(长×宽+长×高+宽×高),代入长为5厘米、宽为4厘米和高为6厘米,得到表面积S=2(5×4+5×6+4×6)=2(20+30+24)=148 cm²。

长方体的体积公式为V=长×宽×高,代入长为5厘米、宽为4厘米和高为6厘米,得到体积V=5×4×6=120 cm³。

3. 题目三:一个圆锥的底面圆半径为2.5厘米,高为7厘米。

求该圆锥的表面积和体积(保留π)。

解答:首先计算圆锥的母线,母线公式为l=√(r²+h²),其中r为底面圆半径,h为圆锥的高。

代入半径为2.5厘米和高为7厘米,得到母线l=√(2.5²+7²)≈7.416 cm。

圆锥的表面积公式为S=πr(r+l),代入底面圆半径为2.5厘米和母线长为7.416厘米,得到表面积S=π×2.5(2.5+7.416)≈82.512 cm²。

圆锥的体积公式为V=1/3πr²h,代入底面圆半径为2.5厘米和高为7厘米,得到体积V=1/3π×2.5²×7≈36.750 cm³。

小学立体图形专题练习及答案

小学立体图形专题练习及答案

立体图形表面积体积计算和答案一、填空题1.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .(3.14×42)×4=200.96(立方分米).2.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).3.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .ππππ816828,316424312⨯=⨯⎪⎭⎫⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .4.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要块正方体木块.884至多要20块(左下图),至少需要6块(右下图).5.一个圆柱形玻璃杯中盛有水,水面高2.5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高 厘米.水的体积为72×2.5=180(cm 2),放入铁块后可以将水看作是底面积为72-6×6=36(cm 2)的柱体,所以它的高为180÷36=5(cm)二、解答题1.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有: x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.(图(图2121221 21 1 1 1 1 1 1 1 12112.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨1小时.有下列(A)-(E)不同的容器(图2),雨水下满各需多少时间? (注: 面是朝上的敞口部分.)在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需3小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;13122(((((雨容器(E):容积:接水面积=20×S:S=20:1(S 为底面积),接水时间为2小时.3、如图是一个立体图形的侧面展开图,求它的全面积和体积.这个立体图形是一个圆柱的四分之一(如图),圆柱的底面半径为10厘米,高为8厘米.它的全面积为:810281014.32411014.34122⨯⨯+⨯⨯⨯⨯+⨯⨯⨯6.4421606.125157=++=(平方厘米).它的体积为:62881014.3412=⨯⨯⨯(立方厘米).18 8c m10cm。

正方体表面积专项练习

正方体表面积专项练习

正方体表面积专项练习正方体是一种具有六个相等正方形面的立体图形。

要计算正方体的表面积,我们可以使用公式:表面积 = 6 × (边长)²。

为了帮助您练计算正方体的表面积,以下是一些专项练题:1. 问题:一个正方体的边长为5厘米。

请计算该正方体的表面积。

解答:根据公式,表面积 = 6 × (5厘米)² = 6 × 25厘米² = 150厘米²。

2. 问题:一个正方体的表面积为96平方米。

请计算该正方体的边长。

解答:设正方体的边长为x,根据公式,表面积 = 6 × x²。

将表面积96平方米代入公式得到96 = 6 × x²,解方程得到x² = 16。

因为边长不能为负数,所以x = 4。

因此,该正方体的边长为4米。

3. 问题:一个正方体的表面积是另一个正方体表面积的3倍,且两个正方体的边长之差为2。

请计算较小正方体的边长。

解答:设较小正方体的边长为x,那么较大正方体的边长为x+ 2。

根据题意,较大正方体的表面积为3倍的较小正方体的表面积,即6 × (x + 2)² = 3 × 6 × x²。

化简方程得到(x + 2)² = 3x²。

展开方程并移项得到x² + 4x + 4 = 3x²。

将方程化简为2x² - 4x - 4 = 0。

解这个二次方程得到x ≈ -0.732 和x ≈ 3.732。

因为边长不能为负数,所以较小正方体的边长约为3.732。

希望以上练习题能帮助您更好地理解和计算正方体的表面积。

继续练习和思考类似的问题,您会在计算几何方面取得更好的进步。

北师大版六年级数学下册期末《立体图形的表面积,体积,容积的综合应用》专项试卷附答案

北师大版六年级数学下册期末《立体图形的表面积,体积,容积的综合应用》专项试卷附答案

北师大版六年级数学下册方法技能分类评价10.立体图形的表面积,体积,容积的综合应用一、认真审题,填一填。

(每小题4分,共20分)1.一个棱长是4分米的正方体容器(厚度忽略不计)装满水后,倒入一个底面积是12平方分米的圆锥体容器(厚度忽略不计)里正好装满,这个圆锥体的高是()分米。

2.一块长方形铁皮,长62.8厘米,宽31.4厘米。

如果用它围成一根圆柱形的管子,这根管子的半径是()厘米或()厘米。

3.如图,把一根圆柱形木料截成3段,圆柱的表面积增加了45.12平方厘米,这根木料的底面积是()平方厘米。

4.一个圆柱的底面直径与圆锥底面直径的1相等,圆锥的高是圆柱2的3倍,圆锥的体积是12 dm3,圆柱的体积是()dm3。

5.用3个棱长都是2厘米的正方体拼成一个长方体,拼成的这个长方体的表面积是()平方厘米,体积是()立方厘米。

二、仔细推敲,选一选。

(每小题5分,共20分)1.下图是由几个棱长是1 cm的正方体搭成的,将这个立体图形的表面涂上红色(底面不涂),只有三面涂上红色的正方体有多少个?有五面涂上红色的正方体有多少个?()A. 63B. 54C. 31D. 622.下面图()是圆柱的展开图。

3.下面的四个正方体,()是用右边的纸折叠而成的。

A B C D4.一个直角三角形,两条直角边的长度分别是4 cm和3 cm,分别绕这两条直角边所在直线旋转一周,都可得到一个圆锥。

这两个圆锥的体积比是()。

A.3:4B.1:1C.16:9D.9:16三、细心的你,算一算。

(共22分)1.计算下面各图形的表面积。

(单位:cm)(12分)(1)(2)2.计算下面图形的体积。

(10分)四、聪明的你,答一答。

(共38分)1.一个圆柱形蓄水池,从里面量底面直径是20米,深为5米。

(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(6分)(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)(8分)2.在一个长100厘米,宽80厘米的长方体水槽中,放入一个长方体的铁块,铁块完全浸入水中时,水面上升了4厘米。

