福建师范大学数学专业概率论期末试卷
概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
概率论与数理统计期末考试题及答案

模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: 2/3 ; ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:14212661112C C ⨯ ;没有任何人的生日在同一个月份的概率61266!12C ; 4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= 1,021,02241,2xe x xx x ⎧≤⎪⎪⎪+<≤⎨⎪>⎪⎪⎩, 概率{0.51}P X -<<=0.53142e -- ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ; 7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
福建师范大学概率论期末考试题5

《概率论与数理统计》试题三答案及评分标准一、填空题(每小题4分,共40分)1、设A 与B 为互斥事件,0)B (P >,则=)B |A (P 02、n 次贝努里试验中事件A 在每次试验中的成功的概率为p ,则恰好成功k 次的概率为:()kn k k n p p C --1。
3、已知)1,0(N ~X ,则}0X {P <与}0X {P >的关系是: 相等 。
4、用联合分布函数与边缘分布函数的关系表示随机变量X 与Y 相互独立的充分必要条件:()()()y F x F y x F Y X ⋅=,。
5、设随机变量⋅⋅⋅⋅⋅⋅,X ,,X ,X n 21相互独立,服从同一分布,且具有数学期望和方差:2k k )X (D ,)X (E σμ== ),2,1(k ⋅⋅⋅=,当n 较大时,∑=n1k k X 标准化随机变量近似服从()1,0N 分布。
6、设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是从中抽取的一个样本。
请指出下列表达式中不是统计量的是 (4) 。
321X X X )1(++, )X ,X ,X (m i n )2(321, n/S X )3(μ-, n/X )4(σμ-7、设随机变量4321X ,X ,X ,X 相互独立,服从相同的正态分布),(N 2σμ,则432423212221X X 2X X X 2X X X Y -+-+=服从()1,1F 分布。
8、已知总体),(N ~X 2σμ,2,σμ均未知,现从总体X 中抽取样本,X ,,X ,X n 21⋅⋅⋅则μ的矩估计量=μˆX ;2σ的矩估计量=2ˆσ()∑=-nk k k x x n 11。
9、如果随机变量X 与Y 满足)Y X (D )Y X (D -=+则EXY 与EX ·EY 的关系是 相等。
10、设随机变量 ),(~p n B X 且 4.2=EX ,44.1=DX ,则=n 6 , =p 0.4 。
大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X 服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。
5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。
二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。
概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
福建师范大学概率论期末考试题1

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为随机事件,且P (B )>0,P (A|B )=1,则有( ) A .P (A ∪B )>P (A ) B .P (A ∪B )>P (B ) C .P (A ∩B )=P (B )D .P (A ∪B )=P (B )2.一批产品中有30%的一级品,现进行放回抽样检查,共取4个样品,则取出的4个样品中恰有2个一级品的概率是( ) A .0.168 B .0.2646 C .0.309D .0.3603.设离散型随机变量F (x )为其分布函数,则F (3)=( ) A .0.2 B .0.4 C .0.8D .14.设随机变量X~N (μ,σ2),则随σ增大,P{|X-μ|<σ}( ) A .单调增大 B .单调减少 C .保持不变D .增减不定5.设二维随机变量(X ,Y )的联合概率密度为⎩⎨⎧>>=+-;,0,0,0,2),()2(其它y x e y x f y x 则P{X<Y}=( )A .41B .31C .32 D .43 6.设随机变量X 与Y 相互独立,其联合分布律为则有( ) A .α=0.10, β=0.22 B .α=0.22, β=0.10 C .α=0.20, β=0.12D .α=0.12, β=0.207.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16 C .28D .448.设X 1,X 2,…,X n ,…为独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布,记Φ(x )为标准正态分布函数,则有( )A .)(}{lim 1x x nnXP ni in Φ=≤-∑=∞→λB .)(}{lim 1x x n n X P ni in Φ=≤-∑=∞→λλC .)(}{lim 1x x nn XP ni in Φ=≤-∑=∞→λλD .)(}{lim 1x x n XP ni in Φ=≤-∑=∞→λλ9.F 0.05(7,9)=( ) A .F 0. 95(9,7) B .)7,9(195.0FC .)9,7(105.0FD .)7,9(105.0F10.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( )A .)(2121X X +B .213132X X +C .214143X X + D .215253X X +二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案《概率论与数理统计》试卷一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AU B =A 、AB B 、ABC 、ABD 、AJB 2、设A , B, C 表示三个事件,则 ABC 表示A 、 A ,B, C 中有一个发生B 、 A ,B,C 中恰有两个发生C 、 A ,B, C 中不多于一个发生D 、A ,B ,C 都不发生3、 A B 为两事件,若 P(A U B)=0.8 , P(A) =0.2 , P(B) =0.4,贝U成立A 、P(AB)=0.32B 、P(AB) =0.2C 、P(B —A)=0.4D 、P(B A)= 4、设A , B 为任二事件,则A 、P(A-B) =P(A)-P(B)B 、P(AUB)=P(A) P(B)C 、P(AB)二P(A)P(B)D 、P(A)二 P(AB) P(AB) 5、设事件A 与B 相互独立,则下列说法错误的是A 、A 与B 独立 B 、A 与 B 独立C 、P(AB)二 P(A)P(B)D 6、设离散型随机变量 X 的分布列为A 、0B 、0.3C 、0.8D 、1「ex 47、设离散型随机变量 X 的密度函数为f (X )= 10,A 、-B 、-C 、4D 、554X0 1 2P 0.3 0.5 0.2其分布函数为F(x),贝U F(3)=8、设X ?N(0,1),密度函数 (x)二,^U ;:(x)的最大值是A 、0B 、1C 1 ■-2■:9、设随机变量X 可取无穷多个值0,1,2, -,其概率分布为 P (k ;3)二-e^,^011121|l| k!,则下式成立的是0.48定互斥x其它它,1],则常数c=1A 、EX = DX =3B 、EX = DX 二一3 11 C 、EX =3, DX D 、EX , DX =933设X 服从二项分布B(n,p),则有A 、E(2X_1)=2np B 、D(2X1)=4np(1_p) 1 C 、E(2X 1)=4np1D 、D(2X_1)=4np(1 _ p)独立随机变量 X , Y ,若X ?N(1,4) , 丫?N(3,16),下式中不成立的是 A 、E X Y =4 B 、E XY =3 C 、D X -Y =12 D 、E Y 2 =161 1A 、0B 、1C 、D 、44设X ?N(0,1),又常数c 满足 P :X _c .; = P 〈X :心,则c 等于 1A 、1C 、D 、-12已知 EX - -1, DX =3 ,则 E 3 X 2 -2=A 、9B 、6C 、30D 、36当X 服从() 分布时,EX 二DX 。
福建师范大学数学专业概率论期末试卷

11、设随机变量 ξ
的密度函数为
p( x)
=
⎧2 ⎨
|
x
|3 ,
⎩ 0,
| x |< 1; 其它.
求 P(ξ < 0.5) 的值和 η=ξ 2+2ξ 的分布。
12、设
(ξ
,η
)
的联合密度函数为
p(
x,
y)
=
⎧8, ⎨⎩0,
0 < y < x < C;
其 它.
试 :( 1)确定常数 C 的 值 ;( 2)
三、应用题
14、某药厂生产的某种药品,声称对某种疾病的治愈率为 90%。为了检验此治愈率,任 意抽取 100 个该疾病患者进行临床试验,如果其中至少 86 人被治愈,则此药通过检验 。 试 问 :( 1)如果该药的实际治愈率只有 80%,则通过检验的可能性有多大?(2)如果 该药的实际治愈率为 90%,则通过检验的可能性有多大?
=0
, ∀ε
> 0,α
> 0.
。
6、设随机变量 ξ 和η 相互独立,其特征函数分别为 fξ (t) 和 fη (t) , a, b, c 为 常 数 ,
则 aξ + bη + c 的特征函数为
。
⎧ 0,
7、设随机变量 ξ 的分布函数为
F
(x)
=
⎪⎪ ⎨⎪0.5(
0.2, x − 02. ),
⎪⎩ 1,
x ≤ 0; 0 < x ≤ 1; 1 < x ≤ 2;
x > 2.
则 P(0 ≤ ξ
≤ 1.5) =
, P(ξ = 0) =
。
8、独立地从 (0, 6) 区间内任取 3 个数,则所取的 3 个数至少有 2 个不大于 5 的概
概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分)(1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A) (B) (C) (D)0)(>A B P )()(A P B A P =0)(=B A P )()()(B P A P AB P =(2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D (3),则( )),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p (A)对任意实数 (B )对任意实数21,p p =μ21,p p <μ(C)只对的个别值,才有 (D )对任意实数,都有μ21p p =μ21p p >(4)设随机变量的密度函数为,且是的分布函数,则对任X )(x f ),()(x f x f =-)(x F X 意实数成立的是( )a (A ) (B ) ⎰-=-adx x f a F 0)(1)(⎰-=-a dx x f a F 0)(21)((C ) (D ))()(a F a F =-1)(2)(-=-a F a F (5)已知 为来自总体的样本,记 则1250,,,X X X L ()2,4X N :5011,50i i X X ==∑服从分布为( )50211()4i i X X =-∑(A ) (B) (C ) (D) 4(2,50N 2(,4)50N ()250χ()249χ二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) ,,,则4.0)(=A P 3.0)(=B P 4.0)(=⋃B A P ___________)(=B A P (2) 设随机变量有密度, 则使X ⎩⎨⎧<<=其它010,4)(3x x x f )()(a X P a X P <=>的常数=a (3) 设随机变量,若,则),2(~2σN X 3.0}40{=<<X P =<}0{X P(4)设 则EX = , DX =()221x x f x -+-=,(5)设总体,已知样本容量为25,样本均值;记~(,9)X N μx m =,;,;,,0.1u a =0.05u b =()0.124t c =()0.125t d =()0.0524t l =()0.0525t k =则的置信度为0.9的置信区间为μ三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求:随机变量的概率密度函数.Y X Z +=3、(10分)设随机变量服从参数的指数分布,证明:服从上的X 2λ=21X Y e -=-()0,1均匀分布。
福建师范大学概率论与数理统计试卷B

《概率论与数理统计》期末考试题B 卷一、单项选择题 (每小题2分,共10分)1. 设 A,B 为随机事件,若 P(AB)=P(A)P(B), 则 A 与 B的关系为( )A 包含 ;B 互不相容 ;C 独立 ;D 对立2. 某射手独立地向目标射击10次,每次命中率为2/3,则至少有一次命中的概率为( ) A 10)31( ; B 1-10)31( ; C 10)32( ; D 1-10)32(3. 设X 服从二项分布B (n ,p ),则有 ( ).A. np X E 2)12(=-B. 14)12(+=+np X EC. 1)1(4)12(+-=+p np X DD. )1(4)12(p np X D -=-4. 设随机变量 X 的分布函数为 F(x) , 则下列结论中不一定成立的是( )A F(+∞)=1 ;B F(-∞)=0 ;C 01)(≤≤x F ;D F(x) 为连续函数5. 设随机变量 X 的概率密度为∞<<∞-=+-x ,e 221)x (f 8)1x (2π则 X 服从( )A N(-1,2) ;B N(-1,4) ;C N(-1,8) ;D N(-1,16)二.填空题(每空3分,共36分)______,)A B (P )A B (P )2(________,)A (P )1(C B A 1.==-=出以下概率的计算公式是任意三个随事件,写、、设._______85%65%502.百分比是住户所占的则同时订这两种报纸的订这两种报纸的一种,%的住户至少住户订晚报,住户订日报,某市有______)(______,)(,8.0)/(,6.0)(,5.0)(3.=====B A P AB P A B P B P A P B A 则为随机事件,并且、设4.1~10个共10个数中任取一个数,求这个数能被2或3整除的概率= .5. 设随机变量X ~N(0,1),已知)2.2(Φ=0.9861,则P{2.2<X }= .6.已知)2.0,10(~B X ,求DX = .)(2X E = . 7. 设随机变量X ~N(2,3),则EX 2 = . E(-2X) = .8.设离散型随机变量X 具有概率分布律则常数a =_____.二.计算题(每题9分,共54分)1. 某工厂生产的100个产品中,有5个次品, 从这批产品中任取一半来检查,设A 表示发现次品 不多于1个,求A 的概率。
《概率论与数理统计》期末考试试题及解答

P( X 2, Y 2) P(X 2)P(Y 2)
1
1
21
(
)( ) ( )
3
9
39
2
1
,
9
9
故应选( A ) .
5.设总体 X 的数学期望为
正确的是
, X1 , X 2 , , X n 为来自 X 的样本,则下列结论中
( A ) X1 是 的无偏估计量 .
( B) X1 是 的极大似然估计量 .
( C) X1 是 的相合(一致)估计量 . ( D) X1 不是 的估计量 . ( )
的指数分布, P( X 1) e 2 ,则
_________ , P{min( X ,Y ) 1} =_________.
答案:
2 , P{min( X ,Y ) 1} 1 e-4
解答:
P(X 1) 1 P( X 1) e e 2 ,故
2
P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1}
事实上由图
S AB
C
可见 A 与 C 不独立 .
A ),( B),(C)
2.设随机变量 X ~ N (0,1), X 的分布函数为 ( x) ,则 P (| X | 2) 的值为
( A ) 2[1 (2)] .
( B) 2 (2) 1 .
( C) 2 (2) .
( D ) 1 2 (2) .
()
答案:( A )
( C) P( A) P( A1 A2 )
( D) P( A) P( A1 ) P( A2 ) 1
( 4)
设随机变量 X ~ N ( 3 , 1), Y ~ N ( 2, 1), 且 X 与 Y 相互独 立 , 令 Z X 2 Y 7 , 则 Z ~ ( ). (A) N (0, 5); (B) N ( 0, 3); (C) N ( 0 , 46 ); (D) N ( 0 , 54).
概率论期末试题(带答案)

草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27
解
19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α
概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论期末考试题及答案

概率论期末考试题及答案概率论是一门研究随机现象及其规律性的数学分支。
以下是一套概率论期末考试题及答案,供参考。
一、选择题(每题2分,共20分)1. 事件A和事件B是互斥的,P(A)=0.3,P(B)=0.4,那么P(A∪B)等于多少?A. 0.1B. 0.7C. 0.35D. 0.6答案:B2. 抛一枚均匀的硬币两次,求正面朝上的次数为1的概率。
A. 0.25B. 0.5C. 0.75D. 1答案:B3. 随机变量X服从参数为λ的泊松分布,求P(X=1)。
A. λB. λe^(-λ)C. e^(-λ)D. 1/λ答案:B4. 某工厂有5台机器,每台机器正常工作的概率都是0.9,求至少有3台机器正常工作的概率。
A. 0.999B. 0.99C. 0.95D. 0.9答案:C5. 一个骰子连续抛掷两次,求点数之和为7的概率。
A. 1/6B. 1/3C. 5/36D. 2/9答案:C二、填空题(每题2分,共10分)6. 随机变量X服从正态分布N(μ, σ²),其密度函数的峰值出现在X=______。
答案:μ7. 假设事件A和B相互独立,P(A)=0.6,P(B)=0.5,则P(A∩B)=______。
答案:0.38. 某随机试验中,事件A发生的概率为0.2,事件B发生的概率为0.3,且P(A∪B)=0.4,则P(A∩B)=______。
答案:0.19. 连续型随机变量X的分布函数F(x)=1-e^(-λx),其中λ>0,当x≥0时,X服从______分布。
答案:指数10. 假设随机变量X服从二项分布B(n, p),求其期望E(X)=______。
答案:np三、简答题(每题10分,共30分)11. 简述什么是条件概率,并给出条件概率的公式。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中 P(A|B) 表示在事件B发生的条件下事件A发生的概率,P(A∩B) 是事件A和B 同时发生的概率,P(B) 是事件B发生的概率。
2020年大学基础课概率论与数理统计期末考试卷及答案精选版

2020年大学基础课概率论与数理统计期末考试卷及答案(精选版)一、单选题1、设X , X ,…,X 是取自总体X 的一个简单样本,则E (X 2)的矩估计是 1 2n,【答案】D2、若X 〜t (n )那么X 2〜【答案】A设随机变量X 和Y 的方差存在且不等于0,则D (X + 丫-D (X ^+D ^Y )是X 和Y 的不相关的充分必要条件; 、 X - R 、 X - RB) t = ---- J== C) t =S /Vn -1 S / nn2 3S 2 =(A) 1n -1i =1(B) S 2 =1E (X - X )22nii =1(C)S 12+X 2(D)S 2+ X2(A)F (1,n )(B )F (n ,1)(C)殍(n )(D)t (n )3、 A) 不相关的充分条件,但不是必要条件; B) 独立的必要条件,但不是充分条件;D) 独立的充分必要条件 【答案】C4、设某个假设检验问题的拒绝域为W ,且当原假设H0成立时,样本值(XjX,x n )落入亚的概率为0.15,则犯第一类错误的概率为 (A) 0.1(B) 0.15(C) 0.2(D) 0.25【答案】B5、设X , X ,…X 为来自正态总体N (R ,。
2)简单随机样本,X 是样本均值 12 n记 S 2 = -L-Z(X -X )2,S 2 =1Z (X - X )22n ii =1S 2 = -L- Z (X -^)2,3n -1 iS 2 = 1 Z(X -^)2, 4nii =1则服从自由度为n -1的t 分布的随机变量是X - RA) t = ----- =S /- nn -1 1X -RD) t = -------S / nn【答案】BnrX = 1 £x i6、X服从正态分布,EX =T, EX 2 =5, (x i,…,X n )是来自总体x的一个样本,则ni=1服从的分布为o(A)N( —1,5/n) (B)N( —1,4/n) (C)N( —1/n,5/n) (D)N( —1/n,4/n) 【答案】B7、设X〜N(从 e 2),那么当o增大时,尸{X -川<°} =A)增大B)减少C)不变D)增减不定。
概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
福建师范大学概率论期末考试题3

概率论与数理统计试卷二一、(10分)对一个三人学习小组考虑生日问题 (1) 求三个人中恰有二人的生日在星期天的概率; (2) 求三个人中至多有一人的生日在星期天的概率; (3) 求三个人的生日不都在星期天的概率。
二、(10分)在八个数字中0, 1, 2, …,7中不重复地任取四个,能排成一个四位偶数的概率是多少? 三、(10分)袋中装有30个乒乓球,其中20个黄的,10个白的,现有两人依次随机地从袋中各取一次,取后不放回,试求第二次取得黄球的概率。
四、(10分)设盒中有5个球,其中2个白球,3个红球,现从中随机取3球,设X 为抽得白球数,试求X 的数学期望与方差。
五、(12分)设随机变量X 服从参数为3的指数分布,即其概率密度函数为:⎩⎨⎧≤>=-03)(3x x e x f xX 试求22X Y =的概率密度函数与数学期望。
六、(12分)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在C90,液体的温度X (以C记)是一个随机变量,服从正态分布,其方差为26.0 ,试求液体的温度保持在C91~89的概率。
七、(12分)设随机变量X 与Y 具有概率密度:⎪⎩⎪⎨⎧≤≤≤≤+=其它20,20)(81),(y x y x y x f试求:)(),(Y D X D ,与)32(Y X D -。
八、(12分)试求正态总体)5.0,(2μN 的容量分别为10,15的两独立样本均值差的绝对值大于0.4的概率。
九、(12分)已知某种白炽灯泡的寿命服从正态分布。
在一批该种灯泡中随机地抽取10只测得其寿命值(以小时记)为:999.17 993.05 1001.84 1005.36 989.8 1000.89 1003.74 1000.23 1001.26 1003.19 试求未知参数μ,2σ及σ的置信度为0.95的置信区间。
(262.2)9(025.0=t ,023.19)9(2025.0=χ,7.2)9(2975.0=χ)试卷参考解答一、(10分)对一个三人学习小组考虑生日问题(1) 求三个人中恰有二人的生日在星期天的概率;(2) 求三个人中至多有一人的生日在星期天的概率; (3) 求三个人的生日不都在星期天的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、应用题
14、某药厂生产的某种药品,声称对某种疾病的治愈率为 90%。为了检验此治愈率,任 意抽取 100 个该疾病患者进行临床试验,如果其中至少 86 人被治愈,则此药通过检验 。 试 问 :( 1)如果该药的实际治愈率只有 80%,则通过检验的可能性有多大?(2)如果 该药的实际治愈率为 90%,则通过检验的可能性有多大?
四.证明题
15 、 设 ξ1, ξ2 ,⋯,ξn ,⋯ 为 独 立 同 分 布 随 机 变 量 列 , 它 们 均 服 从 参 数 λ 的 指 数 分 布 ,
ηn = min{ξ1,⋯,ξn} 。试证明: (1)
1 E(ηn ) = nλ ;
(2)
lim P(|
n→∞
nαηn
− λ −1 |≥
nαε )
。
6、设随机变量 ξ 和η 相互独立,其特征函数分别为 fξ (t) 和 fη (t) , a, b, c 为 常 数 ,
则 aξ + bη + c 的特征函数为
。
⎧ 0,
7、设随机变量 ξ 的分布函数为
F
(x)
=
⎪⎪ ⎨⎪0.5(
0.2, x − 02. ),
⎪⎩ 1,
x ≤ 0; 0 < x ≤ 1; 1 < x ≤ 2;
x > 2.
则 P(0 ≤ ξ
≤ 1.5) =
, P(ξ = 0) =
。
8、独立地从 (0, 6) 区间内任取 3 个数,则所取的 3 个数至少有 2 个不大于 5 的概
率 p=
。
9、设随机向量
(ξ
,η)
服从
N
(µ1 ,
µ2
;σ
2 1
,σ
2 2
;
ρ
)
,则Байду номын сангаас
ξ
−
2η
服从
N(
, )。
二、计算题
10、设ξ ,η 相互独立同分布于参数 2 的 Poisson 分布. 求 :( 1) P(ξ = 2η). (2) D(2ξ +η ).。
+∞
+∞
3、概率公理化定义中的可列可加性:P(∪ An ) = ∑ P( An ) 成立的条件是
。
n=1
n=1
4、已知ξ ~ N (µ,σ 2), 且 Eξ =2, P(ξ > 5) = 0.1, 则 P(−1 < ξ < 2) =
。
5、设随机变量ξ ~ B(4, p) 且 P(ξ = 1) = P(ξ = 2) ,则 Eξ =
11、设随机变量 ξ
的密度函数为
p( x)
=
⎧2 ⎨
|
x
|3 ,
⎩ 0,
| x |< 1; 其它.
求 P(ξ < 0.5) 的值和 η=ξ 2+2ξ 的分布。
12、设
(ξ
,η
)
的联合密度函数为
p(
x,
y)
=
⎧8, ⎨⎩0,
0 < y < x < C;
其 它.
试 :( 1)确定常数 C 的 值 ;( 2)
一、 填空题
1、从 n 个数1, 2, ⋯, n 中任取 2 个,则其中一个小于 k (1< k < n) ,另一个大
于 k 的概率为
。
2、一个袋子中装有 6 个白球 4 个黑球,不放回地取球 4 次,每次取 1 个球,设 A = {第二次
取到白球}, B = {第四次取到黑球},则 P(B | A) = 。
=0
, ∀ε
> 0,α
> 0.
求 η 的边际密度函数;(3)求在η = 0.2 条件下ξ 的条件密度函数 pξ|η (x| y) 。
13、设随机向量
(ξ
,η)
的联合密度函数是
p( x,
y)
=
⎪⎧ ⎨ ⎪⎩
xy
2 +1, 4 0,
−1
< x, y < 其它。
1,
(1)求ξ 与η 的相关系数;( 3)判断ξ与η 是否相互独立,并说明理由。