初升高数学提高练习-第三十讲 生活中的数学(二)

合集下载

二次函数《现实生活中的抛物线》练习

二次函数《现实生活中的抛物线》练习

26.3 实践与探索第1课时现实生活中的抛物线1.(2020山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5 m的高处以20 m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( C )A.23.5 mB.22.5 mC.21.5 mD.20.5 m2.如图所示,从某建筑物10 m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点Mm,则水流落地点B离墙的距离OB是( B )离墙1 m,离地面403A.2 mB.3 mC.4 mD.5 m3.如图所示,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管的高为 2.25 m.4.如图所示是一个横截面为抛物线形状的拱桥,当水面宽4 m 时,拱顶(拱桥洞的最高点)离水面 2 m,水面下降 1 m 时,水面的宽度为 2√6 m.5.如图所示,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y=-35x 2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4 m,在一次表演中,人梯到起跳点A 的水平距离是4 m,问这次表演是否成功?请说明理由. 解:(1)y=-35x 2+3x+1=-35(x-52)2+194,所以当x=52时,y 有最大值194.所以演员弹跳离地面的最大高度是194m.(2)能表演成功.理由如下: 当x=4时,y=-35×42+3×4+1=3.4,即点B(4,3.4)在抛物线y=-35x 2+3x+1上,所以能表演成功.6.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m7.如图所示,排球运动员站在点O处练习发球,将球从点O正上方2 m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-k)2+h.已知球D与O点的水平距离为6 m时,达到最高2.6 m,球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m,则下列判断正确的是( C )A.球不会过球网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定8.如图所示,一工厂车间门口由抛物线和矩形ABCO的三边组成,门的最大高度是4.9 m,AB=10 m,BC=2.4 m,若有一个高为4 m,宽为2 m的长方体形的大型设备要安装在车间,如果不考虑其他因素,设备的右侧离开门边超过多少米时,此设备运进车间时才不会碰门的顶部( D )A.1.7B.1.8C.1.9D.2.19.某游乐园有一个直径为16 m 的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3 m 处达到最高,高度为5 m,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系. (1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 m,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a (x-3)2+5(a ≠0),将(8,0)代入y=a(x-3)2+5,得25a+5=0, 解得a=-15.所以y=-15(x-3)2+5(0<x<8).所以水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).(2)当x=0时,y=-15(0-3)2+5=165.设改造后抛物线(第一象限部分)函数表达式为y=-15x 2+bx+165.因为该函数图象经过点(16,0), 所以0=-15×162+16b+165,解得b=3.所以函数表达式为y=-15x 2+3x+165=-15(x-152)2+28920(0<x<16).所以扩建改造后喷水池水柱的最大高度为28920m.10.(拓展探究题)施工队要修建一个横断面为抛物线的公路隧道,其高度为6 m,宽度OM 为12 m.现以O 点为原点,OM 所在直线为x 轴建立平面直角坐标系(如图(1)所示).(1)求出这条抛物线的函数表达式,并写出自变量x 的取值范围; (2)隧道下的公路是双向行车道(正中间是一条宽1 m 的隔离带),其中的一条行车道能否行驶宽2.5 m,高5 m 的特种车辆?(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A,D 点在抛物线上,B,C 点在地面OM 线上(如图(2)所示).为了筹备材料,需求出“脚手架”三根木杆AB,AD,DC 的长度之和的最大值,请你帮施工队计算一下.解:(1)因为M(12,0),P(6,6), 所以设这条抛物线的函数表达式为 y=a(x-6)2+6.因为抛物线过O(0,0), 所以a(0-6)2+6=0. 解得a=-16.所以这条抛物线的函数表达式为 y=-16(x-6)2+6,即y=-16x 2+2x(0≤x ≤12).(2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时,y=4.5<5, 故不能行驶宽2.5 m,高5 m 的特种车辆. (3)设点A 的坐标为(m,-16m 2+2m),则OB=m,AB=DC=-16m 2+2m.根据抛物线的轴对称,可得OB=CM=m. 故BC=12-2m,即AD=12-2m. 令L=AB+AD+DC =-16m 2+2m+12-2m-16m 2+2m=-13m 2+2m+12 =-13(m-3)2+15,故当m=3,即OB=3 m 时,三根木杆AB,AD,DC 长度之和L 的最大值为 15 m.。

【初升高数学衔接教材讲义系列】第03章 一次函数与一次不等式(解析版)

【初升高数学衔接教材讲义系列】第03章 一次函数与一次不等式(解析版)

第3章 一次函数与一次不等式【知识衔接】————初中知识回顾————1、形如y=kx+b(k≠0)的函数叫做一次函数。

(1)它的图象是一条斜率为k ,过点(0,b )的直线。

(2)k>0⇔是增函数;k<0⇔是减函数。

2、不等式ax>b 的解的情况:(1)当a>0时,ab x >; (2)当a<0时,a b x <; (3)当a=0时,i) 若b≤0,则取所有实数;ii) 若b>0,则无解。

类似地,请同学们自行分析不等式ax <b 的解的情况。

————高中知识链接————一次函数y =kx +b (k ≠0,b ≠0)的图象所经过的象限有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0,函数y =kx +b 的图象经过第二、三、四象限.一次函数y =kx +b (k ≠0)中,|k |越大,直线y =kx +b 越靠近y 轴,即直线与x 轴正半轴的夹角越大;|k |越小,直线y =kx +b 越靠近x 轴,即直线与x 轴的夹角越小.学#科网【经典题型】初中经典题型1.一次函数y =(m -2)x +3的图象如图所示,则m 的取值范围是( )A.m<2 B.0<m<2 C.m<0 D.m>2【答案】A【解析】如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2,故选A.2.如图,把Rt∆ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将∆ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.82【答案】C3.已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(,)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-,),∵A、B关于y轴对称,∴B(,),故答案为(,).4.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.【答案】1.5.【解析】分析:首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.点睛:本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.5.一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.【答案】D【解析】分析:先求出不等式组的解集,再在数轴上表示. 详解:解不等式组得-3<x ≤2,在数轴上表示为:故选D .点睛:解一元一次不等式组,通常采用“分开解,集中定”的方法,即单独的解每一个不等式,而后集中找它们的解的“公共部分”.在找“公共部分”的过程中,可借助数轴或口诀两种方法确定不等式组的解集.其中确定不等组解集的方法为:“大大取大,小小取小,大小小大中间找,大大小小是无解”.在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.6.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A. 2B. 3C. 4D. 5【答案】D【解析】解:根据题意,x =3是不等式的一个解,∴将x =3代入不等式,得:6﹣a ﹣2<0,解得:a >4,则a 可取的最小正整数为5,故选D .学-科网点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.高中经典题型1.若函数1y ax =+在[]1,2上的最大值与最小值之差为2,则实数a =( )A . 2B . 2-C . 2或2-D . 0【答案】C【解析】1y ax =+,若0a =,则y 的最大与最小之差为0(舍),若0a >,则()()max 221f x f a ==+,()()min 11f x f a ==+,则()2112a a a +-+==(符合),若0a <,则()()max 11f x f a ==+, ()()min 221f x f a ==+,则()1212a a a +-+=-=,则2a =-(符合),故选C . 2.若()()0f x ax b a =+>,且()()41ff x x =+,则()3f =__________. 【答案】193【解析】由()()()241f f x af x b a x ab b x =+=++=+, ()24,10a ab b a ∴=+=>,解得()112,,233a b f x x ==∴=+,于是()1933f =,故答案为193. 3.如图,已知函数f(x)的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式f(x)-f(-x)>-1的解集是______________.【答案】 (-1,- 12)∪[0,1)4.已知函数()()()110f x ax x a a =+->,且()f x 在[]0,1上的最小值为()g a ,求()g a 的最大值. 【答案】1【解析】试题分析:(1)由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,分三种情况讨论,即可求解函数的最小值,得出()g a 的表达式,即可求解()g a 的最大值. 试题解析:由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,(1)当a 1>时, 1a 0a ->,此时()f x 在[]0,1上为增函数,∴()()1g a f 0a ==;(2)当0a 1<<时, 1a 0a-<,此时()f x 在[]0,1上为减函数,∴()()g a f 1a == ;(3)当a 1=时, ()f x 1=,此时()g a 1=,∴(),01,g a { 1,1,aa a a <<=≥其在()0,1上为增函数,在[)1,∞上是减函数,又当a 1=时,有1a 1a==,∴当a 1=时, ()g a 取得最大值1. 点睛:本题考查了函数最值问题及其应用,其中解答中涉及到一次函数的单调性的应用,以及分段函数的性质,同时考查了分类讨论的思想方法,本题的解答中注意1a =的情况,容易导致错解,试题有一定的基础性,属于基础题.5.(1)求函数y =ax +1(a≠0)在[0,2]上的最值.(2)若函数y =ax +1在[0,2]上的最大值与最小值之差为2.求a 的值.【答案】(1)详见解析;(2) a =±1.6.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.学-科网(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。