热点:关于不规则或组合立体图形的表面积和体积问题-2024年小升初数学(解析版)

热点:关于不规则或组合立体图形的表面积和体积问题-2024年小升初数学(解析版)

热点:关于不规则或组合立体图形的表面积和体积问题一、计算题。

1求下图立体图形的表面积。

【答案】114.84dm2【分析】由图可知,圆柱的上底面刚好填补正方体的上底面被覆盖的部分面积,因此图中立体图形的表面积可以看作是一个正方体的表面积加上一个圆柱的侧面积;根据正方体的表面积=棱长×棱长×6,圆柱的侧面积=底面周长×高,代入相应数值计算即可解答。

【详解】4×4×6+3.14×2×3=16×6+6.28×3=96+18.84=114.84(dm2)因此这个立体图形的表面积是114.84dm2。

2如图下图,求组合体的表面积。

(单位:厘米;π取3.14)【答案】142.84平方厘米【分析】观察图形可知,组合体的表面积等于长方体的表面积加上圆柱体的侧面积,根据长方体的表面积公式:S=ab+ah+bh×2,圆柱体的侧面积公式:S=πdh,代入数据计算即可。

【详解】8×6+8×1+6×1×2+3.14×2×3=48+8+6×2+3.14×2×3=62×2+3.14×2×3=124+18.84=142.84(平方厘米)即组合体的表面积是142.84平方厘米。

3计算下面圆柱的表面积和体积。

(单位:厘米)【答案】表面积:734.76平方厘米;体积:571.48立方厘米【分析】表面积=大圆直径是20厘米,小圆直径是6厘米的圆环面积×2+底面直径是20厘米,高是2厘米的圆柱的侧面积+底面直径是6厘米,高是2厘米的圆柱的侧面积;根据圆环的面积公式:面积=π×(大圆半径2-小圆半径2),圆柱的侧面积公式:侧面积=底面周长×高,代入数据,即可解答;体积=底面直径是20厘米,高是2厘米的圆柱的体积-底面直径是6厘米,高是2厘米的圆柱的体积,根据圆柱的体积公式:体积=底面积×高,代入数据,即可解答。

表面积的练习题及答案

表面积的练习题及答案

表面积的练习题及答案班级:姓名:学号:成绩:一、填空:1、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。

2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是,占地面积是,表面积是,体积是。

3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是立方厘米。

4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水升。

5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重千克。

6、正方体的棱长扩大3倍,棱长和扩大倍,表面积扩大倍,体积扩大倍。

9277、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。

8、一个长方体的长、宽、高分别是a米、b米、h米。

如果高增加2米,体积比原来增加立方米。

2ab二、判断:1、正方体是由6个完全相同的正方形组成的图形。

2、棱长6厘米的正方体,它的表面积和体积相等。

3、a表示a×。

4、一个长方体,最多有两个面面积相等。

×35、体积相等的两个正方体,它们的表面积一定相等。

×三、操作题:右图是长方体展开图,测量所需数据,并求长方体体积。

四、解决问题:1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?10×5×4=200200×7.8=1560答:这个铁块重1560kg。

2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮?×2=88×答:需要88cm23、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。

制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?表面积:8×7+8×6×2+6×7×2=236×容积:8×7×6=336答:共需玻璃236dm2,能装水336升。

立体几何计算练习题体积与表面积

立体几何计算练习题体积与表面积

立体几何计算练习题体积与表面积在几何学中,计算立体图形的体积和表面积是非常重要的。

掌握这些计算方法不仅可以帮助我们理解立体图形的特性,更能应用到实际生活和工作中。

本文将介绍几个常见的立体几何计算练习题,涵盖了体积和表面积的计算方法,希望能够对读者有所帮助。

以下是几个练习题。

练习题一:正方体的体积和表面积计算正方体是最简单的立体图形之一,它的六个面都是正方形。

我们先来计算一个边长为a的正方体的体积和表面积。

体积的计算公式为 V = a^3,其中a表示正方体的边长。

例如,如果正方体的边长为5cm,那么它的体积就是 V = 5^3 = 125 cm^3。

表面积的计算公式为 S = 6a^2,其中a表示正方体的边长。

以边长为5cm的正方体为例,它的表面积就是 S = 6(5^2) = 150 cm^2。

练习题二:圆柱体的体积和表面积计算圆柱体是常见的立体图形,它的底面是一个圆,高度为h。

我们来计算一个半径为r、高度为h的圆柱体的体积和表面积。

体积的计算公式为V = πr^2h,其中π取近似值3.14。

例如,如果圆柱体的半径为3cm,高度为8cm,那么它的体积就是V ≈ 3.14(3^2)(8) ≈ 226.08 cm^3。

表面积的计算公式为S = 2πr^2 + 2πrh,其中π取近似值3.14。

以半径为3cm、高度为8cm的圆柱体为例,它的表面积就是S ≈ 2(3.14)(3^2) + 2(3.14)(3)(8) ≈ 188.64 cm^2。

练习题三:球体的体积和表面积计算球体是没有棱和角的立体图形,它的表面都是由一个半径为r的圆所构成。

我们来计算一个半径为r的球体的体积和表面积。

体积的计算公式为 V = (4/3)πr^3,其中π取近似值3.14。

例如,如果球体的半径为6cm,那么它的体积就是V ≈ (4/3)(3.14)(6^3) ≈ 904.32 cm^3。

表面积的计算公式为S = 4πr^2,其中π取近似值3.14。

六年级上册数学试题长方体和正方体的表面积和体积专项练习

六年级上册数学试题长方体和正方体的表面积和体积专项练习

长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。

这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。

(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。

长方体和正方体的表面积练习题汇总

长方体和正方体的表面积练习题汇总

长方体和正方体表面积练习题一填空:1.长方体或正方体的()个面的()叫做它的表面积。

2.一个正方体的棱长是5分米,它的表面积是()。

3.一个正方体的表面积是216平方厘米,它的一个面的面积是()平方厘米,棱长是()厘米。

4.正方体的棱长扩大a倍,表面积()。

5.一个长方体的长、宽、高都扩大2倍,它的表面积(),一个长方体的长、宽、高都缩小a倍,它的表面积()。

6.两个完全相同的正方体拼成一个大长方体后,表面积()了()个小正方形的面积;把一个长方体切开,分成的2个小长方体的表面积之和比原来大长方体的表面积()了()个切开面的面积。

