相似三角形的判定定理1

合集下载

第四讲:相似三角形的性质和判定(一)

第四讲:相似三角形的性质和判定(一)

相似三角形的性质与判定(一)一:ABC ∆与'''C B A ∆相似. 记作“ABC ∆∽'''C B A ∆”,读作“ABC ∆相似于'''C B A ∆”,“∽”叫相似符号.注:二:复习全等三角形判定定理三:相似三角形判定定理(一):判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.BCA ABCDEF判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。

(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数。

判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。

简单说成:三边对应成比例,两三角形相似.强调:①有平行线时,用平行线定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。

相似三角形的判定定理是什么

相似三角形的判定定理是什么

相似三角形的判定定理是什么
1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。

2、所有等腰直角三角形相似,所有的等边三角形都相似。

3、一条直角边与斜边成比例的两个直角三角形相似。

4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。

5、三边对应平行的两个三角形相似。

扩展资料
相似三角形的性质
1、相似三角形的'对应角相等
2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;
3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。

5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。

相似三角形判定复习(一)

相似三角形判定复习(一)

A E
C
二、证明题: 证明题: 1.D为 ABC中AB边上一点 边上一点, 1.D为△ABC中AB边上一点, ∠ACD= ∠ ABC. A 2=AD AB. 求证: 求证:AC =AD·AB. 2.△ABC中 BAC是直角 是直角, 2.△ABC中,∠ BAC是直角,过斜 边中点M而垂直于斜边BC BC的直线 边中点M而垂直于斜边BC的直线 CA的延长线于 的延长线于E AB于D,连 交CA的延长线于E,交AB于D,连AM. 求证: 求证:① △ MAD ∽△ MEA B ② AM2=MD · ME D 如图,AB∥CD,AO=OB, 3. 如图,AB∥CD,AO=OB, E DF=FB,DF交AC于 DF=FB,DF交AC于E, 求证: 求证:ED2=EO · EC. A
复习( 复习(一)
一、相似三角形的判定定理: 相似三角形的判定定理:
A'
定理1 两角对应相等,两三角形相似。 定理1:两角对应相等,两三角形相似。 ∠A' ∠A= ∠A ⇒△ABC∽△A'B'C' B' ABC∽△ B C C' ∠B' ∠B= ∠B A 定理2 两组边的比相等且夹角相等, 定理2:两组边的比相等且夹角相等, 两三角形相似。 两三角形相似。 AB BC = ABC∽△ B C A 'B ' B ' C ' ⇒ △ABC∽△A'B'C' ∠B' ∠B= ∠B B C 定理3 三组边的比相等,两三角形相似。 定理3:三组边的比相等,两三角形相似。
解: ∵ DE∥BC ∴∠ADE= ∠B, ∠EDC=∠DCB=∠A ① ∵ DE∥BC ∴△ADE ∽ △ABC D ② ∵ ∠A= ∠DCB, ∠ADE= ∠B ∴△ADE∽ △CBD ③ ∵ △ADE ∽ △ABC B △ADE ∽ △CBD ∴ △ABC ∽ △CBD ④ ∵ ∠DCA= ∠DCE, ∠A= ∠EDC ∴ △ADC ∽ △DEC