求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。

求不等式|x +2|+|x -1|>3的解集.例5。

解不等式|x -1|+|2-x |>3-x .例6。

已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。

初升高数学衔接题及答案

初升高数学衔接题及答案

初升高数学衔接题及答案【题目一:代数基础】题目:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。

【答案】首先,我们可以通过因式分解来解这个方程:\( x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \)。

因此,方程的根是 \( x = 2 \) 和 \( x = 3 \)。

【题目二:几何基础】题目:在直角三角形ABC中,角C是直角,AB是斜边,如果AC=6,BC=8,求斜边AB的长度。

【答案】根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即:\( AB^2 = AC^2 + BC^2 \)。

代入已知值:\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,斜边AB的长度为 \( AB = \sqrt{100} = 10 \)。

【题目三:函数基础】题目:如果函数 \( f(x) = 2x - 3 \),求 \( f(5) \) 的值。

【答案】将 \( x = 5 \) 代入函数 \( f(x) = 2x - 3 \) 中,我们得到:\( f(5) = 2 \cdot 5 - 3 = 10 - 3 = 7 \)。

所以,\( f(5) \) 的值为7。

【题目四:不等式基础】题目:解不等式 \( 3x - 5 < 10 \)。

【答案】首先,我们将不等式两边加上5:\( 3x - 5 + 5 < 10 + 5 \),得到 \( 3x < 15 \)。

然后,我们将不等式两边除以3:\( \frac{3x}{3} < \frac{15}{3} \),得到 \( x < 5 \)。

所以,不等式的解为 \( x < 5 \)。

【题目五:概率基础】题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。

【答案】总共有 \( 5 + 3 = 8 \) 个球。

取出红球的概率为红球数量除以总球数,即:\( P(\text{红球}) = \frac{5}{8} \)。

华东师大版数学九年级上册2解直角三角形在生活中的应用课件(共27张)

华东师大版数学九年级上册2解直角三角形在生活中的应用课件(共27张)

B

数学建模
拓展三:为了不让学生上课受噪声影响,你有什么好的建议?
解:
北 M
A●
120
E
240 30°
B

数学建模
拓展三:为了不让学生上课受噪声影响,你有什么好的建议?
解:

A●
150
E
240
B

数学建模
拓展四:为了不让学生上课受噪声影响,你有什么好的建议?
北 M
A●
120
E
240 30°
B

北 M
A●
行驶 讨论
30°
B

数学建模 当前,全国新农村正如火如荼地进行,某村计划在建设区B的 北偏东30°方向修一条公路。小明所在的教室A在该建设区B的正北方向240m处。 如果拖拉机行驶 时,150m的范围内为受其噪音影响区域,问拖拉机经过该路时, 教室A是否受到噪音的影响?为什么?
解:
北 M
解直角三角形 在生活中的应用
知识经验
1、方位角
2、仰角 俯角

北偏东40 °
3、坡角 坡比
h
40°
铅 垂
) )仰俯角角
水平线
线

a L
抢答:根据图中所给的条件,分别求出图中的x .
生活情景
铅 垂 线
我们构造出了 一个直角三角形
水平线
方法建构
线长可以 量
A
求 高 度
仰角可以测
Ba
C
分析裁定
A
A
A
60米
甲 30° B
解:在Rt△ABC中, ∠B = 30°AB=60米
sin B h1 AB

2020年中考数学复习:二次函数在实际生活中的应用 专项练习题(含答案解析)

2020年中考数学复习:二次函数在实际生活中的应用 专项练习题(含答案解析)

2020年中考数学复习:二次函数在实际生活中的应用 专项练习题1.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( )A.y =26675x 2B.y =26675-x 2C.y =131350x 2D.y =131350-x 2第9题图 【答案】B【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675-,∴二次函数表达式为y =26675-x 2,故选B. 2.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣(t ﹣h )2+0.4刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【解题过程】(1)把(25,0.3)的坐标代入21()0.4160p t h =--+,得h =29或h =21. ∵h >25,∴h =29.(2)①由表格可知m 是p 的一次函数,∴m=100p-20.②当1025t ≤≤时,p=11505t -,∴m=11100()20505t --=2t-40. 当2537t ≤≤时,21(29)0.4160p t =--+.∴m=21100[(29)0.4)]20160t --+-=25(29)208t --+(3)(I )当2025t ≤≤时,由(20,200),(25,300),得20200w t =- ∴增加利润为600m+[200×30-w (30-m )]= 2406004000t t --. ∴当t=25时,增加利润的最大值为6000元. (II )当2537t ≤≤时,300w =. 增加利润为600m+[200×30-w (30-m )]= 25900()(29)150008t ⨯-⨯-+=21125(29)150002t --+ ∴当t=29时,增加利润的最大值为15000元.综上所述,当t=29时,提前上市20天,增加利润的最大值为15000元.3.(2019山东省青岛市,22,10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【解题过程】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩,解得:2160k b =-⎧⎨=⎩,故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x 剟, ∴当50x =时,w 由最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元; (3)由题意得:(30)(2160)800x x --+…, 解得:70x …,∴每天的销售量216020y x =-+…, ∴每天的销售量最少应为20件.4.(2019·武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) ① 求y 关于x 的函数解析式(不要求写出自变量的取值范围)② 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值【解题过程】(1)设y 与x 的函数关系式为y =kx +b ,依题意有,501006080k b k b +=⎧⎨+=⎩,解得,k =-2,b =200,y与x 的函数关系式是y =-2x +200;(2)将售价50,周销售量100,周销售利润1000,带入周销售利润=周销售量×(售价-进价)得到,1000=100×(50-进价),即进价为40元/件;周销售利润w =(x -40)y =(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元,故答案为40,70,1800;(3)依题意有,w =(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m =221401260180022m x m m +⎛⎫--+-+ ⎪⎝⎭∵m >0,∴对称轴140=702m x +>, ∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x =65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m =5.5.(2019·黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示(0≤x ≤100),已知草莓的产销投人总成本p (万元)与产量x (吨)之间满足P =x +1. (1)直接写出草莓销售单价y (万元)与产量x (吨)之间的函数关系式; (2)求该合作社所获利润w (万元)与产量x (吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w '不低于55万元,产量至少要达到多少吨?【解题过程】6 (2019·衢州市)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为80间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数(间)与每间标准房的价格x (元)的数据如下表:(1)根据所给数据在坐标系中描出相应的点,并画出图象。