7.如果一个长方体中有4个面的面积相等,那么其余的2个面一定是()。

8.抽屉的表面积一般计算()个面的面积,少()个()面;火柴盒的外壳的表面积一般计算()个面的面积,少()个()面;火柴盒的内壳的表面积一般计算()个面的面积;长方体的通风管的表面积一般计算()个面的面积,少()个()面;粉刷教室一般计算()个面的面积,少()个()面;卧室贴墙纸一般计算()个面的面积;油漆房屋内的长方体立柱一般计算()个面的面积。

二、判断:1.一个长方体的棱长总和是72厘米,它的每条棱长是6厘米。

………………()2.用一根铁丝焊一个长6厘米、宽5厘米、高3厘米的长方体框架,至少需要铁丝42厘米。

……………………………………………………………………………………()3.一个正方体棱长是5厘米,它的棱长总和是40厘米。

………………………()4.正方体是一种特殊的长方体。

……………………………………………………()5.看到的物体不是长方体就是正方体。

……………………………………………()三、应用题:1.一个正方体框架是用一根长48分米的铁丝焊接成的,这个框架的棱长是多少分米?2.用一根长56厘米的铁丝焊接成一个长6厘米、宽5厘米的长方体框架,这个框架的高是多少厘米?3.一个长方体木块,长8厘米、宽5厘米、高4厘米,把它放在桌子上,所占桌面的最大面积是多少?4、用一根铁丝可扎成一个长12厘米、宽6厘米、高4厘米的长方体框架,如果把它扎成一个正方体框架,这个正方体框架的棱长是多少?四、实际应用:1.木工师傅做一个正方体的木箱,棱长6分米,如果在它的外表刷油漆,刷油漆面积多大?如果每平方米用油漆50克,刷这个木箱要用多少克油漆?2.制作一个长4米、宽2.5米、高1.2米的长方体无盖水箱,最少要用铁皮多少平方米?3.有一个正方体棱长9厘米,如果把这个正方体切成棱长3厘米的小正方体,则这些小正方体的表面积的和是多少?4.一个水池长15米,宽8米,深2米。

人教版数学五下第三单元《长方体和正方体的表面积》练习题(精选)

人教版数学五下第三单元《长方体和正方体的表面积》练习题(精选)

长方体和正方体表面积练习题一、填空。

1、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个顶点。

2、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。

4、相交于一个顶点的()条棱,分别叫做长方体的()、()、()。

5、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。

6、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是()厘米。

7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

8、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

9、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。

二、应用题。

1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?长方体和正方体表面积练习题班级:_______姓名:_________1、填空。

(1)长方体或者正方体( )叫做它的表面积。

(2)求长方体的表面积必须知道长方体的( )。

(3)一个长方体的长是6分米,宽1.5分米,高3分米,它的表面积是( )平方分米。

(4)一个正方体的棱长是0.5分米,它的表面积是( )平方分米。

五年级表面积练习题

五年级表面积练习题

五年级表面积练习题一、填空。

1、正方体是由个完全相同的围成的立体图形,正方体有条棱,它们的长度都,正方体有个顶点。

2、因为正方体是长、宽、高都的长方体,所以正方体是的长方体。

3、一个正方体的棱长为A,棱长之和是,当A=6厘米时,这个正方体的棱长总和是厘米。

4、相交于一个顶点的条棱,分别叫做长方体的、、。

5、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是厘米。

6、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是厘米。

7、至少需要厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

8、一个长方体的长、宽、高都扩大2倍,它的表面积就。

9、一个长方体最多可以有个面是正方形,最多可以有条棱长度相等。

二、应用题。

1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?长方体和正方体表面积练习题班级:_______姓名:_________1、填空。

长方体或者正方体叫做它的表面积。

求长方体的表面积必须知道长方体的。

一个长方体的长是6分米,宽1.5分米,高3分米,它的表面积是平方分米。

一个正方体的棱长是0.5分米,它的表面积是平方分米。

一个长4分米、宽2分米、高2分米的长方体,它占地面积最大是,表面积是。

2、一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?3、用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?4、两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?5、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸?6、一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。

人教版小升初数学复习专项《立体图形的表面积和体积》能力达标卷

人教版小升初数学复习专项《立体图形的表面积和体积》能力达标卷

人教版小升初数学复习专项《立体图形的表面积和体积》能力达标卷一、基础题1、把底面积是20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少?2、用两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,有几种拼法?拼成的长方体的表面积分别是多少?3、把19个棱长是3厘米的小正方体重叠在一起,如图所示,拼成一个立体图形,求这个立体图形的表面积?4、有一个正方体,棱长是10厘米,如果把这个正方体切成棱长是5厘米的小正方体,那么这些小正方体的表面积的和比原正方体的表面积多多少平方厘米?5、一个长是30厘米,横截面是正方形的长方体,如果它的长增加5厘米,表面积就增加80平方厘米,求原长方体的表面积?二、提高题1、从一个棱长是10厘米的正方体木块上挖去一个长10厘米,宽2厘米,高2厘米的小长方体,剩下部分的表面积是多少?2、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长是2厘米的小正方体,剩下部分的表面积是多少?3、一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米。

求原长方体的表面积?4、一个长方体的所有棱长之和是192厘米,长、宽、高的比是7:5:4,这个长方体的体积是多少立方厘米?5、有一个正方体,如果它的高增加2厘米,就成了长方体,这个长方体的表面积比原来正方体的表面积增加96平方厘米,原来正方体的表面积和体积各是多少?6、一个长2米的长方体,沿着长截成相等的6段后,表面积增加了3.6平方米,求原来的长方体的体积?7、有一块长方形的铁皮,长是30厘米,宽是20厘米。