直角三角形相似判定定理

直角三角形相似判定定理

直角三角形相似判定定理
一、定义法
如果两个直角三角形的三条边对应成比例,那么这两个直角三角形相似。

二、定理法
1.勾股定理:在直角三角形中,勾股定理表述了直角三角形的两条直角边的
平方和等于斜边的平方。

如果两个直角三角形的斜边相等,那么这两个直角三角形相似。

2.毕达哥拉斯定理:在直角三角形中,毕达哥拉斯定理表述了直角三角形的
两条直角边的平方和等于斜边的平方。

如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形相似。

三、斜边中线法
在直角三角形中,斜边上的中线等于斜边的一半。

如果两个直角三角形的斜边中线对应相等,那么这两个直角三角形相似。

四、两锐角对应相等
如果两个直角三角形的两个锐角对应相等,那么这两个直角三角形相似。

五、夹边中线法
在直角三角形中,夹边上的中线等于夹边的一半。

如果两个直角三角形的夹边中线对应相等,那么这两个直角三角形相似。

六、两边对应成比例且夹角相等
如果两个直角三角形的两边对应成比例且夹角相等,那么这两个直角三角形相似。

七、两边对应成比例且夹边平行
如果两个直角三角形的两边对应成比例且夹边平行,那么这两个直角三角形相似。

八、两锐角对应相等且夹边平行
如果两个直角三角形的两锐角对应相等且夹边平行,那么这两个直角三角形相似。

九、两角对应相等且夹边平行
如果两个直角三角形的两角对应相等且夹边平行,那么这两个直角三角形相似。

相似三角形判定定理

相似三角形判定定理
反证法
假设待证明的结论不成立,然后推导 出与已知条件或明显成立的事实相矛 盾的结论,从而证明原结论成立。
多种方法综合运用
综合法与分析法相结合
在证明过程中,既可以从已知条件出发进行正向推导,也 可以从待证明的结论出发进行逆向推导,将两种方法相结 合,寻找最佳证明路径。
多种性质综合运用
在证明过程中,需要综合运用相似三角形的多种性质,如 对应角相等、对应边成比例、面积比等于相似比的平方等 ,以推导出待证明的结论。
等性质,推导出待证明的结论。
构造辅助线
02
在证明过程中,通过构造辅助线,将复杂图形转化为简单图形
,从而更容易找到证明的思路。
利用全等三角形
03
在某些情况下,可以通过证明两个三角形全等,进而证明它们
相似。
分析法证明
逆推法
从待证明的结论出发,逆向推导,逐 步寻找使结论成立的条件,直到找到 已知条件或明显成立的事实为止。
相似三角形与全等三角形关系
01
全等三角形:两个三角形如果它们的三边及三角都分别相等,则称这 两个三角形全等。
02
关系
03
全等三角形一定是相似三角形,因为全等意味着对应角和对应边都相 等,自然满足相似的条件。
04
但相似三角形不一定是全等三角形,因为相似只要求对应角相等和对 应边成比例,并不要求对应边长度完全相等。
02
相似三角形判定定理介绍
预备定理
01
平行于三角形一边的直线和其他 两边(或两边的延长线)相交, 所构成的三角形与原三角形相似 。
02
如果一个三角形的两个角与另一 个三角形的两个角对应相等,那 么这两个三角形相似。
判定定理一:两角对应相等
如果一个三角形的两个角与另一个三 角形的两个角对应相等,则这两个三 角形相似。

相似三角形判定定理 简单回顾

相似三角形判定定理  简单回顾

相似三角形判定定理1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。

这个引理的证明方法需要平行线分线段成比例的证明)2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似方法四4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似5.对应角相等,对应边成比例的两个三角形叫做相似三角形 直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 相似三角形的性质定理:(1)相似三角形的对应角相等. (2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比. (5)相似三角形的面积比等于相似比的平方. 相似三角形的传递性如果△ABC ∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC ∽A2B2C21.(2010北京) 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD ∶AB =3∶4,AE =6,则AC 等于( )A .3B .4C .6D . 8 【答案】D2.(2010河南)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE ;②△ADE ∽△ABC ;③AD ABAE AC.其中正确的有(A)3个 (B)2个(C)1个 (D )0个 【答案】A 3.(2010年上海)如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __________.BACD ABC AC/AB=AD/AC 【答案】DB=34.(2010陕西西安)如图,在ABC ∆中,D 是AB 边上一点,连接CD ,要使ADC ∆与ABC ∆相似,应添加的条件是 。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