初升高衔接数学例题及答案

初升高衔接数学例题及答案

初升高衔接数学例题及答案【例题1】已知二次函数 \( f(x) = ax^2 + bx + c \) 的图像与x轴有两个交点,且顶点坐标为(-1, -2),求a、b、c的值。

【解答】首先,我们知道二次函数的顶点形式为 \( f(x) = a(x - h)^2 + k \),其中(h, k)为顶点坐标。

根据题目,顶点坐标为(-1, -2),所以函数可以表示为:\[ f(x) = a(x + 1)^2 - 2 \]由于图像与x轴有两个交点,这意味着二次方程 \( a(x + 1)^2 - 2 = 0 \) 有两个不同的实数解。

这意味着 \( a \neq 0 \) 并且判别式\( \Delta = b^2 - 4ac \) 必须大于0。

将 \( f(x) = 0 \) 代入 \( a(x + 1)^2 - 2 = 0 \) 得:\[ a(x + 1)^2 = 2 \]\[ (x + 1)^2 = \frac{2}{a} \]由于有两个不同的实数解,\( \frac{2}{a} \) 必须是一个完全平方数。

设 \( \frac{2}{a} = m^2 \),则 \( a = \frac{2}{m^2} \)。

现在我们需要找到 \( b \) 和 \( c \) 的值。

由于 \( f(x) \) 是二次函数,我们可以展开 \( (x + 1)^2 \) 得到:\[ f(x) = a(x^2 + 2x + 1) - 2 = ax^2 + 2ax + a - 2 \]比较系数,我们得到:\[ b = 2a \]\[ c = a - 2 \]由于 \( a \) 是任意非零实数,我们无法确定具体的 \( a \)、\( b \) 和 \( c \) 的值,除非有更多信息。

【例题2】若一个等差数列的前5项和为50,且第1项为4,求该等差数列的公差d。

【解答】设等差数列的第1项为 \( a_1 \),公差为 \( d \),则前5项和\( S_5 \) 可以表示为:\[ S_5 = a_1 + (a_1 + d) + (a_1 + 2d) + (a_1 + 3d) + (a_1 +4d) \]\[ S_5 = 5a_1 + 10d \]根据题目,\( a_1 = 4 \) 且 \( S_5 = 50 \),代入上述公式得:\[ 50 = 5 \times 4 + 10d \]\[ 50 = 20 + 10d \]\[ 30 = 10d \]\[ d = 3 \]所以,该等差数列的公差 \( d \) 为3。

【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)

【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)

第1章 乘法公式与因式分解【知识衔接】————初中知识回顾————1.乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.2.因式分解因式分解是代数式的一种重要的恒等变形,初中课本涉及到的常用方法主要有:提取公因式法和公式法(平方差公式和完全平方公式),因式分解与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.————高中知识链接————我们知道乘法公式可以使多项式的运算简便,进入高中后,我们会用到更多的乘法公式:(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-. 我们用多项式展开证明式子(3),其余请自行证明:学-科网证明:3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.【经典题型】初中经典题型1.如果,那么代数式的值是()A.6 B.2 C.-2 D.-6【答案】A【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于()A.-1 B.0 C.D.1【答案】B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴∴ab=1,即(n-2011)(2012-n)=1,故选B.【点睛】本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件. 3.已知:,则代数式的值是______.【答案】8【解析】分析:先将所求式子化简,然后将a 2+a =4整体代入计算即可求答案. 详解:==,∵,∴原式=4+4=8. 故答案为:8.【点睛】本题考查了整式的加减运算、整体思想.正确进行计算,并利用整体思想将式子的值直接代入是解题的关键.4.已知x 2﹣2x ﹣1=0.求代数式(x ﹣1)2+x (x ﹣4)+(x ﹣2)(x+2)的值. 【答案】0【解析】分析:根据整式的运算法则即可求出答案. 详解:原式=x 2-2x-1+x 2-4x+x 2-4 =3x 2-6x-3 ∵x 2-2x-1=0∴原式=3(x 2-2x-1)=0【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 5.把下列各式分解因式:(1)224y x - (2)338y x -(2)22312123xy y x x +- (4)2232n mn m -+(5)b b a a 44222+-- (6)2222ab axy ay ax --+6.把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解析】(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示). (2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5).7.求证:四个连续正整数3,2,1,+++n n n n (其中n 表示正整数)的积与1的和是完全平方数. 证明:(方法一)由题意,1)]2)(1)][(3([1)3)(2)(1(++++=++++n n n n n n n n2222222)13(1)3(2)3(1]2)3)[((3(++=++++=++++=n n n n n n n n n n-1-2 x x 图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5所以得证.说明:将n n 32+看成整体进行配方即可.(方法二)由题意得,161161)3)(2)(1(234++++=++++n n n n n n n n 要证明上式是完全平方数,只要证明上式等于一个式子的平方. 令上式22)1(++=an n ,从而求得3=a ,所以得证.高中经典题型1.计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.2.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a ,,的值. 解:由题设,得)3)(32(1437622c y x b y x a y x y xy x +++-=+++--bc y c b x c b y xy x +-+++--=)3()23(37622比较对应项系数,得⎪⎩⎪⎨⎧==-=+a bc c b c b 131423,所以⎪⎩⎪⎨⎧===144c b a .3.把2105ax ay by bx -+-分解因式.【解析】把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 4.把2222()()ab c d a b cd ---分解因式.【解析】按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.22222222()()ab c d a b cd abc abd a cd b cd---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由此例可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. 5.把22x y ax ay -++分解因式.【解析】把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+6.把2222428x xy y z ++-分解因式.【解析】先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.学科!网22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.【实战演练】————先作初中题 —— 夯实基础————A 组1.如果多项式29x mx -+是一个完全平方式,则m 的值是2.如果多项式k x x ++82是一个完全平方式,则k 的值是 3.()()22_________a b a b +--= ()222__________a b a b +=+-4.已知17x y +=,60xy =,则22x y += 5.把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 6.把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++————再战高中题 —— 能力提升————B 组1.填空,使之符合立方和或立方差公式或完全立方公式:(1)3(3)()27x x -=-; (2)3(23)()827x x +=+ (3)26(2)()8x x +=+; (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=2.运用立方和与立方差公式计算:(1)2(3)(39)y y y +-+ (2)224224()()x y x x y y -++ 3.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.若112x y -=,则33x xy y x xy y+---的值为( ) A .35B .35-C .53-D .535.若2210x x +-=,则221x x +=____________;331x x -=____________. 6.已知2310x x -+=,求3313x x++的值.7.展开3(2)x -8.计算(1)(2)(3)x x x ---9.计算()()()()x y z x y z x y z x y z ++-++-++- 10.把下列各式分解因式:(1) 2222()()ab c d cd a b -+-(2) 22484x mx mn n -+-(3) 464x + (4) 32113121x x x -+-(5) 3223428x xy x y y --+11.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 12.证明:当n 为大于2的整数时,5354n n n -+能被120整除. 13.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.第1章 乘法公式与因式分解答案1.乘法公式答案A 组1.6± 2.16 3.4ab ; 2ab 4.1695.(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴ 276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.6.(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.B 组1.(1)239x x ++ (2)2469x x -+ (3)4224x x -+(4)2964a a ++ (5)326128x x x +++ (6)32238365427x x y xy y -+-2.(1)327y - (2)66x y -3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4. D5.解:2210x x +-=,0≠∴x ,212x x ∴-=-,12x x∴-=-. (1)222211()2(2)26x x x x +=-+=-+=; (2)331x x -2211()(1)2(61)14x x x x=-++=-⨯+=-.6.解:2310x x -+= 0≠∴x 31=+∴xx原式=22221111()(1)3()[()3]33(33)321x x x x x x x x+-++=++-+=-+=7.326116x x x -+-8.43210355024x x x x -+-+ 9.444222222222x y z x y x z y z ---+++10.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +--+--+++ 2(1)(3)(7),(2)(2)x x x x y x y ----+. 11.28312.5354(2)(1)(1)(2)n n n n n n n n -+=--++13. 322322()()a a c b c abc b a ab b a b c ++-+=-+++。