在这块铁皮的四个角上各剪下一个边长是4厘米的正方形后,再将剩下的部分焊接成一个无盖的长方体铁盒,求这个铁盒的表面积和体积?8、有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,这个长方体的体积是多少?三、竞赛题1、用3个正方体木块堆成的多面体,其中下面的正方体的棱长为10厘米,而上面的正方体下底面的4个顶点分别是其下面正方体上底面各边的中点.那么,这个多面体的表面积是多少平方厘米?2、如图所示,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积?3、一个底面是正方形的长方体木块被锯掉一部分,变成如图所示的图形,其中最长的边DH=8厘米,最短的边AB=BC=CD=DA=BF=4厘米,求这个几何体的体积是多少立方厘米?4、一个长方体的表面积是67.92平方分米,底面的面积是19平方分米,底面周长是17.6分米,这个长方体的体积是多少立方分米?(32.3)立体图形的表面积和体积能力达标卷(一)答案解析一、基础题1、答案:200平方厘米解析:把两个相同是正方体拼成一个长方体,这个长方体的表面积比原来两个正方体的表面积的和减少了两个面面的面积。

小升初必考计算题-立体图形

小升初必考计算题-立体图形

立体图形题型1:长方体的表面积例1:食堂的长方体烟囱是用铁皮制成的,求用了多少铁皮,就是求 ( )。

A.体积 B.表面积 C.四个面的面积 D.五个面的面积【答案】C例2:把一个棱长是4dm的正方体,分成相等的两个长方体后,表面积增加了________平方分米。

【分析】切成两个相等的长方体后,表面积会增加两个正方形的面,由此计算即可。

4×4×2=32(平方分米)【答案】4×4×2=32(平方分米)故答案为32例3:制作一个长、宽、高分别是5厘米、4厘米、3厘米的长方体纸盒,需要准备(______)种大小不同的长方形,其中最大的长方形的面积是(_______)平方厘米,最小的是(_______)平方厘米。

【分析】长方体是由六个面组成,分成3组,每组二个面是相同的,所以是准备3种大小不同的长方形。

这里求的“最大的长方形的面积”是指一个“面”的面积,最大的是面积是5×4=20平方厘米,最小的是4×3=12平方厘米。

【答案】3 20 12例4:一间教室长9m,宽6m,高4m,要粉刷房顶和四壁,扣除门窗和黑板的面积26m2。

若每平方米用涂料0.45kg,粉刷这间教室需要涂料多少千克?【分析】粉刷教室只有5个面,一个底面和四个侧面,根据长方体表面积公式计算出表面积,减去门窗和黑板的面积就是需要粉刷的面积,再乘每平方米需要涂料的质量即可求出需要涂料的总重量.【答案】解:(9×6+6×4×2+4×9×2-26)×0.45=(54+48+72-26)×0.45=148×0.45=66.6(kg)答:粉刷这间教室需要涂料66.6千克。

题型2:正方体的表面积例5:两个正方体的棱长比是3∶5,它们的表面积比是( )。

A.9∶25 B.3∶5 C.18∶30【答案】A例6:一个正方体的棱长和48dm,正方体表面积是(______)dm2.【分析】由棱长和求棱长,再求表面积解:棱长为48÷12=4dm,表面积为4×4×6=96dm2.【答案】96例7:木工做一只棱长是5分米的正方体无盖木箱至少用木板多少平方分米?【答案】解:5χ5χ5=125平方分米。

常见立体图形表面积习题

常见立体图形表面积习题

一、看图计算题
看图计算它们的体积和表面积。

(单位:dm)
二.单位换算
,
1平方米=()平方分米=()平方厘米
立方米=()立方分米
升=()毫升
60立方分米=()升1升=()立方厘米75毫升=()立方厘米
立方米=( )立方米( ) 立方分米
平方分米=( )平方分米( )平方厘米
三.在括号里填上合适的单位名称。

1.一间卧室的地面面积是15()。

2.一瓶牛奶大约有250()。

#
3.一间教室的空间大约是144()。

5。

一台空调的占地面积是18 ()。

三.解决实际问题
-
1。

圆柱的侧面展开后一般是一个(),如果长方形的长是30厘米,宽是20厘米,圆柱的侧面积是()平方厘米。

当()和()相等时,圆柱的侧面展开后是一个正方形。

2、把两个棱长是4厘米的正方体木块粘合成一个长方体,长方体的表面积是平方厘米
"
3、这个长方体的鱼池,长10米,宽6米,深是2米。

①这个这个鱼池的占地面积是多少平方米
②在池内的侧面和池底铺上瓷砖,瓷砖的面积是多少平方米

5、如果我们沿着一个圆柱的底面直径纵向切开,切开后得到的图形它的表面积增加了多少吗如果沿底面横向切开后表面积又增加多少呢
]
6.一个长方体金鱼缸,它左侧面的玻璃被
打碎了,要重新配一块。