第1课时 相似三角形的判定定理1

第1课时 相似三角形的判定定理1

第23章 图形的相似
6.如图,点D在AB上,当 ∠B=∠ACD(或∠ADC=∠ACB) 时,△ACD∽△ABC.
解析:∠A是公共角,当∠B=∠ACD或∠ADC=∠ACB时,△ACD∽△ABC.
第23章 图形的相似
7.如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的 影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米, 则甲、乙同学相Biblioteka 1 米.第23章 图形的相似
2.相似三角形的判定 第1课时 相似三角形的判定定理1
两角分别相等的两个三角形相似的判定 1.下列几组三角形中一定相似的是( B ) (A)两个等腰三角形 (B)两个等边三角形 (C)两个钝角三角形 (D)两个直角三角形 解析:因为等边三角形的每个角都是60°,所以两个等边三角形相似,故 选B.
(2)解:在 Rt△CBA 中,AB=6,BC=8,∴AC=10.∴OC=5.∵△COM∽△CBA,
∴ OC = OM ,即 5 = OM ,解得 OM= 15 .
BC AB 8 6
4
第23章 图形的相似
解析:由题意∠BCA=∠EDA=90°,∠A=∠A, 所以△ABC∽△AED, 得 BC = AC ,
ED AD 即 1.8 = 6 ,
1.5 AD 解得 AD=5(米), 所以 CD=AC-AD=6-5=1(米).
第23章 图形的相似
8.(2014遵义) “今有邑,东西七里,南北九里,各开中门,出东门一十五里 有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如 图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别 是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH= 1.05 里. 解析:EG⊥AB,FH⊥AD,HG 经过 A 点, ∴FA∥EG,EA∥FH, ∴∠HFA=∠AEG=90°,∠FHA=∠EAG, ∴△GEA∽△AFH,∴ EG = EA .

相似三角形判定定理

相似三角形判定定理

相似三角形判定定理三角形是几何学中最基本的几何图形之一,而相似三角形是几何学中常见且重要的概念之一。

在数学中,两个三角形被称为相似三角形,如果它们的对应角相等,并且对应边的比例相等。

相似三角形有着许多有趣的性质和定理,其中最基本也是最重要的之一就是相似三角形判定定理。

相似三角形判定定理对于两个三角形ABC和DEF,如果它们满足以下条件之一,则这两个三角形是相似的:1.三个对应角相等:∠A = ∠D,∠B = ∠E,∠C = ∠F2.两个角相等且夹在两个相等的边之间:∠A = ∠D,∠B = ∠E,且AB/DE = BC/EF相似三角形判定定理的证明方法主要基于几何学中的基本原理和引理。

其中重要的一点是对应角相等的性质,即如果两个角相等,则它们的对应边的比例也相等,这是相似三角形判定定理的关键。

相似三角形的应用相似三角形在解决实际问题中有着广泛的应用。

例如在测量高楼的高度时,可以利用相似三角形来计算。

另外,在地图绘制和图像处理中,也常常需要利用相似三角形的性质来实现缩放和变换。

常见的相似三角形相关题目1.已知两个三角形的三个顶点坐标,判定它们是否相似。

2.已知三角形的三个顶点,求出相似三角形的比例。

3.已知两个三角形的某一条边,以及与该边夹的两个角度,判定它们是否相似。

在解决这些问题时,相似三角形判定定理往往是一个非常有用的工具,并且可以帮助我们简化计算过程,快速得出结论。

总之,相似三角形判定定理是几何学中一个基础而重要的定理,它在几何学的研究和实际应用中都有着广泛的应用价值。

通过理解和掌握这一定理,我们可以更好地理解和运用相似三角形的性质,从而解决各种与相似三角形相关的问题。

23.3.2相似三角形判定定理1

23.3.2相似三角形判定定理1
B C A
D E
例4、如图, △ABC中,D,E分别是AB,AC
上的点,且
AD AB AE AC
那么你能得出那些结论?
A
(1)△ADE∽ △ABC (2) ∠ADE=∠ABC (3)DE∥BC
D
E
DE AD (4) BC AB
B
C
作业: 1、如图1,已知DE // BC,则△ ADE ∽△ ABC
30 0 30 0
如图4-17,D,E分别是△ ABC边AB,AC上的点 ,DE∥BC. A (1)图中有哪些相等的角? (2)找出图中的相似三角形, D E 并说明理由; (3)写出三组成比例的线段.
B C
解:(1) ∵ DE∥BC
∴ ∠ADE=∠B, ∠AED=∠C.
(2) △ ADE∽ △ABC.
A’
(2 ) 是
E
E
B
C
B’
C’
A
D
C
(3) 否
是 ( 4 ) △ ACE与 △BCD相似吗?
判断正误:
1.有一个锐角对应相等的两个直角三角形相似(√ ) 2.所有的直角三角形都相似。 (× ) 3.两个等腰直角三角形相似。 ( √ ) 4.顶角相等的两个等腰三角形相似. (√ ) 5. 有一个角相等的两个等腰三角形相似. (×)
C
B/
C/
例2、求证:直角三角形被斜边上的高分成的两个直角
三角形和原三角形相似。
已知:在RtΔABC中,CD是斜边AB上的高。 求证:ΔACD ∽ ΔABC ∽ ΔCBD 。 证明: ∵ ∠A=∠A,∠ADC=∠ACB=900, ∴ ΔACD∽ΔABC(两角对应相等,两 三角形相似)。 同理 ΔCBD ∽ ΔABC 。 C