(集合)初升高数学衔接知识点

(集合)初升高数学衔接知识点

(集合)初升高数学衔接知识点初升高数学衔接知识点11、数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏);2)有标准。

2、非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3、倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04、相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5、数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6、奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7、绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

【初升高 数学衔接教材】1~16讲参考答案

【初升高 数学衔接教材】1~16讲参考答案

第一讲 因式分解例1:解:由多项式的乘法法则易得))(()(2d cx b ax bd x bc ad acx ++=+++∴∴3×(-3)+2×1=-7∴)32)(13(3762-+=--x x x x 例2:解:∴原式=])([])([2222b a x b a x +-⋅-- =))()()((b a x b a x b a x b a x --+++--+ 例3:解:原式=)3103()44(422+--+-y y x y x=)3)(13()44(42---+-y y x y x =)]3(2)][13(2[-+--y x y x =)32)(132(-++-y x y x点评:以上三例均是利用十字相乘来因式分解,其中例3中有x 、y ,而我们将其整理x 的二次三项式。

故又称“主元法”。

例4:解:如果要分解的因式的形式是,唯一确定的,那么可以考虑利用待定系数法 ∵)3)(32(93222y x y x y xy x +-=-+则可设)3)(32(2031493222n y x m y x y x y xy x +++-=+-+-+(m 、n 待定) ∴原式=mn y n m x n m y xy x +-+++-+)33()2(93222比较系数得⎪⎩⎪⎨⎧=-=-=+20333142m n n m n m 解得m =4,n =53 2 1-3 x 2 -(a -b)2 x 2-(a -b)22x -(3y -1)2xy -3∴原式=)53)(432(+++-y x y x(2)在例3中利用了十字相乘法,请同学们用待定系数法解决。

例5:解:(1))61)(1()1(6)1)(1()66()1(762233+++-=-+++-=-+-=-+x x x x x x x x x x x =)7)(1(2++-x x x或)7)(1()1(7)1)(1()77()(76233++-=-+-+=-+-=-+x x x x x x x x x x x x 或)7)(1()1)(1(6)1)(1(7)66()77(7622333++-=-+-++-=---=-+x x x x x x x x x x x x x x解:(2)15++x x =)1()1()1()(232225+++-=+++-x x x x x x x x)1()1)(1(222+++++-=x x x x x x )1)(1(232+-++=x x x x例6:解:把198757623+-+x x x 用含有132--x x 的代数式表示∴321990339 198739 261987576132223232+--+--+----x x x x x x x x x x x x∴19901990)13)(32(1987576223=+--+=+-+x x x x x x 课堂练习答案:1、(1)))()()()((2222y xy x y xy x y x y x z y x +++--+-+ (2))1)(1)(1)(1(--+--+++b a b a b a b a (3))42)(2)(14(2++-+m m m m2、(1))22)(22(22+-++x x x x (2))8)(1(2-+-x x x3、(1))1)(23(+-++y x y x (2))23)(12(+--+y x y x4、-15、2-=ab第二讲 分式例题解析答案:例1:解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2例2:解:观察各分母的特点知,式中第一、二项,第三、四项分别组合通分较容易∴原式=4422442222232))(())((b a b a b a b b a b a b b a b a a -+--++-+++ =011))((22224422222222=---=-+-+-+ba b a b a b a b a b a b a 例3:解:设a m n =,b nm=,则1=ab ∴原式=2)(32223322-++÷---++b a ba b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(n m n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c ba abc b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+-----------=ac b c a c a b c b c a b a -=---+-+-----2111111 例5:解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bcb bcbc b b bc b 例6:解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

2021-2022学年数学七年级上册尖子生提升训练(人教版)(二)整式的加减(原卷版)

2021-2022学年数学七年级上册尖子生提升训练(人教版)(二)整式的加减(原卷版)

(二)整式的加减一、单选题1.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A.11B.12C.13D.202.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.733.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.60604.我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是(4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是()A.(1,2,1,1,2) B.(2,2,2,3,3) C.(1,1,2,2,3) D.(1,2,1,2,2)5.观察下图和所给表格回答,当图形的周长为80时,梯形的个数为( )A.25B.26C.27D.286.观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左下角D .第503个正方形的右下角7.观察图形的变化规律,则第10个小房子用了( )颗石子.A .119B .121C .140D .1428.现有一列数:a 1,a 2,a 3,a 4,…,a n-1,a n (n 为正整数),规定a 1=2,a 2- a 1=4,326a a -=,…,12n n a a n --=(n≥2),若12311115041009n a a a a ++++=,则n 的值为( ). A .2015B .2016C.2017 D .20189.观察下列有序数对:(,5,,7,,9,234⎛⎛⎛⎫--- ⎪⎝⎭⎝⎭⎝⎭,……,根据你发现的规律,第100个有序数对是( ) A .201,u ⎛-⎝⎭B .201,100⎛⎫-⎪ ⎪⎝⎭C .199,100⎛⎫-⎪ ⎪⎝⎭D .199,100⎛⎫-⎪ ⎪⎝⎭10.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n 个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2二、填空题11.按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是_____.12.若32a b+=时,代数式126a b ++=_________13.古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,…由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,….这样的数为正方形数).(1)请你写出一个既是三角形数又是正方形数的自然数______;(2)类似地,我们将k 边形数中第n 个数记为()(),3N n k k ≥.以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-根据以上信息,得出(),N n k =______.(用含有n 和k 的代数式表示) 14.根据以下图形变化的规律,第2019个图形中黑色正方形的数量是___.15.观察下面一列数:按照上述规律排下去,那么第8行从右边数第4个数是__.1-2,3-,45-,6,7-,8,9-10,11-,12,13-,14,15-,16⋯⋯16.毕业典礼的开幕式上需要采购花店的鲜花.花店提供甲、乙两种造型的花束数量若干,甲种花束由4枝红花、1枝黄花和1枝紫花搭配而成,乙种花束由4枝黄花和2枝紫花搭配而成.已知每枝红花、黄花和紫花的成本之比是3:2:1,甲、乙两种造型的花束数量之比是2:9.甲、乙两种花束成本价分别为每种造型的三种鲜花的成本之和,甲种花束的销售利润率是20%,乙种花束的销售利润率为10%,这次买卖,花店获得的利润率是___________.17.某机械厂的总工程师张青家距厂部很远,每天都由厂部小客车接送,厂车到接送停靠站接到张青立即返程,根据厂车的出车时间和速度,张青总能算准时间,通常是他到停靠站时,厂车正好到达,这样,双方均不必等候.有一次,张青因挂念厂里的科研课题,提前80分钟到停靠站后没有等汽车,而是迎着厂车来的方向走去,遇到厂车后,他乘车到达厂部,结果比平时早20分,则汽车的速度是张青步行速度的______倍. 三、解答题18.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去.问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少? 19.(问题提出)在由(1)m n m n ⨯⨯>个小正方形(边长为1)组成的矩形网格中,该矩形的一条对角线所穿过的小正方形个数与m ,n 有何关系? (问题探究)为探究规律,我们采用一般问题特殊化的策略,通过分类讨论,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:当m ,n 互质(m ,n 除1外无其他公因数)时,观察图1并完成下表:图1结论:当m ,n 互质时,在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与m ,n 之间的关系式是________. 探究二:当m ,n 不互质时,不妨设m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质),观察图2并完成下表:图2结论:当m ,n 不互质时,若m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质).在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与a ,b ,k 之间的关系式是________. (模型应用)一个由边长为1的小正方形组成的长为630,宽为490的矩形网格中,该矩形的一条对角线所穿过的小正方形个数是________个.图3(模型拓展)如图3,在一个由48个棱长为1的小正方体组成的长方体中,经过顶点A ,B 的直线穿过的小正方体的个数是________个.20.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有个.第3个几何体中只有2个面涂色的小立方体共有个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数和.图① 图① 图①21.如果一个两位数的个位数字是n,十位数字是m,那么我们可以把这个两位数简记为mn,即10=+.如果一个三位数的个位数字是c,十位数字是b,百位mn m n数字是a,那么我们可以把这个三位数简记为abc,即10010=++.abc a b c(1)若一个两位数mn满足75=+,请求出m,n的数量关系并写出这个两位mn m n数.(2)若规定:对任意一个三位数abc进行M运算,得到整数()32+M=+.若一个三位数5xy满足32132+1=32=+.如:()32M abc a b c()5132M xy=,求这个三位数.(3)已知一个三位数abc和一个两位数ac,若满足65=+,请求出所有符合abc ac c条件的三位数.。