配上的玻璃是
多少平方厘米合多少平方分米
[
7.王大妈家新买一台柜式空调,它的外包装是一个长米、宽米、高米的长方体纸盒。

做这样一个纸盒至少需要多少平方米硬纸板(接头处可忽略不计)。

立体图形的面积练习题

立体图形的面积练习题

立体图形的面积练习题一、长方体与正方体1. 计算长方体的表面积,其中长为8cm,宽为6cm,高为4cm。

2. 计算正方体的表面积,边长为5cm。

3. 一个长方体的长、宽、高分别为10cm、8cm、6cm,求其表面积。

4. 一个正方体的体积为64cm³,求其表面积。

二、圆柱与圆锥1. 计算圆柱的表面积,底面半径为3cm,高为7cm。

2. 计算圆锥的侧面积,底面半径为4cm,母线长为6cm。

3. 一个圆柱的底面直径为10cm,高为12cm,求其表面积。

4. 一个圆锥的底面周长为18.84cm,高为9cm,求其侧面积。

三、球体1. 计算球体的表面积,半径为6cm。

2. 一个球体的直径为10cm,求其表面积。

3. 已知球体的体积为904.32cm³,求其表面积。

四、组合立体图形1. 计算由一个长方体和一个正方体组成的组合体的表面积,长方体的长、宽、高分别为12cm、8cm、6cm,正方体的边长为6cm。

2. 计算由一个圆柱和一个圆锥组成的组合体的表面积,圆柱的底面半径为4cm,高为8cm,圆锥的底面半径为4cm,高为6cm。

3. 计算由两个球体组成的组合体的表面积,球体半径分别为3cm和5cm。

五、应用题1. 一个长方体的长、宽、高分别为20cm、15cm、10cm,求其表面积,并计算用这个长方体制作一个无盖的箱子需要多少平方厘米的铁皮。

2. 一个圆柱的底面直径为14cm,高为30cm,求其表面积,并计算用这个圆柱制作一个水桶需要多少平方厘米的铁皮。

3. 一个圆锥的底面半径为8cm,高为12cm,求其侧面积,并计算用这个圆锥制作一个锥形帐篷需要多少平方厘米的布料。

立体图形的面积练习题(续)六、棱柱与棱锥1. 计算四棱柱的表面积,底面边长分别为4cm和6cm,高为5cm。

2. 计算三棱锥的表面积,底面边长分别为3cm、4cm、5cm,侧棱长为6cm。

3. 一个六棱柱的底面边长为5cm,高为10cm,求其表面积。

表面积和体积练习题

表面积和体积练习题

表面积和体积练习题(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除求表面积:1、一个长方体的铁皮水箱,长和宽都是2.5dm,深6dm。

做这样一个水箱,至少需要铁皮多少平方分米(水箱有盖)2、一个长方体罐头盒,底面长13cm、宽7cm,高8.5cm。

如果在盒的四周贴上商标纸(上、下面不贴),这张商标纸的面积至少多少平方厘米?3、五年级同学向贫困地区捐款。

小刚把一个长50cm、宽40cm、高24cm的长方体纸箱各面都贴上了红纸作为捐款箱,除去上面捐款口的面积为350c㎡。

至少需要多少平方分米的红纸?4、5、一个长方体包裹,它的长、宽、高分别是4dm、3dm、2dm。

如果实际用纸是表面积的1.4倍,包装这个包裹至少要用多少平方分米的包装纸?6、一个房间长6m、宽3.5m、高3m,门窗面积是8㎡。

现在要把这个房间的四壁和顶面粉刷水泥漆。

如果每平方米需要水泥漆0.4kg,一共需要多少千克水泥漆?7、8、一个机器零件(如下图),要在它的前后两个面涂上红色防锈漆,其他漏出的面(底面不涂)涂上灰色防锈漆,涂红色防锈漆和灰色防锈漆的面积各是多少?9、一块正方体木料的棱长是40cm。

这块木料的表面积是多少平方厘米?求体积:1、修路队要给一段长150m、宽20m的水泥路面铺一层5cm厚的沥青,一共需要沥青多少立方米?2、一块正方体木料的棱长是40cm。

这块木料的体积是多少立方厘米?3、爸爸买回一块长方体形状的面包,面包长3dm、宽8cm、高5cm。

爸爸想把它平均分成5个长方体形状的小面包给五年人,每个人分到面包的体积是多少立方厘米?4、王大爷家要用砖砌一段长20m、宽25cm、高2.8m的院墙。

如果每立方米用砖500块,砌这段院墙一共要用多少块砖?5、某县在河道两旁修筑了亲水平台,亲水平台要安装如图所示的长方体、正方体水泥块各80块。

这些水泥块共要用水泥多少立方分米合多少方6、7、一个长方体的无盖玻璃鱼缸,长2m 、宽40cm、高80cm,(1)这个鱼缸的占地面积有多大?(2)做这个鱼缸要用多少平方米的玻璃?(3)这个鱼缸的体积是多少?7、某同学想测一块合金块的体积,他在量筒中放入了3块同等大的合金块,测量结果如图所示。

知识点224几何体表面积

知识点224几何体表面积

1、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1 )这个八棱柱一共有多少个面?它们的形状分别是什么?图形哪些面的形状、面积完全相同?(2 )这个八棱柱一共有多少条棱?它们的长度分别是多少?(3 )沿一条侧棱将其侧面全部展成一个平面图形,这个图形是什么形状?面积是多少?考点:几何体的表面积。

分析:(1)根据正八棱柱的特征答题;(2)n棱柱有n+2个面,3n条棱,据此求解;(3)侧面展开图为长方形,求出长为5X 8=40厘米,宽是6厘米,即可求出面积.解答:解:(1)这个八棱柱一共有10个面,其中上、下两个底面,8个侧面;上、下底面是八边形,侧面都是长方形;上、下底面的形状、面积完全相同,8个侧面的形状、面积完全相同;(2)这个八棱柱一共有24条棱,其中侧棱的长度都是6厘米,其他棱长都为底面边长5厘米;(3)将其侧面沿一条棱展开,展开图是一个长方形,长为5X 8=40厘米,宽是6厘米,因而面积是40 X 6=240(平方厘米).点评:解决本题的关键是应理解棱柱的构造特点.2、如图,该物体是由16块棱长为1厘米的小正方体堆积而成的,求它的表面积. (含底面)考点:几何体的表面积。

专题:应用题。

分析:观察图形,第一层在外面5个面;第二层为3X 4+2由于第三层含底面,故第三层为3 X 4+3 X 3+2X2解答:解:根据以上分析计算表面积=5+3X 4+2+3X 4+3X 3+2X 2=44该图形的表面积为44cm2.点评:几何体的表面积是所有围成几何体的表面面积之和.注意此表面积含底面.3、一间长为8米,宽为5米的房间,用半径为0.2米的圆形磨光机磨地板,不能磨到的部分的面积共多少平方米?(提示:不论房间面积多大,其四个角各有一部分不能磨到)考点:几何体的表面积。

分析:如图所示,阴影部分的面积是边长为0.2米的正方形的面积减去圆心角是90°半径为0.2米的扇形的面积,要求的面积即为阴影部分的面积的4倍.解答:解:如图所示,要求的面积=4( 0.2 X 02 " ■ ::' ) =0.16 - 0.04 n(平方米)360答:不能磨到的部分的面积共0.16 - 0.04 n平方米.点评:此题综合运用了正方形的面积公式和扇形的面积公式.4、如图,若干个边长为a的正方体摆放成如图的形状,问: (1 )有几个正方体;(2)摆放成如图后,表面积是多少;(3)当正方体的边长为2时,它的表面积是多少.考点:几何体的表面积。

第01讲 基本立体图形、简单几何体的表面积与体积 (精练)(教师版)

第01讲 基本立体图形、简单几何体的表面积与体积 (精练)(教师版)