第13讲 相似三角形判定定理的证明

第13讲 相似三角形判定定理的证明

第13讲 相似三角形判定定理的证明课程标准1.了解相似三角形判定定理的证明过程,会选择恰当的方法证明两个三角形相似;2.会作辅助线来证明两个三角形相似,掌握证明过程。

知识点01 相似三角形判定定理的证明(一)相似三角形的判定定理1的证明过程已知:如图,在△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B ′.求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A′B′,过点D 作BC 的平行线,交AC 于点E, 则∠ADE=∠B ,∠AED=∠C,(.AD AEAB AC=平行于三角形一边的直线与其他两边相交,截得的对应线段成比例) 过点D 作AC 的平行线,交BC 与点F,则(AD CFAB CB =平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB=∵DE ∥BC,DF ∥AC,∴四边形DFCE 是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ∴AD AE DEAB AC BC==. 而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE ∽△ABC.∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE ∽△A′B′C′.知识精讲目标导航∴△ABC ∽△A′B′C′.(二)相似三角形的判定定理2的证明过程 已知:在△ABC 和△A ′B′C′中,∠A=∠A′,''''AB ACA B A C =,求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A′B′,过点D 作BC 的平行线,交AC 于点E, 则∠B=∠ADE,∠C=∠AED,∴△ABC ∽△ADE(两角分别相等的两个三角形相似). ∴AB ACAD AE=. ∵''''AB ACA B A C =,AD=A′B′, ∴''AB ACAD A C =∴''AC ACAE A C =∴AE=A ′C′ 而∠A=∠A ′ ∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.(三)相似三角形的判定定理3的证明过程 已知:在△ABC 和△A ′B′C′中,''''''AB BC ACA B B C A C ==.求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE. ∵''''AB ACA B A C =,AD=A′B′,AE=A′C′,∴AB ACAD AE=而∠BAC=∠DAE,∴△ABC ∽△ADE(两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE=又''''AB BCA B B C =,AD= A′B′, ∴''AB BCAD B C =∴''BC BCDE B C =∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.知识点02 证明相似三角形的一般思路(1)有平行线——用平行线的性质,找“等角”(用判定定理1)。

两个直角三角形相似的判定定理

两个直角三角形相似的判定定理

两个直角三角形相似的判定定理
两个直角三角形相似的判定定理是高中数学中的一个重要定理,主要用于解决与直角三角形相似性有关的问题。

本文将介绍两个直角三角形相似的判定定理及其证明,以及相似性在几何学中的应用。

1. 判定定理一:若一个直角三角形的两条直角边分别等于另一个直角三角形的两条直角边或者分别等于另一个直角三角形的一条非直角边和一条斜边,则这两个直角三角形是相似的。

对于判定定理一,我们需要使用勾股定理进行证明。

假设ΔABC和ΔDEF是两个直角三角形,并且AB=DE,AC=DF,BC=EF。

根据勾股定理可知:
AB²=AC²-BC² ,DE²=DF²-EF²
代入等式可得:
将等式左右两边同时加上BC²和EF²,可得:
因此,两个直角三角形ΔABC和ΔDEF是相似的。

a/sinB=b/sinA,c/sinE=d/sinF
BC=EF
a/b = c/d
两个直角三角形相似的判定定理在几何学中的应用十分广泛。

例如,在三角形相似问题中,我们可以使用判定定理一得出两个直角三角形之间的相似性,从而进一步解决整个问题。

此外,这个定理还可以应用于计算机视觉、机器人学、虚拟现实等领域。

相似三角形的判定定理1

相似三角形的判定定理1

相似三角形的判定定理1
正式版判定定理
假设ABC和PQR是具有相似三角形的两个三角形,设四边分别为a、b、c、p、q、r,则可以推出以下判定定理:
定理:如果ABC和PQR是相似三角形,则有:
1. 对任意sidesABC,sidePQR之比为常数:
a/p=b/q=c/r=k (其中k是一定的常数)
2. 对任意angles ABC,angles PQR都相等:
∠A=∠P、∠B=∠Q、∠C=∠R。