初升高数学暑假衔接(人教版)第30讲 三角函数的应用(学生版)

初升高数学暑假衔接(人教版)第30讲 三角函数的应用(学生版)

第30讲三角函数的应用1.会用三角函数解决一些简单的实际问题;2.体会三角函数是周期变化现象的重要函数模型一、函数y=A sin(ωx+φ)(A>0,ω>0)中,A,ω,φ的物理意义1、简谐运动的振幅就是A.2、简谐运动的周期T=2πω.3、简谐运动的频率f=1T=ω2π.4、ωx+φ称为相位.5、x=0时的相位φ称为初相.二、三角函数模型的应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.实际问题通常涉及复杂的数据,因此往往需要使用信息技术.三、建立函数模型的一般步骤四、运用三角函数模型解决问题的几种类型1、由图象求解析式:首先由图象确定解析式的基本形式,例如:y=A sin(ωx+φ),然后根据图象特征确定解析式中的字母参数,在求解过程中还要结合函数性质.2、由图象研究函数的性质:通过观察分析函数图象,能得出函数的单调性、奇偶性、对称性、周期性.3、利用三角函数研究实际问题:首先分析、归纳实际问题,抽象概括出数学模型,再利用图象及性质解答数学问题,最后解决实际问题.五、解三角函数应用问题的基本步骤六、建立三角函数拟合模型的注意事项1、在由图象确定函数的解析式时,注意运用方程思想和待定系数法来确定参数.2、在已知解析式作图时要用类比的方法将陌生的问题转化成熟悉的问题.3、在应用三角函数模型解答应用题时,要善于将符号、图形、文字等各种语言巧妙转化,并充分利用数形结合思想直观地理解问题.考点一:三角函数在物理上的应用例1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的弧长()s cm 与时间()t s 的函数关系式为π6sin 26s t π⎛⎫=+ ⎪⎝⎭,那么单摆来回摆动一次所需的时间为A .2sπB .sπC .0.5s D .1s【变式训练】如图所示的是一质点做简谐运动的图象,则下列结论正确的是()A .该质点的运动周期为0.7sB .该质点的振幅为5cmC .该质点在0.1s 和0.5s 时运动速度为零D .该质点在0.3s 和0.7s 时运动速度为零考点二:三角函数在生活上的应用例2.在西双版纳热带植物园中有一种原产于南美热带雨林的时钟花,其花开花谢非常有规律.有研究表明,时钟花开花规律与温度密切相关,时钟花开花所需要的温度约为20C o ,但当气温上升到31C 时,时钟花基本都会凋谢.在花期内,时钟花每天开闭一次.已知某景区有时钟花观花区,且该景区6时14~时的气温T (单位:C )与时间t (单位:小时)近似满足函数关系式π3π2510sin 84T t ⎛⎫=++ ⎪⎝⎭,则在6时14~时中,观花的最佳时段约为()(参考数据:πsin0.65≈)A .6.7时11.6~时B .6.7时12.2~时C .8.7时11.6~时D .8.7时12.2~时【变式训练】心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80mmHg 为标准值.设某人的血压满足()11525sin P t =+(160t π),其中()P t 为血压(mmHg ),t 为时间(min ).(1)求此人每分钟心跳的次数;(2)求出此人的血压在血压计上的读数,并与标准值进行比较.考点三:三角函数在圆周中的应用例3.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯四周景色如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为148 号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要30min .若甲、乙两人分别坐在1号和9号座舱里,当015t ≤≤时,两人距离地面的高度差h (单位:m )取最大值时,时间t 的值是.【变式训练】一个半径为2米的水轮如图所示,水轮圆心O 距离水面1米.已知水轮按逆时针作匀速转动,每6秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以过点O 且平行于水轮所在平面与水面的交线L 的直线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P 距离水面的高度不低于2米?考点四:拟合法建立三角函数模型例4.海水受日月的引力,在一定的时候发生潮涨潮落,船只一般涨潮时进港卸货,落潮时出港航行,某船吃水深度(船底与水面距离)为4米,安全间隙(船底与海底距离)为1.5米,该船在2:00开始卸货,吃水深度以0.3米/小时的速度减少,该港口某季节每天几个时刻的水深如下表所示,若选择()sin φy A x K ω=++(00A ω>>,)拟合该港口水深与时间的函数关系,则该船必须停止卸货驶离港口的时间大概控制在()(要考虑船只驶出港口需要一定时间)时刻0:003:006:009:0012:0015:0018:0021:0024:00水深(米)5.07.55.02.55.07.55.02.55.0A .5:00至5:30B .5:30至6:00C .6:00至6:30D .6:30至7:00【变式训练】某港口其水深度y (单位:m )与时间t (024t ≤≤,单位:h )的函数,记作()y f t =,下面是水深与时间的数据:t /h 3691215182124y /m12.015.018.114.912.015.018.015.0经长期观察,()y f t =的曲线可近似地看作函数sin()y A x B ωϕ=++的图象,其中A >0,0ω>,[),ϕππ∈-.(1)试根据以上数据,求出函数()y f t =的近似表达式;(2)一般情况下,该港口船底离海底的距离为3m 或3m 以上时认为是安全的(船停靠时,近似认为海底是平面).某船计划靠港,其最大吃水深度(船吃水一般指船浸在水里的深度,是船的底部至船体与水面相连处的垂直距离)需12m .如果该船希望在同一天内安全进出港,问:它至多能在港内停留多长时间(忽略进出港所需时间)?1.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置(,)p x y .若初始位置为012P ⎫⎪⎪⎝⎭,当秒针从P 0(注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为()A .y =sin 306t ππ⎛⎫+ ⎪⎝⎭B .y =sin 606t ππ⎛⎫-- ⎪⎝⎭C .y =sin 306t ππ⎛⎫-+ ⎪⎝⎭D .y =sin 306t ππ⎛⎫-- ⎪⎝⎭2.游乐场中的摩天轮沿逆时针方向匀速旋转,其中心O 距离地面40.5m ,半径40m (示意图如下),游客从最低点处登上摩天轮,其与地面的距离随着时间而变化,已知游客将在登上摩天轮后30分钟到达最高点,自其登上摩天轮的时刻起,(1)求出其与地面的距离h 与时间t 的函数关系的解析式;(2)若距离地面高度超过205m .时,为“最佳观景时间”,那么在乘坐一圈摩天轮的过程中,该游客大约有多少“最佳观景时间”?3.已知挂在弹簧下方的小球上下振动,小球在时间t (单位:s )时相对于平衡位置(即静止时的位置)的距离h (单位:cm )由函数解析式()()πsin 0002h t A t A ωϕωϕ=+>><<(,,)决定,其部分图像如图所示(1)求小球在振动过程中的振幅、最小正周期和初相;(2)若0][0,t t ∈时,小球至少有101次速度为0cm/s ,则0t 的最小值是多少?4.如图,一根长l (单位:cm )的线,一端固定,另一端悬挂一个小钢球,当小钢球做单摆运动时,离开平衡位置的位移S (单位:cm )与时间t (单位:s )的函数关系可近似的表示为[),0,)3g S t t l π∞=+∈+,其中21000cm3.14s g π==,.(1)当0=t 时,小钢球离开平衡位置的位移S 是多少cm ?(2)要使小钢球摆动的周期是1s ,则线的长度l 应该为多少cm (精确到0.1cm )?5.某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:()[)()103sin,0,241212f t t t t ππ=-∈.(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.6.健康成年人的收缩压和舒张压一般为120~140mmHg 和60~90mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg 为标准值.记某人的血压满足函数式p (t )=115+25sin(160πt ),其中p (t )为血压(mmHg),t 为时间(min),试回答下列问题:(1)求函数p (t )的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.7.已知某海滨浴场海浪的高度y (米)是时刻(024t t ≤≤,单位:时)的函数,记作:()y f t =,下表是某日各时刻的浪高数据:/t 时03691215182124/y 米1.51.00.51.01.51.00.51.01.5经长期观测,()y f t =的曲线可近似地看成是函数sin()(0y A x b A ωϕ=++>,0ω>,||)2πϕ≤的图象.(1)根据以上数据,求函数sin()y A x b ωϕ=++的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00至20:00之间,那个时间段不对冲浪爱好者开放?8.某港口的水深y (米)是时间t (024t ≤≤,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,()y f t =可近似的看成是函数sin y A t b ω=+(1)根据以上数据,求出()y f t =的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?1.如图,弹簧挂着一个小球作上下运动,小球在t 秒时相对于平衡位置的高度h (厘米)由如下关系式确定:2sin 6h t πφ⎛⎫=+ ⎪⎝⎭,[)0,t ∈+∞,(),φππ∈-.已知当2t =时,小球处于平衡位置,并开始向下移动,则小球在0=t 秒时h 的值为()A .-2B .2C .D2.水车在古代是进行灌溉引水的工具,是人类的一项古老发明,也是人类利用自然和改造自然的象征.如图是一个半径为R 的水车,一个水斗从点(1,A 出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时6秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(),x y ,其纵坐标满足()()πsin 0,0,2y f t R t t ωϕωϕ⎛⎫==+≥>< ⎪⎝⎭,则当[)0,t m ∈时,恰有3个t 使函数()f t 最得大值,则m 的取值范围是.3.我国古代数学家僧一行应用“九服晷(guǐ)影算法”,在《大衍历》中建立了晷影长l 与太阳天顶距θ(080θ︒≤≤︒)的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.已知天顶距1θ=︒时,晷影长0.14l ≈.现测得午中晷影长度0.42l ≈,则天顶距θ为.(答案精确到1︒,参考数据tan10.0175,tan 20.0349,tan 30.0524,︒︒︒≈≈≈)4.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动t min 后距离地面的高度为H m ,转一周需要30min .(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求高度差的最大值.5.用弹簧挂着的小球做上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin 4h t π⎛⎫=+ ⎪⎝⎭.以t 为横坐标,h 为纵坐标,作出这个函数在[]0,2π上的图象,并回答下列问题.(1)小球在开始振动时(即0=t 时)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少?(3)经过多长时间小球往复运动一次?(4)每秒钟小球能往复运动多少次?6.弹簧振子的振动是简谐振动.某个弹簧振子在完成一次全振动的过程中,时间t (单位:s )与位移y (单位:mm )之间的对应数据记录如下表:t 0.000.050.100.150.200.250.300.350.400.450.500.550.60y-20.0-17.3-1010.117.220.017.210.3-10.1-17.3-20.0(1)试根据这些数据确定这个振子的位移关于时间的函数解析式;(2)画出该函数在[]0,0.6t ∈的图象;(3)在这次全振动过程中,求位移为10mm 时t 的取值集合.7.某港口海水的深度y (m)是时间t (时)(0≤t ≤24)的函数,记为y =f (t ).已知某日海水深度的数据如下:t (时)03691215182124y (m)10.013.09.97.010.013.010.17.010.0经长期观察,y =f (t )的曲线可近似地看成函数()sin 0,0y A t b A ωω=+>>的图象.(1)根据以上数据,求出函数y =f (t )=A sin ωt +b 的振幅、ω和表达式;(2)一般情况下,船舶航行时,船底离海底的距离为5m 或5m 以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5m ,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间(忽略进出港所需时间)?8.在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数()f n 可近似地用函数()()100cos 4f n A n k ω=++⎡⎤⎣⎦来刻画.其中,正整数n 表示月份且[]1,12n ∈,例如1n =时表示1月份,A 和k 是正整数,0ω>.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:①各年相同的月份从事旅游服务工作的人数基本相同;②从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;③2月份从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.(1)试根据已知信息,确定一个符合条件的()y f n =的表达式;(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区就进入了一年中的旅游旺季,那么一年中的哪几个月是该地区的旅游旺季?请说明理由.。

