数学知识点苏科版七年级下数学期末模拟试卷(5)-总结
苏科版2023-2024学年七年级数学下册期末测试卷(解析版)
苏科版2023-2024学年七年级数学下册期末测试卷一、单选题1.下列计算正确的是( )A .B .C .D .【答案】C【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解析】解:A 、,故A 错误;B 、,故B 错误;C 、,故C 正确;D 、,故D 错误.故选C .【点睛】本题考查同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.2.不等式的解集是( )A .B .C .D .3.正多边形的一个内角等于,则该多边形是正( )边形.A .8B .9C .10D .11【答案】A【分析】首先根据正多边形的内角,计算出正多边形的一个外角,然后根据多边形的外角和等于,用824a a a ÷=236a a a ⋅=()236a a =()32628a a -=826a a a ÷=235a a a ⋅=()236a a =()32628a a -=-23x -<23x <-23x >-32x <-32x >-135︒360︒除以一个外角的度数,即可得出正多边形的边数.【解析】解:∵正多边形的一个内角等于,∴正多边形的一个外角为:,∴,则这个多边形是正八边形.故选:A【点睛】本题考查了多边形的内角和外角,解本题的关键在熟练掌握多边形的内角与外角互补,多边形的内角和为.4.如图是我们学过的用直尺和三角尺画平行线的方法示意图,其画图原理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同旁内角互补【答案】A 【分析】由已知可知∠DPF =∠BAF ,从而得出同位角相等,两直线平行.【解析】如图,根据题意可知∠DPF=∠BAF ,∴(同位角相等,两直线平行).故选A .【点睛】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.5.若关于x ,y 的二元一次方程组的解满足,则k 的值为( )360︒135︒18013545︒-︒=︒360458÷=360︒//AB PD 24133x y k x y -=-⎧⎨+=⎩5x y -=A .B .-1C .D .6.若是完全平方式,则m 的值是( ).A .6或B .10或C .或10D .或6【答案】C 【分析】本题考查了完全平方式:利用完全平方公式得到或,从而得到,然后解关于的方程.【解析】解:是一个完全平方式,或,,或.故选:C .7.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x 、y 的二元一次方程组中符合题意的是( )13-83-113-()2216x m x +-+6-10-6-10-22(2)16(4)x m x x +-+=+22(2)16(4)x m x x +-+=-28m -=±m 2(2)16x m x +-+ 22(2)16(4)x m x x ∴+-+=+22(2)16(4)x m x x +-+=-28m ∴-=±10m ∴=6-A .B .C .D .8.如图,平分,点E ,F 分别在和上,平分交于点G ,.下列结论:①;②;③;④,其中所有正确结论的序号是( )A .①②B .②③C .①③D .②④【答案】C 【分析】①根据平行线的性质得出,根据角平分线的定义得出,即可证明①正确;②根据与不一定相等,得出,根据,得出,判断②错误;③设,,得出,求出,根据999114100097x y x y +=⎧⎪⎨+=⎪⎩100011499997x y x y +=⎧⎪⎨+=⎪⎩999971000114x y x y +=⎧⎪⎨+=⎪⎩100097999114x y x y +=⎧⎪⎨+=⎪BD ABC ∠BA BC EG AEF ∠BD ED BC ∥EBD EDB ∠=∠CBD DEG ∠=∠2BFE BGE ∠=∠2FEG D ∠=∠EDB DBC ∠=∠EBD DBC ∠=∠DG EG BDE DEG ∠≠∠CBD BDE ∠=∠CBD DEG ∠≠∠CBD x ∠=DEG y ∠=2AED ABC x ∠=∠=2AEG GEF x y ∠=∠=+,得出,根据,得出,可判断③正确;④根据,,得出,判断④错误.【解析】解:①∵,∴,∵平分,∴,∴,故①正确;②∵与不一定相等,∴,∵,∴,故②错误;③设,,则,∵,∴,∵平分,∴,∵,∴,∵,∴,故③正确;④∵,,∴,故④错误;综上分析可知,正确的是①③,故C 正确.故选:C .【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形外角的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.BGE D DEG ∠=∠+∠BGE x y ∠=+ED BC ∥()22222BFE DEF x y y x y x y BGE ∠=∠=++=+=+=∠2FEG x y ∠=+D x ∠=2FEG D ∠≠∠ED BC ∥EDB DBC ∠=∠BD ABC ∠EBD DBC ∠=∠EBD EDB ∠=∠DG EG BDE DEG ∠≠∠CBD BDE ∠=∠CBD DEG ∠≠∠CBD x ∠=DEG y ∠=EBD DBC D x ∠=∠=∠=ED BC ∥2AED ABC x ∠=∠=EG AEF ∠2AEG GEF x y ∠=∠=+BGE D DEG ∠=∠+∠BGE x y ∠=+ED BC ∥()22222BFE DEF x y y x y x y BGE ∠=∠=++=+=+=∠2FEG x y ∠=+D x ∠=2FEG D ∠≠∠二、填空题9.因式分解: .【答案】【分析】本题主要考查利用提取公因式和平方差公式进行因式分解,首先提取公因式再利用平方差公式进行因式分解即可.【解析】解:,故答案为:.10.把命题“等角的补角相等”改写成“如果……,那么……”的形式: 【答案】如果两个角相等,那么这两个角的补角相等【分析】本题考查了命题的改写;根据命题的条件与结论即可改写.【解析】解:命题“等角的补角相等”改写成“如果……,那么……”的形式为:如果两个角相等,那么这两个角的补角相等;故答案为:如果两个角相等,那么这两个角的补角相等;11.若方程是关于,的二元一次方程,则 .【答案】5【分析】先根据二元一次方程的定义列出关于m 、n 的方程组,求出m 、n 的值,再代入进行计算即可.【解析】解:∵方程是关于x ,y 的二元一次方程,∴ ,解得,∴.故答案为:5.【点睛】本题考查的是二元一次方程的定义和解二元一次方程组,根据题意列出关于m 、n 的方程组,求出m 、n 的值是解答此题的关键.12.如图,将沿方向平移cm 得到,若的周长为cm ,则四边形的周长为 cm .39m m -=()()33m m m +-329(9)(3)(3)m m m m m m m -=-=+-()()33m m m +-322322m n m n x y ++--=x y m n +=m n +322322m n m n x y ++--=31221m n m n +=⎧⎨+-=⎩72m n =⎧⎨=-⎩725m n +=-=ABC BC 4DEF ABC 20ABFD【答案】【分析】本题考查了平移的性质,熟悉掌握平移的性质是解题的关键.根据平移的性质得到,,,再利用周长的运算方法求解即可.【解析】解:根据题意,将周长为的沿方向平移得到,∴,,;又∵,∴四边形的周长,故答案为:.13.若不等式组有3个整数解,则a 的取值范围是 .【答案】【分析】可求不等式组的解集为,从而可求整数解为、、,即可求解.【解析】解:由题意得,不等式组有整数解,,有个整数解,整数解为、、,.故答案:.【点睛】本题考查了由一元一次不等式组的整数解个数求参数取值范围,掌握求法是解题的关键.14.一把直尺和一个含,角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于F ,A 两点,另一边与三角板的两直角边分别交于D ,E 两点,且,那么的大小为 .284AD CF ==BF BC CF =+DF AC =20ABC BC 4DEF 4AD CF ==BF BC CF =+DF AC =20AB BC AC ++=ABFD 4428AD AB BF DF AB BC AC =+++=++++=2832x a x >⎧⎨-≤⎩23a ≤<5a x <≤3455x a x >⎧⎨≤⎩ 5a x ∴<≤ 3∴345∴23a ≤<23a ≤<30︒60︒50CED ∠=︒BAF ∠【答案】/10度【分析】根据题意得出,根据两直线平行同位角相等,得出,最后根据,即可求解.【解析】解:根据题意可得:,∵,,∴,∵,∴.故答案为:.【点睛】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.若的乘积中不含x 的一次项,则= .16.如图,把图(a )称为二环三角形,它的内角和∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图(b )称为二环四形边,它的内角和∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1⋯⋯;依此规律,请你探究:二环n 边形的内角和为 度.(用含n 的式子表示)10︒60,BAC AF DE ∠=︒∥50C CAF ED ∠=︒∠=BAC CAF BAF ∠=-∠∠60,BAC AF DE ∠=︒∥50CED ∠=︒AF DE ∥50C CAF ED ∠=︒∠=60BAC ∠=︒605010BAC CAF BAF ∠-∠=︒-︒=︒∠=10︒()()225x x ax +-+a【答案】360(n-2)【分析】连接BB1,可得∠A1+∠C=∠BB1A1+∠B1BC,再根据四边形的内角和公式即可求解;AA1之间添加两条边,可得∠B1+∠C1+∠D1=∠EAD1+∠AEA1+∠EA1B1,再根据边形的内角和公式即可求解;二环n 边形添加(n-2)条边,再根据多边形的内角和公式即可求解.【解析】解:如图(a),连接BB1,则∠A1+∠C=∠BB1A1+∠B1BC,∠A+∠ABC+∠C+∠A1+∠A1B1C1+∠C1=∠A+∠ABB1+∠BB1C1+∠C1=360度;如图(b),AA1之间添加两条边,可得∠B1+∠C1+∠D1=∠EAD1+∠AEA1+∠EA1B1则∠BAD1+∠B+∠C+∠D+∠DA1B1+∠B1+∠C1+∠D1=∠EAB+∠B+∠C+∠D+∠DA1E+∠E=720°;二环n边形添加(n-2)条边,二环n边形的内角和成为(2n-2)边形的内角和.其内角和为180(2n-4)=360(n-2)度.故答案为:360(n -2).【点睛】本题考查了多边形内角和定理:(n -2)•180°(n ≥3)且n 为整数),正确画出辅助线是解题关键.三、解答题17.计算:(1);(2).18.分解因式:(1);(2).【答案】(1)(2)()()2321222-⎛⎫-÷-⨯- ⎪⎝⎭()()3224232a a a a ⋅+---21832a -269y xy x y -+()()23434a a -+()213y x -【分析】(1)先提取公因式2,再运用平方差公式因式分解即可;(1)先提取公因式y ,再运用完全平方公式因式分解即可.【解析】(1)解:,,.(2)解:,,.【点睛】本题主要考查了因式分解,掌握运用提取公因式和公式法进行因式分解是解答本题的关键.19.(1)解方程组;(2)解不等式组,并写出它的整数解.21832a -()22916a =-()()23434a a =-+269y xy x y -+()2169y x x =-+()213y x =-23324x y x y -=⎧⎨-=⎩()2112151132x x x x ⎧--≥⎪⎨-+-<⎪⎩∴不等式组的解集为,∴不等式组的整数解为,.【点睛】本题主要考查解二元一次方程组,解一元一次不等式组的综合,掌握以上解方程的方法,运算法则是解题的关键.20.已知:,求的值.【答案】【分析】本题考查了整式的混合运算化简求值,完全平方公式,准确熟练地进行计算是解题的关键.利用完全平方公式,多项式乘多项式的法则进行计算,然后把代入化简后式子进行计算,即可解答.【解析】解:,,,当时,原式,的值为.21.为开展好“每天锻炼一小时”体育活动,学校准备购进一批排球和篮球.已知2个排球和1个篮球共需220元,1个排球和3个篮球共需410元.求一个排球和一个篮球的售价各是多少元?【答案】一个排球的售价是50元,一个篮球的售价是120元.【分析】本题主要考查了二元一次方程组的应用,理解题意,弄清数量关系是解题关键.设一个排球的售价是元,一个篮球的售价是元,根据题意列出二元一次方程组,求解即可获得答案.【解析】解:设一个排球的售价是元,一个篮球的售价是元,根据题意,可得,解得.11x -<≤012310x x --=()()()21312x x x -+-+3--231x x -=()()()21312x x x -+-+()2233144x x x x x =+---++2233144x x x x x =+-----2265x x =--2310x x --= 231x x ∴-=∴231x x -=()2235215253x x =--=⨯-=-=-2(1)(31)(2)x x x ∴-+-+3-x y x y 22203410x y x y +=⎧⎨+=⎩50120x y =⎧⎨=⎩答:一个排球的售价是50元,一个篮球的售价是120元.22.已知方程的解x 为非正数,y 为负数.(1)求a 的取值范围;(2)在(1)的条件下,若不等式的解为,求整数a 的值.713x y a x y a +=--⎧⎨-=+⎩221ax x a +<+1x >∴整数a 的值为.【点睛】本题主要考查了解二元一次方程组和求不等式组的解集,解题的关键是掌握用消元法解二元一次方程组以及根据不等式的性质求不等式的解集.23.如图,在中,点,在边上,点在边上,,且.(1)求证:;(2)若平分,,求的度数.【答案】(1)见解析(2)【分析】本题考查了平行线的性质与判定,角平分线的定义,熟练掌握平行线的性质与判定是解题的关键.(1)根据平行线的性质可得,根据已知得出,即可得出,根据平行线的性质即可求解;(2)根据平行线的性质得出,根据角平分线的定义可得进而根据平行线的性质即可求解.【解析】(1)证明:,,,,,;(2)解:,,,平分,,由(1)知,1-ABC D E AB F AC EF ∥DC 12180∠+∠=︒A BDH ∠=∠CD ACB ∠30AFE ∠=︒BHD ∠60BHD ∠=︒2180FCD ∠+∠=︒1FCD ∠=∠DH ∥AC 30ACD AFE ∠=∠=︒223060ACB ACD ∠=∠=⨯︒=︒EF ∥DC 2180FCD ∴∠+∠=︒12180∠+∠=︒ 1FCD ∴∠=∠DH ∴∥AC A BDH ∴∠=∠EF ∥DC 30AFE ∠=︒30ACD AFE ∴∠=∠=︒CD ACB ∠223060ACB ACD ∴∠=∠=⨯︒=︒DH ∥AC.24.鸡兔同笼是同学们耳熟能详的问题,那么请大家研究一道新鸡兔同笼问题,阿凡提带了1500元去农场买鸡兔,鸡每只30元,兔每只20元.他发现有一笼鸡兔共有94只脚.(1)若鸡的的数量是m 只,则兔的数量是______(用含m 的代数式表示);(2)若笼中鸡兔不超过40只,则鸡最多是多少只?阿凡提带的钱够买这笼鸡兔吗?25.画图并填空:如图,方格纸中每个小正方形的边长都为1,的顶点都在方格纸的格点上,将经过一次平60BHD ACB ∴∠=∠=︒ABC ABC移,使点C 移到点的位置.(1)请画出;(2)在方格纸中,画出的高;(3)连接、,则这两条线段的关系是 ;(4)线段在平移过程中扫过区域的面积为 .【答案】(1)见解析(2)见解析(3)且(4)12【分析】(1)利用点和点的位置确定平移的方向与距离,然后根据此平移规律确定、的位置;(2)根据网格特点和三角形高线的定义作图;(3)根据平移的性质进行判断即可;(4)利用平行四边形的面积进行计算即可.【解析】(1)解:如图,根据此平移规律确定、,然后顺次连接,则即为所求;(2)解:如图,即为的高(3)解:如图,连接、,则且;C 'A B C ''' ABC CE AA 'BB 'AB AA BB ''∥AA BB ''=C C 'A 'B 'A 'B 'A B C ''' CE ABC AA 'BB 'AA BB ''∥AA BB ''=故答案为:且;(4)解:线段在平移过程中扫过区域为平行四边形,则面积.故答案为:12.【点睛】本题考查了作图平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a 的正方形中剪掉一个边长为b 的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中阴影部分面积为 ,图2中阴影部分面积为 ,请写出这个乘法公式 ;(2)应用(1)中的公式,完成下面任务:若m 是不为0的有理数,已知,,比较P 、Q 大小.(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x 的正方体挖去一个小正方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,写出一个代数恒等式 .AA BB ''∥AA BB ''=AB 3412=⨯=-()()222121P m m m m =++-+()()2211Q m m m m =++-+【答案】(1),,(2)(3)【分析】(1)根据图1中阴影部分的面积看作成两个正方形的面积差,图2中的阴影部分是长为,宽为的长方形,即可求得阴影部分的面积,从而可得到乘法公式;(2)利用作差法可得,根据,即可得出结果;(3)分别求出图3左右两侧图形的体积,即可求得恒等式.【解析】解:(1)由图可得,图1中,图2中,因此,乘法公式为,故答案为:,,;(2)∵,∵若m 是不为0的有理数,∴,即,∴;(3)∵图3左图的体积为,22a b -()()a b a b +-()()22a b a b a b+-=-P Q <()()311x x x x x -=+-()a b +()a b -2=3P Q m --230m -<22S a b =-阴影()()S a b a b =+-阴影()()22a b a b a b -=+-22a b -()()a b a b +-()()22a b a b a b -=+-()()()()2222=212111P Q m m m m m m m m -++-+-++-+()()222222=141m m m m +--++23m =-230m -<0P Q -<P Q <311=x x x x x x ⋅⋅-⨯⋅-图3右图的体积为,∴,故答案为:.【点睛】本题考查列代数式的应用,理解题意,正确列出代数式是解题的关键.27.【问题背景】中,是角平分线,点E 是边上的一动点.【初步探索】如图1,当点E 与点A 重合时,的平分线交于点O .(1)若,,则 ____________;(2)若,则___________;(用含m 的代数式表示)【变式拓展】当点E 与点A 不重合时,连接,设,.(1)如图2,的平分线交于点O .①当,时,____________;②用、的代数式表示____________.(2)如图3,的平分线与相交于点O ,与的平分线所在的直线相交于点F (点F 与点E 不重合),直接写出点F 在不同位置时与之间的数量关系.(用含、的代数式表示)()()11x x x +⋅⋅-()()311x x x x x -=+-()()311x x x x x -=+-ABC BC AB BED ∠BD 50BAC ∠=︒60ABC ∠=︒EOD ∠=︒C m ∠=︒EOD ∠=︒ED ADE α∠=ACB β∠=BED ∠BD 50α=︒80β=︒EOD ∠=︒αβEOD ∠=ACB ∠BD AED ∠F ∠COD ∠αβ②,,,,,,平分,平分,,ADE α∠= ACB β∠=CDG α∴∠=180ACG β∠=︒-180G CDG ACG βα∴∠=︒-∠-∠=-180180ABG BEG G αβ∴∠+∠=︒-∠=︒+-BD Q ABC ∠EO BED ∠11122ACF ACB β∴∠=∠=ADE ACF CHD ∠=∠+∠ CHD ACF αα∴∠=-∠=-,,,1122ACF ACB β∴∠=∠=12CKB A ACF A β∴∠=∠+∠=∠+12AKF A β∴∠=∠+180180AED A ADE ∠=︒-∠-∠=︒- 11。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .22.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .725.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 8.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 29.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 10.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 11.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .0 12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题13.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.14.若a m =5,a n =3,则a m +n =_____________.15.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.16.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .18.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.19.已知22a b -=,则24a b ÷的值是____.20.a m =2,b m =3,则(ab )m =______.21.若(x ﹣2)x =1,则x =___.22.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 23.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.24.若a m =2,a n =3,则a m +n 的值是_____.三、解答题25.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.26.因式分解:(1)3a x y y x ;(2)()222416x x +-.27.计算: (1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 28.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.29.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项) A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 30.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.31.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --32.如图,一个三角形的纸片ABC ,其中∠A=∠C ,(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)33.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?34.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量35.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D . 4.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.5.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .6.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.7.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A 、(a 2)3=a 6,故此选项错误;B 、a 8÷ a 2=a 6,故此选项错误;C 、(2a )3=8a 3,,故此选项错误;D 、a 2+ a 2=2 a 2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.9.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.11.D解析:D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.15.61°【分析】根据平行线的性质可得∠GEB的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】∠的度数,再根据角平分线的定义即得根据平行线的性质可得∠GEB的度数,进而得AEG答案.【详解】AB CD,解://∴∠=∠=︒,158GEB∴∠=︒-︒=︒.18058122AEGEF平分AEG∠,61AEF∴∠=︒.故答案为:61°.【点睛】本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.16.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.17.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m-1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2, ∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题19.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.20.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m =2,b m =3,所以(ab )m =a m •b m =2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.21.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.22.9【分析】根据题意直接将代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】解:将代入方程mx﹣y=7,得:m﹣2=7,解得m=9,故答案为:9.【点睛】本题主要考查二元解析:9【分析】根据题意直接将12xy=⎧⎨=⎩代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】解:将12x y =⎧⎨=⎩代入方程mx ﹣y =7,得:m ﹣2=7, 解得m =9,故答案为:9.【点睛】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.23.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.24.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m +n =a m •a n =2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m +n =a m •a n 是解题的关键;三、解答题25.(1)8×10+1=81;(2)2n (2n +1)+1=(2n +1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n 个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.26.(1)3xy a ;(2)()()2222x x -+. 【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a x y x y3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.27.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】 此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.28.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.29.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020=20214040. 【点睛】 本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.30.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.31.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.32.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A,由已知得∠A=∠C,于是得到∠DFE=∠C,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED(设为α),∠A′DE=∠ADE(设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C,∴∠DFE=∠C,∴BC∥DF;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1+∠2+2(∠ADE+∠AED)=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED+∠1=180°,2∠ADE-∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.33.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)8 4788(1)4n nn n+--⎧⎨+--≥⎩<①②由①得:12 n>19由②得:1202n ≤ ∴ 不等式组的解集是:111922≤<n 20 n 为正整数,20,n ∴=478158,m n ∴=+=15820638.∴-⨯=答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.34.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13∠N+∠PMH=180°. 【详解】(1)证明:∵∠1=∠BEF ,12180︒∠+∠=∴∠BEF+∠2=180°∴AB ∥CD.(2)解:12N AEM NFD ∠=∠-∠ 设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y过M 作MP ∥AB ,过N 作NQ ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.35.(1)7;(2)55a.【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2;=4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.36.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。
苏科七年级苏科初一数学下册期末测试题及答案(共五套)
苏科七年级苏科初一数学下册期末测试题及答案(共五套)一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠22.下列等式由左边到右边的变形中,属于因式分解的是( ) A .(a ﹣2)(a+2)=a 2﹣4 B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)3.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 4.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭5.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)26.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1 B .2x ﹣y =1C .11y x+= D .xy ﹣1=07.x 2•x 3=( ) A .x 5 B .x 6 C .x 8 D .x 9 8.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2569.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13 B .9 C .9- D .13-10.计算a 10÷a 2(a≠0)的结果是( ) A .5aB .5a -C .8aD .8a -11.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .12.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.15.多项式2412xy xyz +的公因式是______.16.若多项式29x mx ++是一个完全平方式,则m =______. 17.若x +3y -4=0,则2x •8y =_________.18.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.19.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.20.二元一次方程7x+y =15的正整数解为_____. 21.233、418、810的大小关系是(用>号连接)_____.22.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .三、解答题23.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.24.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+25.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.26.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知) ∴∠1=∠3,( ) 又∵∠1=∠2,(已知) ∴ =∠2,( ) ∴ ∥ ,( ) ∴∠AED = .( )27.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是:_____. (3)画出△ABC 的AB 边上的高CD ;垂足是D ; (4)图中△ABC 的面积是_____.28.将下列各式因式分解 (1)xy 2-4xy (2)x 4-8x 2y 2+16y 429.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .30.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据内错角相等,两直线平行即可得出结论. 【详解】 ∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.D解析:D 【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案. 【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确; 故选:D . 【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.5.D解析:D【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.6.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.D解析:D根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.9.A解析:A 【分析】 先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩,把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13. 故选:A . 【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.10.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.D解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同, 观察图形可知D 可以通过图案①平移得到. 故答案选:D. 【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.12.A解析:A 【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.二、填空题 13.104 【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104 【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.20cm . 【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解. 【详解】解:∵△ABE 向右平移2cm 得到△DCF, ∴D解析:20cm . 【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解. 【详解】解:∵△ABE 向右平移2cm 得到△DCF , ∴DF =AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF , =AB+BE+AE+AD+EF , =16+AD+EF , ∵平移距离为2cm , ∴AD =EF =2cm ,∴四边形ABFD 的周长=16+2+2=20cm . 故答案为20cm . 【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.【分析】根据公因式的定义即可求解. 【详解】 ∵=(y+3z ), ∴多项式的公因式是, 故答案为:. 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义. 解析:4xy【分析】根据公因式的定义即可求解. 【详解】∵2412xy xyz +=4xy (y+3z ), ∴多项式2412xy xyz +的公因式是4xy ,故答案为:4xy . 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.16.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.18.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.19.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.20.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.21.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2,∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.22.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.三、解答题23.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.24.(1)374-.(2)16x4−8x2+1.【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.25.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.26.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.27.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 28.(1)()4xy y -;(2)()()2222x y x y -+. 【分析】(1)提出公因式xy 即可得出答案; (2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.29.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.30.(1)∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD ;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE ,∠D=∠DPE ,即可得出∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,延长BP 交DC 于M ,由平行线的性质得出∠B=∠BMD ,即可得出∠BPD=∠B+∠D ;(2)由平行线的性质得出∠A ′BQ=∠BQD ,同(1)得:∠BPD=∠A ′BP+∠D ,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.。
苏科版七年级数学下册期末总复习各章节知识点整理-免费
第七章平面图形的认识(二)一、三线八角(同位角,内错角,同旁内角)平行线判定:(1)同位角相等两直线平行(2)内错角相等两直线平行(3)同旁内角互补两直线平行平行线性质:(4)两直线平行同位角相等(5)两直线平行内错角相等(6)两直线平行同旁内角互补二、平移:1、定义:在平面内,将某个图形沿某个方向移动一定距离2、性质特征:(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
三、三角形:(1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)(2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)(3)直角三角形的两个锐角互余(4)三角形的一个外角等于与它不相邻的两个内角之和(三角形一个外角大于任何一个与它不相邻的内角)(5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一(6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点(7)三角形的外角和是360°(8)等底等高的三角形面积相等(9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
(10)三角形具有稳定性。
四边形没有稳定性。
3、三角形的角平分线注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线2)三角形的角平分线必过顶点平分三角形的一内角4、三角形的中线注:1)三角形的中线必为线段 2)三角形的中线必平分对边5、三角形的高线必为线段四、多边形1、多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
2、n边形内角和为(n-2)×180°3、任意多边形的外角和为360°,注:多边形的外角和并不是所有外角的和。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠22.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)24.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 7.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .48.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6 B .3 C .2 D .10 10.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4 B .2± C .4± D .8± 11.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .712.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 14.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.()7(y x -+________ 22)49y x =-.17.已知x 2+2kx +9是完全平方式,则常数k 的值是____________. 18.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.19.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.21.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.22.若2a x =,5b x =,那么2a b x +的值是_______ ; 23.计算:x (x ﹣2)=_____ 24.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____.三、解答题25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.计算:(1)()2202011 3.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++-27.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。
新苏科七年级苏科初一数学下学期期末测试题及答案(共五套) word版
新苏科七年级苏科初一数学下学期期末测试题及答案(共五套) word 版一、选择题1.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .2.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .23.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .34.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=05.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°7.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .8.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩9.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 10.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( ) A .12B .12±C .6D .6± 11.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题13.计算:23()a =____________.14.计算:2202120192020⨯-=__________15.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.16.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.17.不等式1x 2x 123>+-的非负整数解是______. 18.已知5x m =,4y m =,则2x y m +=______________.19.因式分解:224x x -=_________.20.计算:x (x ﹣2)=_____21.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.22.计算:2m·3m=______. 三、解答题23.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+24.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.25.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .26.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN27.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.28.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.29.南山植物园中现有A ,B 两个园区.已知A 园区为长方形,长为(x +y)米,宽为(x -y)米;B 园区为正方形,边长为(x +3y)米.(1)请用代数式表示A ,B 两园区的面积之和并化简.(2)现根据实际需要对A 园区进行整改,长增加(11x -y)米,宽减少(x -2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C ,D 两种花投入的费用与吸引游客的收益如下表:C D 投入(元/米2)12 16 收益(元/米2) 18 26求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)30.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图所示图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.3.已知,则a2-b2-2b的值为A.4 B.3 C.1 D.04.下列方程组中,解是-51xy=⎧⎨=⎩的是()A.64x yx y+=⎧⎨-=⎩B.6-6x yx y+=⎧⎨-=⎩C.-4-6x yx y+=⎧⎨-=⎩D.-4-4x yx y+=⎧⎨-=⎩5.下列图形中,∠1和∠2是同位角的是()A.B.C.D.6.下列运算正确的是()A.a2·a3=a6B.a5+a3=a8C.(a3)2=a5D.a5÷a5=17.下列各式从左到右的变形,是因式分解的是()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2D.a2+4=(a+2)2-48.如图,在△ABC中,BC=6,∠A=90°,∠B=70°.把△ABC沿BC方向平移到△DEF 的位置,若CF=2,则下列结论中错误的是()A.BE=2 B.∠F=20°C.AB∥DE D.DF=69.一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7 B.8 C.9 D.1010.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140° 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 12.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.15.等式01a =成立的条件是________.16.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______17.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.18.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.19.二元一次方程7x+y =15的正整数解为_____.20.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.22.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.24.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题25.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.28.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.29.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?30.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.31.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.32.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.33.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5(3)x (x+7)-(x-3)(x+2)(4)(a-2b-c )(a+2b-c )34.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.35.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 36.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.C解析:C【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意; C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.5.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A 、B 、C 选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.6.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【分析】根据平移的性质可得BC=EF ,然后求出BE=CF .【详解】∵△ABC 沿BC 方向平移得到△DEF ,∴BC=EF ,∴BC-EC=EF-EC ,即BE=CF ,∵CF=2cm ,∴BE=2cm .∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB ∥DE ,∴∠F=20°;故选:D .【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.9.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】10.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.11.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 12.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 二、填空题13.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a .解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 16.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】 根据题意得:2121{030b a a b -=+=≠+≠, 解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.17.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x−4x−5=x−4x+4−4−5=(x−2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.18.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.19.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.20.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.21.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 22.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.24.15或22.5【分析】先由题意得出a,b的值,再推出射线AM绕点A顺时针先转动18秒后,AM转动至AM的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a,b的值,再推出射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.三、解答题25.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键. 27.2x 2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x 2-4x+4+2(x 2-2x-8)-(x 2-9)=x 2-4x+4+2x 2-4x-16-x 2+9=2x 2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.28.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.29.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.30.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x 的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a 2+6a ;(2)当a =2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.31.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.32.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线, ∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 33.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.34.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.35.(1)7;(2)55a .【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】 解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2; =4+4×1﹣1=4+4﹣1 =7;(2)2a 5﹣a 2•a 3+(2a 4)2÷a 3=2a 5﹣a 5+4a 8÷a 3=2a 5﹣a 5+4a 5=5a 5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.36.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.。
(完整word版)苏科版七年级数学下册期末总复习各章节知识点整理-免费
第七章平面图形的认识(二)一、三线八角(同位角,内错角,同旁内角)平行线判断:(1)同位角相等两直线平行(2)内错角相等两直线平行(3)同旁内角互补两直线平行平行线性质:(4)两直线平行同位角相等(5)两直线平行内错角相等(6)两直线平行同旁内角互补二、平移:1、定义:在平面内,将某个图形沿某个方向挪动必定距离2、性质特点:( 1)图形平移前后的形状和大小没有变化,不过地点发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同向来线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连结的线段平行且相等。
三、三角形:(1)三角形的随意两边之和大于第三边(由此得三角形的两边的差必定小于第三边)(2)三角形三个内角的和等于180 度(在三角形中起码有一个角大于等于60 度,也起码有一个角小于等于60 度)(一个三角形的 3 个内角中最罕有 2 个锐角)(3)直角三角形的两个锐角互余(4)三角形的一个外角等于与它不相邻的两个内角之和(三角形一个外角大于任何一个与它不相邻的内角)(5)等腰三角形的顶角均分线,底边的中线,底边的高重合,即三线合一(6)三角形的三条角均分线交于一点,三条高线的所在直线交于一点,三条中线交于一点(7)三角形的外角和是 360°(8)等底等高的三角形面积相等(9)三角形的随意一条中线将这个三角形分为两个面积相等的三角形。
(10)三角形拥有稳固性。
四边形没有稳固性。
3、三角形的角均分线注: 1)三角形的角均分线必为线段,而一个角的角均分线为一条射线2)三角形的角均分线必过极点均分三角形的一内角4、三角形的中线注: 1)三角形的中线必为线段2)三角形的中线必均分对边5、三角形的高线必为线段四、多边形1、多边形能够分为正多边形和非正多边形、凸多边形及凹多边形等。
苏科版数学七年级下册期末复习试卷(五)
七年级期末复习试卷(五)苏科版一、选择题:1.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列各式成立的是 ( )A .ab>0B .a +b<0C .(b -1)(a +1)>0D .(b -1)(a -1)>02题 4题 2、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3等于 ( ) A .30° B .50° C .20° D .40°3、若不等式组0122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是………………………………( )A. 1a >-;B. 1a ≥-;C. 1a ≤ ;D. 1a < ;4、小明同学把一个含有450角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是( )A .450B .550C .650D .7505、如图,直线l 、n 分别截∠A 的两边,且l ∥n .根据图中标示的角,判断下 列各角的度数关系,正确的是 A .∠2+∠5 >180° B .∠2+∠3< 180° C .∠1+∠6> 180°D .∠3+∠4<180°6、一个三角形的3边长分别是xcm 、(x +2)cm 、(x +4)cm ,它的周长不超过20cm ,则x 的取值范围是( ) A .2<x<143 B .2<x ≤143C .2<x<4D .2<x ≤47、如图,直线l//m//n ,等边三角形ABC 的顶点B 、C 分别在直线n 、m 上,边BC 与直线n所夹的角为25°,则∠α的度数为 ( ) A .25° B .45° C .35° D .30°1节链条2节链条50节链条8、如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线FG交AB于点H,则()A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG9、若关于x、y的二元一次方程组25245x y kx y k+=+⎧⎨-=-⎩的解满足不等式x<0,y>0,则k的取值范围是()A.-7<k<113B.-7<k<13C.-7<k<813D.-3<k<81310、甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元11、如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm,如果某种型号自行车的链条(没有安装前)共有60节链条组成,那么链条的总长度是()二、填空题:1.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.2.如图所示,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADE=∠EDF,∠CED=∠FEG.则∠F=.3.关于x的方程3x+2m=x﹣5的解为正数,则m的取值范围是.4.若1(2)31aa x y--+=是二元一次方程,则a=.5.不等式(a-3)x>1的解集是x<13a-,则a的取值范围_______.6、如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A……的方向行走.甲从熙以65 m/min的速度、乙从B点以72 m/min的速度行走,当乙第一次追上甲时,将在正方形的边上.7、“直角三角形的两个锐角互余”的逆命题是.8、已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是.9、某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,有_______种租车方案.10.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40,则∠ABF= .10题11题11.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为.12.命题“线段的中点到这条线段两端的距离相等”的逆命题是_______________________________________________.13、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.14、如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20︒,∠ACP=50︒,则∠A+∠P= .14题15题15、如图,在△ABC中,AB=AC,BM、CM分别是∠ABC、∠ACB的平分线,DE经过点M,且DE//BC,则图有个等腰三角形.16、如图,在△ABC中E是BC上的一点,EC=2EB,点D是AC的中点,AE、BD交于点F,AF=3FE,若△ABC的面积为18,给出下列命题:①△ABE的面积为6;②△ABF的面积和四边形DFEC的面积相等;③点F是BD的中点;④四边形DFEC的面积为215.其中,正确的结论有.(把你认为正确的结论的序号都填上)三、解答题:1.(1)已知10a=5,10b=6,求102a﹣3b的值.(2)已知x=7,求1﹣x﹣x(1﹣x)﹣x(1﹣x)2﹣…﹣x(1﹣x)2009的值.2.已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.3.已知关于x、y的方程组24221x y mx y m+=⎧⎨+=+⎩(实数m是常数).(1)若x+y=1,求实数m的值;(2)若-1≤x-y≤5,求m的取值范围;(3)在(2)的条件下,化简:223m m ++-.4.若关于x 、y 的二元一次方程组3522718x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,求m 的值.5.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民 “一户一表”生活用水阶梯式计费价格表的一部分:已知小王家2014年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a 、b 的值;(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月 收入的2%,若小王家月收人为9200元,则小王家6月份最多能用水多少吨?6.为了庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数/套1~45 46~90 91及以上每套服装的价格/元60 50 40(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.7.如图,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O.求证:AE⊥CF.8.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.9.如图,在四边形ABCD 中,∠B =∠D =90°,AE 、CF 分别平分∠BAD 和∠BCD .求证:AE ∥CF .10.如图,在六边形ABCDEF 中,AF ∠CD ,∠A=140°,∠C=165°. (1)求∠B 的度数;(2)当∠D= °时,AB∠DE ?为什么?11.如图,有足够多的边长为a 的小正方形(A 类)、长为a 宽为b 的长方形(B 类)以及边长为b的大正方形(C 类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a +b )(a +2b ),在下面虚框中画出图形....,并根据图形回答(2a +b )(a +2b )=_____________ . (2)若取其中的若干个(三种图形都要取到)拼成一个 长方形,使其面积为a 2+5ab +6b 2.①你画的图中需要C 类卡片_______张.②可将多项式a 2+5ab +6b 2分解因式为A 类B 类C 类a图①图③_____ .(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式_____________________(填写选项).A.xy = m2-n24B.x+y=m C.x2-y2=m·n D.x2+y2 =m2+n2212.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=_______;(2)若点P在斜边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为_______;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:_______;(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.图②13.Rt ΔA BC 中,∠C =90°,点D 、E 分别是边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α. (1)若点P 在线段AB 上, 如图(1)所示,且∠α=50°,则 ∠1+∠2= °;(2)若点P 在斜边AB 上运动,如图(2)所示, 则∠α、∠1、∠2之间的关系为: ;(3)若点P 在斜边BA 的延长线上运动(CE <CD ),请直接写出∠α、∠1、∠2之间的关系: _________________________________________________________________________________;(4)若点P 运动到ΔABC 形外(只需下图情形),则∠α、∠1、∠2之间有何关系?猜想并说明理由.ABCE ..D备用图ABCE ..DAB CD P1 2α E14.某商店经营甲、乙两种商品,其进价和售价如下表:已知该商店购进了甲、乙两种商品共160件.(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件? (2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案? 其中,哪种购货方案获得的利润最大?15.如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△AC E<S△ABC.。
新苏科七年级苏科初一数学下学期期末测试题及答案(共五套)
新苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 3.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kg B .52.110-⨯kg C .42110-⨯kg D .62.110-⨯kg 4.下列线段能构成三角形的是( ) A .2,2,4 B .3,4,5 C .1,2,3 D .2,3,6 5.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.下列计算正确的是( ) A .a +a 2=2a 2 B .a 5•a 2=a 10 C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣28.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .9.计算a 10÷a 2(a≠0)的结果是( ) A .5aB .5a -C .8aD .8a -10.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 11.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 612.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( )A .10m -<≤B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题13.计算()()12x x --的结果为_____;14.若多项式29x mx ++是一个完全平方式,则m =______.15.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 17.如果9-mx +x 2是一个完全平方式,则m 的值为__________.18.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________. 19.若多项式x 2-kx +25是一个完全平方式,则k 的值是______. 20.已知x 2+2kx +9是完全平方式,则常数k 的值是____________. 21.()22x y --=_____.22.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 23.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .24.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.三、解答题25.计算(1)112(2)3π-⎛⎫---+-⎪⎝⎭;(2)52482(2)()()x x x x+-÷-.26.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a+-•-27.因式分解:(1)249x- (2) 22344ab a b b--28.已知a+b=2,ab=-1,求下面代数式的值:(1)a2+b2;(2)(a-b)2.29.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?30.当,m n都是实数,且满足28m n=+,就称点21,2nP m+⎛⎫-⎪⎝⎭为“爱心点”.(1)判断点()5,3A、()4,8B哪个点为“爱心点”,并说明理由;(2)若点(),4A a-、()4,B b是“爱心点”,请判断A、B两点的中点C在第几象限?并说明理由;(3)已知P、Q为有理数,且关于x、y的方程组333x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y是“爱心点”,求p、q的值.31.如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.32.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b+=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c++=,35ab ac bc++=,则222a b c++=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张长宽分别为a、b的长方形纸片拼出一个面积为2)(4)a b a b++(的长方形,则x y z++=.33.化简与计算:(1)1201(3)(2)3π-⎛⎫---+-⎪⎝⎭(2)(﹣2a3)3+(﹣4a)2•a7﹣2a12÷a334.解方程组:(1)2338y xx y=-⎧⎨-=⎩(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩35.因式分解:(1)x4﹣16;(2)2ax2﹣4axy+2ay2.36.如图1,在ABC中,BD平分ABC∠,CD平分ACB∠.(1)若80A∠=︒,则BDC∠的度数为______;(2)若Aα∠=,直线MN经过点D.①如图2,若//MN AB,求NDC MDB∠-∠的度数(用含α的代数式表示);②如图3,若MN绕点D旋转,分别交线段,BC AC于点,M N,试问在旋转过程中NDC MDB∠-∠的度数是否会发生改变?若不变,求出NDC MDB∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN,与线段AC交于点N,与CB的延长线交于点M,请直接写出NDC∠与MDB∠的关系(用含α的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案. 【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.3.A解析:A 【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 5.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 6.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0 B .1 C .3 D .77.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°8.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1) D .(1,﹣1)10.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 11.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG的面积是( )A .4.5B .5C .5.5D .6 12.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题13.计算:m 2•m 5=_____.14.分解因式:m 2﹣9=_____.15.若a m =5,a n =3,则a m +n =_____________.16.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.17.已知()223420x y x y -+--=,则x=__________,y=__________.18.计算:5-2=(____________) 19.计算212⎛⎫= ⎪⎝⎭______. 20.若2m =3,2n =5,则2m+n =______.21.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.计算:22020×(12)2020=_____. 23.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.24.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.三、解答题25.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-27.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.28.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.29.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.30.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.31.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.32.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 33.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.34.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中,m=___________,n=__________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)35.对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
【苏科版】七年级数学下期末模拟试题含答案
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.不等式()2533x x ->-的解集为( ) A .4x <- B .4x > C .4x < D .4x >- 3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥4.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( ) A .6 B .9 C .12 D .165.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad ,则b c +的值为( )A .3-B .2-C .1-D .06.下列四组值中,不是二元一次方程21x y -=的解的是( ) A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .1=⎧⎨=⎩x yD .11x y =⎧⎨=⎩7.下列方程中,属于二元一次方程的是( ) A .235x x -=+B .1xy y +=C .315x y -=-D .325x y+= 8.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2C .()4,8--D .()2,8-9.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上10.下列说法中,正确的是( ) A .无理数包括正无理数、零和负无理数 B .无限小数都是无理数 C .无理数都是无限不循环小数 D .无理数加上无理数一定还是无理数11.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40° B .∠1=50°,∠2=50° C .∠1=∠2=45°D .∠1=40°,∠2=40°12.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x kx +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .26二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abca b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号). 14.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____. 15.如果方程组25x bx ay =⎧⎨+=⎩的解与方程组41y by ax =⎧⎨+=⎩的解相同,则+a b 的值为______.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.17.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.18.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.19.81的算术平方根是________,25-的相反数是________. 20.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.三、解答题21.解不等式组:22(4) 133x xxx-≤+⎧⎪-⎨+>⎪⎩,并求出它的所有整数解的和.22.解方程或不等式(组)(1)2(21)1690x--=.(2)211143x x+-+.(3)421223xxx x+⎧-<⎪⎨⎪-⎩23.解方程组:(1)379x yx y+=⎧⎨=-⎩;(2)5217345x yx y-=⎧⎨+=⎩.24.在平面直角坐标系中,ABC的位置如图所示,把ABC先向左平移2个单位,再向下平移4个单位可以得到A B C'''.(1)画出三角形A B C''',并写出,,A B C'''三点的坐标;(2)求A B C'''的面积.25.计算:3011(2)(20043)22-+--26.如图,已知O为直线AD上一点,OB是AOC∠内部一条射线且满足AOB∠与AOC∠互补,OM,ON分别为AOC∠,AOB∠的平分线.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)若30AOB ∠=︒,试求MON ∠的度数;(3)若MON α∠=,请直接写出AOC ∠的度数.(用含α的式子表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先解不等式,然后根据不等式组无解确定a 的范围. 【详解】解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤; 解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.4.C解析:C 【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案. 【详解】 解:对方程组2{28x y ax y +=+=①②,②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6, ∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12. 故选:C . 【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.5.C解析:C 【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可. 【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1, 代入b+c=-1. 故选:C . 【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.6.D解析:D 【分析】将各项中x 与y 的值代入方程检验即可. 【详解】 解:x-2y=1, 解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意,当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意;当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意;当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意;故选:D . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.C解析:C 【分析】根据二元一次方程的定义解答. 【详解】解:A 、该方程中只含有1个未知数,不是二元一次方程,故本选项不符合题意;B、该方程中含有未知数的项最高次数是2,不是二元一次方程,故本选项不符合题意;C、该方程符合二元一次方程的定义,故本选项符合题意;D、该方程不是整式方程,故本选项不符合题意;故选:C.【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.8.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P对应点的坐标即可得解.【详解】解:点P(-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.9.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.10.C解析:C【分析】根据实数的概念和分类即可判断.【详解】A、无理数包括正无理数和负无理数,则此项错误;B、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C、无理数都是无限不循环小数,则此项正确;D(0=,则此项错误;故选:C.【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键.11.C解析:C 【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子. 【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误. 故选:C . 【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.12.A解析:A 【分析】解不等式组和方程得出关于x 的范围及x 的值,根据不等式组有4个整数解和方程的解为整数得出k 的范围,继而可得整数k 的取值. 【详解】解:解关于x 的方程9x-3=kx+14得:179x k=-, ∵方程有整数解, ∴9-k=±1或9-k=±17, 解得:k=8或10或-8或26,解不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528k x -≤<, ∵不等式组有且只有四个整数解,∴20128k -<≤, 解得:2<k≤30;所以满足条件的整数k 的值为8、10、26, 故选:A . 【点睛】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k 的范围是解题的关键.二、填空题13.②③⑤【分析】①根据a+b+c=0且a>b>c推出a>0c<0即可判断;②根据a+b+c=0求出a=-(b+c)又ax+b+c=0时ax=-(b+c)方程两边都除以a 即可判断;③根据a=-(b+c)解析:②③⑤【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b <0, ∴-3b >0, ∴-3b +b -c >b -c , ∴AB >BC ,∴⑤正确; 即正确的结论有②③⑤. 故答案为:②③⑤. 【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x <12即1<6x <12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键解析:126x <<【分析】根据新定义列不等式组并求解集即可. 【详解】解:由题意得:1<2x-(-4)x <12,即1<6x <12,解得126x << .故答案为126x <<.【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.15.1【分析】把代入方程组即可得到一个关于ab 的方程组即可求解【详解】解:由题意可知:为的解将代入得①×2-②得将代入①得故答案为:1【点睛】本题考查了二元一次方程组的解的定义理解定义是关键解析:1 【分析】把24x y =⎧⎨=⎩代入方程组51bx ay by ax +=⎧⎨+=⎩,即可得到一个关于a ,b 的方程组,即可求解.【详解】解:由题意可知:24x y =⎧⎨=⎩为51bx ay by ax +=⎧⎨+=⎩的解,∴将2x =,4y =代入得,245421b a b a +=⎧⎨+=⎩①②,①×2-②,得69a =,32a =, 将32a =代入①得,32452b +⨯=,12b =, 31122a b ⎛⎫+=+-= ⎪⎝⎭, 故答案为:1.【点睛】本题考查了二元一次方程组的解的定义,理解定义是关键.16.-1-3【分析】把代入方程组可求出c1﹣c2=2(a1﹣a2)c1﹣2a1=3再根据方程组即可求出xy 的值【详解】解:把代入方程组得所以c1﹣c2=2(a1﹣a2)c1﹣2a1=3方程组①﹣②得(a解析:-1 -3【分析】把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩可求出c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,再根据方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,即可求出x 、y 的值. 【详解】解:把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩得, 11222323a c a c +=⎧⎨+=⎩, 所以c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,①﹣②得,(a 1﹣a 2)x =a 1﹣a 2﹣(c 1﹣c 2), 所以(a 1﹣a 2)x =﹣(a 1﹣a 2),因此x =﹣1,把x =﹣1代入方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②中的方程①得,﹣a 1+y =a 1﹣c 1,所以y =2a 1﹣c 1=﹣(c 1﹣2a 1)=﹣3,故答案为:﹣1,﹣3.【点睛】本题考查二元一次方程组及其解法,掌握方程组的解法是解决问题的关键,解二元一次方程组的基本思想是消元.17.(-32)【分析】设点P 的坐标为(xy )由点到轴的距离为2到轴的距离为3得出再根据点P 所在的象限得出答案【详解】设点P 的坐标为(xy )∵点到轴的距离为2到轴的距离为3∴∴∵点在第二象限∴x=-3y=解析:(-3, 2).【分析】设点P 的坐标为(x ,y ),由点P 到x 轴的距离为2,到y 轴的距离为3,得出3,2x y =±=±,再根据点P 所在的象限得出答案.【详解】设点P 的坐标为(x ,y ),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴3,2x y ==,∴3,2x y =±=±,∵点P 在第二象限,∴x=-3,y=2,∴点P 的坐标是(-3,2)故答案为:(-3,2).【点睛】此题考查直角坐标系中点的坐标,点到坐标轴的距离,根据点所在的象限确定点的坐标,掌握点到坐标轴的距离与点的横纵坐标的关系是解题的关键.18.(65)【分析】通过新数组确定正整数n 的位置An=(ab)表示正整数n 为第a 组第b 个数(从左往右数)所有正整数从小到大排列第n 个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n 的位置,A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),所有正整数从小到大排列第n 个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n ,而1+2+3+4+…+(a -1)<n ,能确第a 组a 个数从哪一个是开起,直到第b 个数(从左往右数)表示正整数nA 7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P 7=(4,1),理解规律A 20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A 20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A 20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a ,b )的含义,会用新数组来确定正整数n 的位置.19.3;【分析】根据平方运算可得一个数的算术平方根根据相反数的性质在这个数前加一-化简即可【详解】解:∵;∴的算术平方根是3∵∴的相反数是故答案为:3;【点睛】本题考查了算术平方根和相反数的性质注意先求解析:2.【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.【详解】解:∵9=3=;∴= ∴3,∵222--=-=, ∴22,故答案为:2.【点睛】9的算术平方根,熟悉相关性质是解题的关键. 20.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.三、解答题21.不等式组的解集是24x -≤<,所有整数解的和为3.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】22(4)133x x x x -≤+⎧⎪⎨-+>⎪⎩①②, 解不等式①得,2x ≥-,解不等式②得,4x <,所以,不等式组的解集是24x -≤<,所以,它的所有整数解是-2,-1,0,1,2,3,∴所有整数解的和为:()2101233-+-++++=.【点睛】本题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.22.(1)7x =或6x =-;(2)52x;(3)12x -<. 【分析】(1)用直接开平方解方程即可;(2)去括号,去分母,移项合并同类项,系数化为1,即可解;(3)分别解出两个不等式,再找公共部分即可.【详解】解:(1)2(21)1690x --= ∴2(21)169x -=∴2x-1是169的平方根,∴2113x -=±∴2113x -=或2113x -=-,∴214x =或212x =-∴7x =或6x =-.故7x =或6x =-. (2)211143x x +-+ ∴3(21)4(1)12x x +-+ ∴634412x x +-+∴25x∴52x(3)421223x x x x +⎧-<⎪⎨⎪-⎩①②, ①式化简424x x -<+,∴36x <,∴2x <.②式化简22x -,∴1x -∴12x -<.【点睛】本题考查了利用平方根方程及一元一次不等式(组)的解法,熟悉平方根定义及一元一次不等式的解法步骤是解题关键.23.(1)54x y =-⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)利用代入消元法即可解方程求解;(2)利用加减消元法①×2+②得出x 的值,进而代入②求出y 的值即可.【详解】解:()3719x y x y +=⎧⎨=-⎩,①,② 把②代入①,得937y y -+=,解得4y =,把4y =代入②,得495x =-=-,所以方程组的解为54.x y =-⎧⎨=⎩, ()52172345x y x y -=⎧⎨+=⎩,①,② ①2⨯+②,得103345x x +=+,解得3x =,把3x =代入②,得945y +=,解得1y =-,所以方程组的解为31.x y =⎧⎨=-⎩, 【点睛】本题考查解二元一次方程组,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.24.(1)画图见解析,()()()4,2,0,4,1,1A B C '''----;(2)7【分析】(1)首先确定A 、B 、C 三点平移后的位置,然后再连接即可;(2)利用矩形面积减去周围多余三角形的面积即可.【详解】(1)如图所示,A B C '''∆即为所求,由图可知:()()()4,2,0,4,1,1A B C '''----(2)11135152413222A B C S '''∆=⨯-⨯⨯-⨯⨯-⨯⨯ 5315422=--- 7=【点睛】本题主要考查了作图平移变换,关键是正确确定组成图形的关键点平移后的位置. 25.8-【分析】根据运算法则和运算顺序准确计算即可.【详解】 解:3011(2)(20043)22-+-- 11822=-+-8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.26.(1)相等,理由见解析;(2)60°;(3)90AOC α∠=︒+.【分析】(1)根据题意和邻补角的性质即可求解.(2)结合题意和角平分线的性质即可求出MON ∠.(3)结合图形和角平分线的性质与(1)的结论即可求出AOC ∠的大小.【详解】(1)∵AOC ∠与AOB ∠互补,∴180AOC AOB ∠+∠=︒,∵180AOC DOC ∠+∠=︒,∴COD AOB ∠=∠(2)∵AOB ∠与AOC ∠互补,30AOB ∠=︒,∴18030150AOC ∠=︒-︒=︒,∵OM 为AOC ∠的平分线,∴75AOM ∠=︒,∵ON 为AOB ∠的平分线,∴15AON ∠=︒,∴751560MON ∠=︒-︒=︒(3)∵AOC AOB BOC ∠=∠+∠,180AOB AOC ∠=︒-∠,∴180AOC AOC BOC ∠=︒-∠+∠.∵BOC BOM COM ∠=∠+∠,∴180AOC AOC BOM COM ∠=︒-∠+∠+∠,∵BOM MON BON ∠=∠-∠,12COM AOC ∠=∠, ∴11802AOC AOC MON BON AOC ∠=︒-∠+∠-∠+∠, 又∵MON α∠=,12BON AOB ∠=∠, ∴11180(180)22AOC AOC AOC AOC α∠=︒-∠+-︒-∠+∠, ∴90AOC α∠=︒+.【点睛】本题考查邻补角和角平分线的性质.利用邻补角的性质求证COD AOB ∠=∠是解题的关键.。
新苏科版七年级苏科初一数学下学期期末测试题及答案(共五套)
新苏科版七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 3.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 4.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 6.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .256 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-9.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 10.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 11.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题13.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.16.如果9-mx +x 2是一个完全平方式,则m 的值为__________.17.已知5x m =,4y m =,则2x y m +=______________.18.计算:x (x ﹣2)=_____19.计算:(12)﹣2=_____. 20.()22x y --=_____.21.计算:2m·3m=______. 22.计算:22020×(12)2020=_____. 三、解答题23.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅24.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.27.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;(2)求m n -的值.28.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 429.解方程组:41325x y x y +=⎧⎨-=⎩. 30.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确. D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减. 3.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.4.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m , 故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 7.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=,解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.8.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.9.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.10.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.11.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①②解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.16.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.17.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 18.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键. 解析:x 2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.19.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.20.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.21.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 22.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1, 故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键. 三、解答题23.(1)89;(2)102x ; 【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.24.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC与A C''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C''的面积,由图可得,线段AC扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键27.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x y x y +=⎧⎨-=⎩,解此方程组即可得出答案; (2)将(1)求解出的x 和y 的值代入其余两个式子,解出m 和n 的值,再代入m-n 中即可得出答案.【详解】解:(1)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩有相同的解, ∴31x y x y +=⎧⎨-=⎩ 解得21x y =⎧⎨=⎩ ∴这个相同的解为21x y =⎧⎨=⎩ (2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩ ∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.28.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.29.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.30.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
(完整版)苏教七年级下册期末复习数学必备知识点试题经典及解析
(完整版)苏教七年级下册期末复习数学必备知识点试题经典及解析一、选择题1.下列计算正确的是( )A .2a +3b =5abB .(﹣a 2)3=a 6C .(a +b )2=a 2+b 2D .a 3⋅a 2=a 52.如图所示,下列四个选项中不正确...的是( )A .1∠与2∠是同旁内角B .1∠与4∠是内错角C .3∠与5∠是对顶角D .2∠与3∠是邻补角3.已知关于x 的不等式(2)50a b x a b -+->的解集为107x <,则关于x 的不等式ax b a >-的解集为( ) A .3x <- B .5x >- C .25x <- D .25x >- 4.规定:()()221,1f x x g x x =+=+,如()()()212113,2215f g =⨯+=-=-+=,则()()f x g x +的最小值为( )A .1B .2C .4D .不能确定 5.若关于x 的不等式31x m 的正整数解是1,2,3,则整数m 的最大值是( )A .10B .11C .12D .13 6.下列命题中,可判断为假命题的是( )A .在同一平面内,过一点有且只有一条直线与已知直线垂直B .两条直线被第三条直线所截,同位角相等C .同旁内角互补,两直线平行D .直角三角形两个锐角互余7.已知整数01234,,,,,a a a a a ,满足下列条件:01021320,1,2,3a a a a a a a ==-+=-+=-+,…,以此类推,2020a 的值是( ) A .1008-B .1010-C .2018-D .2020- 8.如图,△ABC 的中线AD 、BE 相交于点F .若△ABF 的面积是4,则四边形DCEF 的面积是( )A .3.5B .4C .4.5D .5二、填空题9.计算:﹣2a 2b 3•(﹣3a )=_____.10.命题“a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥c ”是 ______.(填写“真命题”或“假命题”)11.在一个多边形中,小于112°的内角最多有 ___个.12.因式分解:2221a b ab +--=__________.13.已知方程组32231x y k x y k +=⎧⎨+=+⎩满足3x y +=,则k 的值为___________. 14.根据平移的知识可得图中的封闭图形的周长(图中所有角都是直角)为_____.15.三角形中,其中两条边长分别为4cm 和7cm ,则第三边c 的长度的取值范围是_______.16.如图,EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分EFG ,交线段EG 于点H ,若36AEF ∠=︒,57BEG ∠=︒,则EHF ∠的大小为________.17.计算与化简:(1)020212(21)(1)(2)-+-+-(2)2(1)(2)(2)x x x +-+-18.将下列各式分解因式(1)3222x x y xy -+(2)22222()4a b a b +-(3)2294129x xy y -+-(4)222(2)11(2)24x x x x ---+19.解方程组:(1)203x y x y +=⎧⎨-=⎩; (2)217126x y x y x y -=⎧⎪+-⎨+=⎪⎩. 20.已知不等式组3(21)283(1)12384x x x x -<+⎧⎪⎨+-+>-⎪⎩①②.(1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式62ax x a +≤-,化简11a a +--.三、解答题21.如图,已知AD ⊥BC 于点D ,E 是BA 延长线上一点,且EC ⊥BC 于点C ,若∠ACE =∠E ,试说明:AD 平分∠BAC .22.某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案? 23.阅读下列材料:问题:已知x ﹣y =2,且x >1,y <0解:∵x ﹣y =2.∴x =y +2,又∵x >1∴y +2>1∴y >﹣1又∵y <0∴﹣1<y <0①∴﹣1+2<y +2<0+2即1<x <2②①+②得﹣1+1<x +y <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >﹣1,y <0,则x 的取值范围是 ;x +y 的取值范围是 ; (2)已知x ﹣y =a ,且x <﹣b ,y >2b ,根据上述做法得到-2<3x -y <10,求a 、b 的值. 24.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.25.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.【参考答案】一、选择题1.D解析:D【分析】A.根据同类项的定义解题;B.根据幂的乘方解题;C.根据完全平方公式解题;D.根据同底数幂的乘法解题.【详解】解:A. 2a与3b不是同类项,不能合并,故A错误;B.(﹣a2)3=-a6,故B错误;C.(a+b)2=a2+2ab+b2,故C 错误;D. a3⋅a2=a5,故D正确,故选:D.【点睛】本题考查幂的乘方运算、完全平方公式、合并同类项等知识,是基础考点,掌握相关知识是解题关键.2.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A. 1∠与2∠是同旁内角,故该选项正确,不符合题意;B. 1∠与4∠不是内错角,故该选项不正确,符合题意;C. 3∠与5∠是对顶角,故该选项正确,不符合题意;D. 2∠与3∠是邻补角,故该选项正确,不符合题意;故选B .【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.C解析:C【分析】 先根据题意得:35b a =且20a b -<,可得0a <,即可求解.【详解】解:∵(2)50a b x a b -+->,∴(2)5-+>-a b x b a ,∵关于x 的不等式(2)50a b x a b -+->的解集为107x <, ∴51027b a a b -=- ,且20a b -< , ∴3572010b a a b -=- ,解得:35b a = ,∵20a b -<, ∴3205a a -< , ∴0a < ,∵ax b a >-, ∴35ax a a >- ,即25ax a >- ,∴25x <- . 故选:C .【点睛】本题主要考查了一元一次不等式的解集的定义,解不等式,不等式的性质,熟练掌握一元一次不等式的解集的定义,解不等式的基本步骤是解题的关键.4.A解析:A【分析】首先计算()()+f x g x ,再根据平方的性质进行求解即可.【详解】解:∵()()221,1f x x g x x =+=+∴()()222=211211(1)1f x g x x x x x x ++++=+++=++∵2(1)0x +≥∴()()1f x g x +≥,即()()f x g x +的最小值为1,故选:A .【点睛】此题主要考查了完全平方公式的应用,熟练掌握2(1)0x +≥是解答此景观规划没人关键. 5.D解析:D【分析】先解不等式得到x <()113m -,再根据正整数解是1,2,3得到3<()113m -≤4时,然后从不等式的解集中找出适合条件的最大整数即可.【详解】解不等式31x m 得x <()113m -, 关于x 的不等式31x m 的正整数解是1,2,3,∴ 3<()113m -≤4,解得10 < m ≤ 13, ∴整数m 的最大值为13.故选:D .【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.6.B解析:B【分析】利用直线的位置关系、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】A.在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B.两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C.同旁内角互补,两直线平行,正确,是真命题;D.直角三角形两个锐角互余,正确,是真命题.故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解直线的位置关系、平行线的性质及直角三角形的性质,难度不大.7.B解析:B【分析】通过有限次计算的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:a0=0,a1=-|a0+1|=-|0+1|=-1,a2=-|a1+2|=-|-1+2|=-1,a3=-|a2+3|=-|-1+3|=-2,a4=-|a3+4|=-|-2+4|=-2,a5=-|a4+5|=-|-2+5|=-3;a6=-|a5+6|=-|-3+6|=-3;a7=-|a6+7|=-|-3+7|=-4;……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2020+1)÷2=1010…1,故a2020=-1010,故选:B.【点睛】本题考查了规律型:数字的变化类,需要掌握绝对值的运算法则.8.B解析:B【分析】利用F点为△ABC的重心得到AF=2DF,BF=2EF,根据三角形面积公式得到S△BDF=2,S△AEF=2,再利用E点为AC的中点得到S△BCE=S△ABE=6,然后利用四边形DCEF的面积=S△BCE-S△BDF进行计算.【详解】解:∵△ABC的中线AD、BE相交于点F,∴F点为△ABC的重心,∴AF=2DF,BF=2EF,∴S△BDF=12S△ABF=12×4=2,S△AEF=12S△ABF=12×4=2,∵BE为中线,∴S△BCE=S△ABE=4+2=6,∴四边形DCEF的面积=S△BCE-S△BDF=6-2=4.故选:B.【点睛】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.二、填空题9.6a3b3【分析】系数相乘时,负负为正,即符号要变号;其中,a的次数为2+1=3,b的次数为3+0=3即可.【详解】根据单项式乘以单项式法则求出即可.解:﹣2a2b3•(﹣3a)=6a3b3,故答案为:6a3b3.【点睛】单项式乘单项式,掌握单项式乘以单项式的运算法则是解题的关键,解题过程中一定要注意最终结果的符号问题,要注意负负为正.10.假命题【分析】利用平行线的判定,即可证明该命题是假命题.【详解】解:如图,a⊥b,b⊥c,但是a∥c.所以,该命题是假命题,故答案为:假命题.【点睛】本题主要考查了命题的真假,利用平行线的判定画出图形是解题的关键.11.5【分析】由多边形的内角小于112°,可得外角大于68°,再根据多边形的外角和为360°进行判断即可.【详解】解:由于多边形的内角小于112°,所以这个多边形的外角要大于180°-112°=68°,而多边形的外角和为360°,所以360°÷68°=9017=5517(个), ∴最多有5个,故答案为:5.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为360°是解决问题的关键. 12.(1)(1)a b a b -+--【分析】前三项一组,最后一项为一组,利用分组分解法分解因式即可.【详解】a 2+b 2﹣2ab ﹣1=(a 2+b 2﹣2ab )﹣1=(a ﹣b )2﹣1=(a ﹣b +1)(a ﹣b ﹣1).故答案为:(a ﹣b +1)(a ﹣b ﹣1).【点睛】本题考查了分组分解法分解因式,分组后两组之间可以继续进行因式分解是解题的关键. 13.7【分析】利用整体思想,将两个方程相加,再整体代入3x y +=解题即可.【详解】32231x y k x y k +=⎧⎨+=+⎩①② ①+②,552+1x y k +=3x y +=5515x y ∴+=即2115k +=∴k=7故答案为:7.【点睛】本题考查二元一次方程组,是重要考点,难度较易,掌握相关知识是解题关键. 14.16【分析】根据平移的性质可把求该图形的周长转化为求长方形的周长,利用长方形周长公式即可得答案.【详解】如图所示:由平移的性质,知封闭图形的周长可转化为长为5,宽为3的长方形的周长,即周长是2(53)16⨯+=.故答案为:16【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.熟练掌握平移的性质是解题关键.15.3<c <11【分析】直接运用三角形的三边关系判断即可.【详解】根据三角形的三边关系得:,故答案为:.【点睛】本题考查三角形的三边关系,熟记基本定理是解题关键.解析:3<c <11【分析】直接运用三角形的三边关系判断即可.【详解】根据三角形的三边关系得:7474c -<<+,故答案为:311c <<.【点睛】本题考查三角形的三边关系,熟记基本定理是解题关键.16.75°.【分析】首先根据∠AEF=36°,∠BEG=57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出解析:75°.【分析】首先根据∠AEF =36°,∠BEG =57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出∠EHF的大小为多少即可.【详解】解:∵∠AEF=36°,∠BEG=57°∴∠FEH=180°-∠AEF-∠BEG=87°∵//AB CD∴∠EFG=∠AEF=36°∵FH平分∠EFG∴∠EFH=12∠EFG=18°∴∠EHF=180°-∠FEH-∠EFH=75°故答案为:75.【点睛】此题主要考查了三角形内角和定理的应用,角平分线的性质和应用,以及平行线的性质和应用,要熟练掌握.17.(1);(2)2x+5【分析】(1)根据零指数幂、负整数指数幂和乘方的意义计算;(2)根据乘法公式展开,然后合并即可.【详解】解:(1)原式=1-1+=;(2)原式=x2+2x+1-(解析:(1)14;(2)2x+5【分析】(1)根据零指数幂、负整数指数幂和乘方的意义计算;(2)根据乘法公式展开,然后合并即可.【详解】解:(1)原式=1-1+1 4=14;(2)原式=x2+2x+1-(x2-4)=x2+2x+1-x2+4=2x+5.【点睛】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a-b)=a2-b2.也考查了完全平方公式和实数的运算.18.(1);(2);(3);(4)【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可;(3)原式进行整理先用完全平解析:(1)()2x x y -;(2)222()a b -;(3)()()323323x y x y +--+;(4)()()()()3142x x x x -+-+【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可; (3)原式进行整理先用完全平方公式合并,然后再用平方差公式进行因式分解; (4)用十字相乘进行因式分解即可.【详解】解:(1)原式=()222x x xy y -+=()2x x y -; (2)原式=4224224224+24-2a a b b a b a a b b +-=+=222()a b -;(3)原式=()()22294-12+9=9-23x xy y x y --=()()323323x y x y +--+; (4)原式=22(2-3)(2-8)=x x x x --()()()()3142x x x x -+-+.故答案为:(1)()2x x y -;(2)222()a b -;(3)()()323323x y x y +--+;(4)()()()()3142x x x x -+-+【点睛】本题考查了用提公因式法,公式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.(1);(2)【分析】(1)利用加减消元法解二元一次方程组即可;(2)先变形原方程组,再利用加减消元法解一元二次方程组即可.【详解】(1)解:方程组,①+②得:解得:将代入①中,解得解析:(1)12x y =⎧⎨=-⎩;(2)57x y =⎧⎨=-⎩ 【分析】(1)利用加减消元法解二元一次方程组即可;(2)先变形原方程组,再利用加减消元法解一元二次方程组即可.【详解】(1)解:方程组203x y x y +=⎧⎨-=⎩①②, ①+②得:33x =解得:1x =将1x =代入①中,解得:2y =-∴方程组的解为12x y =⎧⎨=-⎩. (2)方程组整理得:21723x y x y -=⎧⎨+=⎩①②, ①+②,得:420x =,解得:5x =,将5x =代入②,得:103y +=,解得:7y =-,则方程组的解为57x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,熟练掌握二元一次方程组的解法步骤是解答的关键. 20.(1)不等式组的解集为,整数解为;(2)-2【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得,进而即可把化简.【详解】解:(1)由①得:,由②得:,∴不等解析:(1)不等式组的解集为71154<<x ,整数解为2x =;(2)-2 【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得1a -,进而即可把|1||1|a a +--化简.【详解】解:(1)由①得:114x <, 由②得:75x >,∴不等式组的解集为71154<<x , ∴不等式组的整数解为2x =.(2)把2x =代入不等式62ax x a +-,得:2622a a +-,解得:1a -,∴10a +,12a --,|1||1|(1)(1)a a a a ∴+--=-+--11a a =---+2=-.【点睛】本题考查了一元一次不等式组的解法以及不等式组的整数解,也考查了绝对值的性质,是基础知识要熟练掌握,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.见解析【分析】由两个垂直条件可得AD ∥EC ,从而可得∠BAD=∠E ,∠CAD=∠ACE ,再由已知即可得结论.【详解】∵AD ⊥BC ,EC ⊥BC∴AD ∥EC∴∠BAD=∠E ,∠CAD=∠AC解析:见解析【分析】由两个垂直条件可得AD ∥EC ,从而可得∠BAD =∠E ,∠CAD =∠ACE ,再由已知即可得结论.【详解】∵AD ⊥BC ,EC ⊥BC∴AD ∥EC∴∠BAD =∠E ,∠CAD =∠ACE∵∠ACE =∠E∴∠BAD =∠CAD∴AD 平分∠BAC【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识,熟练掌握平行线的性质与判定是关键.22.(1)至少购买丙种电视机10台;(2)方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;方案三:解析:(1)至少购买丙种电视机10台;(2)方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台.【解析】【分析】(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据“购进三种电视机的总金额不超过147000元”作为不等关系列不等式即可求解;(2)根据“甲种电视机的台数不超过乙种电视的台数”作为不等关系列不等式4x≤108﹣5x,结合着(1)可求得x的取值范围,求x的正整数解,即可求得购买方案.【详解】解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据题意,得1000×4x+1500×(108﹣5x)+2000x≤147000解这个不等式得x≥10因此至少购买丙种电视机10台;(2)甲种电视机4x台,购买乙种电视机(108﹣5x)台,根据题意,得4x≤108﹣5x解得x≤12又∵x是正整数,由(1)得10≤x≤12∴x=10,11,12,因此有三种方案.方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)-1<x<3,-5<x+y<3;(2)a=3,b=-2.【分析】(1)仿照阅读材料即可先求出-1<x<3,然后即可求出x+ y的取值范围;(2)先仿照阅读材料求出3x-y的取值范围,然后解析:(1)-1<x<3,-5<x+y<3;(2)a=3,b=-2.【分析】(1)仿照阅读材料即可先求出-1<x <3,然后即可求出x + y 的取值范围;(2)先仿照阅读材料求出3x -y 的取值范围,然后根据已知条件可列出关于a 、b 的方程组,解出即可求解.【详解】解:(1)∵x -y =3,∴x =y +3.∵x >-1,∴y +3>-1,即y >-4.又∵y <0,∴-4<y <0①,∴-4+3<y +3<0+3,即-1<x <3②,由①+②得:-1-4<x +y <0+3,∴x +y 的取值范围是-5<x +y <3;(2)∵x -y =a ,∴x =y +a ,∵x <-b ,∴y +a <-b ,∴y <-a -b .∵y >2b ,∴2b <y <-a -b ,∴a +b <-y <-2b ①,2b +a <y +a <-b ,即2b +a <x <-b ,∴6b +3a <3x <-3b ②由①+②得:7b +4a <3x -y <-5b ,∵-2<3x -y <10,∴742510b a b ⎧+=-⎨-=⎩, 解得:32a b ⎧=⎨=-⎩ 即a =3,b =-2.【点睛】本题主要考查了不等式的性质,解一元一次不等式和解二元一次方程组,理解阅读材料,列出不等式和方程组是解题的关键.24.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.25.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.。
苏教版七年级(下册)数学期末考试知识点总结(A4打印版)
第七章平面图形的认识(二)一、知识点:1、“三线八角”①如何由线找角:一看线,二看型。
同位角是“F”型;错角是“Z”型;同旁角是“U”型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等错角相等两直线平行两直线平行错角相等同旁角互补两直线平行两直线平行同旁角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则 b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的角和:三角形的3个角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个角的和;三角形的一个外角大于与它不相邻的任意一个角。
8、多边形的角和:n 边形的角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
(完整版)苏教版七年级下册期末数学必备知识点试题经典答案
(完整版)苏教版七年级下册期末数学必备知识点试题经典答案一、选择题1.下面计算正确的是 ( )A .3332x x x ⋅=B .3362x x x +=C .314x x x -÷=D .236()xy xy = 答案:C解析:C【分析】根据同底数幂的乘法,合并同类项,同底数幂的除法以及积的乘方法则逐项计算即可.【详解】A.336x x x ⋅=,故不正确;B.3332x x x += ,故不正确;C.314x x x -÷= ,正确;D.2336()xy x y = ,故不正确;故选C .【点睛】本题考查了整式的运算,熟练掌握的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.2.如图所示,下列结论中正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角答案:B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C 、∠1和∠4是同位角,故本选项错误;D 、∠3和∠4是邻补角,故本选项错误;故选:B .【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.不等式x ﹣2≤0的解集在以下数轴表示中正确的是( )A .B .C .D .答案:B解析:B【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【详解】解:由x ﹣2≤0,得x ≤2,把不等式的解集在数轴上表示出来为:,故选:B .【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.已如下列命题:①若3x =,则3x =;②当a b >时,若0c >,则ac bc >;③若0a ≤,则a a =-;④若22ma na >,则m n >.其中真命题共有( )A .1个B .2个C .3个D .4个答案:C解析:C【分析】根据绝对值和不等式的性质对各命题的真假进行判断.【详解】解:若 |x |=3 ,则 x =3 或x =-3,所以①为假命题;当 a >b 时,若 c >0 ,根据不等式的基本性质二,有 ac >bc ;所以②为真命题;若 a ≤0 ,则 |a |=−a ,所以③为真命题;若 ma 2>na 2 ,则a 2>0,所以 m >n ,所以④为真命题.故选:C .【点睛】本题考查了命题与定理:灵活应用绝对值和不等式的性质是解决本题的关键.5.已知关于x 的不等式组132x a x -⎧⎨+>⎩的解集为12x -<,则a 的值为( ) A .1 B .1- C .2 D .2-解析:A【分析】求出不等式组的解集,再根据题目已知的解集,确定关于a 的一元一次方程,求得a 的值.【详解】解不等式1x a -,得:1x a +,解不等式32x +>,得:1x >-,所以不等式组的解集为11x a -<+,不等式组的解集为12x -<,12a ∴+=,解得1a =,故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.下列命题中,真命题的个数为( )(1)如果a b =,那么a b =;(2)内错角相等,两直线平行;(3)垂线段最短;(4)若22a b >,则a b >.A .1个B .2个C .3个D .4个答案:B解析:B【分析】利用平行线的性质、垂线段、绝对值及不等式的性质分别判断后,即可确定正确的选项.【详解】解:(1)如果|a |=|b |,那么a =b 或a =-b ,原命题是假命题;(2)内错角相等,两直线平行,是真命题;(3)垂线段最短,是真命题;(4)若a 2>b 2,则|a |>|b |,原命题是假命题;故选:B .【点睛】此题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂线段、绝对值及不等式的性质.7.一组数据排列如下:12 3 43 4 5 6 7…按此规律,某行最后一个数是148,则此行的所有数之和是()A.9801 B.9603 C.9025 D.8100答案:A解析:A【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n行的最后一个数字为1+3(n﹣1)=3n﹣2,由此建立方程求得最后一个数是148在哪一行,再由求和法计算可得.【详解】解:∵每一行的最后一个数分别是1,4,7,10…,∴第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=148,解得:n=50,因此第50行最后一个数是148,+-+∴此行的数之和为50+51+52+…+147+148=(50148)(148501)2=9801,故选:A.【点睛】本题考查了有理数中的规律探究问题,熟练掌握数字的规律,并灵活选用方程思想求解是解题的关键.8.如图,将△沿、、翻折,三个顶点均落在点处,若,则的度数为()A.B.C.D.答案:C解析:C【详解】根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选C二、填空题9.计算:32223x y x ⋅的结果是________.解析:526x y【分析】根据单项式乘单项式的运算法则进行计算求解.【详解】解:32223x y x ⋅=6x 5y 2,故答案为:6x 5y 2.【点睛】本题考查单项式乘单项式,掌握相关运算法则准确计算是解题关键.10.命题:直线a 、b 、c ,若a ⊥b ,c ⊥b ,则a //c ;则此命题为 ___命题.(填真或假) 解析:真【分析】根据平行线的性质定理判断即可.【详解】解:∵a ⊥b ,c ⊥b ,∴a ∥c ,∴直线a 、b 、c ,若a ⊥b ,c ⊥b ,则a ∥c ;则此命题为真命题;故答案为:真.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断该命题的真假关键是要熟悉课本中与平行线有关的性质定理.11.在同一平面内,正六边形和正方形如图所示放置,则α∠等于____度.解析:150【分析】求出正六边形和正方形的内角的度数,这两个角的度数与α∠的和是360︒,即可求得答案;【详解】正六边形的内角是:()6-21806=120÷︒,正方形的角是90︒,则36012090150α∠︒-︒-︒=︒=.故答案为:150.【点睛】本题主要考查了多边形的内角与外角,准确计算是解题的关键.12.如图,有三种卡片,其中边长为a 的正方形卡片1张,长为a 、宽为b 的长方形卡片4张,边长为b 的正方形卡片4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为_____.解析:2+a b【分析】根据题意列出关系式,分解因式即可得正方形边长.【详解】解:根据题意得:22244(2)a ab b a b ++=+,则这个正方形的边长为2+a b ,故答案是:2+a b ;【点睛】此题考查了因式分解的应用,熟练掌握完全平方公式和理解因式分解的方法是解本题的关键.13.已知方程组23122x y a x y +=-⎧⎨+=-⎩的解满足0x y +>,则a 的取值范围是________. 解析:a >1【分析】先把两方程相加即可用a 表示出x +y ,再根据x +y >0即可得到关于a 的不等式,求出a 的取值范围即可.【详解】解:23122x y a x y +=-⎧⎨+=-⎩①②, ①+②得,3x +3y =3a -3,即x +y =a -1,∵x +y >0,∴a -1>0,解得:a >1,故答案为:a >1.【点睛】本题考查的是解二元一次方程及解一元一次不等式,根据题意得出关于a 的不等式是解答此题的关键.14.如图,ABC 中,90ACB ∠=︒,5AC =,12BC =,13AB =.点P 是线段AB 上的一个动点,则CP 的最小值为______.答案:C 解析:6013 【分析】当CP ⊥AB 时,CP 的值最小,利用面积法求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =5,BC =12,AB =13,当CP ⊥AB 时,CP 的值最小,此时:△ABC 的面积=12•AB •CP =12•AC •BC ,∴13CP =5×12,∴PC =6013, 故答案为:6013. 【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高. 15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.答案:66【分析】首先根据正五边形的性质得到度,然后根据角平分线的定义得到度,再利用三角形内角和定理得到的度数.【详解】解:∵五边形为正五边形,∴度,∵是的角平分线,∴度,∵,∴.故答解析:66【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 16.如图,BO 是△ABC 的中线,延长BO 到D ,使得OD =BO ,连接AD .若△ABC 的面积是8,则△ABD 的面积等于___.答案:8【分析】根据三角形的面积被三角形的中线平分即可求解.【详解】解:∵BO 是△ABC 的中线,△ABC 的面积是8,∴S △ABO =S △ABC =4,∵OD =BO ,∴AO 是△ABD 的中线,∴S解析:8【分析】根据三角形的面积被三角形的中线平分即可求解.解:∵BO 是△ABC 的中线,△ABC 的面积是8,∴S △ABO =12S △ABC =4,∵OD =BO ,∴AO 是△ABD 的中线,∴S △ABD =2S △ABO =8,故答案为:8.【点睛】本题考查了三角形的中线,熟知三角形的面积被三角形的中线平分是解决本题的关键. 17.计算 (1)0220211|2|(3)()(1)3π--+--+-; (2)24(1)(23)(23)x x x +--+; 答案:(1)-7;(2)8x+13【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)分别根据完全平方公式以及平方差公式计算即可.【详解】解析:(1)-7;(2)8x +13【分析】(1)分别根据绝对值的性质,零指数幂的定义,负整数指数幂的定义以及有理数的乘方的定义计算即可;(2)分别根据完全平方公式以及平方差公式计算即可.【详解】解:(1)原式=2+1-9+(-1)=-7;(2)原式=4(x 2+2x +1)-(4x 2-9)=4x 2+8x +4-4x 2+9=8x +13.【点睛】本题考查了实数的运算以及整式的混合运算,熟记相关定义与公式是解答本题的关键. 18.分解因式:(1)2x 2-12x +18(2)a 3﹣a ;(3)4ab 2﹣4a 2b ﹣b 3(4)3(2)(2)m a m a -+-答案:(1)2(x-3)2;(2)a (a+1)(a ﹣1);(3)﹣b (2a ﹣b )2;(4)m (a-2)(m-1)(m+1)(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平解析:(1)2(x-3)2;(2)a(a+1)(a﹣1);(3)﹣b(2a﹣b)2;(4)m(a-2)(m-1)(m+1)【分析】(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平方差公式分解;(3)提取公因式后,利用完全平方公式分解;(4)提取公因式,再利用平方差公式分解.【详解】(1)2x2-12x+18解:原式=2(x2﹣6x+9)=2(x-3)2(2)解:原式=a(a2﹣1)=a(a+1)(a﹣1)(3)4ab2﹣4a2b﹣b3解:原式=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2(4)解:原式=m(a-2)(m2-1)=m(a-2)(m-1)(m+1)【点睛】本题考查了因式分解,解题的关键是:掌握基本的因式分解的步骤及方法.19.解方程组(1)20 328 x yx y-=⎧⎨+=⎩(2)1 2333(1)1 x yx y⎧-=⎪⎨⎪-=+⎩答案:(1);(2)【分析】(1)根据加减消元法,即可求解;(2)先化简二元一次方程组,再利用加减消元法,即可求解.【详解】解:(1),①+②得:4x=8,解得:x=2,把x=2代入①得:2解析:(1)21x y =⎧⎨=⎩;(2)22x y =⎧⎨=⎩ 【分析】(1)根据加减消元法,即可求解;(2)先化简二元一次方程组,再利用加减消元法,即可求解.【详解】解:(1)20328x y x y -=⎧⎨+=⎩①②, ①+②得:4x =8,解得:x =2,把x =2代入①得:2-2y =0,解得:y =1,∴方程组的解为:21x y =⎧⎨=⎩; (2)12333(1)1x y x y ⎧-=⎪⎨⎪-=+⎩, 化简得:32234x y x y -=⎧⎨-=⎩①②, ①-②得:-y =-2,解得:y =2,把y =2代入②得:3x -2=4,解得:x =2,∴方程组的解为:22x y =⎧⎨=⎩. 【点睛】本题主要考查解二元一次方程组,熟练掌握加减消元法是解题的关键.20.解不等式组2311,2113x x x x +≤+⎧⎪+⎨-≥⎪⎩,并在数轴上表示出不等式组的解集. 答案:.在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】解:由①得:由②得:在数轴上分别表示①解析:2x -≤.在数轴上表示见解析【分析】分别解不等式组中的两个不等式,再把两个不等式的解集在数轴上表示出来,确定解集的公共部分,从而可得答案.【详解】 解:23112113x x x x +≤+⎧⎪⎨+-≥⎪⎩①② 由①得:8,x ≤由②得:2133,x x +-≥2,x ∴≤- 在数轴上分别表示①②的解集如下:所以不等式组的解集为: 2.x -≤【点睛】本题考查的是解不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解题的关键.三、解答题21.如图,在ABC 中,CD 平分∠ACB 交AB 于D ,EF 平分∠AED 交AB 于F ,已知∠ADE =∠B ,求证://EF CD .(证明时,请注明推理的理由)答案:见解析【分析】由∠ADE =∠B 可得DE//BC ,再根据平行线的性质可得∠ACB =∠AED ,再根据角平分线的定义推出∠ACD =∠AEF ,即可证明EF//CD .【详解】证明:∵∠ADE =∠B (已解析:见解析【分析】由∠ADE =∠B 可得DE//BC ,再根据平行线的性质可得∠ACB =∠AED ,再根据角平分线的定义推出∠ACD =∠AEF ,即可证明EF//CD .【详解】证明:∵∠ADE=∠B(已知),∴DE//BC(同位角相等,两直线平行),∴∠ACB=∠AED(两直线平行,同位角相等),∵CD平分∠ACB,EF平分∠AED(已知),∴∠ACD=12∠ACB,∠AEF=12∠AED(角平分线的定义),∴∠ACD=∠AEF(等量代换).∴EF//CD(同位角相等,两直线平行).【点睛】本题主要考查了角平分线的定义、平行线的判定与性质等知识点,灵活运用平行线的判定与性质成为解答本题的关键.22.某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.(1)若第一次用资金25600元,第二次用资金32800元,求挂式空调和电风扇每台的采购价各是多少元?(2)在(1)的条件下,若该业主计划再购进这两种电器50台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?答案:(1)挂式空调每台的采购价是2800元,电风扇每台的采购价是160元;(2)该经营业主最多可再购进空调8 台.【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,利用购进8台空解析:(1)挂式空调每台的采购价是2800元,电风扇每台的采购价是160元;(2)该经营业主最多可再购进空调8 台.【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,利用购进8台空调和20台电风扇共花资金25600元;购进10台空调和30台电风扇共花资金32800元,列方程组即可得到答案;(2)设再购进空调a台,则购进风扇(50-a)台,再利用购买这两种电器的资金不超过30000元,列不等式,即可得到答案.【详解】解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意,得82025600 103032800x yx y+=⎧⎨+=⎩,解得2800160xy=⎧⎨=⎩.即挂式空调和电风扇每台的采购价分别是每台2800元,160元.(2)设再购进空调a台,则购进风扇(50-a)台,由已知,得,()28001605030000a a +-≤ 解得:183a ≤, a 为正整数,a ∴的最大整数值为8. 即经营业主最多可再购进空调8台.答:挂式空调每台的采购价是2800元,电风扇每台的采购价是160元.该经营业主最多可再购进空调8台.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,准确的确定相等关系与不等关系列方程组与不等式是解题的关键.23.对x ,y 定义一种新运算T ,规定:T (x ,y )=ax+2by ﹣1(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a•0+2b•1﹣1=2b ﹣1. (1)已知T (1,﹣1)=﹣2,T (4,2)=3.①求a ,b 的值;②若关于m 的不等式组(2m,54)4(32)?T m T m m p ⎩-≤->⎧⎨,恰好有2个整数解,求实数p 的取值范围; (2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?答案:(1)①a=1,b=3;②-2≤p <-;(2)a=2b .【分析】(1)①按题意的运算可得方程组,即可求得a 、b 的值;②按题意的运算可得不等式组,即可求得p 的取值范围;(2)由题意可得ax+2解析:(1)①a=1,b=3;②-2≤p <-13;(2)a=2b . 【分析】(1)①按题意的运算可得方程组212{4413a b a b --=-+-=,即可求得a 、b 的值; ②按题意的运算可得不等式组,即可求得p 的取值范围; (2)由题意可得ax+2by-1= ay+2bx-1,从而可得a="2b" ;【详解】(1)①由题意可得2124413a b a b --=-+-=⎧⎨⎩ ,解得;②由题意得,解得,因为原不等式组有2个整数解,所以,所以;(2)T(x,y)="ax+2by-1," T(y,x)="ay+2bx-1" ,所以ax+2by-1= ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a=2b24.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.答案:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.25.已知△ABC的面积是60,请完成下列问题:(1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积△ACD的面积.(填“>”“<”或“=”)(2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=12S△ABC=30,S△ADC=12S△ABC=30,可列方程组为:230230x yx y+=⎧⎨+=⎩,解得,通过解这个方程组可得四边形ADOE的面积为.(3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由.答案:(1)=;(2),20;(3)S四边形ADOE=13.理由见解析.【分析】(1)利用三角形的面积公式计算即可得出结论;(2)利用题干所给解答方法解答即可;(3)连接AO,利用(2)中的方法,解析:(1)=;(2)1010xy=⎧⎨=⎩,20;(3)S四边形ADOE=13.理由见解析.【分析】(1)利用三角形的面积公式计算即可得出结论;(2)利用题干所给解答方法解答即可;(3)连接AO,利用(2)中的方法,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=2y,利用已知条件列出方程组,解方程组即可得出结论.【详解】解:(1)如图1,过A 作AH ⊥BC 于H ,∵AD 是△ABC 的BC 边上的中线,∴BD =CD , ∴12ABD S BD AH ∆=⋅,12ACD S CD AH ∆=⋅, ∴S △ABD =S △ACD ,故答案为:=;(2)解方程组得1010x y =⎧⎨=⎩, ∴S △AOD =S △BOD =10,∴S 四边形ADOB =S △AOD +S △AOE =10+10=20,故答案为:1010x y =⎧⎨=⎩,20; (3)如图3,连接AO ,∵AD :DB =1:3,∴S △ADO =13S △BDO , ∵CE :AE =1:2,∴S △CEO =12S △AEO ,设S △ADO =x ,S △CEO =y ,则S △BDO =3x ,S △AEO =2y ,由题意得:S △ABE =23S △ABC =40,S △ADC =14S △ABC =15, 可列方程组为:3154240x y x y +=⎧⎨+=⎩, 解得:92x y =⎧⎨=⎩, ∴S 四边形ADOE =S △ADO +S △AEO =x +2 y =13.【点睛】本题是一道四边形的综合题,主要考查了三角形的面积公式,等底同高的三角形面积相等,高相同的三角形的面积比等于底的比,二元一次方程组的解法.本题是阅读型题目,准确理解题干中的方法并正确应用是解题的关键.。
(完整版)苏教版七年级下册期末数学必备知识点试题经典及答案解析
(完整版)苏教版七年级下册期末数学必备知识点试题经典及答案解析一、选择题1.下列运算正确的是( )A .3332a a a ⋅=B .()235x x =C .5510x x x +=D .5233()()ab ab a b -÷-=-答案:D解析:D【分析】由题意分别利用同底数幂乘法、幂的乘方、合并同类项、积的乘方和整式除法运算对各个选项逐一进行判断即可.【详解】解:A. 336a a a ⋅=,本选项不符合题意;B. ()236x x =,本选项不符合题意; C. 5552x x x +=,本选项不符合题意;D. ()()-÷-=-5233ab ab a b ,本选项符合题意;故选D .【点睛】本题考查同底数幂乘法、幂的乘方、合并同类项、积的乘方和整式除法运算,熟练掌握相关计算法则是解题的关键.2.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠答案:B解析:B【分析】根据同位角的定义即可求出答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角.故选:B .【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.3.若方程组31331x y a x y a+=+⎧⎨+=-⎩,的解满足x-y=-2,则a 的值为( ) A .-1 B .1 C .-2 D .不能确定 答案:A解析:A【分析】将方程组两方程相减表示出x-y,代入x-y=-2中计算即可求出a 的值【详解】313{31x y a x y a +=++=-①②-②得:2x-2y=4a,即x-y=2a代入x-y=-2,得:2a=-2解得:a=-1故选A【点睛】此题考查了二元一次方程组的解,解题关键在于表示出x-y4.如图,4张边长分别为a 、b 的长方形纸片围成一个正方形,从中可以得到的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()()4a b a b ab +--=答案:D解析:D【分析】假设大正方形的面积S 1,小正方形的面积S 2,则S 1-S 2=4个长方形面积.【详解】解:设大正方形的面积S 1,小正方形的面积S 2,大正方形的边长为a +b ,则大正方形面积S 1=(a +b )2,小正方形的边长为a -b ,则小正方形面积S 2=(a -b )2,四个长方形的面积为4ab ,∵S 1-S 2=4ab ,∴(a +b )2-(a -b )2=4ab ,故选:D .【点睛】本题主要考查通过正方形面积的计算,列出代数式,得出两个完全平方公式相减等于4ab 的正确性.难点在于小正方形边长的求解:用一个长方形的长a ,减去另一个长方形的宽b ,即a -b .5.已知关于x 的不等式组132x a x -⎧⎨+>⎩的解集为12x -<,则a 的值为( ) A .1 B .1- C .2 D .2-答案:A解析:A【分析】求出不等式组的解集,再根据题目已知的解集,确定关于a 的一元一次方程,求得a 的值.【详解】解不等式1x a -,得:1x a +,解不等式32x +>,得:1x >-,所以不等式组的解集为11x a -<+,不等式组的解集为12x -<,12a ∴+=,解得1a =,故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个答案:C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.填在下面各小正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .224B .168C .212D .132答案:C解析:C【分析】先根据第一行两个数之间的规律求出阴影小正方形中的数,再根据四个数之间的规律即可得.【详解】观察第一行小正方形中的两个数可知,第二个数减去第一个数的差为4,则阴影小正方形中的数为12416+=,由题意可知,各小正方形中的四个数满足如下等式:8240=⨯-,22462=⨯-,44684=⨯-,则141612212m =⨯-=,故选:C .【点睛】本题考查了整式的数字类规律探索,依据题意,正确发现规律是解题关键.8.将ABC ∆沿DE EF 、翻折,顶点,A B 均落在点O 处,且EA 与EB 重合于线段EO ,若0106CDO CFO ∠+∠=,则C ∠的度数( )A .40°B .37°C .36°D .32°答案:B解析:B【解析】【分析】如图,连接AO 、BO .由题意EA=EB=EO ,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA ,FO=FB ,推出∠DAO=∠DOA ,∠FOB=∠FBO ,推出∠CDO=2∠DAO ,∠CFO=2∠FBO ,由∠CDO+∠CFO=106°,推出2∠DAO+2∠FBO=106°,推出∠DAO+∠FBO=53°,由此即可解决问题.【详解】解:如图,连接AO 、BO .由题意EA=EB=EO ,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA ,FO=FB ,∴∠DAO=∠DOA ,∠FOB=∠FBO ,∴∠CDO=2∠DAO ,∠CFO=2∠FBO ,∵∠CDO+∠CFO=106°,∴2∠DAO+2∠FBO=106°,∴∠DAO+∠FBO=53°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=143°,∴∠C=180°-(∠CAB+∠CBA )=180°-143°=37°,故选:B .【点睛】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.二、填空题9.若32ab =-,则5(3)2ab ab -⋅=______.解析:24-【分析】先根据单项式乘以单项式法则进行计算,再根据幂的乘方和积的乘方进行变形,最后代入求出即可.【详解】∵ab 3=−2,∴5(3)2ab ab -⋅=−6a 2b 6=−6(ab 3)2=−6×(−2)2=−24,故答案为:−24.【点睛】本题考查了单项式乘以单项式,幂的乘方和积的乘方等知识点,能正确根据积的乘方和幂的乘方进行变形是解此题的关键.10.“,,a b c 是直线,若a b ⊥,b c ⊥,那么a c ⊥”这个命题是_________命题.(填“真”或者“假”)解析:假【分析】在同一平面内,同垂直于一条直线的两条直线平行,据此解题即可.【详解】a b c ,,是直线,若a b ⊥,b c ⊥,那么//a c ”,故原命题错误,是假命题故答案为:假.【点睛】本题考查真假命题的判断、平行线的判定等知识,是基础考点,难度较易,掌握相关知识是解题关键.11.一个多边形的内角和是它的外角和的3倍,则这个多边形是_____边形.解析:八【分析】多边形的内角和为()2180,n -︒外角和为360,︒ 再列方程()21803360,n -︒=⨯︒解方程可得答案.【详解】解:设这个多边形为n 边形,则()21803360,n -︒=⨯︒26,n ∴-=8,n ∴=故答案为:八【点睛】本题考查的是多边形的内角和与外角和,掌握多边形的内角和定理与外角和定理是解题的关键.12.若1,33a b a b +=-=-,则22a b -=_________. 解析:1-【分析】利用平方差公式进行计算,即可得到答案.【详解】解:∵1,33a b a b +=-=-, ∴221()()(3)13a b a b a b =+-=⨯-=--; 故答案为:1-.【点睛】本题考查了平方差公式的运用,解题的关键是熟练掌握平方差公式进行求值.13.方程组6293x y x y a=-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____. 解析:7【分析】由x与y互为相反数得到y=﹣x,代入方程组求出a的值即可.【详解】解:由x、y互为相反数,得到x+y=0,即y=﹣x,代入方程组6293x yx y a=-⎧⎨-=-⎩得:6293x xx x a=+⎧⎨+=-⎩,解得:x=-6a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为______m.解析:400【分析】根据图形得出荷塘中小桥的总长为长方形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为800m,∴小桥总长为:800÷2=400(m).故答案为:400.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为长方形的长与宽的和是解题关键.15.中华人民共和国国旗上的五角星的五个角的和是__________度.答案:180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接,,,,五边形为正五边形所以每个内角为.五个角的和为.故答案是:180°.【点睛】解析:180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接JB,BD,DF,FH,HJ五边形JBDFH为正五边形∴所以每个内角为108︒BJH108AJB72AJB ABJA.18027236∴五个角的和为365180.故答案是:180°.【点睛】本题考查的是正多边形的性质,外角的性质,等腰三角形的性质,知道五角星的每一个角都相等是解题的关键.16.如图,A、B、C分别是线段的中点,若的面积是14,那么△ABC的面积是________.答案:2【解析】【分析】连接AB1,BC1,CA1,设△ABC 的面积为S ,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积为2S ,同理可求△B1CC1的面解析:2【解析】【分析】连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,根据等底等高的三角形的面积相等求出△ABB 1,△A 1AB 1的面积,从而求出△A 1BB 1的面积为2S ,同理可求△B 1CC 1的面积,△A 1AC 1的面积,然后相加即可得到的面积,再根据的面积为14即可求得答案.【详解】如图,连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,∵A 、B 分别是线段A 1B ,B 1C 的中点, ∴∴, 同理:, ∴, ∵, ∴S=2,即△ABC 的面积为2, 故答案为:2.【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.17.计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭答案:(1)9;(2)【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1);(2).【点睛】本题考查解析:(1)9;(2)322312a b a b ab --+ 【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1)235021482()3π-÷⨯-+-495021222()3π-=÷⨯-+- 119=-+9=;(2)221(22)()2a ab b ab +-- 322312a b a b ab =--+. 【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.18.因式分解:(1)2xy x -(2)221244x xy y ++ 答案:(1);(2).【分析】(1)先提取公因式x ,然后利用平方差公式分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】解:(1);(2).【点睛】本题主解析:(1)()()11x y y +-;(2)()2144x y +. 【分析】(1)先提取公因式x ,然后利用平方差公式分解因式即可;(2)先提取公因式14,然后利用完全平方公式分解因式即可. 【详解】解:(1)2xy x -()21x y =-()()11x y y =+-;(2)221244x xy y ++ ()2218164x xy y =++ ()2144x y =+. 【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.19.解方程组:(1)263536x y x y +=⎧⎨-=⎩ (2)34332(1)20x y x y ⎧+=⎪⎨⎪--=⎩ 答案:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.【详解】解:(1),①+②×2得:12x=15,解得:x=,把x=代入①得解析:(1)54112x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)83x y =⎧⎨=⎩. 【分析】(1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.【详解】解:(1)263 536x yx y+=⎧⎨-=⎩①②,①+②×2得:12x=15,解得:x=54,把x=54代入①得:52+6y=3,解得:y=1 12,则方程组的解为54112xy⎧=⎪⎪⎨⎪=⎪⎩;(2)34332(1)20x yx y⎧+=⎪⎨⎪--=⎩整理得:34363218x yx y+=⎧⎨-=⎩①②,①-②得:6y=18,解得:y=3,把y=3代入②得:3x-6=18,解得:x=8,则方程组的解为83xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式组32(1)113x xx+>-⎧⎪-⎨>⎪⎩,并把解集在数轴上表示出来.答案:4<x<5,数轴见解析【分析】先根据不等式的性质分别解不等式求解集,然后取两个解集的公共部分,最后利用数轴上解集表示方法在数轴上表示不等式组的解集.【详解】解:解不等式x+3>2(x﹣1),解析:4<x<5,数轴见解析【分析】先根据不等式的性质分别解不等式求解集,然后取两个解集的公共部分,最后利用数轴上解集表示方法在数轴上表示不等式组的解集.【详解】解:解不等式x+3>2(x﹣1),得:x+3>2x-2,x-2x>-2-3,-x>-5,x<5,解不等式113x->,得:x-1>3,x>4,则不等式组的解集为4<x<5,将解集表示在数轴上如下:【点睛】本题主要考查解不等式组和解集在数轴上的表示,解决本题的关键是要熟练掌握解不等式组的方法和解集在数轴上的表示方法.三、解答题21.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.答案:AD//BC,见解析【分析】根据角平分线的性质可得,由,等量代换可得,利用平行线的性质定理可得,易得,由平行线的判定定理可得结论.【详解】解:.理由:平分,,,,,,,,.解析:AD //BC ,见解析【分析】 根据角平分线的性质可得12ABE CBE ABC ∠=∠=∠,由21ABC ∠=∠,等量代换可得1ABE CBE ∠=∠=∠,利用平行线的性质定理可得1AEB ADC ∠=∠=∠,易得AEB ABE ∠=∠,由平行线的判定定理可得结论.【详解】解://AD BC .理由:BE 平分ABC ∠,12ABE CBE ABC ∴∠=∠=∠, 21ABC ∠=∠, ∴112ABC ∠=∠, 1ABE CBE ∴∠=∠=∠,//EB CD ,1AEB ADC ∴∠=∠=∠,AEB ABE ∴∠=∠,//AD BC ∴.【点睛】本题主要考查了角平分线的定义,平行线的性质定理和判定定理,得出AEB ABE ∠=∠是解答此题的关键.22.小宇骑自行车从家出发前往地铁2号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,此时小宇离B 站还有2400米.已知A 、B 两站间的距离和小宇家到B 站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍. (1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B 站,且小宇骑车到达B 站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)答案:(1)小宇骑车的平均速度是米/分;(2)至少应提高米/分【分析】(1)设小明骑车的平均速度是x 米/分,、两站间的距离和小宇家到站的距离恰好相等,列出方程 3x+2400=3×5 x ,解方程即可得解析:(1)小宇骑车的平均速度是200米/分;(2)至少应提高100米/分【分析】(1)设小明骑车的平均速度是x 米/分,A 、B 两站间的距离和小宇家到B 站的距离恰好相等,列出方程 3x +2400=3×5 x ,解方程即可得解;(2)设小明的速度提高y 米/分,根据题意列出一元一次不等式(102)(200)2400y -⨯+≥,即可得出答案;【详解】解:(1)设小宇骑车的平均速度是x 米/分.根据题意,得3240035x x +=⨯解得200x =答:小宇骑车的平均速度是200米/分.(2)设小宇骑车的平均速度提高y 米/分.根据题意,得(102)(200)2400y -⨯+≥解得100y ≥.答:小宇骑车的平均速度至少应提高100米/分.【点睛】本题考查了一元一次方程的应用及一元一次不等式的应用,弄清题中的不等及相等关系是解本题的关键.23.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A 、B 两类:A 类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B 类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A 类年票,请问他一年中进入该中心不低于多少次?答案:(1)应该购买B 类年票,理由见解析;(2)应该购买B 类年票,理由见解析;(3)小明一年中进入拓展中心不低于30次【分析】(1)因为80元小于120元,故无法购买A 类年票,继而分别讨论直接购票与购解析:(1)应该购买B 类年票,理由见解析;(2)应该购买B 类年票,理由见解析;(3)小明一年中进入拓展中心不低于30次【分析】(1)因为80元小于120元,故无法购买A 类年票,继而分别讨论直接购票与购买B 类年票,这两种方式何者次数更多即可.(2)本题根据进入中心的次数,分别计算小亮直接购票、购买A 类年票、购买B 类年票所消费的总金额,最后比较总花费大小即可.(3)小明选择购买A 类年票,说明A 类年票更为划算,故需满足直接购票与购买B 类年票所花费的金额不低于120元,最后列不等式求解即可.【详解】(1)由于预算限制,小丽不可能买A 类年票;若直接购票,可以进中心8010=8÷次;若购买B 类年票,可进中心(8060)210-÷=次,所以应该购买 B 类年票.(2)若直接购买门票,需花费2010=200⨯元;若购买A 类年票,需花费120元;若购买B 类年票,需花费60+202=100⨯元;所以应该购买B 类年票.(3)设小明每年进拓展中心约x 次,根据题意列出不等式组:10120602120x x ≥⎧⎨+≥⎩,解得1230x x ≥⎧⎨≥⎩,故30x ≥. 所以小明一年中进入拓展中心不低于30次.【点睛】本题考查实际问题以及不等式,解题关键在于对题目的理解,此类型题目需要分类讨论做对比,其次需要从实际问题背景抽离数学关系,最后注意计算仔细即可.24.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 答案:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.25.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).答案:阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结 解析:阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-.【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.【详解】解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DG CF . ∵DG MN , ∴MN CF . ∵BH MN , ∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠,由(1)得FC ∥MN ,∴FC ∥HP ,∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD ,∴∠ECG=20°+1MAB 2∠,∴∠FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007—2008学年度第二学期期末考试七年级数学试题(5)(考试时间:120分钟;试卷满分:150分)一、填空题:(每空3分,共36分)1.计算:231-⎪⎭⎫ ⎝⎛--0)2008(-= . 2.遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm , 用科学记数法表示为 cm 。
3.如图1所示,若︒=∠+∠18021,︒=∠753,则=∠4 。
4.有两个边长为3cm 、 6cm 的等腰三角形周长为 cm 。
5.若3,2==y xa a,则yx a23-= .。
6.已知方程组⎩⎨⎧=++=+m y x m y x 32223的解适合x +y=8,则m=7.已知132x y-=,可以得到x 表示y 的式子是8.为了估计湖里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里, 过一段时间,等待带标记的鱼完全混合于鱼群后,再捕上200条,发现其中带标记的鱼有20条,湖里大约有鱼 .9.已知△ABC 的边AB 、AC 的长分别为6cm 、8cm,则BC 边上的中线AD 的取值范围为 .10.在日常生活中如取款、上网等都需要密码。
有一种“因式分解”法产生的密码,方便记忆。
原理是:如对于多项式44y x -,因式分解的结果是))()((22y x y x y x ++-,若取9=x ,9=y 时,则各个因式的值是:0)(=-y x ,18)(=+y x ,162)(22=+y x ,于是,就可以把“018162”作为一个六位数的密码。
对于多项式234xy x-,取10=x ,10=y 时,用上述方法产生的密码是:________________(写出一个可)。
11.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为 12.如图AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿AD 对折,点C 落在C ′的位置,则BD 与DC ′之间的关系是__________________.二、选择题:(每题3分,共30分)13.以下列各组线段长为边,能组成三角形的是( )A .1,2,4B .8,6,4C .12,5,6D .2,3,6 14.下列多项式乘法中,可以用平方差公式计算的是( ) A .)1)(1(x x ++ B .)21)(21(a b b a -+ C .))((b a b a -+-D .))((22y x y x+-15.下列事件是必然事件的是( )A .明天会下雨;B .任意选一个学生,他的学号是奇数;C .在装有5个红球3个黄球的袋子中摸不到兰球;D .下课后,同学们都去操场。
16.有10t 货物,大车一次能装2t ,小车一次能运1t ,若要一次运完,派车方案有( )图1N MO 4321ba CA DBC′甲乙A .1种B .2种C .3种D .4种17从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A.222()ab a b -=- B.222()2a b a ab b +=++C.222()2a b a ab b -=-+ D.22()()a b a b a b -=+-18.若方程组 2313,3530.9a b a b -=⎧⎨+=⎩的解是 8.3,1.2,a b =⎧⎨=⎩ 则方程组 2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩ 的解是( ) (A ) 6.3,2.2x y =⎧⎨=⎩ (B )8.3,1.2x y =⎧⎨=⎩ (C )10.3,2.2x y =⎧⎨=⎩(D )10.3,0.2x y =⎧⎨=⎩19.粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年计划生产水稻x 吨,生产小麦y 吨,依据题意列出方程组是( )A ⎩⎨⎧=⨯+⨯=+17%15%10,15y x y x B ⎩⎨⎧=⨯+⨯=+15%15%10,17y x y xC ⎩⎨⎧=+++=+17%)151(%)101(,15y x y x D ⎩⎨⎧=+++=+15%)151(%)101(,17y x y x 20.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是( )A 、总体是我市七年级学生每天用于学习的时间B 、其中500名学生每天用于学习的时间是总体的一个样本C 、样本容量是500名D 、个体是其中1名学生每天用于学习的时间21.下列条件中①两条直角边对应相等;②两个锐角对应相等;③斜边和一条直角边对应相等;④一条直角边和一个锐角相等;⑤斜边和一锐角对应相等;⑥两条边相等.其中能判断两个直角三角形全等的有( )A.6个 B.5个 C.4个 D.3个 22.如右图,直线AE ∥CD ,∠EBF =145°,∠BFD =70°, 则∠D 等于( )(A)75°. (B)45°. (C)30°. (D)15°. 三.解答题:23.计算:(1)(4m-3)2-(4m+3)(4m-3) (2)(a+2b -3c )(a -2b+3c )(3)232999⎪⎭⎫⎝⎛- (4) 7597210⨯-24.因式分解:(1)6442-x (2)32244b b a ab --(3)n m n m -+-3922 (4)-4a 2+24a-36(5)16(m —n)2—9(m+n)2(6) (1)4)x y ()y x (x2-+-25.解方程组:(1)⎩⎨⎧=--=+53135y x y x (2) ()()⎪⎩⎪⎨⎧=--+=-++254632y x y x yx y x26.先化简再求值:(a +b )(a -b )-2(a-b )2-a(2a-b),其中a=23,b =-112。
27.对于任意的有理数a 、b 、c 、d ,我们规定.a bad bc c d=-如: ()()2345253)4()2(=⨯--⨯-=--据这一规定,解答下列问题:(本题6分)(1)化简)2(32)3(y x y x y x ++ (2)若x 、y 同时满足x y )2(3-=5,821=y x ,求x 、y 的值.28.已知:如图,AB =CD ,AD =BC ,P 为AC 上任一点,过P 的直线分别交AD 、CB 的延长线于E 、F.(1)请问:∠E =∠F 吗?说明你的理由;(2)要得出结论PE =PF ,还需增加一个什么条件,说明你的理由.29.(2007哈尔滨)据2007年5月26日《生活报》报道,我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?A B C D E F P30.探究应用(1)计算(a -2)(a 2+ 2a + 4)=(2x -y )(4x 2 + 2xy + y 2)=(2)上面的整式乘法计算结果很简洁,你又发现一个新的乘法公式(请用含a.b 的字母表示)。
(3)下列各式能用你发现的乘法公式计算的是( )A (a -3)(a 2-3a + 9)B (2m -n )(2m 2 + 2mn + n 2)C (4-x )(16 + 4x + x 2)D (m -n )(m 2 + 2mn + n 2)(4)直接用公式计算:(3x - 2y )(9x 2 + 6xy + 4y 2)=(2m -3)(4m 2+ + 9)=31.如图,四边形ABCD 中,点E 在边CD 上,连结AE 、BE 并延长交于点 F .给出下列五个关系式:①AD ∥BC ; ②DE=EC ; ③ ∠1=∠2; ④∠3=∠4; ⑤AD+BC=AB 将其中的三个关系式作为已知条件.另外两个作为结论,构成正确的结论.(1)用序号写出三个正确的结论(书写形式如:如果x x x ,那么x x);A :B :C :(2)我选择 进行说明其中的道理. (本题6分)图2图1最喜欢的体育活 动项目的人数/人育活动项目32.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,求出两枚骰子朝上的点数之和为3的倍数的概率.33.用两个全等的等边三角形△ABC和△ACD拼成四边形ABCD,把一个含60°角的三角尺与这个四边形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB、AC重合,将三角尺绕点A按逆时针方向旋转。
(1)当三角尺的两边分别与四边形的两边BC、CD相交于点E、F时(如图a),通过观察或测量BE、CF的长度,你能得出什么结论?并说明理由;(2)当三角尺的两边分别与四边形的两边BC、CD的延长线相交于点E、F时(如图b),你在(1)中得到的结论还成立吗?简要说明理由。