证明:
证明:可以先根据side ratio 定理告诉我们,如果两个三角形的三边的比值定值,那么这两个三角形就是相似的。

因此,先假设ABC和PQR是相似的三角形,则有:
a/p=b/q=c/r=k (其中k是一定的常数)
这个等式表明了这两个三角形的三边长的比值是一定的,即使任意一边ABC乘以相同的常数,也会得到PQR,这符合side ratio 定理的要求。

接着我们考虑角度。

因为ABC和PQR是相似的三角形,所以有:
∠C =∠A+∠B =∠R+∠Q
将式子同时除以pqr 则可以得到:
∠C/∠R=∠A/∠P=∠B/∠Q
这表明的是在两个相似的三角形中,对应角的比值也是一定的,而且乘以相同的常数也会得到一致的结果。

经过上述证明,可以得出相似三角形的判定定理:
定理:如果ABC和PQR是相似三角形,则有:
1. 对任意sidesABC,sidePQR之比为常数:
a/p=b/q=c/r=k (其中k是一定的常数)
2. 对任意angles ABC,angles PQR都相等:
∠A=∠P、∠B=∠Q、∠C=∠R。

初中数学相似三角形的判定定理总结

初中数学相似三角形的判定定理总结

相似三角形的判定定理总结
(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(简叙为:两边对应成比例且夹角相等,两个三角形相似);
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似
(简叙为:三边对应成比例,两个三角形相似);
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似
(简叙为两角对应相等,两个三角形相似)。

直角三角形相似的判定定理:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

初中数学公式定理:相似三角形定理

初中数学公式定理:相似三角形定理

初中数学公式定理:相似三角形定理
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
判定定理3:三边对应成比例,两三角形相似(SSS)
相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
性质定理2:相似三角形周长的比等于相似比
性质定理3:相似三角形面积的比等于相似比的平方。

相似三角形的判定定理1

相似三角形的判定定理1
1、如果两个三角形全等,则它们必相似。 √ 2、若两个三角形相似,且相似比为1,则它们 必全等。 √ 3、如果两个三角形与第三个等腰直角三角形相 √ 似,则这两个三角形必相似。
4、相似的两个三角形一定大小不等。
×
例1 已知:等腰△ABC 有AB=AC 和 △A'B'C' 有 A'B'=A'C', 并且∠A =∠A ', 求证:△ABC ∽△A'B'C'
证明:在△ABC的边AB(或延长线)上,截取AD=A'B', 过点D作DE//BC,交ADE=∠B, ∠B=∠B' ∴∠ADE=∠B' 又∵∠A=∠A',AD=A'B' ∴△ADE≌△A'B'C' ∴△A'B'C'∽△ABC
A A'
D B
E C B' C'
练习
证明:∵ △ABC中AB=AC,∠B =∠C ∴ 2∠B =180°-∠A
1 B 90 A 2
B A
C A'
同理
△A'B'C'中A'B'=A'C',∠B' =∠C'
∴ 2∠B' =180°-∠A'
1 B ' 90 A ' 2
又 ∠A=∠A' ∵ ∠B=∠B', ∵ △ABC∽△A'B'C'
(2)BD2=AD· BC
证明:(1) ∵AD∥BC, ∴ ∠ADB= ∠DBC ∵ ∠A=∠BDC= 90° ∴ △ABD∽△DCB B (2) ∵ △ABD∽△DCB AD BD BD BC C A D

相似三角形的判定定理

相似三角形的判定定理

第四课时 相似三角形的判定定理(1)
班级:__________姓名:____________
一、【自学引导】
1、理解相似三角形的判定定理(1)
2、能用相似三角形的判定定理(1)解决一些数学问题 二、【学习过程】 1、知识准备:
⑴、相似三角形的性质:对应角 ,对应边
⑵、相似三角形:三个角 ,且三条边 的两个三角形
⑶、如图,点D ,E 分别在△ABC 的边AB ,AC 上,且DE ∥BC ,
若AB=3,AD=2,EC=1.4,则AC= 2、自学检测:(自学教材P77-P78)
⑴、 的直线与其它两边相交,截得的三角形与原三角形 ⑵、如图,如果DE ∥BC ,那么
“A 型” “X 型” ⑶、如图,已知在△ABC 中点D 、E 分别是AB 、AC 边的中点。