精选资料中考数学二轮复习专题二常见数学模型在生活中的应用含答案

精选资料中考数学二轮复习专题二常见数学模型在生活中的应用含答案

2021年中考数学二轮复习系列〔二〕常见数学模型在生活中应用一、中考要求利用数学学问解决生活中实际问题,是新课标一个重要课程目的,是学生学习学问、形成技能和开展为实力结果,也是学生具备了建模思想重要标记。

二、学问构造图构建数学模型解决实际问题根本程序如下:设未知数三、解题步骤1、阅读、审题:要做到简缩问题,删掉次要语句,深化理解关键字句;为便于数据处理,最好运用表格〔或图形〕处理数据,便于找寻数量关系。

2、建模:将问题简洁化、符号化,尽量借鉴标准形式,建立数学关系式。

3、合理求解纯数学问题4、说明并答复实际问题中学阶段主要求解下面几类应用题,本文以2004年全国各地中考试题为例供同学们学习。

四、考点分析:1. 方程模型应用根本步骤:设元、列方程、解方程。

解应用题关键是:找寻题目中等量关系,尤其是从语言中挖掘等量关系。

找等量关系事实上就是从实际问题到建立数学模型一个过渡阶段。

例1.〔2021•淮安〕小丽为校合唱队购置某种服装时,商店经理给出了如下实惠条件:假如一次性购置不超过10件,单价为80元;假如一次性购置多于10件,那么每增加1件,购置全部服装单价降低2元,但单价不得低于50元.按此实惠条件,小丽一次性购置这种服装付了1200元.请问她购置了多少件这种服装?分析:先干脆设购置 这种服装 x 件,依据服装总款1200元构建一个框架:然后填充单件售价,即用含代数式表示单件售价,可表示为[80﹣2〔x ﹣10〕]元,件数为,把这两部分填入框架,即可得方程。

解:设购置了件这种服装,依据题意得 [80﹣2〔x ﹣10〕]x =1200 解得:x 1=20,x 2=30 当=20时,单价为60>50,所以20不合题意舍去。

=30时,单价为40<50,符合题意。

答:小丽购置了30件这种服装.方法指导:构建框架,用未知数代数式填充框架,最终建立方程模型。

最值问题可建立函数模型。

即时检测1:〔2021.北京〕列方程或方程组解应用题:某园林队方案由6名工人对180平方米区域进展绿化,由于施工时增加了2名工人,结果比方案提早3小时完成任务,假设每人每小时绿化面积一样,求每人每小时绿化面积.2.方程不等式模型综合应用在解决方案型问题时,可由方程模型建立多个未知数之间关系,最终通过代换消元,得到不等式中整数解,进而得出几种方案。

