第九章 计数原理与概率、随机变量及其分布
(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布
9-7 二项分布、正态分布及其应用课时规X 练(授课提示:对应学生用书第331页)A 组 基础对点练1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于( C ) A .1 B .2 C .4D .不能确定解析:当函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A .0.8 B .0.75 C .0.6D .0.453.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%) A .4.56% B .13.59% C .27.18%D .31.74%4.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 38.解析:依题意,元件的使用寿命超过1 000小时的概率为12,则该部件的使用寿命超过1 000小时的概率为12×⎣⎢⎡⎦⎥⎤12×12+12×⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫1-12×12=38.5.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解析:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C ,P (B )=0.6,P (C )=0,4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C ) =P (A 1BC )+P (A 2B )+P (A 2B -C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C )=0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,P (X =3)=P (D )-P (X =4)=0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06. X 的分布列为P 0.06 0.25 0.38 0.25 0.06数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0.25+2×0.38+3×0.25+4×0.06=2.6.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2. ①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX . 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26.B 组 能力提升练1.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X ~N (100,a 2)(a >0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为( A ) A .400 B .500 C .600D .8002.已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( B ) A .6 B .7 C .8D .93.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( B )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .464.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( D ) A.23 B .512 C.79D .595.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( B )(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4) A .1 193 B .1 359 C .2 718D .3 4136.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④.(写出所有正确结论的序号) ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关. 解析:由题意知A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =12×511+15×411+310×411=922. 7.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为 34.解析:记事件A 为“第一次摸到黑球”,事件B 为“第二次摸到白球”,则事件AB 为“第一次摸到黑球、第二次摸到白球”,依题意知P (A )=25,P (AB )=25×34=310,∴在第一次摸到黑球的条件下,第二次摸到白球的概率是P (B |A )=P AB P A =34.8.某学校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后一位数字为叶).(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.解析:(1)众数:8.6;中位数:8.75.(2)设A i (i =0,1,2,3)表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(3)ξ的所有可能取值为0,1,2,3.则ξ~B ⎝ ⎛⎭⎪⎫3,14, P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3. ξ的分布列为:所以E (ξ)=3×14=0.75.9.挑选空军飞行员可以说是“万里挑一”,需要通过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析知甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解析:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B -C -)+P (A -B C -)+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X的可能取值为0,1,2,3,其中P(X=k)=C k3(0.3)k·(1-0.3)3-k. 故P(X=0)=C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027,故X的分布列为。
最新-2021版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布96 精品
2.如图,在长方体 ABCD-A1B1C1D1 中,E,H 分别是棱 A1B1,D1C1 上的点(点 E 与 B1 不重合),且 EH∥A1D1,过 EH 的 平面与棱 BB1,CC1 相交,交点分别为 F,G.设 AB=2AA1=2a, EF=a,B1E=2B1F.在长方体 ABCD-A1B1C1D1 内随机选取一点, 则该点取自于几何体 A1ABFE-D1DCGH 内的概率为________.
5.(2017·重庆卷)某校早上
开始上课,假设该校学生
小张与小王在早上
~
之间到校,且每人在该时间段
的任何时刻到校是等可能的,则小张比小王至少早 5 分钟到校的
概率为________(用数字作答).
解析:设小张与小王的到校时间分别为
后第 x 分钟、
第 y 分钟,根据题意可画出图形,如图所示,则总事件所占的面
解 析 : 点 Q 取 自 △AED 或 △BEC 内 部 的 概 率 P = S△ASE矩D形+ABSC△DBEC=12.故选 A.
答案:A
3.已知函数 f(x)=x2-2x-3,x∈[-1,4],则 f(x)为增函数 的概率为( )
1234 A.5 B.5 C.5 D.5
解析:∵f(x)=x2-2x-3=(x-1)2-4,x∈[-1,4]. ∴f(x)在[1,4]上是增函数. ∴f(x)为增函数的概率为 P=4-4--11=35. 答案:C
因为2-2a22da=16a3-22 =83,所以阴影部分的面积为 4×2+83 32
=332,所以所求概率 P=4×3 4=23,故选 D. 答案:D
谢谢观看
下课
由圆中的黑色部分和白色部分关于正方形的中心成中心对
称,得 S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率 P=SS正黑 方形 π
2015届高考数学(人教,理科)大一轮配套练透:第9章 计数原理与概率、随机变量及其分布 第3节
[课堂练通考点]1.(2013·辽宁高考)使⎝⎛⎭⎫3x +1x x n(n ∈N +)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7解析:选B由二项式定理得,T r +1=C r n (3x )n -r⎝⎛⎭⎫1x x r =C r n3n -r x 52n r -,令n -52r =0,当r =2时,n =5,此时n 最小.2.(2013·贵阳模拟)在二项式(x 2+x +1)(x -1)5的展开式中,含x 4项的系数是( ) A .-25 B .-5 C .5D .25解析:选B ∵(x 2+x +1)(x -1)=x 3-1,∴原式可化为(x 3-1)(x -1)4.故展开式中,含x 4项的系数为C 34(-1)3-C 04=-4-1=-5.3.(2014·厦门质检)()2-x 8的展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:选B ()2-x 8展开式中各项的系数和为()2-18=1,展开式的通项为C r 828-r(-x )r ,则x 4项的系数为C 88×28-8=1,则()2-x 8展开式中不含x 4项的系数的和为0. 4.若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5等于________.解析:在已知等式两边对x 求导,得5(2x -3)4×2=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4,令x =1得a 1+2a 2+3a 3+4a 4+5a 5=5×(2×1-3)4×2=10.答案:105.(2014·荆州模拟)已知a =4⎠⎜⎛0π2 cos ⎝⎛⎭⎫2x +π6d x ,则二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为________.解析:依题意得a =4⎠⎜⎛0π2cos ⎝⎛⎭⎫2x +π6d x =2sin ⎝⎛⎭⎫2x +π62π=-2,即a =-2,则T r +1=C r 5(-2)r x 10-3r,当r =3时,T 4=-80x .故二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为-80. 答案:-80[课下提升考能]第Ⅰ组:全员必做题 1.设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则AB =( )A .4B .-4C .26D .-26解析:选A T k +1=C k 6x6-k⎝⎛⎭⎫-2x k =C k 6(-2)k x 362k-,令6-3k 2=3,即k =2,所以T 3=C 26(-2)2x 3=60x 3,所以x 3的系数为A =60,二项式系数为B =C 26=15,所以A B =6015=4,选A.2.(2013·湖北八校联考)在⎝⎛⎭⎫x 2-1x n 的展开式中,常数项为15,则n 的值可以为( ) A .3 B .4 C .5D .6解析:选D ∵T r +1=C r n (x 2)n -r ⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r, ∴C r n (-1)r=15且2n -3r =0,∴n 可能是6,选D.3.(2013·济南模拟)二项式⎝⎛⎭⎪⎫x 2-13x 8的展开式中常数项是( )A .28B .-7C .7D .-28解析:选C 展开式的通项公式是T r +1=C r 8⎝⎛⎭⎫x 28-r ·(-1)r x 3r-,令8-r -r 3=0,得r =6,所以展开式中的常数项为C 68×⎝⎛⎭⎫122=28×14=7. 4.(2013·陕西高考)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:选A 依据分段函数的解析式,得f (f (x ))=f (-x )=⎝⎛⎭⎫1x -x 6,∴T r +1=C r 6(-1)r x r -3,则常数项为C 36(-1)3=-20.5.(2013·北京东城模拟)(x -2y )8的展开式中,x 6y 2项的系数是( ) A .56B .-56C .28D .-28解析:选A 由二项式定理通项公式得,所求系数为C 28(-2)2=56.6.(2014·合肥质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3解析:选A 令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.7.(2014·黄冈模拟)设a =⎠⎛12(3x 2-2x )d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的第4项为( ) A .-1 280x 3 B .-1 280 C .240D .-240解析:选A 由微积分基本定理知a =4,⎝⎛⎭⎫4x 2-1x 6展开式中的第4项为T 3+1=C 36(4x 2)3⎝⎛⎭⎫-1x 3=-1 280x 3,选A. 8.(2013·青岛一检)“n =5”是“⎝⎛⎭⎪⎫2x +13x n(n ∈N *)的展开式中含有常数项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为⎝ ⎛⎭⎪⎫2x +13x n (n ∈N *)展开式的通项T r +1=C r n 2n -r x 23n r r --,⎝⎛⎭⎪⎫2x +13x n 的展开式中含有常数项时满足n -r 2-r 3=0,当n =5时,15-5r6=0,解得r =3,此时含有常数项;反之,当n =10时,r =6,也有常数项,但是不满足n =5.故“n =5”是“⎝⎛⎭⎪⎫2x +13x n(n ∈N *)的展开式中含有常数项”的充分不必要条件,选A.9.(2013·浙江高考)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:T r +1=(-1)r C r 5x 1556r -,令15-5r =0,得r =3,故常数项A =(-1)3C 35=-10.答案:-1010.(2014·福州质检)在(1-x 2)20的展开式中,如果第4r 项和第r +2项的二项式系数相等,则r =________.解析:由题意得,C 4r -120=C r +120故4r -1=r +1或4r -1+r +1=20,即r =23或r =4.因为r 为整数,故r =4.答案:411.(2013·广州二模)在⎝⎛⎭⎪⎫3x -2x 15的展开式中,x 的整数次幂的项的个数为________.解析:展开式的通项为T r +1=(-1)r C r 15(3x )15-r⎝⎛⎭⎫2x r =(-1)r 2r C r 15x3056r -,由题意5-56r为非负整数,得r =0或6,∴符合要求的项的个数为2.答案:212.若⎝⎛⎭⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.解析:利用二项展开式的通项公式求解.由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·⎝⎛⎭⎫1x r =C r 8·x 8-2r , 当8-2r =-2时,r =5, ∴1x 2的系数为C 58=C 38=56. 答案:56第Ⅱ组:重点选做题1.已知⎝⎛⎭⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1. (1)求展开式中各项系数的和; (2)求展开式中含x 32的项;解:由题意知,第五项系数为C 4n ·(-2)4, 第三项的系数为C 2n ·(-2)2,则有C 4n ·(-2)4C 2n ·(-2)2=101,化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式T k +1=C k 8·(x )8-k·⎝⎛⎭⎫-2x 2k =C k8·(-2)k ·x 82k --2k ,令8-k 2-2k =32,则k =1,故展开式中含x 32的项为T 2=-16x 32.2.(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数.解:(1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1=31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.。
高中数学第九章 计数原理与概率、随机变量及其分布
第九章⎪⎪⎪ 计数原理与概率、随机变量及其分布第一节 分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.[小题体验]1.(教材习题改编)某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为( )A .504B .210C .336D .120解析:选A 分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.(教材习题改编)若给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G ,或U ~Z ,后两个要求用数字1~9.则最多可以给________个程序模块命名.答案:1 0533.(教材习题改编)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.答案:91.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[小题纠偏]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).考点一分类加法计数原理(基础送分型考点——自主练透)[题组练透]1.(易错题)(2016·铜梁第一中学月考)如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:选C当重复数字是1时,有C13·C13;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有() A.30种B.31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C25=20种;第二类,三人拿对:C35=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O 和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:5[谨记通法]利用分类加法计数原理解题时2个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法计数原理(重点保分型考点——师生共研)[典例引领]已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则:(1)P可表示平面上________个不同的点.(2)P可表示平面上________个第二象限的点.解析:(1)确定平面上的点P(a,b)可分两步完成:第1步,确定a的值,共有6种方法;第2步,确定b的值,也有6种方法.根据分步乘法计数原理,得到平面上的点的个数是6×6=36.(2)确定第二象限的点,可分两步完成:第1步,确定a,由于a<0,所以有3种方法;第2步,确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.答案:(1)36(2)6[由题悟法]利用分步乘法计数原理解题时3个注意点(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[即时应用]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160B.720C.240 D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6个偶函数.答案:18 6考点三两个原理的应用(常考常新型考点——多角探明)[命题分析]两个原理的常见命题角度有:(1)涂色问题;(2)几何问题;(3)集合问题.[题点全练]角度一:涂色问题涂色问题大致有两种解答方案:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数.1.(1)如图,用6种不同的颜色把图中A,B,C,D 4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种(用数字作答).(2)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.解析:(1)从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480种涂色方法.(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案:(1)480(2)260角度二:几何问题主要与立体几何、解析几何相结合考查.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10解析:选C分两类情况讨论:第一类,直线a分别与直线b上的8个点可以确定8个不同的平面;第二类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.角度三:集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有{}a1,a2,a3,…,a n的子集有2n个,真子集有2n-1个.3.(2015·保定调研)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x ∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.解析:当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B 均有1种情况;所以满足题意的“子集对”共有7+3+1+3+3=17(个).答案:17[方法归纳]两个原理综合应用的1个关键点解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.一抓基础,多练小题做到眼疾手快1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10 D.6解析:选B当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.2.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.3.某班班干部有5名男生、4名女生,从9人中选1人参加某项活动,则不同选法的种数为()A.9 B.5C.4 D.72解析:选A分两类:一类从男生中选1人,有5种方法;另一类是从女生中选1人,有4种方法.因此,共有5+4=9种不同的选法.4.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.答案:185.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40二保高考,全练题型做到高考达标1.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).2.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12(种)情形.所有可能出现的情形共有2+6+12=20(种).3.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).4.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).5.从集合{1,2,3,4,…,10}中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:选A先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可.故共可组成2×2×2×2×2=32(个).6.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.解析:按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步乘法计数原理,共有5×4×3×3=180(种)不同的涂色方法.答案:1807.在2014年南京青奥会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.∴安排这8人的方式有24×120=2 880种.答案:2 8808.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有________场比赛.解析:小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类加法计数原理共有2C24+4=16场比赛.答案:169.集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,集合N最多有C35=10(个),其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是10-2=8.答案:810.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先从中确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解:幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众有30×29×20=17 400种;幸运之星在乙箱中抽取,有20×19×30=11 400种.共有不同结果17 400+11 400=28 800种.三上台阶,自主选做志在冲刺名校1.安排6名歌手演出顺序时,要求歌手乙、丙都排在歌手甲的前面或者后面,则不同排法的种数共有()A.180种B.240种C.360种D.480种解析:选D依题意,歌手乙、丙都排在歌手甲的前面的排法共有A22×4×5×6=240种,因此满足题意的不同排法共有240×2=480种.2.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.解析:四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共有3种可能.故不通的情况有24-3=13(种)可能.答案:133.为参加2014年云南昭通地震救灾,某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解:在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C17种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A27种抽调方法;一类是从3个车队中各抽调1辆,有C37种抽调方法.故共有C17+A27+C37=84种抽调方法.第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质[小题体验]1. (教材习题改编)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有()A.24种B.60种C .90种D .120种解析:选B 可先排C ,D ,E 三人,共A 35种排法,剩余A ,B 两人只有一种排法,由分步乘法计数原理满足条件的排法共A 35=60(种).2.(教材习题改编)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有( )A .12种B .16种C .24种D .48种解析:选C 依题意得知,满足题意的选法共有C 14·C 13·C 12=24种. 3.(教材习题改编)已知1C m 5-1C m 6=710C m 7,则C m 8=________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z ,m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28. 答案:281.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n 时易错算为n (n -1)(n -2)…(n -m ).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[小题纠偏]1.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1),∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或x =23(舍去),∴x =5. 答案:52.某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.(用数字作答)解析:法一:依题意可得C 12×C 34+C 22×C 24=8+6=14,故满足要求的方案有14种.法二:6人中选4人的方案有C 46=15种,没有女生的方案只有1种,所以满足要求的方案有14种.答案:14考点一排列问题(基础送分型考点——自主练透)[题组练透]1.(2015·山西模拟)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种解析:选B由题知,不同的座次有A22A44=48种.2.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.360解析:选C首先应考虑“0”,当0排在个位时,有A29=9×8=72(个),当0排在十位时,有A14A18=4×8=32(个).当不含0时,有A14·A28=4×8×7=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).3.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.解析:(捆绑法)首先排两个奇数1,3有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种方法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.答案:8[谨记通法]1.解决排列问题的4种方法2.解决排列类应用题的3种策略(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(2)分排问题直排法处理.(3)“小集团”排列问题采用先集中后局部的处理方法.考点二组合问题(重点保分型考点——师生共研)[典例引领]1.(2016·山师大附中摸底)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为()A.360B.520C.600 D.720解析:选C根据题意,分2种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480种情况;若甲、乙两人都参加,有C22·C25·A44=240种情况,其中甲、乙相邻的有C22·C25·A33·A22=120种情况.则不同的发言顺序的种数为480+240-120=600.2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法C14C212=264种.第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208=472种.答案:472[由题悟法]1.解决组合应用题的2个步骤第一步,整体分类要注意分类时,不重复不遗漏,用到分类加法计数原理;第二步,局部分步用到分步乘法计数原理.2.含有附加条件的组合问题的2种方法通常用直接法或间接法,应注意“至少”“最多”“恰好”等词的含义的理解,对于涉及“至少”“至多”等词的组合问题,既可考虑反面情形即间接求解,也可以分类研究进行直接求解.[即时应用]1.(2016·大连模拟)某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .3种B .6种C .9种D .18种解析:选C 由题知有2门A 类选修课,3门B 类选修课,从中选出3门的选法有C 35=10种.两类课程都有的对立事件是选了3门B 类选修课,这种情况只有1种.满足题意的选法有10-1=9种.2.四面体的一个顶点为A ,从其他顶点与各棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )A .30种B .33种C .36种D .39种解析:选B 分两种情况:顶点A 与各棱的中点共面的有3个侧面,每个侧面中有5个点,有C 35种,3个侧面有3×C 35种;3个点不在同一个表面的有3个,共有3×C 35+3=33种取法.考点三 分组分配问题(常考常新型考点——多角探明)[命题分析]分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,应注意只要有一些组中元素的个数相等,就存在均分现象.常见的命题角度有:(1)整体均分问题;(2)部分均分问题;(3)不等分问题.[题点全练]角度一:整体均分问题1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法. 答案:90角度二:部分均分问题2.(2016·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:选C 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22;第二步将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种. 角度三:不等分问题3.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.答案:360[方法归纳]解决分组分配问题的3种策略(1)整体均分解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.(2)部分均分解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(3)不等分组只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.一抓基础,多练小题做到眼疾手快1.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.10种B.9种C.12种D.8种解析:选C依题意,满足题意的不同安排方案共有C12·C24=12种.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有()A.12种B.10种C.8种D.6种解析:选D∵甲、乙两人被分配到同一展台,∴可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种,∴甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22×2=20种.4.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有()A.9个B.24个C.36个D.54个解析:选D选出符合题意的三个数共有C13C23种方法,这三个数可组成C13C23A33=54个没有重复数字的三位数.5.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个解析:选B各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所有可能情况有A33+C13A33=6+18=24(个).。
高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率
第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
第9章 第1讲计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学 • 新高考
高考一轮总复习 • 数学 • 新高考
返回导航
5.(2019·上海普陀区模拟)2019年上海春季高考有8所高校招生,如果某3位同 学恰好被其中2所高校录取,那么录取方法的种数为__1_6_8___.
[解析] 分步考虑:从 8 所高校中选 2 所,有 C28种选法;依题意必有 2 位同学被 同一所学校录取,则有 C23C12种录取方法;另一位同学被剩余的一所学校录取,所以 共有 C28·C23·C12=168 种录取方法.
最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是
(D)
A.210
B.84
C.343
D.336
第九章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的 3 人 中选 1 人当文娱委员,有 3 种选法.
第九章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学 • 新高考
返回导航
分类加法计数原理和分步乘法计数原理的区别 分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一 种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互联 系、相互依存,只有各个步骤都完成了才算完成这件事.
第二步,从剩下的 4 人中选学习委员和体育委员,又可分两步进行:先选学习委 员有 4 种选法,再选体育委员有 3 种选法.由分步乘法计数原理可得,不同的选法共 有 3×4×3=36(种).
(2)若每个台阶上每一个只站一人有 A37种;若有一个台阶有 2 人另一个是 1 人共 有 C13A27种,所以根据分类计数原理知共有不同的站法种数是 A37+C13A27=336 种.故 选 D.
计数原理概率随机变量及其分布优秀课件
X 10 20 30 40
P
1 4
1 4
1 4
1 4
(2)根据题意,Y 的可能取值为 20,30,40,且 P(Y
=20)=C124=61,P(Y=30)=C224=13,P(Y=40)= C324=12.
栏目 导引
第九章 计数原理、概率、随机变量及其分布
∴Y的分布列为
Y
20
30
40
P
1 6
1 3
X
01234
2X+1 1 3 5 7 9
|X-1| 1 0 1 2 3
栏目 导引
第九章 计数原理、概率、随机变量及其分布
从而由上表得两个分布列为:
(1)2X+1的分布列:
2X+1 1 3 5 7 9
P
0.2 0.1 0.1 0.3 0.3
(2)|X-1|的分布列:
|X-1|
0
1
2
3
P
0.1 0.3 0.3 0.3
n
②_∑ i_=_1p_i=__1__.
栏目 导引
第九章 计数原理、概率、随机变量及其分布
思考探究 如何求离散型随机变量的分布列? 提示:首先确定随机变量的取值,求出离散 型随机变量的每一个值对应的概率,最后列 成表格.
栏目 导引
第九章 计数原理、概率、随机变量及其分布
3.常见离散型随机变量的分布列 (1)两点分布 若随机变量X的分布列是
第九章 计数原理、概率、随机变量及其分布
教材回扣夯实双基
基础梳理
1.离散型随机变量 随着试验结果变化而变化的变量称为_随__机__ _变__量___,常用字母X,Y,ξ,η,…表示. 所有取值可以一一列出的随机变量,称为 __离__散__型__随__机__变__量____.
2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2
解析:(1)由题意可得其中 1 人必须完成 2 项工作,其他 2 1 2 2 人各完成 1 项工作,可得安排方式为 C3· C4· A2=36(种),或列式 4×3 1 2 1 为 C3· C4· C2=3× 2 ×2=36(种). 故选 D. (2)①当组成四位数的数字中有一个偶数时,四位数的个数 3 1 4 为 C5· C4· A4=960. ②当组成四位数的数字中不含偶数时,四位数的个数为 A4 5 =120. 故符合题意的四位数一共有 960+120=1 080(个).
从12人中选出512种选法从除去男生甲和女生乙外的10人中任选310种选法所以男生甲和女生乙不能同时入选的选法有c1067212017新课标全国卷安排3名志愿者完成4工作每人至少完成1项每项工作由1人完成则不同的安排方式共有22017天津卷用数字123456789组成没有重复数字且至多有一个数字是偶数的四位数这样的四位数一共有个
(3)组合数公式 m n! A n nn-1n-2„n-m+1 m Cn =⑨Am= = . m! m!n-m! m (4)组合数的性质 m n -m 性质 1:Cn = Cn . m m -1 m 性质 2:Cn+1=Cn +Cn (m≤n,n∈N*,m∈N*).
二、必明 3●个易误点 1.要注意均匀分组与不均匀分组的区别,均匀分组不要重 复计数. 2.解受条件限制的组合题,通常有直接法(合理分类)和间 接法(排除法).分类时标准应统一,避免出现遗漏或重复. 3.解组合应用题时,应注意“至少”、“至多”、“恰好” 等词的含义.
5.(2017· 浙江卷)从 6 男 2 女共 8 名学生中选出队长 1 人, 副队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至少 有 1 名女生,共有________种不同的选法.(用数字作答)
第9章第9讲计数原理概率随机变量及其分布
第9章第9讲计数原理概率随机变量及其分布计数原理是概率论中的基础概念之一,它描述了一系列事件发生的可能性,并给出了用于计算这些可能性的工具。
概率是描述随机事件发生的可能性的数值,它的取值范围在0到1之间。
随机变量是将随机事件映射到实数的函数,它可以是离散型的,也可以是连续型的。
随机变量的分布描述了随机变量的取值与其对应的概率之间的关系。
计数原理在概率论中扮演着非常重要的角色。
它包括了加法法则和乘法法则两个基本原理。
加法法则适用于两个事件的并集,它等于两个事件的概率之和减去两个事件的交集的概率。
乘法法则适用于两个事件的交集,它等于第一个事件发生的概率乘以在第一个事件发生的条件下,第二个事件发生的概率。
概率是描述随机事件发生的可能性的数值。
通常,概率可以通过实验或观察事件发生的频率来估算。
概率的取值范围在0到1之间,概率为0表示事件不可能发生,概率为1表示事件一定会发生。
概率可以通过数学的方法来计算,例如,利用计数原理、排列组合等方法。
随机变量是将随机事件映射到实数的函数。
它可以是离散型的,也可以是连续型的。
离散型随机变量取有限或可数个值,并且每个值有一个对应的概率。
离散型随机变量的概率分布可以用概率质量函数来描述。
连续型随机变量可以取任意实数值,其概率分布可以用概率密度函数来描述。
概率密度函数是一个非负函数,它满足积分的性质。
随机变量的分布是描述随机变量取值与其对应的概率之间的关系。
离散型随机变量的分布称为概率分布,而连续型随机变量的分布称为概率密度分布。
常见的离散型随机变量有伯努利分布、二项分布、泊松分布等,常见的连续型随机变量有均匀分布、正态分布、指数分布等。
这些分布在概率论和统计学中都有广泛的应用。
总结起来,计数原理、概率、随机变量及其分布是概率论中的基本概念和工具。
它们用于描述和计算随机事件的可能性,以及随机变量取值与概率之间的关系。
理解和掌握这些概念和工具对于进一步研究概率论和统计学非常重要。
届高考数学大一轮总复习 第九章 计数原理、概率、随机变量及其分布 9.7 离散型随机变量及其分布列课
变式训练1 (1)随机变量X的分布列如下:
X
-1
0
1
P
a
b
c
2 其中a,b,c成等差数列,则P(|X|=1)=____3____。
解析 由题意知2a+b=b+a+c=c,1,
则 2b=1-b,则 b=31,a+c=23,
所以 P(|X|=1)=P(X=-1)+P(X=1)=a+c=32。
(2)在例1(2)中条件不变的情况下,求Y=2X+1的分布列。 解 列表
X
0
1
2342Fra bibliotek+11
3
5
7
9
∴P(Y=1)=P(X=0)=0.2,
P(Y=3)=P(X=1)=0.1,
P(Y=5)=P(X=2)=0.1,
P(Y=7)=P(X=3)=0.3,
P(Y=9)=P(X=4)=0.3。
因此,Y=2X+1的分布列为
Y
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
考点二 离散型随机变量的分布列
X
1
2
3
4
P
1 6
1
1
3
6
p
则 p=( )
1 A.3
解析
1
1
1
B.2
C.4
D.6
由概率分布列的性质可知16+13+16+p=1,解得 p=13。
答案 A
3.袋中装有10个红球、5个黑球。每次随机抽取1个球后,若取得黑球
则另换1个红球放回袋中,直到取到红球为止。若取球的次数为X,则表示
“放回5个红球”事件的是( )
基础自测
2015届高考数学(人教,理科)大一轮配套练透:第9章 计数原理与概率、随机变量及其分布 第1节
[课堂练通考点]1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.2.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为()A.6,8 B.6,6C.5,2 D.6,2解析:选A从甲地经乙地到丙地,分两步:第1步,从甲地到乙地,有3条公路;第2步,从乙地到丙地,有2条公路.根据分步乘法计数原理,有3×2=6种走法.从甲地到丙地,分两类:第1类,从甲地经乙地到丙地,有6种走法;第2类,从甲地不经过乙地到丙地,有2条水路,即有2种走法.根据分类加法计数原理,有6+2=8种走法.3.(2014·临沂模拟)如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是()A.16 B.32C.48 D.64解析:选C每四个小方格(2×2型)中有“L”型图案4个,共有2×2型小方格12个,所以共有“L”型图案4×12=48(个).4.(2013·济南模拟)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.5.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.[课下提升考能]第Ⅰ组:全员必做题1.(2014·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()A.16种B.18种C.37种D.48种解析:选C三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60 B.48C.36 D.24解析:选B长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12(个).故共有36+12=48(个).3.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A.1 260种B.2 025种C.2 520种D.5 040种解析:选C第一步,从10人中选派2人承担任务甲,有C210种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.4.将甲、乙、丙、丁四名实习老师分到三个不同的班,要求每个班至少分到一名老师,且甲、乙两名老师不能分到同一个班,则不同分法的种数为()A.28 B.24C.30 D.36解析:选C法一:分成两种情况,①甲和丙丁中的一人被分到同一个班或乙和丙丁中的一人被分到同一个班共有2C12A33=24种分法;②丙和丁两人被分到同一个班共有A33=6种分法.于是所求的分法总数为24+6=30.法二:将4名老师分到3个不同的班,有C24C13A22,甲、乙两名老师分到同一个班有C13 A22.∴满足要求的分法有C24C13A22-C13A22=30.5.(2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.6.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.7.(2014·南充模拟)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A.6种B.8种C.12种D.48种解析:选D从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(4+4)×2=16种不同的方法,同理,若先游览B景点,有16种不同的方法,若先游览C景点,有16种不同的方法,因而所求的不同游览线路有3×16=48种.8.(2013·深圳调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.9.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有________种不同的选法.解析:“完成这件事”需选出男、女队员各一人,可分两步进行:第一步选一名男队员,有5种选法;第二步选一名女队员,有4种选法,共有5×4=20(种)选法.答案:2010.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析:当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12个.答案:1211.(2013.沈阳模拟)三边长均为正整数,且最大边长为11的三角形的个数是________.解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,...,11,有11个三角形;当y取10时,x可取2,3, (10)有9个三角形;…;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:3612.(2014·泉州质检)如图所示,一环形花坛分成A,B,C,D四块,现有四种不同的花供选种,要求在每块花坛里种一种花,且相邻的两块花坛里种不同的花,则不同的种法共有________种.解析:法一:按所种花的品种多少分成三类:种两种花有A24种种法;种三种花有2A34种种法;种四种花有A44种种法.所以不同的种法共有A24+2A34+A44=84种.法二:按A-B-C-D的顺序种花,可分A,C种同一种花与不种同一种花两种情况,共有4×3×(1×3+2×2)=84种不同的种法.答案:84第Ⅱ组:重点选做题1.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有A33=6种不同的放法,根据分步乘法计数原理得,3×3×2×1=18种不同方法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.。
2024届高考数学大一轮复习配套讲义第九章计数原理与概率随机变量及其分布
2024届高考数学大一轮复习配套讲义第九章计数原理与概率随机变量及其分布一、计数原理与概率计数原理是概率论的基础,它通过数学方法统计事件发生的可能性。
常用的计数原理有排列、组合、分支法则等。
1.排列排列是从一组元素中选择若干个元素进行排列,排列可以有重复,也可以没有重复。
排列有两种情况,一种是从n个元素中选取m个进行排列,这种情况下,排列数用P(n,m)表示,计算公式为P(n,m)=n!/(n-m)!;另一种是从n个元素中选取n个进行排列,这种情况下,排列数用P(n,n)表示,计算公式为P(n,n)=n。
2.组合组合是从一组元素中选择若干个元素进行组合,组合不考虑排列顺序,只考虑元素的选取。
从n个元素中选取m个进行组合,组合数用C(n,m)表示,计算公式为C(n,m)=n!/[(n-m)!*m!]。
3.分支法则分支法则是指当一件事情分为若干个步骤时,每个步骤的选择数目是相互独立的,那么整个事情的选择数目就等于每个步骤的选择数目的乘积。
1.随机变量随机变量是概率论中的重要概念,用来描述随机事件的数量特征。
随机变量可以是离散的,也可以是连续的。
离散随机变量取有限或可数个值,连续随机变量取无限个值。
2.离散随机变量的分布列对于离散随机变量X,它的取值用x1、x2、..表示,概率用P(X=xi)表示,离散随机变量的概率分布列可以通过列出所有可能取值和对应的概率进行计算。
3.连续随机变量的密度函数对于连续随机变量X,它的取值无限多,因此不能列出所有可能取值和对应的概率。
连续随机变量的概率可以使用密度函数描述,密度函数是一个非负函数,且积分等于1、连续随机变量的概率可以通过概率密度函数在一些区间上的积分进行计算。
三、常见的离散分布1.二项分布二项分布是一种离散分布,它描述了n个独立重复试验中成功次数的概率分布。
记为B(n,p),其中n表示试验次数,p表示每次试验成功的概率。
二项分布的概率质量函数为P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中X表示成功次数。
计数原理概率随机变量及其分布知识点易错点总结高考三轮复习冲刺
计数原理、概率、随机变量及其分布一、两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
3.两个计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事。
注意:分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终。
(1)分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类。
(2)分步乘法计数原理中,各个步骤中的方法相互依存,步与步之间“相互独立,分步完成”。
【重点难点易错点】1.根据题目特点恰当选择一个分类标准。
分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置。
2.分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复。
3.分类时除了不能交叉重复外,还不能有遗漏。
4.一类元素允许重复选取的计数问题,可以采用分步乘法计数原理来解决,关键是明确要完成的一件事是什么。
用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据。
5.与数字有关的问题常见的有以下4类:①组成的数为“奇数”“偶数”“被某数整除的数”;②在某范围内的数;③各数字的和具有某种特征;④各数字满足某种关系。
6.涂色问题一般综合利用两个计数原理求解,但也有两种常用方法:按区域的不同,以区域为主分步计数,用分步乘法计数原理分析;以颜色为主分类讨论,用分类加法计数原理分析。
二、排列与组合1.两个概念(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
计数原理概率随机变量及其分布总结
计数原理概率随机变量及其分布总结计数原理是一种概率理论中的基本原理,用于计算一个事件集合中具有某些性质的元素的数量。
在概率论中,计数原理用于确定样本空间中每个事件的概率,从而计算总体的概率。
计数原理包括排列、组合和多重集合。
排列是指从一个集合中选取若干元素,按照一定的顺序进行排列的方法数,可以表示为n!/(n-k)!。
组合是指从一个集合中选取若干元素,不考虑它们的排列顺序的方法数,可以表示为n!/[(n-k)!k!]。
多重集合是指一个集合中每个元素出现的次数不限,选取若干元素的组合总数。
概率随机变量是指随机试验中,对于每一个结果赋予一个数字的函数。
它可以是离散型随机变量或连续型随机变量。
离散型随机变量是指随机变量只能取到有限个或可数个值的情况,如掷骰子的点数;连续型随机变量是指随机变量可以取到无限个值的情况,如身高、体重等。
概率分布是指随机变量取不同值时,对应的概率值的分布情况。
常见的离散型概率分布有伯努利分布、二项分布、泊松分布等;常见的连续型概率分布有正态分布、指数分布、卡方分布等。
伯努利分布是指只有两种结果的随机试验,成功的概率为p,失败的概率为1-p。
其概率分布函数为f(x) = p^x(1-p)^(1-x),其期望为E(x) = p,方差为Var(x) = p(1-p)。
二项分布是指进行n次相互独立的伯努利试验,每次试验的成功概率为p,失败概率为1-p,成功的次数为X,则X的概率分布函数为f(x) = C(n,x)p^x(1-p)^(n-x),其期望为E(x) = np,方差为Var(x) = np(1-p)。
泊松分布是指某个时间段内某个事件发生的次数,假设每个事件发生的概率相等,但是发生次数是不确定的,符合泊松分布。
其概率分布函数为f(x) = e^(-λ)λ^x/x!,其中λ为事件发生的平均次数,其期望为E(x) = λ,方差为Var(x) = λ。
正态分布是指连续型随机变量最常用的分布,其概率密度函数为f(x) = 1/(σ√(2π))e^-((x-μ)^2/2σ^2),其中μ为期望,σ为标准差,其期望和方差分别为E(x) = μ,Var(x) = σ^2。
计数原理与概率统计——随机变量及其分布——高中数学通用版一轮复习课件
300 150
P A2 P A1 P A3 ,
一等奖为两个汽车模型的外观与内饰都异色,二等奖为两个汽车模型的外观
与内饰均同色,三等奖为两个汽车模型仅外观或内饰同色. X 的分布列如表:
X
150
300
600
77
49
4
P
150
150
25
E( X ) 150 77 300 49 600 4 271.
变式训练
变式训练
(1)由题意得, P(B) 2 3 1 , P( A) 8 2 2 , P( AB) 2 ,
25 5
25 5
25
2
则 P(B∣A)
P( AB) P( A)
25 2
1 .
5
5
P(AB) P(A) P(B) ,
事件 A 和事件 B 独立.
(2)记外观与内饰均同色为事件 A1 ,外观与内饰都异色为事件 A2 ,仅外观或仅内
外观,事件 B 为小明取到的模型为米色内饰,求 P(B) 和 P(B | A) ,并据此判断事件 A
和事件 B 是否独立. (2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人一次性从 25 个汽车模型编 号中选取两个,给出以下抽奖规则:①选到的两个模型会出现三种结果,即外观和 内饰均同色、外观和内饰都异色以及仅外观或仅内饰同色;②按结果的可能性大小 设置奖项,概率越小奖项越高;③该抽奖活动的奖金金额为一等奖 600 元、二等奖 300 元、三等奖 150 元.请你分析奖项对应的结果,设 X 为奖金金额,写出 X 的分布 列,并求出 X 的数学期望.
考点4:条件概率
知识梳理
1.条件概率
一般地,设
A
,
B
2017版大一轮复习讲义课件 第九章 计数原理、概率、随机变量及其分布 第1讲
第十页,编辑于星期六:三点 七分。
4.(选修 2-3 P10 练习 T1 改编)乘积(a+b+c)(d+e+f+h)·(i + j+ k+ l+m )展开后共有 ___6_0____项. 解析:3×4×5=60.
第十一页,编辑于星期六:三点 七分。
5.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本 不同的数学书,第 3 层放有 6 本不同的体育书.从书架上任 取 1 本书,不同的取法数为___1_5____,从第 1,2,3 层分别 各取 1 本书,不同的取法数为__12_0_____. 解析:由分类加法计数原理知,从书架上任取 1 本书,不同 的取法总数为 4+5+6=15.由分步乘法计数原理知,从 1, 2,3 层分别各取 1 本书,不同的取法总数为 4×5×6=120.
合 2.理解组合的概念及组合数公式,并能利用公式
解决一些简单的实际问题.
二项式定 会用二项式定理解决与二项展开式有关的简单问
理 题.
随机事件 的概率
1.了解随机事件发生的不确定性和频率的稳定性, 了解概率的意义以及频率与概率的区别. 2.了解两个互斥事件的概率加法公式.
第二页,编辑于星期六:三点 七分。
A.72 种 C.24 种
B.48 种 D.12 种
第二十五页,编辑于星期六:三点 七分。
[解析](1)由分步乘法计数原理知:用 0,1,…,9 十个数字 组成三位数(可有重复数字)的个数为 9×10×10=900,组成 没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252. (2)法一:首先涂 A 有 4 种涂法,则涂 B 有 3 种涂法,C 与 A, B 相邻,则 C 有 2 种涂法,D 只与 C 相邻,则 D 有 3 种涂 法,所以共有 4×3×2×3=72 种涂法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章⎪⎪⎪ 计数原理与概率、随机变量及其分布第一节 分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.[小题体验]1.(教材习题改编)某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为( )A .504B .210C .336D .120解析:选A 分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.(教材习题改编)若给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G ,或U ~Z ,后两个要求用数字1~9.则最多可以给________个程序模块命名.答案:1 0533.(教材习题改编)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.答案:91.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[小题纠偏]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).考点一分类加法计数原理(基础送分型考点——自主练透)[题组练透]1.(易错题)(2016·铜梁第一中学月考)如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:选C当重复数字是1时,有C13·C13;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有()A.30种B.31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C25=20种;第二类,三人拿对:C35=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O 和A→C→B→O 2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:5[谨记通法]利用分类加法计数原理解题时2个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法计数原理(重点保分型考点——师生共研)[典例引领]已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则:(1)P可表示平面上________个不同的点.(2)P可表示平面上________个第二象限的点.解析:(1)确定平面上的点P(a,b)可分两步完成:第1步,确定a的值,共有6种方法;第2步,确定b的值,也有6种方法.根据分步乘法计数原理,得到平面上的点的个数是6×6=36.(2)确定第二象限的点,可分两步完成:第1步,确定a,由于a<0,所以有3种方法;第2步,确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.答案:(1)36(2)6[由题悟法]利用分步乘法计数原理解题时3个注意点(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[即时应用]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160B.720C.240 D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6个偶函数.答案:18 6考点三两个原理的应用(常考常新型考点——多角探明)[命题分析]两个原理的常见命题角度有:(1)涂色问题;(2)几何问题;(3)集合问题.[题点全练]角度一:涂色问题涂色问题大致有两种解答方案:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数.1.(1)如图,用6种不同的颜色把图中A,B,C,D4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种(用数字作答).(2)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.解析:(1)从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480种涂色方法.(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案:(1)480(2)260角度二:几何问题主要与立体几何、解析几何相结合考查.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10解析:选C分两类情况讨论:第一类,直线a分别与直线b上的8个点可以确定8个不同的平面;第二类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.角度三:集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有{}a1,a2,a3,…,a n的子集有2n个,真子集有2n-1个.3.(2015·保定调研)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x ∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.解析:当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况;所以满足题意的“子集对”共有7+3+1+3+3=17(个).答案:17[方法归纳]两个原理综合应用的1个关键点解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.一抓基础,多练小题做到眼疾手快1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10 D.6解析:选B当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.2.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.3.某班班干部有5名男生、4名女生,从9人中选1人参加某项活动,则不同选法的种数为()A.9 B.5C.4 D.72解析:选A分两类:一类从男生中选1人,有5种方法;另一类是从女生中选1人,有4种方法.因此,共有5+4=9种不同的选法.4.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.答案:185.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40二保高考,全练题型做到高考达标1.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).2.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12(种)情形.所有可能出现的情形共有2+6+12=20(种).3.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).4.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).5.从集合{1,2,3,4,…,10}中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:选A先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可.故共可组成2×2×2×2×2=32(个).6.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.解析:按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步乘法计数原理,共有5×4×3×3=180(种)不同的涂色方法.答案:1807.在2014年南京青奥会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.∴安排这8人的方式有24×120=2 880种.答案:2 8808.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有________场比赛.解析:小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类加法计数原理共有2C24+4=16场比赛.答案:169.集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,集合N最多有C35=10(个),其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是10-2=8.答案:810.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先从中确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解:幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众有30×29×20=17 400种;幸运之星在乙箱中抽取,有20×19×30=11 400种.共有不同结果17 400+11 400=28 800种.三上台阶,自主选做志在冲刺名校1.安排6名歌手演出顺序时,要求歌手乙、丙都排在歌手甲的前面或者后面,则不同排法的种数共有()A.180种B.240种C.360种D.480种解析:选D依题意,歌手乙、丙都排在歌手甲的前面的排法共有A22×4×5×6=240种,因此满足题意的不同排法共有240×2=480种.2.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.解析:四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共有3种可能.故不通的情况有24-3=13(种)可能.答案:133.为参加2014年云南昭通地震救灾,某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解:在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C17种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A27种抽调方法;一类是从3个车队中各抽调1辆,有C37种抽调方法.故共有C17+A27+C37=84种抽调方法.第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质[小题体验]1. (教材习题改编)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B 可以不相邻),那么不同的排法共有()A .24种B .60种C .90种D .120种解析:选B 可先排C ,D ,E 三人,共A 35种排法,剩余A ,B 两人只有一种排法,由分步乘法计数原理满足条件的排法共A 35=60(种).2.(教材习题改编)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有( )A .12种B .16种C .24种D .48种解析:选C 依题意得知,满足题意的选法共有C 14·C 13·C 12=24种. 3.(教材习题改编)已知1C m 5-1C m 6=710C m 7,则C m 8=________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z ,m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28. 答案:281.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n 时易错算为n (n -1)(n -2)…(n -m ).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[小题纠偏]1.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1),∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或x =23(舍去),∴x =5. 答案:52.某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.(用数字作答)解析:法一:依题意可得C 12×C 34+C 22×C 24=8+6=14,故满足要求的方案有14种.法二:6人中选4人的方案有C 46=15种,没有女生的方案只有1种,所以满足要求的方案有14种.答案:14考点一排列问题(基础送分型考点——自主练透)[题组练透]1.(2015·山西模拟)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种解析:选B由题知,不同的座次有A22A44=48种.2.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.360解析:选C首先应考虑“0”,当0排在个位时,有A29=9×8=72(个),当0排在十位时,有A14A18=4×8=32(个).当不含0时,有A14·A28=4×8×7=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).3.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.解析:(捆绑法)首先排两个奇数1,3有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种方法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.答案:8[谨记通法]1.解决排列问题的4种方法2.解决排列类应用题的3种策略(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(2)分排问题直排法处理.(3)“小集团”排列问题采用先集中后局部的处理方法.考点二组合问题(重点保分型考点——师生共研)[典例引领]1.(2016·山师大附中摸底)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为()A.360B.520C.600 D.720解析:选C根据题意,分2种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480种情况;若甲、乙两人都参加,有C22·C25·A44=240种情况,其中甲、乙相邻的有C22·C25·A33·A22=120种情况.则不同的发言顺序的种数为480+240-120=600.2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法C14C212=264种.第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208=472种.答案:472[由题悟法]1.解决组合应用题的2个步骤第一步,整体分类要注意分类时,不重复不遗漏,用到分类加法计数原理;第二步,局部分步用到分步乘法计数原理.2.含有附加条件的组合问题的2种方法通常用直接法或间接法,应注意“至少”“最多”“恰好”等词的含义的理解,对于涉及“至少”“至多”等词的组合问题,既可考虑反面情形即间接求解,也可以分类研究进行直接求解.[即时应用]1.(2016·大连模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种解析:选C由题知有2门A类选修课,3门B类选修课,从中选出3门的选法有C35=10种.两类课程都有的对立事件是选了3门B类选修课,这种情况只有1种.满足题意的选法有10-1=9种.2.四面体的一个顶点为A,从其他顶点与各棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有()A.30种B.33种C.36种D.39种解析:选B分两种情况:顶点A与各棱的中点共面的有3个侧面,每个侧面中有5个点,有C35种,3个侧面有3×C35种;3个点不在同一个表面的有3个,共有3×C35+3=33种取法.考点三分组分配问题(常考常新型考点——多角探明)[命题分析]分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,应注意只要有一些组中元素的个数相等,就存在均分现象.常见的命题角度有:(1)整体均分问题;(2)部分均分问题;(3)不等分问题.[题点全练]角度一:整体均分问题1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法. 答案:90角度二:部分均分问题2.(2016·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:选C 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22;第二步将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.角度三:不等分问题 3.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.答案:360[方法归纳]解决分组分配问题的3种策略(1)整体均分解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.(2)部分均分解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(3)不等分组只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.一抓基础,多练小题做到眼疾手快1.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.10种B.9种C.12种D.8种解析:选C依题意,满足题意的不同安排方案共有C12·C24=12种.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有()A.12种B.10种C.8种D.6种解析:选D∵甲、乙两人被分配到同一展台,∴可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种,∴甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22×2=20种.4.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有()A.9个B.24个C.36个D.54个解析:选D选出符合题意的三个数共有C13C23种方法,这三个数可组成C13C23A33=54个没有重复数字的三位数.5.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个。