求证:△AD E ∽△ABC
B
B
2、合作探究:
例1:如图,点D为△ABC的边AB的中点,过点D作D E∥BC,交边AC于点E,延长DE 至点F,使得DE=EF。

求证:△CFE∽△ABC.
例2: P78/练习/第1题
三、巩固练习
1、P79/练习/第2题
三、课后作业:
完成《聚集课堂》P48,P49。

两个三角形相似的判定定理

两个三角形相似的判定定理

三角形相似的判定定理及性质
判定定理
1、平行于三角形一-边的直线和其他两边所构成的三角形与原三角形相似。

2、两边对应成比例且夹角相等,两个三角形相似。

3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。

性质
1、相似三角形对应角相等,对应边成比例。

2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3、相似三角形周长的比等于相似比。

4、相似三角形面积的比等于相似比的平方。

5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的判定定理1
知识点1两角分别相等的两个三角形相似
1.图23-3-11中有两个三角形,角的度数已在图中标注,则这两个三角形() A.相似B.不相似
C.全等D.无法判断
图23-3-11
2.下列各组三角形中,一定相似的是()
A.两个等腰三角形B.两个等边三角形
C.两个钝角三角形D.两个直角三角形
3.如图23-3-12,已知∠ADE=∠ACD=∠ABC,则图中的相似三角形共有() A.1对B.2对C.3对D.4对
图23-3-12
4.如图23-3-13,添加一个条件:______________,可根据“两角分别相等的两个三角形相似”判定△ADE∽△ACB(写出一个即可).
图23-3-13
5.如图23-3-14,AB与CD相交于点O,AC与BD不平行,则∠A=________或∠C =________时,△AOC∽△DOB.
图23-3-14
6.如图23-3-15,已知四边形ABCD为平行四边形,点E在BC的延长线上,AE与CD相交于点F.
求证:△AFD∽△EAB.
图23-3-15
7.如图23-3-16,已知∠1=∠2,∠C=∠E,则△ABC和△ADE相似吗?请说明理由.
图23-3-16
8.如图23-3-17,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E.
求证:△ABD∽△CBE.
图23-3-17
知识点2仅有一对角相等的两个三角形不一定相似
9.下列各组中的两个三角形,不相似的是()
A.有一个角为100°的两个等腰三角形
B.底角为40°的两个等腰三角形
C.有一个角为30°的两个直角三角形
D.有一个角为30°的两个等腰三角形
10.如图23-3-18,CD是Rt△ABC斜边AB上的高,则图中的相似三角形有() A.0对B.1对
C.2对D.3对
图23-3-18
11.如图23-3-19,在△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC,则图中与△ABC 相似的三角形有()
A.1个B.2个C.3个D.4个
图23-3-19
12.如图23-3-20,矩形ABCD中,点E,F分别在边AD,CD上,且∠BEF=90°,则三角形Ⅰ,Ⅱ,Ⅲ,Ⅳ中,一定相似的是________.
图23-3-20
13.如图23-3-21所示,P是Rt△ABC的斜边BC上异于点B,C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,则满足这样条件的直线有________条.
图23-3-21
14.如图23-3-22,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC,AB交于点D,E,连结BD.
求证:△ABC∽△BDC.
图23-3-22 15.如图23-3-23,已知△ABC,AE交BC于点D,∠C=∠E,AD∶DE=3∶5,AE =8,BD=4.
(1)求证:△ADC∽△BDE;
(2)求DC的长.
图23-3-23
16.如图23-3-24,在Rt△ABC中,∠ACB=90°,P是边AB上一点,AD⊥CP,BE⊥CP,垂足分别为D,E.已知AB=3 6,BC=3 5,BE=5.求DE的长.
图23-3-24
17.如图23-3-25,在△P AB中,∠APB=120°,M,N是AB上的两点,且△PMN 是等边三角形.求证:BM·P A=PN·BP.
图23-3-25。

相关文档
最新文档