九年级数学初升高衔接知识专题讲座和练习3浙教版

九年级数学初升高衔接知识专题讲座和练习3浙教版

初升高数学衔接知识专题讲座和练习3重、难点:不等式的性质【典型例题】[例1] 29.0=a ,︒=46tan b ,︒-︒=44cos 44sin c ,试比较a 、b 、c 大小。

解:b a c <<<<10 ∴ c a b >>[例2] 比较2、33、55的大小。

解:∵ 8)2(6= 9)3(63= ∴332< ∵ 32)2(10= 25)5(105= ∴ 552> ∴ 35325<<[例3] 设50≤<a ,b 、0>c ,且c b a a 222+=-和322-=+c b a 同时成立,试比较a 、b 、c 大小。

解:易知03242>--=a a b ,故1-<a 或3>a ∴ 53≤<a ,342+=a c ∴ 0)3)(1(44>--=-a a a c ,a c >012)3(442<--=-a a b ∴ b a c >>[例4] 已知1)1(22+<+m a 对任意实数m 都成立,求a 的取值范围。

解:∵ 12+m 的最小值为1 ∴ 1)1(2<+a ,21-<a[例5] 给出四个条件:① a b >>0 ② b a >>0 ③ b a >>0 ④ 0>>b a 问其中哪些条件可以推出结论ba 11<? 解:①、②、④[例6] 解不等式:m x ≥+1(m 为字母系数)解:(1)0≤m 时,只须01≥+x ,1-≥x (2)0>m 时,有⎩⎨⎧≥+≥+2101mx x ∴ 12-≥m x【模拟试题】1. 比较大小:︒=89sin a ,︒=45tan b ,︒=1cos 1c 2. 已知a x ≤对任意43≤≤-x 都成立,求a 的取值范围。

3. 解关于x 的不等式:a x ≥-12(a 为系数)4. 解不等式① 011<+-x x ② 03>+xx 5. 已知:1>ab ,1>bc ,1>ca ,求abc 的取值范围。

中考数学专题复习 实际生活应用问题(二)习题

中考数学专题复习 实际生活应用问题(二)习题

yADB实际生活应用问题(二)例题示范例 1:如图,排球运动员甲站在点O 处练习发球,将球从O 点正上方的A 处发出,把球看成点,其运行路线是抛物线y1(x 6)2 2.6 的一部分,点D 为球运动的最高点.球60网BC 离O 点的水平距离为 9 米,以O 为坐标原点建立如图所示的坐标系,乙站立地点M 的坐标为(m,0)(m>9).乙原地起跳可接球的最大高度为 2.4 米(2.4 米时能接到球),若乙因为接球高度不够而失球,求m 的取值范围.O C M x1 / 72 / 73【思路分析】①理解题意,梳理信息读题标注,将题目中的数据转化为图象中对应的线段长以及关键点坐标.如: D (6,2.6),C (9,0),M (m ,0) .②辨识类型,建立函数图象模型题目条件和判断标准均与函数图象相关,判断为实际生活应用问题.利用二次函数图象求解,首先要明确目标及判断标准.由题意,若排球高度(y )大于 2.4 米,则乙会因接球高度不够而接不到球;若排球高度(y )小于等于 2.4 米,则乙可以接到球.即当 y >2.4 时,符合题目要求.所求目标即为当 y >2.4 时,对应的 x 的取值范围,即 m 的取值范围.③求解验证,回归实际【过程示范】解:由题意得 y >2.4,即1 (x 6)2 2.6 2.4 , 60 解得, 6 2 ∵m >9,∴ 9 m 6 2x 6 2 3 ,即 6 2 . m 6 2 ∴乙因为接球高度不够而失球,m 的取值范围是 9 m 6 2 . 3 3 3 3巩固练习1.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y3x2 3x 1 的一部分,如图. 5(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4 米,在一次表演中,人梯到起跳点A 的水平距离是 4 米,则这次表演是否成功?请说明理由.y(米)BAO C x(米)3 / 72.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为 80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD 的面积为y m2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(2)当x 为何值时,y 有最大值?最大值是多少?CB4 / 7B s(m)A3.小明的爸爸和妈妈分别驾车从家同时出发去上班.爸爸行驶到甲处时,看到前面路口是红灯,他立即刹车减速并在乙处停车等待.爸爸驾车从家到乙处的过程中,速度v(m / s)与时间t(s)的关系如图 1 中的实线所示,行驶路程s(m)与时t s)的关系如图 2 所示,在加速过程中,s与t 满足表达式s=at2.v(m/s)12180h C48O t(O 8 17 21 t(s)图1 图2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图 2 中A 点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待了 7 s 后绿灯亮起继续前行.为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/ s)与时间t(s)的关系如图 1 中的折线O—B—C 所示,加速过程中行驶路程s (m)与时间t(s)的关系也满足表达式s=at2.当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.5 / 74.我市某风景区门票价格如图所示,某旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为 120 人,乙团队人数不超过 50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围.(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱.(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过 50 人时,门票价格不变;人数超过 50 人但不超过 100 人时,每张门票降价a 元;人数超过 100 人时,每张门票降价 2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约 3 400 元,求a 的值.门票价(元/人)807060O 50100 人数(人)思考小结图象类问题的关键是能够把实际场景与数学模型结合起来进行思考分析.在读图时,要考虑三个方面:①x 轴、y 轴代表的意义.②每个点坐标在实际场景中的意义.③每两个转折点间的线段(曲线)代表实际场景的变化趋势.6 / 7【参考答案】1.(1)演员弹跳离地面的最大高度是19 米;4 (2)这次表演能够成功,理由略.2. (1)y3x2 30x(0 x 40);4(2)当x=20 时y 有最大值,最大值为 300.3. (1)a3;4(2)h=156,它的实际意义是小明家距离甲处的距离为156 米;(3)此时妈妈的驾车速度是 6 m/s.4. (1)W 10x 9 600 (70 ≤x ≤100)20x 9 600 (100 x 120;)(2)最多节约 1 700 元;(3)a=10.2.3.4.(本资料素材和资料部分来自网络,供参考。

初二数学提高题[附答案]

初二数学提高题[附答案]

3333lOHxyBA3333综合题1.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=23,∠BCO= 60°。

(1)求证:∆OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA向点A 运动,两点同时出发,速度都为1/秒。

设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围; (3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。

解:1)根据勾股定理,AB=2,OA=23,则BO=4=2AB ,所以△ABO 是一个30°60°90°的三角形。

∵AB//CO ,∠A=90°∴∠AOC=180°-90°=90° ∵∠AOB=30°,∴∠BOC=90°-30°=60°=∠C ∴△OBC 为等边三角形2)∵点P 运动的时间为t 秒,∴OQ=PH=t ∵OH ⊥BC ,∴∠CHO=90°, ∴∠COH=30°,OH=( /2)BC=2 ∴∠QOP=60°,OP=2 -t ∴S=1/2t(2 -t)× /2=3/2t- /4t ²,且(0<t<2 ) 3)∵OM=PM ,∴∠MOP=∠MPO=30° ∵∠QOP=60°,∴∠PQO=90°,∴OP=2OQ得到方程:2 -t=2t ,解得t=(2/3)32. 如图,正比例函数图像直线l 经过点A (3,5),点B 在x 轴的正半轴上,且∠ABO =45°。

AH ⊥OB ,垂足为点H 。

(1)求直线l 所对应的正比例函数解析式;图(1)60︒B C A o图(2)60︒M PQHBA o(备用图)H60︒BCA o图2图1ABCDEFF EDCBA(2)求线段AH 和OB 的长度;(3)如果点P 是线段OB 上一点,设OP =x ,△APB 的面积为S ,写出S 与x 的函数关系式,并指出自变量x的取值范围。

初升高数学衔接课程——一元二次方程⑵

初升高数学衔接课程——一元二次方程⑵

初升高数学衔接课程——一元二次方程⑵
一.基础知识巩固
韦达定理:________________________________________________________________. 二.检测提高
例1 已知一元二次方程x2+kx-3=0有一个根是2,求方程的另一个根.
例3 已知关于x的方程x2-4x-a=0,根据下列条件,求a的取值范围.
⑴方程两个实根,一个大于0,另一个小于0;
⑵方程两个实根,一个大于3,另一个小于3;
3.6一元二次方程⑵答案
二.检测提高
解:∵方程x 2+x -2016=0两根x 1,x 2,
∴x 1+x 2=-1,x 1·x 2=-2016
例3 已知关于x 的方程x 2-4x -a=0,根据下列条件,求a 的取值范围.
⑴方程两个实根,一个大于0,另一个小于0;
⑵方程两个实根,一个大于3,另一个小于3;
解:设方程两实数根为x 1,x 2,由韦达定理知, x 1+x 2=4,x 1·x 2=-a. ⑴∵两根一个大于0,另一个小于0
∴⎩⎨⎧ Δ=(-4)2+4a>0x 1·x 2=-a<0解得⎩⎨⎧
a>-4a>0∴a>0. ⑵解∵两根一个大于3,另一个小于3
∴⎩⎨⎧ Δ=(-4)2+4a>0(x 1-3)(x 2-3)<0∴⎩⎨⎧ a>-4x 1x 2-3(x 1+x 2)+9<0∴⎩⎨⎧ a>-4-a -3×4+9<0解得⎩⎨⎧
a>-4a>-3 ∴a>-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十讲生活中的数学(二)
──买鱼的学问
鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢?
有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧!
在平面几何中,我们已经知道以下定理.
定理1 相似形周长的比等于相似比.
定理2 相似形面积的比等于相似比的平方.
例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c,B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172).
证△ABC的周长是
2a+2b+2c=2(a+b+c),
△A′B′C′的周长是
3a+3b+3c=3(a+b+c),
所以△ABC和△A′B′C′的周长的比是
2(a+b+c)∶3(a+b+c)=2∶3.
例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42.
证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是
32ab∶42ab=32∶42.
从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子.
例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比.
解长方体(a)的体积是
3a·3b·3c=33abc,
长方体(b)的体积是
5a·5b·5c=53abc,
所以长方体(a)与长方体(b)的体积的比是
33abc∶53abc=33∶53
例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比.
解小圆柱的体积是
(2a)2π·2b=23a2bπ,大圆柱的体积是
(3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33.
定理3 相似形的体积之比,等于它的相似比的立方.
有了上面的知识,我们回到本题,是买小鱼便宜呢?还是买大鱼便宜呢?我们假定同一种鱼的体形是相似形,对于鱼A和鱼B来说,A与B的相似比为13∶10,因此,根据定理3,A与B的体积之比为
由于A鱼的价格是1.5元,B鱼的价格是1元,所以价格比是1.5∶1=1.5,我们可以看到,A的体积是B的体积的2.197倍,可是A的价格却是B的价格的1.5倍,所以买大鱼A比买小鱼B更合算.
下面我们进一步考虑一下鱼的高度和体积的关系,为此,我们先规定标准:设M鱼高1厘米时,体积是2厘米3,那么N鱼高是x厘米时,体积是y厘米3.由于M和N是相似形,所以由相似形体积之比与相似
根据上式,当x的值变化时,y的值相应地跟着变化,于是,我们就得到表30.1.
从表中可以看到:当x=1时,x3=1,y=2x3=2.这就是M鱼的身高与体积的关系.
当x的长度由1厘米增长到2厘米,即增长2倍时,其体积y相应地由2厘米3增长到16厘米3,即增长了8(23)倍.
当x的长度由1厘米增长到3厘米,即增长3倍时,其体积y相应地由2厘米3增长到54厘米3,即增长了27(33)倍.
一般地,当x增长n倍时,则体积y相应地增长n3倍.
根据上表中的x和y的对应数值,可以画出y=2x3的图像(图2-176).
例5 利用y=2x3的图像(图2-176),解答下列问题:
(1)当x=2.75时,y的值是多少?
(2)当y=10时,x的值是多少?
解(1)在x轴上,对应于x=2.75取一个点,通过这一点作y轴平行线交y=2x3的图像上的某一点,过这一点再作x轴的平行线交y轴于一点,这一点对应的数值是40,这样,就在y轴上得到了x=2.75时对应的y值,即y=40.这就说明,当鱼N的高度为2.75厘米时,它的体积约为40厘米3.
(2)在y轴上对应于y=10取一点,过此点作x轴的平行线,交y=2x3的图像于某点,再过这点作y轴的平行线,在x轴上得到了y=10对应的x值1.75.这说明当N的体积为10厘米3时,高度约为1.75厘米.
上面我们研究了鱼的身高和体积的图像,下面我们进一步考虑鱼的身高和价格的关系.为此,引用前面的条件,设鱼B的身高为10厘米,价格是每斤1元,其体积假定为50厘米3.由于鱼是相似的,在买鱼的时候,考虑到价格的便宜,假设鱼的价格和体积成正比例,那么鱼的身高和价格之间有着怎样的关系呢?为此,设鱼C的身高为x厘米,体积是y厘米3,价格是z元,那么我们列出表30.2.
首先,由于“鱼的体积与其身高的三次方成正比例”,所
y=ax3,①
考虑到鱼B的身高和体积,即x=10时,y=50,代入①式,就有50=a×103,所以a=0.05.于是①式就成为
y=0.05x3①′
其次,根据“鱼的价格和体积成正比例”的假定,对于鱼C则有
z=by,②
由于②式对于鱼B也是成立的,即y=50时,z=100,代入②式,有100=b×50,所以b=2,这样②式就成为
z=2y.②′
再把①′代入②′,就得到
z=2×0.05x3,
所以z=0.1x3③
这就是鱼的身高和价格的关系表达式.利用③式就可以计算下面的问题.
例6 设鱼的身高为13厘米,它的价格每斤是多少元?
解把x=13代入③式,
z=0.1×133=0.1×2197=219.7
=220(分)=2.2(元).
即每斤约二元二角.
如果把③式中x和z的关系用数值来表示,就有表30.3.
这个表中,以x=10时,z=100作标准,联系到前面表中的结果,可以看出:
(1)鱼的身高增到1.5倍,价格便增到3.375倍(1.53倍);
(2)鱼的身高增到2倍,价格便增到8倍(23倍);
(3)鱼的身高增到2.5倍,价格便增到15.625倍(2.53倍);
(4)鱼的身高增到3倍,价格便增到27倍(33倍).
……
一般地,鱼的身高增到n倍,其价格便增到n3倍,根据表中x和z的对应数值,画出z=0.1x3的图像,就得到图2-177.
练习三十
1.根据图2-177回答:
(1)鱼的身高为20厘米时,它的每斤的价格是多少元?
(2)鱼的价格是每斤4元时,其身高是多少厘米?
2.两张照片是同一张底片拍出的.如果两张照片对应边长的比是1∶2,并且第一张照片的面积是96厘米2,那么第二张照片的面积是多少平方厘米?
3.设桌子正上方有一盏电灯,距离桌面100厘米,桌子高30厘米,如果桌子的长为60厘米,宽为35厘米,那么桌面被电灯照射后的影子是多少平方厘米?又影子周长是多少厘米?
一个半径为2厘米的银球,乙有五个半径为1厘米的银球,乙要用他的五个银球换甲的那一个银球,如果交换成功,甲乙谁合算呢?
(祝各位师弟师妹都能取得理想成绩!)。

相关文档
最新文档