第01讲 基本立体图形、简单几何体的表面积与体积 (精练)A 夯实基础一、单选题1.(2022·广西玉林·高一期末)若一个圆锥的轴截面是边长为3的正三角形,则这个圆锥的表面积为( ) A .274π B .92πC .3πD .94π 【答案】A由题可知,该圆锥的底面半径为32,因此,该圆锥表面积为233273224πππ⎛⎫⨯+⨯⨯= ⎪⎝⎭故选:A2.(2022·广东梅州·高一期末)如图,A O B '''是水平放置的△AOB 的直观图,但部分图象被茶渍覆盖,已知O '为坐标原点,顶点A '、B '均在坐标轴上,且△AOB 的面积为12,则O B ''的长度为( )A .1B .2C .3D .4【答案】B画出△AOB 的原图为直角三角形,且6''==OA O A , 因为1122⨯=OB OA ,所以4OB =,所以122''==O B OB .故选:B.3.(2022·广东茂名·高二期末)储粮所用“钢板仓”,可以看成由圆锥和圆柱两部分组成的.现有一种“钢板仓”,其中圆锥与圆柱的高分别是1m 和3m ,轴截面中等腰三角形的顶角为120°,若要储存3003m 的水稻,则需要准备这种“钢板仓”的个数是( )A .6B .9C .10D .11【答案】C因为圆锥的高为1,轴截面中等腰三角形的顶角为120°, 所以圆锥的母线长为2所以一个“钢板仓”的体积为22313110m 3πππ⨯⨯+⨯⨯⨯=,因为3009.510π≈ 所以要储存3003m 的水稻,则需要准备这种“钢板仓”的个数为10个, 故选:C4.(2022·辽宁锦州·高一期末)正三棱锥S ABC -的高为则该三棱锥的侧棱长为( )A .B .C .D .4【答案】D依题意作上图,其中E 是BC 的中点,D 是正三角形ABC 的中心, 并且SD ⊥ 平面ABC ,SE BC ⊥ ,则有SD SE ==,在Rt SDE 中,3ED AE ED ==AB BC AE ∴===,在Rt SBE 中,4SB = ;故选:D.5.(2022·上海·复旦附中高二期末)小明同学用两个全等的六边形木板和六根长度相同的木棍搭成一个直六棱柱111111ABCDEF A B C D E F -,由于木棍和木板之间没有固定好,第二天他发现这个直六棱柱变成了斜六棱柱111111ABCDEF A B C D E F -,如图所示.设直棱柱的体积和侧面积分别为1V 和1S ,斜棱柱的体积和侧面积分别为2V 和2S ,则( ).A .1212V V S S > B .1212V V S S < C .1212V V S S = D .11V S 与22V S 的大小关系无法确定 【答案】A设底面面积为S ,底面周长为C , 则11V S AA =⋅,11S C AA =⋅,所以11V SS C=, 设斜棱柱的高为h ,则2V S h =⋅,2AB BC CD DE EF FA S AB h BC h CD h DE h EF h FA h =⨯+⨯+⨯+⨯+⨯+⨯ ()AB BC CD DE EF FA h Ch >+++++⨯=,所以2121V V Sh S S Ch C S <==. 故选:A6.(2022·湖南常德·则该圆锥的内切球体积为( ) A .4π B .43πC .πD .6π【答案】D轴截面如图所示,设内切球的半径为r ,则OD OE r ==, 由题意可得6OCD π∠=,CD =, 在Rt OCD △中,tan ODOCD CD∠=,所以1tan 2OD CD OCD =⋅∠==,即12r =,所以内切球体积为334413326r πππ⎛⎫== ⎪⎝⎭,故选:D7.(2022·河南驻马店·高一期末)已知平面四边形ABCD ,连接对角线BD ,得到等边三角形ABD 和直角三角形BCD ,且3AB =,π2BDC ∠=,BC =将平面四边形ABCD 沿对角线BD 翻折,得到四面体A BC D '',则当四面体A BC D ''的体积最大时,该四面体的外接球的表面积为( ) A .12π B .18π C .21π D .28π【答案】C因为底面A BD '为正三角形,所以底面A BD '面积为定值, 所以当C BD '⊥平面A BD '时,四面体ABCD 的体积最大.设A BD '外接圆圆心为1O ,则四面体ABCD 的外接球的球心O 满足1//OO C D ',且11322OO C D '==,三角形A BD '的外接圆半径为32sin 60r r =⇒︒因此外接球的半径R 满足222223321()()()224R r =+=+=从而外接球的表面积为2421R ππ=. 故选:C.8.(2022·重庆市第七中学校高一期末)如图所示,在平面四边形ABCD 中,AD CD ⊥,AC BC ⊥,60B ∠=︒,3AD CD ==.现将ACD △沿AC 折起,并连接BD ,当三棱锥D ABC -的体积最大时,其外接球的表面积为( )A .16π3B .C .32π3D .24π【答案】D因为ABC 的面积不变,要使体积最大,需 D 到平面ABC 的距离最大,即当平面ACD ⊥平面ABC 时,体积最大,因为ACD △等腰直角三角形,取AC 中点E ,则DE ⊥平面ABC ,高为DE AC =Rt ABC中,60B ︒∠=,BC ,AB =所以EB ,故Rt BDE 中BD 所以ABD △中222AD BD AB +=,即得空间中90ADB ACB ︒∠=∠=即AB 为球的直径,故半径22424R AB ==,所以外接球的表面积24π24πS R ==. 故选:D. 二、多选题9.(2022·重庆八中高一期末)某工厂生产出一种机械零件,如图所示零件的几何结构为圆台12O O ,在轴截面ABCD 中,AB =AD =BC =4cm ,CD =2AB ,则下列说法正确的有( )AB .该圆台轴截面面积为2C 3D .一只蚂蚁从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为10cm【答案】BCD如图,作BE CD ⊥交CD 于E ,易得22CD ABCE -==,则12224223B O E O ,则圆台的高为,A 错误;圆台的轴截面面积为21(48)2+⨯,B 正确;圆台的体积为31π(4168)cm 3=++⨯=V ,C 正确;将圆台一半侧面展开,如图中ABCD ,设P 为AD 中点,圆台对应的圆锥一半侧面展开为扇形COD ,由圆台补成圆锥,可得大圆锥的母线长为8cm ,底面半径为4cm ,侧面展开图的圆心角为2π4π8θ⋅==,连接CP ,可得∠COP =90°,OC =8,OP =4+2=6,则10CP =,所以沿着该圆台表面从点C 到AD 中点的最短距离为10cm ,故D 正确. 故选:BCD.10.(2022·安徽宣城·高一期末)已知正四面体的外接球、内切球的球面上各有一动点M 、N ,若线段MN) A .正四面体的棱长为6B .正四面体的内切球的表面积为6πC .正四面体的外接球的体积为D .线段MN 的最大值为【答案】ABD设这个四面体的棱长为a 的正方体截得的,所以四面体的外接球即为正方体的外接球,外接球直径为正方体的对角线长, 设外接球的半径为R ,内切球的半径为r ,则2R =,所以R =,四面体的高为h =,则等体积法可得 11433Sh Sr =⨯,所以14r h ==,由题意得R r -==6a = 所以A 正确,所以6R ==334433R ππ=⋅=⎝⎭,所以C 错误,因为内切球半径为6r ==22446r πππ=⋅=⎝⎭,所以B 正确,线段MN 的最大值为R r +=D 正确, 故选:ABD 三、填空题11.(2022·上海市青浦高级中学高一期末)设地球半径为R ,地球上北纬30°圈上有A ,B 两点,点A 在西经10°,点B 在东经110°,则点A 和B 两点东西方向的距离是___________.如图示,设O '为北纬30°圈的圆心,地球球心为O ,则60AOO '∠= ,故2AO R '=,即北纬30°R , 由题意可知2π1203AO B '∠==, 故点A 和B 两点东西方向的距离即为北纬30°圈上的AB 的长,故AB 的长为2π3=,12.(2022·广东·高二期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵;将底面为矩形,一侧棱垂直于底面的四棱锥称为阳马;将四个面均为直角三角形的四面体称为鳖孺.如图,在堑堵111ABC A B C -中,AC BC ⊥,2AC BC ==,11AA =,则鳖臑11A CBC -的外接球的表面积为__________.【答案】9π堑堵111ABC A B C -的外接球即为鳖臑11A CBC -外接球,又可将堑堵111ABC A B C -补成长方体,长方体的外接球即为堑堵111ABC A B C -的外接球,长方体的外接球直径为13A B ==, 所以鳖臑11A CBC -的外接球的半径为32, ∴鳖臑11A CBC -的外接球表面积为234π×=9π2S ⎛⎫= ⎪⎝⎭.故答案为:9π. 四、解答题13.(2022·广东佛山·高一期末)如图,一个高为8的三棱柱形容器中盛有水,若侧面11AA B B 水平放置时,水面恰好过AC ,BC ,11B C ,11A C 的中点E ,F ,G ,H .