矩形2
矩形的性质 (2)
1、掌握矩形的的定义,理解矩形与平行四边形的关系。
2、理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明。
3、在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
教法、学法设计
以引导探究为主的方法
教学重点、难点
探究二:类比猜想验证性质
问题1:矩形是特殊的平行四边形,类比平行四边形性质的归纳方法,可以从哪些角度归纳矩形的性质?
问题2:通过类比、观察或测量(尺、量角器)猜想矩形的性质:
性质
类别
边
角
对角线
对称性
矩形
请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;
探究三:建构新知发展问题
问题1:矩形的对角线可把矩形分成几个直角三角形?在 中,你能找到它的一条特殊线段吗?你能发现它有什么特殊的性质吗?
直角三角形:
你能借助于矩形加以证明吗?
已知:如图,
求证:
证明:
教师启发学生得出直角三角形的性质,引导学生自主证明(将文字语言转化为几何图形语言、写出已知求证及证明).
(2)根据测量的结果,猜想结论。当矩形的大小不断变化时,发现的结论是否仍然成立?
(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗
让学生分组探索。教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考,动口讨论,自主发现矩形的性质。
先从矩形的对角线相关性质推出直角三角形的性质,达到“学数学,用数学”的目的。
矩形的性质(2)
1.2 矩形的性质与判定 第2课时 矩形的判定活动1 知识探究1.情景演示1:工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB =CD ,EF =GH ;(2)摆放成如图②的四边形,则这时窗框的形状是_____形,根据的数学道理是:___ __;(3)将直角尺靠紧窗框的一个角(如图③),当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_____形,根据的数学道理是:__ __;【归纳】矩形的定义:有一个角是..... 的平行四边形,叫做矩形。
情景演示2:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?已知:在ABCD 中,AC=BD ;求证:ABCD 是矩形。
【归纳】矩形的判定定理1: 是矩形推论: 的四边形是矩形。
猜一猜:有三个角是直角的四边形是矩形吗?为什么? 已知: 求证: 证明:【归纳】矩形的判定定理2: 是矩形.活动2 知识应用1.如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 上的一点,且AE=BF=CG=DH 。
求证:四边形EFGH 是矩形。
2. 如图,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2. (1)求证:四边形ABCD 是矩形;(2)若∠BOC =120°,AB =4cm ,求四边形ABCD 的面积.(3)若△ABO 是等边三角形,AB =4 cm ,求这个平行四边形的面积3.如 图, 在ABC ∆中, D 是BC 边上的一点, E 是AD 的中点, 过A 点作BC 的平行线交CE 的延长线于点F , 且BD AF =, 连接BF (1) 求证: D 是BC 的中点(2) 如果AC AB =, 试判断四边形AFBD 的形状, 并说明理由。
矩形定义及性质 (2)
19.3(1)课题:矩形定义及性质颍上甘罗乡村教育社郑多斌教学目标1、知识与技能1、探索并掌握矩形的定义及性质,理解矩形与平行四边形的联系。
2、过程与方法经历探索矩形有关性质的过程在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何感。
3情感、态度价值观学生通过观察发现生活在的矩形,并且在实际操作在获得矩形的体验,在探索和运用矩形性质在感受到数学的乐趣。
教学重点和难点重点:矩形的性质及推论。
难点:能用矩形的性质进行简单的证明和计算。
教法:多媒体辅助教学法、讨论分析法教学过程一、复习提问1、平行四边形有哪些性质?2、有哪几种方法可以判定四边形是平行四边形?3、四边形具有稳定性吗?二、引入新课请同学们观看一幅图。
一个角是直角当平行四边形变化右边的位置时得到什么图形?(生回答,教师作点拨。
)三、讲解新课1、请举几个生活中关于矩形的例子。
(对学生的回答作灵活处理)2、观察图中平行四边形是如何演变成矩形的,也就是说当平行四边形满足什么条件的时候便成了矩形?定义:有一个角是直角的平行四边形是矩形。
3、矩形是特殊的平行四边形,它除了“有一个角是直角”外,还可能具有哪些平行四边形所没有的特殊性质呢?(引导学生根据研究平行四边形性质的经验,分别从边、角、对角线三个方面探索矩形的特性,这种探索的基础是矩形“有一个角是直角”。
)根据学生的回答:矩形的四个角都是直角。
4、如何说明“矩形的四个角都是直角”呢?已知:如图四边形ABCD 是矩形,∠B=90o 。
求证:∠A=∠B=∠C=∠D=90o证明:∵四边形ABCD 是矩形∴AB ∥DC (平行四边形对边平行)∴∠C=∠B=90o (两直线平行,同旁内角互补)同理:∠D=90o 、∠A=90o性质1:矩形的四个角都是直角。
(分组讨论)5、下面我们来做一个游戏,请同学们关上你们的教材,观察教材的封面,用刻度尺测量书本的对角线。
教材的封面是什么图形? 派一名代表说出你们测量的数据?你能发现两条对角线间有什么特殊关系吗?学生容易回答“矩形的对角线相等”。
2022年初中数学精品教案《矩形的性质 (2)》公开课专用
1.2 矩形的性质与判定第1课时 矩形的性质一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.三、例题的意图分析例1是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.① 随着∠α的变化,两条对角线的长度分别是怎样变化的?② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.五、例习题分析例1 已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,求矩形对角线的长. 分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB 是等边三角形,因此对角线的长度可求.解:∵ 四边形ABCD 是矩形,∴ AC 与BD 相等且互相平分.∴ OA=OB .又 ∠AOB=60°,∴ △OAB 是等边三角形.∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm ).例2(补充)已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A到BD 的距离AE 的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm ,则对角线长(x+4)cm ,在Rt △ABD 中,由勾股定理:222)4(8+=+x x ,解得x=6. 则 AD=6cm .“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB = AD×AB ,解得 AE = .例3(补充) 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .分析:CE 、EF 分别是BC ,AE 等线段上的一部分,若AF =BE ,则问题解决,而证明AF =BE ,只要证明△ABE ≌△DFA 即可,在矩形中容易构造全等的直角三角形.证明:∵ 四边形ABCD 是矩形,∴ ∠B=90°,且AD ∥BC . ∴ ∠1=∠2.∵ DF ⊥AE , ∴ ∠AFD=90°.∴ ∠B=∠AFD .又 AD=AE ,∴ △ABE ≌△DFA (AAS ).∴ AF=BE .∴ EF=EC .此题还可以连接DE ,证明△DEF ≌△DEC ,得到EF =EC .六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是 ,二是 .(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为 、 、 、 .(3)已知矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,则矩形的边长分别为 cm , cm , cm , cm .2.(选择)(1)下列说法错误的是( ).(A )矩形的对角线互相平分 (B )矩形的对角线相等(C )有一个角是直角的四边形是矩形 (D )有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有( ).(A )2对 (B )4对 (C )6对 (D )8对3.已知:如图,O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,求∠AEO 的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( ).(A)12cm (B)10cm (C) (D)5cm2.在直角三角形ABC 中,∠C=90°,AB=2AC ,求∠A 、∠B 的度数.3.已知:矩形ABCD 中,BC=2AB ,E 是BC 的中点,求证:EA ⊥ED .4.如图,矩形ABCD 中,AB=2BC ,且AB=AE ,求证:∠CBE 的度数.教学目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点难点1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。
人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)
矩形 第二课时矩形的判定
课标解读
1.理解矩形的定义,能够利用矩形的定义判定四边形是矩形。 2.掌握矩形的判定定理,并能灵活运用这些判定定理解决问题。 3.通过探索矩形的判定定理,进一步培养视图能力,以及推理论证 能力。
知识梳理 矩形的判定 1.定义法:有一个角是直角的平行四边形是矩形
4
4.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花 摆成两条对角线.如果一条对角线用了38盆红花,还需要从花房运来 多少盆红花?为什么?如果一条对角线用了49盆呢?
解:还需要从花房运来38盆“红花”. 因为,矩形的对角线相等,所以另一条对角线也需38盆“红花”.且 不应除去两条对角线的交点,这是因为38盆是偶数,因此对较线的 交点没有摆花盆. 如果一条对角线用了49盆,那么应从花房运来48盆“红花”.因为矩 形的对角线相等,但由于49盆是奇数,因此对角线交点应已摆放花 盆,所以,另一条对角线上的花盆数应少1盆.
3.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等 边三角形,AB=4cm. (1)这个平行四边形是矩形吗?说明你的理由; (2)求这个平行四边形的面积.
解:(1)是.∵△AOB是等边三角形,
∴AO=BO
1
1
又∵AO=2 AC,BO2= BD.
∴AC=BD.
∴ ABCD是矩形.
(2)S 1 ABCD= 2 3 4 4 16 3 2
已知:如图,∠A=∠B=∠C=90°.
A
D
求证:四边形ABCD是矩形
证明:∵∠A=∠B=∠C=90° ∴∠D=90°
B
C
∴∠A=∠C,∠B=∠D,
∴四边形ABCD是平行四边形 , ∵∠A=90°
《矩形》PPT课件(第2课时)
第2课时
第二十二章 四边形
1 课堂讲解 由直角的个数判定矩形
由对角线的关系判定矩形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识回顾 四边形
四边形
平行四边形□
矩形
平行 四边形
一个角 是直角
矩形
∟
探究新知 木工朋友在制作窗框后,需要检测所制作的窗框
是否是矩形,那么他需要测量哪些数据,其根据又是 什么呢? 你现在有方法帮他吗?
(来自《典中点》)
知2-练
9 如图,要使▱ABCD成为矩形,需添加的条件
是( B ) A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD
(来自《典中点》)
知2-练
10 【中考·黑龙江】如图,在▱ABCD中,延长AD到
点E,使DE=AD,连接EB,EC,DB,请你添 加一个条件__E_B__=__D_C__(答__案__不__唯__一__)_,使四边形 DBCE是矩形.
(来自《典中点》)
1 知识小结
矩形的判定方法: 方法1:有一个角是直角的平行四边形是矩形. 方法2:有三个角是直角的四边形是矩形 . 方法3:对角线相等的平行四边形是矩形.
(对角线互相平分且相等的四边形是矩形.)
2 易错小结
在一组对边平行的四边形中,添加下列条件中的哪一个, 可判定这个四边形是矩形( C ) A.另一组对边相等,对角线相等 B.另一组对边相等,对角线互相垂直 C.另一组对边平行,对角线相等 D.另一组对边平行,对角线互相垂直 易错点:对矩形的判定方法理解错误导致出错
∵D为BC的中点,∴BD=DC,∴AE=CD,
又∵AE∥CD,∴四边形AECD是平行四边形.
矩形(2)
任意 四边形, 对于 平行 四边形,满足哪些条件就可以 得到矩形呢? 得到矩形呢?
猜一猜 1.判断: 判断: (1)有一个角是直角的四边形是矩形 有一个角是直角的四边形是矩形.( (1)有一个角是直角的四边形是矩形.( ) (2)对角线相等的四边形是矩形 对角线相等的四边形是矩形. (2)对角线相等的四边形是矩形. ( ) (3)对角线相等且互相平分的四边形是矩形 对角线相等且互相平分的四边形是矩形. (3)对角线相等且互相平分的四边形是矩形. ( ) (4)四个角都相等的四边形是矩形 四个角都相等的四边形是矩形. (4)四个角都相等的四边形是矩形. ( )
B A D O
C
想一想
问题: 问题:怎样用带刻度的角尺检验木工做 成的门框是否是矩形?说说你的想法. 成的门框是否是矩形?说说你的想法
一般有以下三种方法: 一般有以下三种方法 1.先检验门框的对边是否分别相等 再检验 先检验门框的对边是否分别相等,再检验 先检验门框的对边是否分别相等 其中的一个角是否是直角; 其中的一个角是否是直角 2.先检验门框的对边是否分别相等 再检验 先检验门框的对边是否分别相等,再检验 先检验门框的对边是否分别相等 两对对角的距离(对角线的长 是否相等; 对角线的长)是否相等 两对对角的距离 对角线的长 是否相等 3.检验门框的 个角都是否是直角 检验门框的3个角都是否是直角 检验门框的 个角都是否是直角.
B
C
如果四边形有一个角是直角, 如果四边形有一个角是直角,它 应该满足什么条件就是矩形呢? 应该满足什么条件就是矩形呢?
探索与思考
结论: 结论:
探索二:如图平行四边形ABCD的对 探索二对角线相等的平行四边形是矩 ABCD 判定2: :如图平行四边形ABCD的对 2:对角线相等的平行四边形是矩 判定2:对角线相等的平行四边形 角线AC BD相等 AC与 相等. 角线AC与BD相等. 平行四边形 形. ABCD是矩形吗 为什么? 是矩形吗? ABCD是矩形吗?为什么?
中考数学专项复习《矩形(2)》练习(无答案) 浙教版(2021年整理)
2017年中考数学专项复习《矩形(2)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《矩形(2)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《矩形(2)》练习(无答案)浙教版的全部内容。
矩形(02)一、选择题1.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm2.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C.D.3.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.205.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1 B.2 C.3 D.46.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12D.167.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别是S1、S2的大小关系是( )A.S1>S2B.S1=S2C.S1<S2D.3S1=2S28.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.559.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B 的面积为()A. cm2B. cm2C. cm2 D. cm210.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B. C.D.11.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)12.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH 并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个13.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm二、填空题14.如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为.15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM 的周长为.16.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.17.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明)18.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.19.如图,在矩形ABCD中, =,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.20.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AE F=∠BCE;②AF+BC>CF;③S△CE F=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)21.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB= .22.矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE= .23.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A (10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.24.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.三、解答题25.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.26.如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证: (1)△ABF≌△DCE;(2)△AOD是等腰三角形.27.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.28.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△B EC≌△DFA;(2)求证:四边形AECF是平行四边形.29.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN 交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.30.如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作⊙A 交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.。
2020届人教版八年级数学下册-18.2.1矩形(2)同步练习试题(含解析)
18.2.1矩形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.基础知识和能力拓展训练一、选择题1.下列叙述错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边形C. 矩形的对角线相等D. 对角线相等的四边形是矩形2.如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD为矩形的是()A. AB=CDB. OA=OC,OB=ODC. AC⊥BDD. AB∥CD,AD=BC3.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD. 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对4.矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A. 5B. 52C. 6D. 625.如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为()A. 15B. 20C. 35D. 406.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC 中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有()个A. 2B. 3C. 4D. 57.如图所示,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是 ()A. 15B. 215C. 17D. 2178.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=()A. 40°B. 35°C. 20°D. 15°9.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为( )A. 2-2B.-1 C.-1 D. 2-10.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A. 150米B. 200米C. 300米D. 400米二、填空题11.如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.12.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________13.如图,矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=12FC,则四边形DBFE的面积为_______ cm2.14.如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE//AB交AE 于E,则四边形ADCE的形状是___________.15.已知:如图,矩形ABCD中,E,F是CD的两个点,EG⊥AC,FH⊥AC,垂足分别为G,H,若AD=2,DE=1,CF=2,且AG=CH,则EG+FH=_____.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.三、解答题17.如图,Rt△ABE与Rt△DCF关于直线m对称,已知∠B=90°,∠C=90°,连接EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD是矩形.18.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积19.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF. (1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.20.如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.⑴求证:ΔABF≌ΔEDF;⑵将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,若AB=6,BC=8,求DG的长.21.如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案1.D【解析】A. 平行四边形的对角线互相平分,正确,不符合题意;B. 对角线互相平分的四边形是平行四边形,正确,不符合题意;C. 矩形的对角线相等,正确,不符合题意;D. 对角线相等的四边形是矩形,也可能是等腰梯形,也可能是一般四边形,故错误,符合题意,故选D.2.B【解析】解:A.由AB=DC,AC=BD无法判断四边形ABCD是矩形.故错误;B.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C.由AC⊥BD,AC=BD无法判断四边形ABCD是矩形,故错误.D.由AB∥CD,AC=BD无法判断四边形ABCD是矩形,故错误.故选B.点睛:本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.3.A【解析】由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.4.B【解析】过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG ⊥CD ,∴∠EGD=90°,∴四边形AEGD 是矩形,∴AE=DG ,EG=AD ,∴EG=AD=BC=7,MG=DG −DM=3−2=1,∵EF ⊥FM ,∴△EFM 为直角三角形,∴在Rt △EGM 中,故选B.点睛:本题考查了矩形的判定、勾股定理等知识,过E 作EG ⊥CD 于G ,利用矩形的判定可得,四边形AEGD 是矩形,则AE=DG ,EG=AD ,于是可求MG=DG-DM=1,在Rt △EMG 中,利用勾股定理可求EM .5.C【解析】试题解析:连接EF ,由图可知AFE EBA S S =V V ,那么AFE AGE EBA AGE S S S S -=-V V V V , 所以ABG EFG S S =V V ,同理, CDH EFH S S =V V ,则=152035EFG EFH S S S +=+=V V 阴影, 故本题应选C.6.B【解析】试题解析:由图可知, 12EH BC =,因为12AB BC = ,所以EH AB = ,故①正确;因为EH HC = ,所以HEC HCE ∠=∠ ,由于90HCE EBC ∠+∠=︒ , 90EBC ABG ∠+∠=︒ ,所以ABG HCE ∠=∠ ,则ABG HEC ∠=∠ ,故②正确; 在△ABG 与△HEC 中, 45BAG DHC EHC ∠=∠=︒<∠ ,从而两三角形不全等,故③错误;过点A 作AM ⊥BG 于点M ,由图可知2ABG BGH S S =V V ,而12AMG ABG S S ≠V V ,即 AMG BGH S S ≠V V ,则GAD GHCE S S ≠V 四边形 ,故④错误;因为90F EGH ∠+∠=︒ , 45EGH GBH ∠=∠+︒ , GBH DAC ∠=∠,所以 45F DAC ∠+∠=︒ ,又因为45DAC CAF ∠+∠=︒ ,所以F CAF ∠=∠ ,则 CF BD =,故⑤正确.综上所述,正确的结论有3个,故选B.点睛:矩形的对角线相等且相互平分.7.A【解析】先根据折叠的性质得EA =EF ,BE =EF ,DF =AD =3,CF =CB =5,则AB =2EF ,DC =8,再作DH ⊥BC 于H ,因为AD ∥BC , ