2017年11月10日 直线与抛物线的位置关系-试题君之每日一题君2018年高考数学理一轮复习 含解析 精品
直线与抛物线的位置关系
即:y 2 pmy p 0
2 2
p x my 2
y A F B x
y1 y2 p (定值)
2
例2、过抛物线焦点作直线交抛物线y 2 2 px( p 0)于 A ,B两点,设A( x1 , y1 ), B( x2 , y2 ), 求证 : y1 y2 p 2 .
解 由题意, 设直线 l的方程为 y 1 k x 2.
由方程组
2
y 1 k x 2 , y 4x ,
2
①
可得 ky 4 y 4 2k 1 0
1 当k 0时,由方程 ① 得 y 1,
1 把 y 1代入 y 4 x, 得 x . 4
y
C H D E F A
B O
x
例4、已知抛物线y2=2x,过Q(2,1)作直线与抛物线 交于A、B,求AB中点的轨迹方程.
y
解: 设A( x1, y1 ), B( x2 y2 ), AB中点M ( x, y)
2 y 1 2 x1 y1 y2 2 由 2 相减得: ( x1 x2 ) x1 x2 y1 y2 y2 2 x2
x
设A( x1, y1 ), B( x2 , y2 ), A, B到 准线l的距离分别为 d A , dB .
由抛物线的定义可知 AF d A x1 1, BF d B x2 1,
B’
所以 AB AF BF x1 x2 2 8
变式: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.
直线与抛物线的位置关系
y
0
x
2、直线和椭圆
y
F1
0
F2
x
3、直线与双曲线
y
渐进线方程
.
F
O
.
x
一、直线与抛物线位置关系种类
y
相离
O
x
相交
一个交点或者 两个交点
相切
二、判断方法探讨
1、直线与抛物线的对称轴平行线 y2 =4x的位置
关系及求交点坐标?
O
x
计算结果:
得到一元一次方程,容易 解出交点坐标为(9,6)
变式练习:
倾斜角为1350 的 直线,经过抛物线 y2 = 8x的焦点,则 截得的弦长是多少?
O
x
(方法总结)
判断直线与抛物线的对称轴情况 平 行 不平行 联立直线和抛物线 直线与抛物线相 交(一个交点) 利用弦长公式
课后作业:
习题8.6 2 题
y
O
x
篮坛囧神“囧”是一个象形字是不成问题的。甲骨文与金文的(囧)字均作圆形,无例外。我们知道,圆形刻铭较方形难,篮坛囧神如其字本非图 像的圆形物,它是不必费力弄成圆形的。也就是说,从象形上看,囧如为窗,则应像圆形之窗。 ; /xs/1/1280/ 篮坛囧神 kgh75neg 篮坛囧神可是已发现的商代房屋窗户多为方形、三角形或者可以推定为方形。一般说来,方形窗的制作也比圆形窗容易,后代一般房屋窗户的建 制也是方形的多。所以篮坛囧神可以肯定地说,商代房屋就是有圆形的窗,那也不会比方形的多。那么《说文》所谓囧为窗牖玲珑象形便说不过 去了,因为文字的取形应该是以事物的常见形象为代表,非用一个圆形表示窗,令人难以置信。
二、判断方法探讨
1、直线与抛物线的对称轴平行
直线与抛物线的位置关系含答案解析
直线与抛物线的位置关系专题训练一、单选题(共6 分)1“直线与抛物线相切”是“直线与抛物线只有一个公共点”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【分析】根据直线与抛物线的位置关系可得答案【详解】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”“直线与抛物线只有一个公共点”时直线可能与对称轴平行此时不相切故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件故选:A2直线y=k(x−1)+2与抛物线x2=4y的位置关系为()A相交B相切C相离D不能确定【答案】A【分析】直线y=k(x−1)+2过定点(1,2)在抛物线x2=4y内部即可得出结论.【详解】直线y=k(x−1)+2过定点(1,2)∵12<4×2∴(1,2)在抛物线x2=4y内部∴直线y=k(x−1)+2与抛物线x2=4y相交故选:A.二、填空题(共9 分)3直线y=kx+2与抛物线y2=8x有且只有一个公共点则k=________【答案】0或1【分析】当k=0时直线为y=2与抛物线对称轴平行故只有一个交点当k≠0时将y=kx+2代入抛物线y2=8x用判别式法求解【详解】当k=0时直线为y=2与抛物线只有一个交点(12,2)当k≠0时将y=kx+2代入抛物线y2=8x得:k2x2+(4k−8)x+4=0因为直线y=kx+2与抛物线y2=8x有且只有一个公共点所以Δ=(4k−8)2−16k2=0解得k=1综上:k=0或k=1故答案为:0或1【点睛】本题主要考查直线与抛物线的位置关系的应用还考查了分类讨论的思想和运算求解的能力属于基础题4过抛物线x2=4y上一点(4,4)的抛物线的切线方程为________【答案】y=2x−4【分析】解法一:设切线方程为y−4=k(x−4)联立切线方程与抛物线方程由Δ=0得k=2则切线方程可求解法二:利用导数的几何意义直接可求切线斜率再由点斜式方程求得答案【详解】解法一:设切线方程为y−4=k(x−4).由{y−4=k(x−4)x2=4y⇒x2=4(kx−4k+4)⇒x2−4kx+16(k−1)=0由Δ=(−4k)2−4×16(k−1)=0得k2−4k+4=0∴k=2故切线方程为y−4=2(x−4)即y=2x−4故答案为:y=2x−4解法二:由x2=4y得y=x24∴y′=x2∴y′|x=4=42=2∴切线方程为y−4=2(x−4)即y=2x−4故答案为:y=2x−45过点P(2,−1)作抛物线C:x2=2y的两条切线切点分别为AB则直线AB的方程为___________【答案】2x−y+1=0【分析】利用导数的几何意义求出切线方程再利用直线方程的相关知识即可求出【详解】抛物线C:x2=2y可写成:y=x22且y′=x设A(x1,y1),B(x2,y2)则两条切线的斜率分别为k1=x1,k2=x2两条切线的方程为:y−y1=x1(x−x1)y−y1=x1(x−x1)又两条切线过点P(2,−1)所以−1−y1=x1(2−x1)−1−y1=x1(2−x1)所以直线AB的方程为:−1−y=x(2−x)又x2=2y所以直线AB的方程为:2x−y+1=0故答案为:2x−y+1=0三、多选题(共3 分)6已知点O为坐标原点直线y=x−1与抛物线C:y2=4x相交于A,B两点则()A|AB|=8B OA⊥OBC△AOB的面积为2√2D线段AB的中点到直线x=0的距离为2【答案】AC【分析】先判断直线过焦点联立方程组{y =x −1y 2=4x结合韦达定理得两根关系再根据选项一一判断即可.【详解】设A (x 1,y 1),B (x 2,y 2)抛物线C:y 2=4x 则P =2 焦点为(1,0)则直线y =x −1过焦点; 联立方程组{y =x −1y 2=4x消去y 得x 2−6x +1=0 则x 1+x 2=6,x 1x 2=1y 1y 2=(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=−4所以|AB |=x 1+x 2+P =6+2=8 故A 正确;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=1−4=−3≠0所以OA 与OB 不垂直B 错; 原点到直线y =x −1的距离为d =√2=√2所以△AOB 的面积为S =12×d ×|AB |=12×√2×8=2√2 则C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3故D 错故选:AC 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题要注意直线是否过抛物线的焦点若过抛物线的焦点可直接使用公式|AB |=x 1+x 2+p 若不过焦点则必须用一般弦长公式. 四、填空题(共 3 分)7过抛物线y 2=4x 的焦点F 的直线交该抛物线于A,B 两点若|AF |=3则|BF |=______ 【答案】32 【详解】设∠AFx =θ则由抛物线的定义知x A +1=2+3cos θ=3得cos θ=13 又|BF|=x B +1=1-|BF|cos θ+1=2-13|BF|∴|BF|=32五、单选题(共 9 分)8过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A,B 两点若AB 的中点M 的横坐标为2则线段AB 的长为( ) A 4 B 5 C 6 D 7【答案】C 【分析】结合抛物线的弦长公式求得正确答案 【详解】设点A,B 的横坐标分别为x 1,x 2则x 1+x 2=2x M =4由过抛物线的焦点的弦长公式知:|AB |=x 1+x 2+p =4+2=6 故选:C9已知抛物线C :x 2=2py (p >0)的焦点为F 过点F 且倾斜角为45°的直线交抛物线C 于A 、B 若|AB |=9则抛物线C 的方程为( ) A x 2=3y B x 2=12yC x 2=92yD x 2=16y【答案】C 【分析】设出直线方程然后联立直线方程与抛物线方程借助韦达定理以及过焦点的弦长公式可求出p【详解】由已知得直线AB的方程为y=x+p2联立方程组{y=x+p2,x2=2py消去x得y2−3py+p24=0设A(x1,y1)B(x2,y2)由韦达定理知y1+y2=3p因为|AB|=9所以y1+y2+p=9所以4p=9即p=94所以所求抛物线C的方程为x2=92y故选:C10设F为抛物线C:y2=3x的焦点过F且倾斜角为30°的直线交C于A,B两点O为坐标原点则△OAB的面积为A3√34B9√38C6332D94【答案】D 【分析】【详解】由题意可知:直线AB的方程为y=√33(x−34)代入抛物线的方程可得:4y2−12√3y−9=0设A(x1,y1)、B (x2,y2)则所求三角形的面积为12×34×√(y1+y2)2−4y1y2= 94故选D考点:本小题主要考查直线与抛物线的位置关系考查两点间距离公式等基础知识考查同学们分析问题与解决问题的能力六、填空题(共3 分)11已知直线y=(a+1)x−1与曲线y2=ax恰有一个公共点则实数a的值为________【答案】0或−1或−45【分析】根据给定条件联立方程利用方程组有解求解即得【详解】当a=0时曲线y2=ax为直线y=0显然直线y=x−1与y=0有唯一公共点(1,0)因此a=0;当a≠0时由{y=(a+1)x−1y2=ax消去y并整理得:(a+1)2x2−(3a+2)x+1=0当a=−1时x=−1,y=−1直线y=−1与曲线y2=−x有唯一公共点(−1,−1)因此a=−1;当a≠0且a≠−1时Δ=(3a+2)2−4(a+1)2=5a2+4a=0则a=−45此时直线y=15x−1与曲线y2=−45x相切有唯一公共点因此a=−45所以实数a的值为0或−1或−45故答案为:0或−1或−45七、多选题(共3 分)12已知抛物线Γ:x2=2py(p>0)过其准线上的点T(t,−1)作的两条切线切点分别为AB下列说法正确的是()A p=2B当t=1时TA⊥TBC当t=1时直线AB的斜率为2D△TAB面积的最小值为4【答案】ABD【分析】选项A:由点T(t,−1)在准线上可求出p从而可判断;选项B:设直线y+1=k(x−1)与抛物线方程联立由韦达定理可判断;选项C:设A(x1,y1)B(x2,y2)分别求出TATB方程根据方程结构可判断;选项D:先同C求得直线AB的方程y=t2x+1再表达出△TAB的面积关于t的表达式进而求得面积的最大值即可【详解】对A易知准线方程为y=−1∴p=2C:x2=4y故选项A正确对B设直线y+1=k(x−1)代入y=x 24得x24−kx+k+1=0当直线与C相切时有Δ=0即k2−k−1=0设TATB斜率分别为k1k2易知k1k2是上述方程两根故k1k2=−1故TA⊥TB故选项B正确对C设A(x1,y1)B(x2,y2)其中y1=x124y2=x224则TA:y−x124=x12(x−x1)即y=x12x−y1代入点(1,−1)得x1−2y1+2=0同理可得x2−2y2+2=0故AB:x−2y+2=0故k AB=12故选项C不正确对D同C切线方程TA:y=x12x−y1;TB:y=x22x−y2代入点(t,−1)有−1=x12t−y1−1=x2 2t−y2故直线AB的方程为−1=x2t−y即y=t2x+1联立x2=4y有x2−2tx−4=0则x1+x2=2t,x1x2=−4故|x1−x2|=√(x1+x2)2−4x1x2=2√t2+4又(t,−1)到tx−2y+2=0的距离d =2√t 2+4=√t 2+4故S △TAB =12√1+t 24|x 1−x 2|d =12(t 2+4)32故当t =0时△TAB 的面积小值为12×432=4故D 正确;故选:ABD八、填空题(共 3 分)13在平面直角坐标系xOy 中直线y =kx +4交抛物线C :x 2=4y 于AB 两点交y 轴于点Q 过点AB 分别作抛物线C 的两条切线相交于点M 则以下结论:①∠AOB = 90°;②若直线MQ 的斜率为k 0有kk 0=−8;③点M 的纵坐标为−4;④∠AMB =90°.其中正确的序号是______________. 【答案】①③ 【分析】设A (x 1,y 1)B (x 2,y 2)利用导数求出切线AM 、BM 的方程求出M (x 1+x 22,x 1x 24)利用“设而不求法”得到x 1+x 2=4kx 1x 2=−16即可得到M(2k,−4)可判断③正确;由OA ⃑⃑⃑⃑⃑ ·OB ⃑⃑⃑⃑⃑ =0判断①正确;直接计算出k MQ k =−4可判断②;k MA ·k MB =−4≠0可判断④ 【详解】设A (x 1,y 1)B (x 2,y 2)则由y =x 24可得:y ′=x2所以k AM =x 12直线AM 方程为y −x 124=x 12(x −x 1);同理直线BM 方程为y =x 22x −x 224解得M (x 1+x 22,x 1x 24)将y =kx +4代入x 2=4y =4(kx +4)⇒x 2−4kx −16=0⇒x 1+x 2=4kx 1x 2=−16∴M(2k,−4)故③正确; 因为OA ⃑⃑⃑⃑⃑ ·OB⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(x 1x 2)216=0故∠AOB =90°故①正确; 由k MQ =−82k=−4k ⇒k MQ k =−4故②错误;由k MA ·k MB =14x 1x 2=−4≠0可知∠AMB ≠90°④错误. 故答案为:①③ 【点睛】解析几何问题常见处理方法:(1)正确画出图形利用平面几何知识运算; (2)坐标化把几何关系转化为坐标运算. 九、单选题(共 3 分)14已知线段AB 是过抛物线y 2=2px(p >0)的焦点F 的一条弦过点A (A 在第一象限内)作直线AC 垂直于抛物线的准线垂足为C 直线AT 与抛物线相切于点A 交x 轴于点T 给出下列命题:(1)∠AFx =2∠TAF ; (2)|TF |=|AF |; (3)AT ⊥CF 其中正确的命题个数为 A 0 B 1 C 2 D 3【答案】D 【分析】根据抛物线的定义得到|AF |=|AC |然后判断出过A 点的抛物线的切线垂直CF 进而判断出三个命题正确 【详解】根据抛物线的定义可知|AF |=|AC |由于AC 垂直抛物线的准线所以AC//x 轴 所以∠AFx =∠CAF设A (y 022p ,y 0)则C (−p 2,y 0),F (p2,0)设D 是CF 的中点则D (0,y02)所以直线AD 的方程为y −y 02=y 0−y02y 022p−0(x −0)即y =py 0x +y 02由{y =py 0x +y 02y 2=2px消去y 并化简得p 2y 02x 2−px +y 024=0其判别式Δ=p 2−4×p 2y 02×y 024=0所以直线AD 与抛物线相切故直线AD 与直线AT 重合由于D 是CF 的中点所以AD ⊥CF 也即AT ⊥CF 命题(3)成立根据等腰三角形的性质可知∠CAF =2∠TAF 所以∠AFx =2∠TAF 命题(1)成立 由于AC//x 轴所以∠CAT =∠FTA所以∠FTA =∠TAF 所以|TF |=|AF |命题(2)成立 综上所述正确的命题个数为3个 故选:D 【点睛】本小题主要考查抛物线的定义和抛物线的切线方程属于中档题 十、多选题(共 3 分)15已知抛物线C:y 2=2px (p >0)的焦点为F 直线的斜率为√3且经过点F 直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限)与抛物线的准线交于点D 若|AF |=8则以下结论正确的是 A p =4 B DF ⃑⃑⃑⃑⃑ =FA⃑⃑⃑⃑⃑ C |BD |=2|BF |D |BF |=4【答案】ABC 【分析】作出图形利用抛物线的定义、相似三角形等知识来判断各选项命题的正误 【详解】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线垂足分别为点E 、M抛物线C 的准线m 交x 轴于点P 则|PF |=p 由于直线l 的斜率为√3其倾斜角为60∘ ∵AE//x 轴∴∠EAF =60∘由抛物线的定义可知|AE |=|AF |则ΔAEF 为等边三角形 ∴∠EFP =∠AEF =60∘则∠PEF =30∘∴|AF |=|EF |=2|PF |=2p =8得p =4A 选项正确;∵|AE |=|EF |=2|PF |又PF//AE ∴F 为AD 的中点则DF ⃑⃑⃑⃑⃑ =FA⃑⃑⃑⃑⃑ B 选项正确; ∴∠DAE =60∘∴∠ADE =30∘∴|BD |=2|BM |=2|BF |(抛物线定义)C 选项正确; ∵|BD |=2|BF |∴|BF |=13|DF |=13|AF |=83D 选项错误 故选:ABC 【点睛】本题考查与抛物线相关的命题真假的判断涉及抛物线的定义考查数形结合思想的应用属于中等题 十一、双空题(共 3 分)16直线l 过抛物线C:y 2=2px (p >0)的焦点F (1,0)且与C 交于A,B 两点则p =______1|AF |+1|BF |=______.【答案】 (1) 2 (2) 1 【分析】由题意知p2=1从而p =2所以抛物线方程为y 2=4x .联立方程利用韦达定理可得结果 【详解】由题意知p2=1从而p =2所以抛物线方程为y 2=4x .当直线AB 斜率不存在时:x =1代入解得|AF |=|BF |=2从而1|AF |+1|BF |=1. 当直线AB 斜率存在时:设AB 的方程为y =k (x −1)联立{y =k (x −1)y 2=4x整理得k 2x 2−(2k 2+4)x +k 2=0设A (x 1,y 1)B (x 2,y 2)则{x 1+x 2=2k 2+4k 2x 1x 2=1从而1|AF |+1|BF |=1x1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1. (方法二)利用二级结论:1|AF |+1|BF |=2p 即可得结果. 【点睛】本题考查抛物线的几何性质直线与抛物线的位置关系考查转化能力与计算能力属于基础题 十二、解答题(共 24 分)17已知抛物线C :y 2=3x 的焦点为F 斜率为32的直线l 与C 的交点为AB 与x 轴的交点为P .(1)若|AF |+|BF |=4求l 的方程; (2)若AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ 求|AB |. 【答案】(1)12x −8y −7=0;(2)4√133【分析】(1)设直线l :y =32x +mA (x 1,y 1)B (x 2,y 2);根据抛物线焦半径公式可得x 1+x 2=52;联立直线方程与抛物线方程利用韦达定理可构造关于m 的方程解方程求得结果;(2)设直线l :x =23y +t ;联立直线方程与抛物线方程得到韦达定理的形式;利用AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ 可得y 1=−3y 2结合韦达定理可求得y 1y 2;根据弦长公式可求得结果【详解】(1)设直线l 方程为:y =32x +mA (x 1,y 1)B (x 2,y 2)由抛物线焦半径公式可知:|AF |+|BF |=x 1+x 2+32=4 ∴x 1+x 2=52 联立{y =32x +m y 2=3x得:9x 2+(12m −12)x +4m 2=0则Δ=(12m −12)2−144m 2>0 ∴m <12 ∴x 1+x 2=−12m−129=52解得:m =−78∴直线l 的方程为:y =32x −78即:12x −8y −7=0 (2)设P (t,0)则可设直线l 方程为:x =23y +t 联立{x =23y +t y 2=3x得:y 2−2y −3t =0则Δ=4+12t >0 ∴t >−13∴y 1+y 2=2y 1y 2=−3t∵AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ ∴y 1=−3y 2 ∴y 2=−1y 1=3 ∴y 1y 2=−3 则|AB |=√1+49⋅√(y 1+y 2)2−4y 1y 2=√133⋅√4+12=4√133【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题涉及到平面向量、弦长公式的应用关键是能够通过直线与抛物线方程的联立通过韦达定理构造等量关系设抛物线C:y2=2px(p>0)的焦点为F点M(2,m)(m>0)在抛物线C上且满足|MF|=3.18 求抛物线C的标准方程;19 过点G(0,a)(a>0)的两直线l1,l2的倾斜角互补直线l1与抛物线C交于AB两点直线l2与抛物线C交于P.Q两点△FAB与△FPQ的面积相等求实数a的取值范围.【答案】18 y2=4x19 (0,1)∪(1,√2)【分析】(1)根据抛物线的定义:到焦点的距离等于到准线的距离即可求解答(2)联立直线与抛物线方程得到根与系数的关系由弦长公式求长度由点到直线的距离求高进而可得三角形的面积即可求解【18题详解】依题意点M(2,m)是抛物线C上的一点点M到焦点的距离为3所以2+p2=3,p=2所以抛物线方程为y2=4x【19题详解】由题意可知直线l1,l2的斜率存在且不为0设直线l1:x=t(y−a)所以设直线l2的方程为x=−t(y−a)联立方程组{y2=4xx=t(y−a)整理得y2−4ty+4at=0可得Δ1=16t2−16at>0,y1+y2=4t,y1y2=4atS△FAB=12×4√1+t2√t2−at×|1+ta|√1+t2=2√t2−at|1+ta|将t用−t代换可得S△FPQ=2√t2+at|ta−1|Δ2=16t2+16at>0由S△FAB=S△FPQ可得2√t2−at|1+ta|=2√t2+at|ta−1|化简可得√t+at−a =|ta+1ta−1|两边平方得t2=12−a2所以2−a2>0解得0<a<√2又由Δ1>0且Δ2>0可得t<−a或t>a可知t2>a2所以12−a2>a2即(a2−1)2>0所以a≠1所以实数a的取值范围是(0,1)∪(1,√2)20已知曲线C:y=x22D为直线y=−12上的动点过D作C的两条切线切点分别为AB(1)证明:直线AB 过定点:(2)若以E (052)为圆心的圆与直线AB 相切且切点为线段AB 的中点求四边形ADBE 的面积【答案】(1)见详解;(2) 3或4√2 【分析】(1)可设A(x 1,y 1)B(x 2,y 2)D(t,−12)然后求出AB 两点处的切线方程比如AD :y 1+12=x 1(x 1−t)又因为BD 也有类似的形式从而求出带参数直线AB 方程最后求出它所过的定点(2)由(1)得带参数的直线AB 方程和抛物线方程联立再通过M 为线段AB 的中点EM ⃑⃑⃑⃑⃑⃑ ⊥AB ⃑⃑⃑⃑⃑ 得出t 的值从而求出M 坐标和|EM |⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 的值d 1,d 2分别为点D,E 到直线AB 的距离则d 1=√t 2+1, d 2=√t 2+1结合弦长公式和韦达定理代入求解即可 【详解】(1)证明:设D(t,−12),A(x 1,y 1),则y 1=12x 12. 又因为y =12x 2所以y′=x 则切线DA 的斜率为x 1 故y 1+12=x 1(x 1−t)整理得2tx 1−2y 1+1=0 设B(x 2,y 2)同理得2tx 2−2y 2+1=0A(x 1,y 1),B(x 2,y 2)都满足直线方程2tx −2y +1=0于是直线2tx −2y +1=0过点A,B 而两个不同的点确定一条直线所以直线AB 方程为2tx −2y +1=0即2tx +(−2y +1)=0当2x =0,−2y +1=0时等式恒成立.所以直线AB 恒过定点(0,12) (2)[方法一]【最优解:利用公共边结合韦达定理求面积】 设AB 的中点为G A (x 1,y 1),B (x 2,y 2),则G (x 1+x 22,y 1+y 22)EG⃑⃑⃑⃑⃑ =(x 1+x 22,y 1+y 2−52)BA ⃑⃑⃑⃑⃑ =(x 1−x 2 ,y 1−y 2).由EG ⃑⃑⃑⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =0得(x 1+x 22)(x 1−x 2)+(y 1+y 2−52)(y 1−y 2)=0将y =x 22代入上式并整理得(x 1−x 2)(x 1+x 2)(x 12+x 22−6)=0 因为x 1−x 2≠0所以x 1+x 2=0或x 12+x 22=6.由(1)知D (x 1+x 22,−12)所以DG ⊥x 轴则S 四边形ADBE =S △ABE +S △ABD = 12|EF|⋅(x 2−x 1)+ 12|GD|⋅(x 2−x 1)=(x 2− x 1)+(x 1+x 2)2+48(x 2−x 1)(设x 2>x 1).当x 1+x 2=0时(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=4即x 2−x 1=2,S 四边形ADBE =3;当x 12+x 22=6时(x 1+x 2)2=4,(x 2−x 1)2=(x 1+ x 2)2−4x 1x 2=8即x 2−x 1=2√2S 四边形ADBE =4√2. 综上四边形ADBE 的面积为3或4√2.[方法二]【利用弦长公式结合面积公式求面积】设D (t,−12)由(1)知抛物线的焦点F 的坐标为(0,12)准线方程为y =−12.由抛物线的定义 得|AB|=x 122+12+x 222+12=(x 1+x 2)2−2x 1x 22+1=4t 2+22+1=2t 2+2.线段AB 的中点为G (t,t 2+12).当x 1+x 2=0时t =0,AB ⊥y 轴|AB|=2 S 四边形ADBE =12×2×(52+12)=3; 当x 1+x 2≠0时t ≠0由EG ⊥AB 得t 2+12−52t−0⋅t =−1即t =±1.所以|AB|=4,G (±1,32)直线AB 的方程为y =±x +12.根据对称性考虑点G (1,32),D (1,−12)和直线AB 的方程y =x +12即可.E 到直线AB 的距离为|EG|=√(0−1)2+(52−32)2= √2D 到直线AB 的距离为|1+12+12|√12+(−1)2=√2.所以S 四边形ADBE =12×4×(√2+√2)=4√2. 综上四边形ADBE 的面积为3或4√2. [方法三]【结合抛物线的光学性质求面积】图5中由抛物线的光学性质易得∠1=∠2又∠1=∠3所以∠2=∠3. 因为AF =AA 1AD =AD 所以△AFD ≌△AA 1D 所以∠AFD =∠AA 1D =90°,DF ⊥AB,DA 1=DF .同理△BDF ≌△BDB 1⇒DB 1=DF 所以DA 1=DB 1即点D 为A 1B 1中点. 图6中已去掉坐标系和抛物线并延长BA,B 1A 1于点H . 因为GE ⊥AB,DF ⊥AB 所以GE ∥DF .又因为GD 分别为AB,A 1B 1的中点所以GD ∥AA 1∥EF故EFDG 为平行四边形从而GD =EF =2,AB =AA 1+BB 1=2GD =4.因为FI ∥GD 且FI =12GD 所以I 为HD 的中点从而DF =GE =√2.S 四边形ADBE =S △ADB +S △ABE = 12AB ⋅DF +12AB ⋅GE =4√2. 当直线AB 平行于准线时易得S 四边形ADBE =3. 综上四边形ADBE 的面积为3或4√2.[方法四]【结合弦长公式和向量的运算求面积】 由(1)得直线AB 的方程为y =tx +12 由{y =tx +12y =x 22可得x 2−2tx −1=0 于是x 1+x 2=2t,x 1x 2=−1,y 1+y 2=t(x 1+x 2)+1=2t 2+1|AB|=√1+t 2|x 1−x 2|=√1+t 2√(x 1+x 2)2−4x 1x 2=2(t 2+1)设d 1,d 2分别为点D,E 到直线AB 的距离则d 1=√t 2+1, d 2=√t 2+1因此四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1 设M 为线段AB 的中点则M (t,t 2+12)由于EM ⃑⃑⃑⃑⃑⃑ ⊥AB ⃑⃑⃑⃑⃑ 而EM ⃑⃑⃑⃑⃑⃑ =(t,t 2−2)AB ⃑⃑⃑⃑⃑ 与向量(1,t)平行所以t +(t 2−2)t =0解得t =0或t =±1 当t =0时S =3;当t =±1时S =4√2 因此四边形ADBE 的面积为3或4√2 【整体点评】(2)方法一:利用公共边将一个三角形的面积分割为两个三角形的面积进行计算是一种常用且有效的方法;方法二:面积公式是计算三角形面积的最基本方法;方法三:平稳的光学性质和相似、全等三角形的应用要求几何技巧比较高计算量较少; 方法四:弦长公式结合向量体现了数学知识的综合运用设抛物线C:y 2=2px(p >0)的焦点为F 点D (p,0)过F 的直线交C 于MN 两点.当直线MD 垂直于x 轴时|MF |=3. 21 求C 的方程;22 设直线MD,ND 与C 的另一个交点分别为AB 记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时求直线AB 的方程. 【答案】21 y 2=4x ; 22 AB:x =√2y +4 【分析】(1)由抛物线的定义可得|MF |=p +p2即可得解;(2)法一:设点的坐标及直线MN:x =my +1由韦达定理及斜率公式可得k MN =2k AB 再由差角的正切公式及基本不等式可得k AB =√22设直线AB:x =√2y +n 结合韦达定理可解【21题详解】抛物线的准线为x =−p2当MD 与x 轴垂直时点M 的横坐标为p 此时|MF |=p +p2=3所以p =2 所以抛物线C 的方程为y 2=4x ; 【22题详解】[方法一]:【最优解】直线方程横截式设M (y 124,y 1),N (y 224,y 2),A (y 324,y 3),B (y 424,y 4)直线MN:x =my +1 由{x =my +1y 2=4x 可得y 2−4my −4=0Δ>0,y 1y 2=−4由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2k AB =y 3−y 4y 324−y 424=4y3+y 4直线MD:x =x 1−2y 1⋅y +2代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0Δ>0,y 1y 3=−8所以y 3=2y 2同理可得y 4=2y 1 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β所以k AB =tanβ=k MN 2=tanα2若要使α−β最大则β∈(0,π2)设k MN =2k AB =2k >0则tan (α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k 即k =√22时等号成立 所以当α−β最大时k AB =√22设直线AB:x =√2y +n代入抛物线方程可得y 2−4√2y −4n =0 Δ>0,y 3y 4=−4n =4y 1y 2=−16所以n =4 所以直线AB:x =√2y +4 [方法二]:直线方程点斜式 由题可知直线MN 的斜率存在设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4),直线MN:y =k (x −1) 由 {y =k(x −1)y 2=4x得:k 2x 2−(2k 2+4)x +k 2=0x 1x 2=1,同理y 1y 2=−4 直线MD :y =y 1x1−2(x −2),代入抛物线方程可得:x 1x 3=4同理x 2x 4=4代入抛物线方程可得:y 1y 3=−8,所以y 3=2y 2同理可得y 4=2y 1 由斜率公式可得:k AB =y 4−y 3x 4−x 3=2(y 2−y 1)4(1x 2−1x 1)=y 2−y 12(x 2−x 1)=12k MN .(下同方法一)若要使α−β最大则β∈(0,π2)设k MN =2k AB =2k >0则tan (α−β)=tanα−tanβ1+tanαtanβ=k1+2k 2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k 即k =√22时等号成立 所以当α−β最大时k AB =√22设直线AB:x =√2y +n代入抛物线方程可得y 2−4√2y −4n =0Δ>0,y 3y 4=−4n =4y 1y 2=−16所以n =4所以直线AB:x =√2y +4 [方法三]:三点共线设M (y 124,y 1),N (y 224,y 2),A (y 324,y 3),B (y 424,y 4)设P (t,0),若 P 、M 、N 三点共线由PM ⃑⃑⃑⃑⃑⃑ =(y 124−t,y 1),PN ⃑⃑⃑⃑⃑⃑ =(y 224−t,y 2) 所以(y 124−t)y 2=(y 224−t)y 1化简得y 1y 2=−4t反之若y1y2=−4t,可得MN过定点(t,0)因此由M、N、F三点共线得y1y2=−4由M、D、A三点共线得y1y3=−8由N、D、B三点共线得y2y4=−8则y3y4=4y1y2=−16AB过定点(4,0)(下同方法一)若要使α−β最大则β∈(0,π2)设k MN=2k AB=2k>0则tan(α−β)=tanα−tanβ1+tanαtanβ=k1+2k2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k即k=√22时等号成立所以当α−β最大时k AB=√22所以直线AB:x=√2y+4【整体点评】(2)法一:利用直线方程横截式简化了联立方程的运算通过寻找直线MN,AB的斜率关系由基本不等式即可求出直线AB的斜率再根据韦达定理求出直线方程是该题的最优解也是通性通法;法二:常规设直线方程点斜式解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系快速找到直线AB过定点省去联立过程也不失为一种简化运算的好方法.已知椭圆E:x 2a2+y2b2=1(a>b>0)的一个顶点为A(0,1)焦距为2√3.23 求椭圆E的方程;24 过点P(−2,1)作斜率为k的直线与椭圆E交于不同的两点BC直线ABAC分别与x轴交于点MN当|MN|=2时求k的值.【答案】23 x24+y2=124 k=−4【分析】(1)依题意可得{b=12c=2√3c2=a2−b2即可求出a从而求出椭圆方程;(2)首先表示出直线方程设B(x1,y1)、C(x2,y2)联立直线与椭圆方程消元列出韦达定理由直线AB、AC的方程表示出x M、x N根据|MN|=|x N−x M|得到方程解得即可;【23题详解】解:依题意可得b=12c=2√3又c2=a2−b2所以a=2所以椭圆方程为x 24+y2=1;【24题详解】解:依题意过点P(−2,1)的直线为y−1=k(x+2)设B(x1,y1)、C(x2,y2)不妨令−2≤x1<x2≤2由{y−1=k(x+2)x24+y2=1消去y整理得(1+4k2)x2+(16k2+8k)x+16k2+16k=0所以Δ=(16k2+8k)2−4(1+4k2)(16k2+16k)>0解得k<0所以x1+x2=−16k2+8k1+4k2x1⋅x2=16k2+16k1+4k2直线AB的方程为y−1=y1−1x1x令y=0解得x M=x11−y1直线AC的方程为y−1=y2−1x2x令y=0解得x N=x21−y2所以|MN|=|x N−x M|=|x21−y2−x11−y1|=|x21−[k(x2+2)+1]−x11−[k(x1+2)+1]|=|x2−k(x2+2)+x1k(x1+2)|=|(x2+2)x1−x2(x1+2) k(x2+2)(x1+2)|=2|x1−x2||k|(x2+2)(x1+2)=2所以|x1−x2|=|k|(x2+2)(x1+2)即√(x1+x2)2−4x1x2=|k|[x2x1+2(x2+x1)+4]即√(−16k2+8k1+4k2)2−4×16k2+16k1+4k2=|k|[16k2+16k1+4k2+2(−16k2+8k1+4k2)+4]即81+4k2√(2k2+k)2−(1+4k2)(k2+k)=|k|1+4k2[16k2+16k−2(16k2+8k)+4(1+4k2)]整理得8√−k=4|k|解得k=−4十三、单选题(共3 分)25设抛物线E:y 2=8x 的焦点为F 过点M(4,0)的直线与E 相交于AB 两点与E 的准线相交于点C 点B 在线段AC 上|BF|=3则△BCF 与△ACF 的面积之比S△BCF S △ACF=( )A 14 B 15C 16D 17【答案】C 【分析】根据抛物线焦半径公式得到B 点横坐标进而利用抛物线方程求出B 点纵坐标直线AB 的方程求出C 点坐标联立直线与抛物线求出A 点纵坐标利用S △BCF S △ACF=BC AC =y 2−yC y 1−y C求出答案【详解】如图过点B 作BD 垂直准线x =−2于点D 则由抛物线定义可知:|BF|=|BD|=3 设直线AB 为x =my +4 A (x 1,y 1)B (x 2,y 2)C (−2,y C )不妨设m >0则y 1>0,y 2<0所以x 2+2=3解得:x 2=1则y 22=8x 2=8解得:y 2=−2√2则B(1,−2√2)所以−2√2m +4=1解得:m =3√24则直线AB 为x =3√24y +4所以当x =−2时即3√24y +4=−2解得:y C =−4√2则C(−2,−4√2)联立x =my +4与y 2=8x 得:y 2−8my −32=0则y 1y 2=−32 所以y 1=8√2其中S △BCF S △ACF=BC AC =y 2−yC y 1−y C=√212√2=16故选:C十四、解答题(共 6 分)已知抛物线C:x 2=2py (p >0)的焦点为F 且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为427 若点P 在M 上P APB 是C 的两条切线AB 是切点求△PAB 面积的最大值 【答案】26 2 27 20√5 【分析】(1)结合焦点F (0,p2)与圆M 的位置关系可得F 与圆M 的最小距离为|FM |−1即可求解; (2)设切点A(x 1,y 1),B(x 2,y 2)得到直线l PA ,l PB 的方程联立可得P (x 1+x 22,x 1x 24)设直线l AB :y =kx +b 与抛物线进行联立可得x 1+x 2=4k,x 1x 2=−4b 故可得到S △PAB =4(k 2+b)32由点P 在圆上可得k 2=−b 2+8b−154代入面积即可求得范围【26题详解】由圆M :x 2+(y +4)2=1可得圆心圆M (0,−4)半径为1 易得焦点F (0,p2)在圆M 外所以点F (0,p2)到圆M 上的点的距离的最小值为|FM |−1=p2+4−1=4解得p =2 【27题详解】由(1)知抛物线的方程为x 2=4y 即y =14x 2则y ′=12x ,设切点A(x 1,y 1),B(x 2,y 2)则易得直线l PA :y =x 12x −x 124直线l PB :y =x 22x −x 224,由{y =x 12x −x 124y =x 22x −x 224可得P (x 1+x 22,x 1x 24) 设直线l AB :y =kx +b 联立抛物线方程消去y 并整理可得x 2−4kx −4b =0 ∴Δ=16k 2+16b >0即k 2+b >0且x 1+x 2=4k,x 1x 2=−4b∵|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b 点P 到直线AB 的距离d =2√k 2+1∴S △PAB=12|AB |d =4(k 2+b)32①又点P(2k,−b)在圆M:x 2+(y +4)2=1上 故k 2=−b 2+8b−154代入①得S △PAB =4(−b 2+12b−154)32=4[−(b−6)2+214]32而y P =−b ∈[−5,−3]即b ∈[3,5] 因为y =−(b−6)2+214在区间[3,5]内单调递增且y =4x 32在定义域内单调递增所以S △PAB =4[−(b−6)2+214]32在区间[3,5]上单调递增∴当b =5时(S △PAB )max =20√5 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程设交点坐标为(x 1,y 1),(x 2,y 2);(2)联立直线与圆锥曲线的方程得到关于x (或y )的一元二次方程必要时计算Δ; (3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式; (5)代入韦达定理求解 十五、单选题(共 3 分)28过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l 交抛物线于AB 两点且|AF |>|BF |则|AF||BF|的值为( )A3 B2C 32D 43【答案】A 【分析】方法1根据抛物线焦点弦的性质直接计算作答方法2根据给定条件求出直线l 的方程再与抛物线方程联立结合抛物线定义求解作答 【详解】方法1:根据抛物线焦点弦的性质可知|AF|=p1−cos60∘=3方法2:抛物线y 2=2px (p >0)的焦点F(p 2,0)准线方程:x =−p2 直线l 方程为:y =√3(x −p2)由{y =√3(x −p2)y 2=2px消去y 得:3x 2−5px +34p 2=0设A(x 1,y 1),B(x 2,y 2)因|AF |>|BF |即有x 1>x 2解得x 1=3p 2,x 2=p6所以|AF||BF|=x 1+p 2x 2+p 2=3p 2+p 2p 6+p 2=3故选:A十六、多选题(共 3 分)29已知O 为坐标原点抛物线E 的方程为y =14x 2E 的焦点为F 直线l 与E 交于AB 两点且AB 的中点到x 轴的距离为2则下列结论正确的是( ) A E 的准线方程为y =−116 B |AB |的最大值为6C 若AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 则直线AB 的方程为y =±√24x +1 D 若OA ⊥OB 则△AOB 面积的最小值为16 【答案】BCD 【分析】直接求出准线方程即可判断A 选项;由|AF |+|BF |=2|MN |=6以及抛物线的定义结合|AF |+|BF |≥|AB |即可判断B 选项;设出直线AB 的方程为y =kx +1联立抛物线由AF ⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 解出A 点坐标即可判断C 选项;由OA ⊥OB 求得直线AB 恒过点(0,4)结合x 1x 2=−16即可求出面积最小值即可判断D 选项 【详解】由题意知E 的标准方程为x 2=4y 故E 的准线方程为y =−1 A 错误; 设AB 的中点为M 分别过点ABM 作准线的垂线垂足分别为CDN 因为M 到x 轴的距离为2所以|MN |=2+1=3由抛物线的定义知|AC |=|AF ||BD |=|BF |所以2|MN |=|AC |+|BD |=|AF |+|BF |=6 因为|AF |+|BF |≥|AB |所以|AB |≤6所以B 正确; 由AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 得直线AB 过点F (0,1)直线AB 的斜率存在 设直线AB 的方程为y =kx +1联立方程得{y =kx +1,x 2=4y, 化简得x 2−4kx −4=0则x A x B =−4由于AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 所以(−x A ,1−y A )=2(x B ,y B −1)得x A =−2x B 得x A =±2√2所以y A =14x A 2=2所以k =±√24直线AB 的方程为y =±√24x +1故C 正确;设A (x 1,y 1)B (x 2,y 2)由OA ⊥OB 得x 1x 2+y 1y 2=0又{y 1=x 124,y 2=x 224,所以x 1x 2+116(x 1x 2)2=0由题意知x 1x 2≠0所以x 1x 2=−16 又k AB =y 2−y1x 2−x 1=x 224−x 124x2−x 1=x 1+x 24故直线AB 的方程为y −y 1=x 1+x 24(x −x 1)由于y 1=x 124所以y =x 1+x 24x −x 1x 24=x 1+x 24x +4则直线AB 恒过点(0,4)所以S △OAB =12×4|x 1−x 2|=2√(x 1+x 2)2+64≥16 所以△AOB 面积的是小值为16故D 正确十七、填空题(共 9 分)30设抛物线x 2=2py(p >0)M 为直线y =−2p 上任意一点过M 引抛物线的切线切点分别为AB记ABM 的横坐标分别为x A ,x B ,x M 则下列关系:①x A +x B =2x M ;②x A x B =x M 2;③1x A+1x B=2xM其中正确的是________(填序号). 【答案】① 【分析】利用导数几何意义求出切线MA,MB 的方程联立求出x A ,x B ,x M 的关系再逐一判断各个命题即得 【详解】由x 2=2py 得y =x 22p 求导得y ′=x p 则切线MA,MB 的斜率分别为xA p ,x B p而M(x M ,−2p)于是直线MA 的方程为y +2p =x A p(x −x M )直线MB 的方程为y +2p =x B p(x −x M )因此{x A22p+2p =x A p (x A −x M )x B22p+2p =x B p(x B −x M )则x A −x B p ⋅x M =x A 2−x B 22p而x A ≠x B 从而x A +x B =2x M ①正确;x M 2−x A x B =(x A +x B 2)2−x A x B =(x A −x B 2)2>0即x M 2>x A x B ②错误;当x M =0时③无意义 当x M ≠0时1x A+1x B−2x M=x A +x B x A x B−4xA +x B=(x A −x B )2xA xB (x A +x B )≠0③错误所以正确命题的序号是① 故答案为:①31已知A,B 为抛物线C:x 2=4y 上的两点M(−1,2)若AM ⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 则直线AB 的方程为_________ 【答案】x +2y −3=0 【分析】由于AM ⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 可得M 为中点则{x 1+x 2=−2y 1+y 2=4根据点差法即可求得直线AB 的斜率从而得方程.【详解】设A (x 1,y 1),B (x 2,y 2)又M (−1,2) 因为AM⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 所以{x 1+x 2=−2y 1+y 2=4又x 2=4y ,x 2=4y 则x 2−x 2=4y −4y 得x +x =4y 1−4y 2=−2则直线AB 的斜率为k =−12故直线AB 的方程为y −2=−12(x +1) 化简为x +2y −3=0.联立{x 2=4y x +2y −3=0 可得x 2+2x −6=0 Δ=28>0直线与抛物线有两个交点成立 故答案为:x +2y −3=0.32抛物线y 2=4x 的焦点为F 点P 在双曲线C :x 24−y 22=1的一条渐近线上O 为坐标原点若|OF |=|PF |则△PFO 的面积为____ 【答案】√23##13√2 【分析】由双曲线的标准方程可求其渐近线方程则P 点坐标可设成只有一个参数m 的形式再由|OF |=|PF |可得m 的值则△PFO 的面积可求 【详解】抛物线y 2=4x 的焦点为F (10)双曲线C :x 24−y 22=1的渐近线方程为x ±√2y =0不妨设P 在渐近x −√2y =0上可设P(√2m,m)m >0 由|OF |=|PF |可得 √(√2m-1)2+m 2=1解得m =2√23则△PFO 的面积为12|OF ||y P |=12×1×2√23=√23故答案为:√23。
直线与抛物线的位置关系
点 F 交抛物线于 A , B 两点, O 为坐标原点,则△ ABO 的面积为
64
.
(2)依题意,抛物线 C : y 2=16 x 的焦点为 F (4,0),
直线 l 的方程为 x = 3 y +4.
= 3 + 4,
由൝ 2
= 16,
消去 x ,整理得 y 2-16 3 y -64=0.
12
2
− 2 ,
22 =
22
2
− 2 ,
即 x 1, x 2是方程 x 2-4 x -4p 2=0的两根,
2
2
2 − 1
2 2
2 −1
2
2
所以 x 1+ x 2=4, x 1 x 2=-4 p ,所以 kAB =
=
= ,
2 −1
2 −1
所以| AB |= 1 + 2 · (1 +2 )2 − 41 2 =
直线与抛物线的位置关系
考点一
直线与抛物线的位置关系
过点(0,3)的直线 l 与抛物线 y 2=4 x 只有一个公共点,则直线 l 的
1
y = x +3或 y =3或 x =0
方程为
.
例1
3
1
当直线 l 的斜率 k 存在且 k ≠0时,由相切容易求出直线 l 的方程为 y = x
3
+3;当 k =0时,直线 l 的方程为 y =3,此时直线 l 平行于抛物线的对称
(6)通径:过焦点且垂直于对称轴的弦,长等于2p,通径是过焦点最
短的弦.
跟踪训练
2.
3
2
(2019·全国Ⅰ卷)已知抛物线 C : y =3 x 的焦点为 F ,斜率为 的直线 l
直线和抛物线的位置关系
直线和抛物线的位置关系 姓名【预习达标】1.直线与抛物线的位置关系:(1)位置关系的判定:联立直线:l y k x m =+和抛物线22(0)y p x p =>消y 整理得:2222()0k x k m p x m +-+= 当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点0∆=⇔直线与抛物线相切,只有一个公共交点0∆<⇔直线与抛物线相离,没有公共交点当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于112(,),(,)A x y B x y ,则弦长2212121()4AB k x x x x =++-或21212211()4AB y y y y k =++-,特别注意解题是结合韦达定理来处理问题2.焦点弦问题:设过抛物线)0(22≠=p px y 的焦点(,0)2p F 的直线与抛物线交于),(),,(1111y x B y x A ,直线与的斜率分别为21,k k ,直线的倾斜角为,则有 ①221p y y -=;②4221p x x =;③421-=k k ;④α221sin 2p p x x AB =++=, ⑤αcos 1-=p FA ,αcos 1+=p FB ;⑥112AF BF p+=, ⑦过,A B 两点做准线的垂线,垂足分别为,M N ,则090MFN ∠=, ⑧通径P AB 2=;⑨以弦AB 长为直径的圆总与准线相切【例题讲解】题型一:直线和抛物线位置关系例1.设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,求直线l 的斜率的取值范围 ( []1,1- )1.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值. (40,1,5a =--)2.已知直线b x y l +=:与抛物线y x C 4:2=相切于点A(1)求实数b 的值(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程题型二:和弦长有关问题 例2.已知直线2y kx =-交抛物线28y x =于,A B 两点,且AB 的中点为0(2,)M y ,求0y 及弦AB 的长例3. 已知抛物线2y x =-与直线(1)y k x =+相交于,A B 两点,当OAB ∆的面积等于10时,求k 的值变式练习:1.已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若S △PAB =39,求P 点的坐标。
直线与抛物线的位置关系
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少
直线与抛物线的位置关系
通径:经过抛物线的焦点并且垂直于抛物线的轴 所得的弦叫作抛物线的通径,长为2p.
Y
P ( , P) 2
P ( , 0) 2
X
P ( , P) 2
练习、已知抛物线的顶点在原点,对称轴为x轴,
焦点在直线3x-4y-12=0上,求抛物线通径长.
考点三、直线与抛物线位置关系 1、相离;2、相切;
3、相交(一个交点,两个交点)
一、点与抛物线的位置关系
复习:
点与圆的位置关系及判断方法.
点P(x0,y0)与抛物线y2=2px(p>0),即y2-2px= 0(p>0),
的位置关系及判断方法:
1.点在抛物线外 2.点在抛物线上 3.点在抛物线内 y02-2px0>0 y02-2px0=0 y02-2px0<0
考点一、抛物线的定义及焦半径 练习、M是抛物线y2 = 2px(P>0)上一点,若点 M的横坐标为X0,则点M到焦点的距离是
三.判断直线与抛物线位置关系的操作程序
把直线方程代入抛物线方程
得到一元一次方程 直线与抛物线的 对称轴平行 相交(一个交点)
得到一元二次方程 计算判别式 >0 =0 <0
相交
相切
相离
例3、已知抛物线的方程为y2=4x,直线l过定 点P(-2,1),斜率为k,当k为何值时,直线l 与抛物线: (1)两个公共点;
由
y=x-1 y 2 4x
,整理得 : x 6 x 1 0
2
得 x1+x2=6 于是 |AB|=6+2=8
说明:解法二由于灵活运用了抛物线的定义,所以减少了运算量, 提高了解题效率.
考点四、与弦长、中点有关的问题
#直线与抛物线的位置关系
O
X
(一)直线与抛物线的位置关系的判断方法
把直线方程代入抛物线方程得到关于x(或y)的
一元方程 A2xB xC0(或 Ay2ByC0 )
有两个公共点
>0
相交
A≠0
有一个公共点
A=0(直线和抛物线的对称轴平行,即相交)
相切
=0
A≠0
有一个公共点
相离 没有公共点
作业:
已知顶点在原点,焦点在x轴上的抛物线截 直线y=x+3/2所得的弦长 AB 4 2,求 此抛物线的方程. 提示:为避免讨论,可设抛物线的方程 为y2=ax(a≠0)
解:设所求直线的方程为y-2=kx (k ≠0 ) 即y=kx +2.
将直线y=kx +2代入抛物线方程,得
(kx2)2 8x 即 k2x2(4k8)x40
把直线方程代入抛物线方程得到关于x(或y)的
一元二次方程 A2xB xC0(或 Ay2ByC0 )
>0
相交
有两个公共点
A≠0
相切 有一个公共点
=0
A≠0
或者A=0(直线和抛物线的对称轴平行,即相交)
<0
相离
没有公共点
A≠0
3.直线与抛物线只有一个公共点是它们相 切的必要非充分条件.即
相切 有一个公共点
变式:已知直线y=x+b与抛物线y2=8x相 交于A,B两点,且 AB 4 2 ,求b的值.
分析:将直线方程代入抛物线方程得到一个 关于x的一元二次方程,再利用韦达定理以及 弦长公式 AB 1k2 x1x2 .
课时小结
1.直线与抛物线 的位置关系:
Y L4
直线与抛物线的位置关系
第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。
直线与抛物线的位置关系
x2 x2
6 1
OF
x
B’ B
AB 2 (x1 x2 )2 4x1x2 8
所以,线段AB的长是8。
例2.斜率为1的直线L经过抛物线 y2 = 4x 的焦点F, 且与抛物线相交于A,B两点,求线段AB的长.
解法二:由题意可知,
y
p
2,
p 2
1,
准线l
:
x
1.
A’
§2.4.2 直线与抛物线的位置关系
一、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交点,
两个交点)
与双曲线的
y
情况一样
O
x
例 1、已知抛物线的方程为 y2 4x ,直线 l 过 定点 P(2,1) ,斜率为 k , k 为何值时,直线 l 与抛 物线 y2 4x :⑴只有一个公共点;⑵有两个公共 点;⑶没有公共点?
解析: 抛物线的焦点为 F(1,0),准线方程为 x=-1.
由抛物线定义知|AB|=|AF|+|BF|=x1+p2+x2+p2 =x1+x2+p, 即 x1+x2+2=7,得 x1+x2=5,于是弦 AB 的中点 M 的横坐标为 52,因此点 M 到抛物线准线的距离为52+1=72.
课堂练习: 1.过抛物线 y2 = 8x的焦点,作倾斜角为 450
16 的直线,则被抛物线截得的弦长为_________
2.过点 M(0,1) 且和抛物线 C: y2 4x 仅有一个公共点的 直线的方程是__________________________.
y 1或 x 0或
联立
ykx y2 4x
1
y x1
直线与抛物线的位置关系_演示文稿
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大);
法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:设而不求,数形结合,活用定义,运用韦达定理,计 算弦长.
练习 在抛物线y2=2x上求一点P,使
P到焦点F与到点A(3,2)的距离之和最 小
PA PF PA PB
A, P, B三点共线时,
Y
( PA PB ) AB min 1 7 3 ( ) 2 2
B B
O
P
A 3, 2
X
F
பைடு நூலகம்
判断方法探讨 4、直线与抛物线的对称轴不平行,相交 与两点。 例:判断直线 y = x -1与 y 抛物线 y2 =4x 的位置关系 计算结果:得到一 元二次方程,需计 算判别式。相交。
O
x
三、判断位置关系方法总结(方法一) 把直线方程代入抛物线方程
得到一元一次方程
得到一元二次方程
计算判别式
直线与抛物 线相交(一 个交点)
例:判断直线 y = x +1与
y 抛物线 y2 =4x 的位置关系 计算结果:得 到一元二次方 程,需计算判 别式。相切。
O
x
判断方法探讨 3、直线与抛物线的对称轴平行,相交与 一点。 例:判断直线 y = 6 y 与抛物线 y2 =4x 的 位置关系
O
计算结果:得到一 元一次方程,容易 x 解出交点坐标
相交
相切
相离
二、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交 点,两个交点) y
O
x
与双曲线的情况一样
判断方法探讨
1、直线与抛物线相离,无交点。
直线与抛物线的位置关系-学易试题君之每日一题君2019学年上学期高二数学(文)人教版(选修1-1)
1
高考频度:★★★★★ 难易程度:★★★★☆
已知抛物线2:2(0)C y px p =>的焦点为(1,0)F ,抛物线2:2(0)E x py p =>的焦点为M .
(1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程;
(2)若直线MF 与抛物线C 交于A ,B 两点,求OAB △的面积.
【参考答案】(1)0x =或1y =或1y x =+;(2)22.
【试题解析】(1)由题意知抛物线2:2(0)C y px p =>的焦点为(1,0)F ,抛物线2:2(0)E x py p =>的焦点为
M ,所以2p =,(0,1)M ,
则抛物线C 的方程为24y x =,抛物线E 的方程为24x y =.
若直线l 的斜率不存在,则易知直线l 的方程为0x =;
若直线l 的斜率存在,设为k ,则直线l 的方程为1y kx =+,
联立24y x =,可得22(24)10k x k x +-+=,
当0k =时,14
x =,满足题意,此时直线l 的方程为1y =; 当0k ≠时,22(24)40k k ∆=--=,解得1k =,此时直线l 的方程为1y x =+.
综上,直线l 的方程为0x =或1y =或1y x =+.
(2)易得直线MF 的方程为1y x =-+,
由241
y x y x ⎧=⎨=-+⎩得2440,y y +-= 设1122(,),(,)A x y B x y ,则124y y +=-,124y y =-, 从而1242y y -=, 所以OAB △的面积为121222
OAB S OF y y =-=△.。
直线和抛物线的位置关系
(2)M过(p,0) (3)M过(2p,0)
x1x2=p2;y1y2=-2p2. x1x2=4p2;y1y2=-4p2.
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
得到一元一次方程
直线与抛物线的 对称轴平行或重合
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
例1 求过定点P(0,1)且与抛物线 y2 2x
只有一个公共点的直线的方程.
{ { 解:
(1)若直线斜率不存在,则过点P的直线方程是
x0
x 0
xy=0.
由 y2 2x 得 y0
OF
x
B` B
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
(5)以AB为直径的圆与准线相切.
证明:如图,
y
M M1
A A1
B B1 2
AF BF 2
AB 2
l A1
A
故以AB为直径的圆与准线相切.
F
O
M1
M
X
B1
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
yc
-
py1 2x1
-
py1 2 y12
p2 y1
直线与抛物线的位置关系-学易试题君之每日一题君2018年高考数学(文)二轮复习
A. B.1
C.2D.4
2.已知抛物线 .
(1)已知点 ,对过点 的任意弦 ,求证: 为定值;
(2)对于(1)中的点 及任意弦 ,设 ,点 在 轴的负半轴上,且满足 ,求点 的坐标.
链接打开方法:
1、按住ctrl键单击链接即可打开专题链接
2、复制链接到网页
2.【答案】(1)见解析;(2) .
【解析】(1)令 ,联立抛物线方程并化简可得 ,
令 ,则 ,
∴ .
(2) ,
,由根与系数的关系知 ,学#%科网
令 ,则 , ,
,即 ,
综上,点N的坐标为 .
学易试题君之每日一题君2018年高考数学(文)二轮复习
专题下载链接:/a754995.html
(2)设直线 的方程为
与抛物线方程联立并化简可得
即 整理可得 ,
∴直线 的方程为 故直线 过定点
∴当 时,且动点 在 上时,到动直线 的距离取得最大值.
∴ ∴
此时直线 的方程为 即
【解题必备】本题在解答直线与抛物线位置关系时需设出直线方程,这里给出 形式的直线方程,方便计算,根据题目意思解得直线恒过定点,再结合题意,求得当与直线垂直时的直线方程即可.
★★★★难易程度:★★★★☆
已知圆 和抛物线 ,圆心 到抛物线焦点 的距离为 .
(1)求抛物线 的方程;
(2)不过原点O的动直线 交抛物线E于 两点,且满足 .设点 为圆 上任意一动点,求当动点 到直线 的距离最大时直线 的方程.
【参考答案】(1) ;(2)
直线与抛物线的位置关系
直线与抛物线的位置关系一、选择题1.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( )A .48B .56C .64D .722.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,FA →与x 轴正向的夹角为60°,则|OA →|为( )A.21p4B.21p 2 C.136p D.1336p 3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.323B.25 5 C.7105 D.1724.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|等于( )A .9B .6C .4D .35.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →²AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)6.(08²宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1 B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)7.(09²全国Ⅱ理)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k =( )A.13B.23 C.23D.2238.过抛物线y 2=2px (p >0)的焦点F 作两弦AB 和CD ,其所在直线的倾斜角分别为π6与π3,则|AB |与|CD |的大小关系是( )A.|AB|>|CD| B.|AB|=|CD| C.|AB|<|CD| D.|AB|≠|CD|9.(09²全国Ⅰ理)设双曲线x2a2-y2b2=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于( )A. 3 B.2 C. 5 D. 610.(09²四川理)已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.2 B.3 C.115D.3716二、填空题11.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米,当水面升高1米后,水面宽度是________米.12.已知抛物线y2=4x的一条过焦点的弦AB,A(x1,y1),B(x2,y2),AB所在直线与y轴交点坐标(0,2),则1y1+1y2=________.13.在已知抛物线y=x2上存在两个不同的点M、N关于直线y=kx+92对称,则k的取值范围为________.14.(2010²重庆理,14)已知以F为焦点的抛物线y2=4x上的两点A、B满足AF→=3FB→,则弦AB的中点到准线的距离为________.三、解答题15.过抛物线y2=x上一点A(4,2),作倾斜角互补的两直线AB、AC交抛物线于B、C.求证直线BC的斜率为定值.16.已知抛物线y2=6x的弦AB经过点P(4,2),且OA⊥ OB(O为坐标原点),求弦AB的长.17.设抛物线y2=8x的焦点是F,有倾角为45°的弦AB,|AB|=85,求△FAB的面积.18.已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,求A、B两点间的距离.直线与抛物线的位置关系 答案一、选择题1.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( )A .48B .56C .64D .72[答案] A[解析] 由⎩⎨⎧y 2=4xy =x -3消去y 得,x 2-10x +9=0,∴x =1或9,∴⎩⎨⎧x =1y =-2或⎩⎨⎧x =9y =6,∴|AP |=10,|BQ |=2或者|BQ |=10,|AP |=2,|PQ |=8,梯形APQB 的面积为48,选A.2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,FA →与x 轴正向的夹角为60°,则|OA →|为( )A.21p 4B.21p 2C.136pD.1336p [答案] B [解析] 依题意可设AF 所在直线方程为y -0=(x -p2)tan60°,∴y =3(x -p2).联立⎩⎨⎧y =3(x -p 2)y 2=2px,解得x =p 6与3p2.∵FA →与x 轴正向夹角为60°,∴x =3p 2,y =3p .∴|OA →|=x 2+y 2=21p2. 3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.323B.25 5 C.7105 D.172[答案] B[解析] 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B [解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为FA →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|FA →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →²AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)[答案] B [解析] 设点A 的坐标为(x 0,y 0),∴y 20=4x 0①又F (1,0),∴OA →=(x 0,y 0),AF →=(1-x 0,-y 0),∵OA →²AF →=-4,∴x 0-x 20-y 20=-4②解①②组成的方程组得⎩⎨⎧x 0=1y 0=2或⎩⎨⎧x 0=1y 0=-2.[点评] 向量与解析几何相结合,向量往往要化为坐标的形式.6.(08²宁夏、海南)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1 B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)[答案] A [解析] 过点Q 作准线的垂线QM ,交抛物线于P ′点,连结P ′F ,此时|P ′Q |+|P ′F |=|P ′Q |+|P ′M |=|QM |,此时|MQ |最小,所以所求坐标为⎝ ⎛⎭⎪⎫14,-1.7.(09²全国Ⅱ理)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D [解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2), 由⎩⎨⎧y =k (x +2)y 2=8x消去y 得,k 2x 2+4x (k 2-2)+4k 2=0,∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2,又∵|AF |=2|BF |,∴x 1+2=2x 2+4, ∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0,∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223.8.过抛物线y 2=2px (p >0)的焦点F 作两弦AB 和CD ,其所在直线的倾斜角分别为π6与π3,则|AB |与|CD |的大小关系是( )A .|AB |>|CD |B .|AB |=|CD |C .|AB |<|CD | D .|AB |≠|CD |[答案] A [解析] 由抛物线的焦点弦公式l =2p sin 2θ知,|AB |>|CD |,故选A.9.(09²全国Ⅰ理)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3B .2 C. 5D. 6[答案] C [解析] 双曲线的渐近线方程为y =±b ax . ∵渐近线与y =x 2+1相切, ∴x 2±b ax +1=0有两相等根,∴Δ=b 2a 2-4=0,∴b 2=4a 2, ∴e =c a =c 2a 2=a 2+b 2a 2= 5. 10.(09²四川理)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.3716[答案] A [解析] 如图|PA |+|PB |=|PF |+|PB |∴所求最小值为点F 到直线l 1:4x -3y +6=0的距离 d =|4³1-0+6|5=2,故选A.二、填空题11.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米,当水面升高1米后,水面宽度是________米.[答案] 4 2 [解析] 设抛物线拱桥的方程为x 2=-2py ,当顶点距水面2米时,量得水面宽8米,即抛物线过点(4,-2)代入方程得16=4p∴p=4,则抛物线方程是x2=-8y,水面升高1米时,即y=-1时,x=±2 2. 则水面宽为42米.12.已知抛物线y2=4x的一条过焦点的弦AB,A(x1,y1),B(x2,y2),AB所在直线与y轴交点坐标(0,2),则1y1+1y2=________.[答案] 12[解析] 弦AB是过焦点F(1,0)的弦,又过点(0,2),∴其方程为x+y2=1,2x+y-2=0与y2=4x联立得y2+2y-4=0,y1+y2=-2,y1y2=-4,1 y1+1y2=y1+y2y1²y2=-2-4=12.13.在已知抛物线y=x2上存在两个不同的点M、N关于直线y=kx+92对称,则k的取值范围为________.[答案] k>14或k<-14[解析] 设M(x1,x21),N(x2,x22)关于已知抛物线对称,依MN⊥l:y=kx+92,∴x21-x22x1-x2=-1k,即x1+x2=-1k.设MN的中点为(x0,y0),则x0=-12k,y0=k³(-1 2k )+92=4. 因中点在y=x2内,有4>(-12k)2⇒k2>116,∴k>14或k<-14.14.(2010²重庆理,14)已知以F为焦点的抛物线y2=4x上的两点A、B满足AF→=3FB→,则弦AB的中点到准线的距离为________.[答案] 83[解析] 如右图,设|AF→|=m,|FB→|=n,由1m+1n=2p得1m+1n=1,即13n+1n=1,∴n=43,m=4,∴AB中点到准线的距离d=m+n2=4+432=83.三、解答题15.过抛物线y2=x上一点A(4,2),作倾斜角互补的两直线AB、AC交抛物线于B、C.求证直线BC的斜率为定值.[证明] 设B(x21,x1),C(x22,x2)(|x1|≠|x2|),则k BC =x 1-x 2x 21-x 22=1x 1+x 2;k AB =x 1-2x 21-4,k AC =x 2-2x 22-4.∵AB ,AC 的倾斜角互补.∴k AB =-k AC . ∴x 1-2x 21-4=-x 2-2x 22-4,∴x 1+2=-(x 2+2),∴x 1+x 2=-4.∴k BC=-14为定值. 16.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1),B (y 226,y 2).因为OA ⊥OB ,所以OA →²OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,①∵点A 、B 与点P (4,2)在一条直线上,∴y 1-2y 216-4=y 1-y 2y 216-y 226,化简,得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24.将①式代入,得y 1+y 2=-6.② 由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610.17.设抛物线y 2=8x 的焦点是F ,有倾角为45°的弦AB ,|AB |=85,求△FAB 的面积. [解析] 设AB 方程为y =x +b 由⎩⎨⎧y =x +b ,y 2=8x .消去y 得:x 2+(2b -8)x +b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2b ,x 1²x 2=b 2. ∴|AB |=1+k 2²|x 1-x 2| =2³(x 1+x 2)2-4x 1²x 2 =2[(8-2b )2-4b 2]=85, 解得:b =-3.∴直线方程为y =x -3.即:x -y -3=0 ∴焦点F (2,0)到x -y -3=0的距离为d =12=22. ∴S △FAB =12³85³22=210.18.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,求A 、B 两点间的距离.[分析] 本题考查抛物线上的对称问题,可利用A 、B 两点在抛物线上,又在直线上,设出直线方程利用条件求解.[解析] 由题意可设l AB 为:y =x +b ,把直线方程代入y =-x 2+3中得,x 2+x +b -3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,y 1+y 2=x 1+b +x 2+b =(x 1+x 2)+2b =2b -1. ∴AB 的中点坐标为(-12,b -12),则该点在直线x +y =0上.∴-12+(b -12)=0,得b =1.∴|AB |=1+12|x 1-x 2|= 2 (x 1+x 2)2-4x 1x 2 = 2 (-1)2-4³(-2)=3 2. 所以A 、B 两点间距离为3 2.。
直线与抛物线的位置关系(1)-学易试题君之每日一题君2019年高考数学(文)一轮复习
设抛物线 的焦点为 ,过 且斜率为 的直线 与 交于 , 两点, .
(1)求 的方程;
(2)求过点 , 且与 的准线相切的圆的方程.
【参考答案】(1) ;(2) 或 .
所以 .
由题设知 ,解得 (舍去)或 ,
因此l的方程为 .
A.6B.8
C.12D.16
2.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(1)设AB中点为M,证明:PM垂直于y轴;
(2)若P是半椭圆x2+ =1(x<0)上的动点,求△PAB面积的取值范围.
1.【答案】D
2.【答案】(1)证 明见解析;(2) .
【解析】(1)设 , , .
因为 , 的中点在抛物线上,
所以 , 为方程 ,
即 的两个不同的实数根,所以 ,
因此 垂直于 轴.
(2)由(1)可知
所以 , .
因此, 的面积 .
因为 ,
所以 .学.科.网
因此, 面积的取值范围是 .
(2)研究直线与抛物线位置关系的一般解法仍然是联立二者方程,然后解方程组或者转化为形如一元二次方程的形式,若该方程为二次方程,则依据根的判别式或根与系数的关系求解.注意“设而不求”和“整体代入”方法的应用.学科!网
1.已知抛物线 的焦点为 ,过焦点 的直线交抛物线于 , 两点, 为坐标原点,若 的面积为4,则
(2)由(1)得AB的中点坐标为 ,
所以AB的垂直平分线方程为 ,即 .
设所求圆的圆心坐标为 ,则
解得 或
因此所求圆的方程为 或 .
【解题必备】(1)判断直线与抛物线的位置关系,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为二次方程,则利用判别式判断方程解的个数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11月10日 直线与抛物线的位置关系
高考频度:★★★★☆ 难易程度:★★★★☆
典例在线
(2017年高考浙江卷)如图,已知抛物线2x y =,点A 11()24-,,39()24
B ,,抛物线上的点13
(,)()22
P x y x -
<<.过点B 作直线AP 的垂线,垂足为Q .
(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值.
(2)联立直线AP 与BQ 的方程110,24
930,
42kx y k x ky k ⎧
-++=⎪⎪⎨⎪+--=⎪⎩
解得点Q 的横坐标是22
43
2(1)
Q k k x k -++=+.
因为|PA 1)
2x +1)k +,|PQ 2)Q x x -=,
所以3
(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2()(42)(1)f k k k '=--+,
所以f (k )在区间1
(1,)2-上单调递增,1(,1)2
上单调递减, 因此当k =
1
2时,||||PA PQ ⋅取得最大值2716
. 【解题必备】(1)判断直线与抛物线的位置关系,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为二次方程,则利用判别式判断方程解的个数.
(2)研究直线与抛物线位置关系的一般解法仍然是联立二者方程,然后解方程组或者转化为形如一元二次方程的形式,若该方程为二次方程,则依据根的判别式或根与系数的关系求解.注意“设而不求”和“整体代入”方法的应用.
学霸推荐
1.已知抛物线2
4y x =的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB △的面积为4,则||AB = A .6 B .8
C .12
D .16
2.如图,已知抛物线C :2
4y x =,过焦点F 斜率大于零的直线l 交抛物线于A 、B 两点,且与其准线交于点D .
(1)若线段AB 的长为5,求直线l 的方程;
(2)在C 上是否存在点M ,使得对任意直线l ,直线MA ,MD ,MB 的斜率始终成等差数列,若存在,求点M 的坐标;若不存在,请说明理由.
1.【答案】D 【
解
析
】
设
22
12
12(,),(,),(1,0)44
y y A y B y F ,所以
,由A O B △的面积为
4得
22
12121||14562y y y y ⨯-⨯=⇒+=,因此22
1212||22164
y y AB x x +=++=+=,选D.
(1)∵212||2445AB x x m =++=+=,解得 ∴直线l 的斜率2
4k =,
∵0k >, ∴2k =,
∴直线l 的方程为220x y --=.
(2)设2
(,2)M a a ,由题意及直线l 的方程可得2
(1,)D m
--
,
则
∵直线MA ,MD ,MB 的斜率始终成等差数列,
∴存在点(1,2)M 或(1,2)M -,使得对任意直线l ,直线MA ,MD ,MB 的斜率始终成等差数列.。