(1)直接写出直线FG 与直线1A H 的位置关系;(2)有人说有水的部分呈棱台形,你认为这种说法是否正确?并说明理由.(3)已知某三棱锥的底面与该三棱柱底面ABC 全等,若将这些水全部倒入此三棱锥形的容器中,则水恰好装满此三棱锥,求此三棱锥的高.【答案】(1)异面(2)不是棱台,理由见详解(3)18(1)因为水面恰好过AC ,BC ,11B C ,11A C 的中点E ,F ,G ,H , 所以111111//,//,,,22HG A B EF AB HG A B EF AB == 又11//,A B AB 且11,A B AB =因此//HG EF ,且HG EF =,所以四边形EFGH 是平行四边形, 故//FG EH ,而1A H EH H =,所以直线FG 与直线1A H 不可能平行,而面EFGH平面111A B C HG =,所以直线FG 与直线1A H 不可能是相交直线,所以直线FG 与直线1A H 是异面直线; (2)因为棱台各侧棱交于一点,易知1AE A H 无交点,所以该几何体不是棱台;(3)设此三棱锥的高为h ,底面面积为S , 容器中水的形状为棱柱,体积为3864SS ⨯= 所以有163S h S ⋅⋅=,解得18h =,即三棱锥的高为1814.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积. 【答案】(1)75π2(2)15π (1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭,圆柱的侧面积为252π2π525π2S Rl ==⨯⨯=所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2)由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥, 线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥, 所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为: 22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=. B 能力提升1.(多选)(2022·海南·高一期末)已知正四棱台1111ABCD A B C D -,且1122AB A B ==,则( )A B .侧棱与底面所成的角为60︒C .正四棱台的侧面积为D 【答案】ABD设正四棱台的高为k ,由题意可知该四棱台的上下底面面积分别为1和4,则()11243V h =++=h =1A 作1A G ⊥底面ABCD ,易知点G 在线段AC 上,则1A G =又由11AC =AC =AG =,所以1AA =A 正确; 在1Rt A GA 中,111cos 2AG A AG A A ∠==,所以160A AG ∠=︒, 即侧棱与下底面所成的角为60︒,故B 正确;在梯形11ABB A 中,2AB =,111A B == 所以梯形11ABB A的面积为()1122⨯+=,4=,故C 错误; 设正方形ABCD 的中心为O ,易知1AA O 为等边三角形,11OA OA AA ==点O 到正四棱台的8则正四棱台的外接球体积为34π3⨯=,故D 正确. 故选:ABD2.(2022·江苏徐州·高一阶段练习)已知正方体1111ABCD A B C D -的棱长为6,E 、F 分别是11A D 、1AA 的中点,平面CEF 截正方体所得的截面为多边形,则此多边形的边数为___________,截面多边形的周长为___________.【答案】 五, +解:延长EF 交DA 的延长线于M ,连接MC 交AB 于N , 延长FE 与DD1的延长线相交于点P,连接PC 交C1D1于Q ,连接EQ, 则五边形EFNCQ 即为平面CEF 截正方体所得的截面.如图所示:则有A1F=FA=AM=3,又因为MAN∆与MDC∆相似,所以MA ANMD CD=,解得AN=2,所以FN NC同理可得:QD1=2,QC1=4,所以QC==EQ,又因为EF=所以五边形EFNCQ的周长为故答案为:五;C综合素养1.(2022·湖北·华中师大一附中高一期末)佩香囊是端午节传统习俗之一.香囊内通常填充一些中草药,有清香、驱虫、开窍的.因地方习俗的差异,香囊常用丝布做成各种不同的形状,形形色色,玲珑夺目.图1的平行四边形ABCD由六个边长为1的正三角形构成.将它沿虚线折起来,可得图2所示的六面体形状的香囊.那么在图2这个六面体中内切球半径为__________,体积为__________.【答案】 解:如图所示:易知该几何体是侧棱长为1,以边长为1的等边三角形ABD △为底的两个正三棱锥组成,O 为ABD △的中心,即内切球的球心,M 为FB 的中点,连接HM ,作ON HM ⊥,则ON 为内切球的半径,因为,,OM HM HO ====, 所以1122HOM S OH OM HM ON =⋅=⋅,所以内切球的半径为OH OM R ON HM ⋅===,内切球的体积为343V R ππ==,2.(2022·浙江宁波·高二期末)如图,D ,E ,F 分别是边长为4的正三角形三边,,CA AB BC 的中点,将ADE ,BEF ,CFD △分别沿,,DE EF FD 向上翻折至与平面DEF 均成直二面角,得到几何体ABC DEF -.则二面角C AB E --的余弦值为_____;几何体ABC DEF -的外接球表面积为_____.【答案】203π##203π 取DE 的中点P ,EF 的中点Q ,故,AP DE BQ EF ⊥⊥,根据面面垂直的性质可得AP ⊥平面DEF ,BQ ⊥平面DEF ,故//AP BQ ,且AP BQ =,故矩形APQB .所以112AB PQ FD ===.根据图形的对称性,易得ABC 为正三角形,取AB 中点G ,因为EA EB =,CA CB =,则CG AB ⊥,EG AB ⊥,则二面角C AB E --为CGE ∠,且GE GO PQ ⊥,易得GO AP ==CGE CGO OGE ∠=∠+∠,OE ===,故()cos cos 90sin CGE OGE OGE ∠=∠+=-∠==角C AB E --的余弦值为(2)设几何体ABC DEF -的外接球球心为O ,设ABC 中心为P ,DEF 中心为Q ,易得,,P O Q 共线,如图,设外接球半径OC OD R ==,根据正三角形中的关系,CP =DQ =.因为OP OQ PQ +==,=2214333R R -=+--2=253R =,故外接球表面积为22043S R ππ==故答案为:203π 3.(2022·山东菏泽·高一期中)在一个正方形1234PP P P 内有一个小正方形ABCD 和四个全等的等边三角形(如图1).将四个等边三角形折起来,使1P 、2P 、3P 、4P 重合于点P ,且折叠后的四棱锥P ABCD -(如图2)的外接球的表面积是64π,则四棱锥P ABCD -的侧棱PA 的长为______;若在四棱锥P ABCD -内放一个正方体,使正方体可以在四棱锥P ABCD -内任意转动,则该正方体棱长的最大值为______.【答案】 4343连接AC ,BD 交于点O ,则易得,APC BPD 是等腰直角三角形,则O 是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设其为x ,则外接球的半径是OA ,所以2464x ππ⎫=⎪⎪⎝⎭,x =PA =因此PO OA ==4x =,故四棱锥P -ABCD 的体积22111284333x PO ⋅=⨯⨯=. 设四棱锥P -ABCD 的内切球半径为R ,四棱锥的表面积:((224432PAB ABCD S S S =+=+=, 所以四棱锥的体积12811()333S ABCD SAB ABCD V S S R SR -==+=, 则R ==, 在四棱锥P -ABCD 内放一个正方体的体对角线不超过内切球直径时,便可以在四棱锥内部任意转动,设放入四棱锥S -ABCD 内部的小正方体棱长为a ,24R ≤==,故4a ≤ 故a 最大为4343,故答案为:4343. 4.(2022·湖北·华中师大一附中高一期中)半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.以正方体每条棱的中点为顶点构造一个半正多面体,如图,它由八个正三角形和六个正方形构成,若它的所有棱长都为1,则该半正多面体外接球的表面积为___________;若该半正多面体可以在一个正四面体内任意转动,则该正四面体体积最小值为___________.【答案】 4π所以该半正多面体外接球的半径1R =,故其表面积为4π.若该半正多面体可以在一个正四面体内任意转动,则该半正多面体的外接球是正四面体的内切球时,该正四面体体积最小.此时,设正四面体的棱长为a ,考查轴截面,则有22211⎫⎫-=+⎪⎪⎪⎪⎝⎭⎝⎭,解得a =所以(2min 13V =⋅=⎝故答案为: 4π;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、看图计算题
看图计算它们的体积和表面积。

(单位:dm)二.单位换算
1平方米=()平方分米=()平方厘米
0.5立方米=()立方分米
1.04升=()毫升
60立方分米=()升1升=()立方厘米75毫升=()立方厘米
1.65立方米=()立方米( )立方分米3.5平方分米=()平方分米()平方厘米
三.在括号里填上合适的单位名称。

1.一间卧室的地面面积是15()。

2.一瓶牛奶大约有250()。

3.一间教室的空间大约是144()。

5。

一台空调的占地面积是18()。

三.解决实际问题
1。

圆柱的侧面展开后一般是一个(),如果长方形的长是30厘米,宽是20厘米,圆柱的侧面积是()平方厘米。

当( )和( )相等时,圆柱的侧面展开后是一个正方形。

2、把两个棱长是4厘米的正方体木块粘合成一个长方体,长方体的表面积是平方厘米?
3、这个长方体的鱼池,长10米,宽6米,深是2米。

ﻫ①这个这个鱼池的占地面积是多少平方米?
②在池内的侧面和池底铺上瓷砖,瓷砖的面积是多少平方米?
5、如果我们沿着一个圆柱的底面直径纵向切开,切开后得到的图形它的表面积增加了多少吗?如果沿底面横向切开后表面积又增加多少呢?
6.一个长方体金鱼缸,它左侧面的玻璃被
打碎了,要重新配一块。

配上的玻璃是
多少平方厘米?合多少平方分米?
7.王大妈家新买一台柜式空调,它的外包装是一个长0.6米、宽0.3米、高1.8米的长方体纸盒。

做这样一个纸盒至少需要多少平方米硬纸板?(接头处可忽略不计)。

相关文档
最新文档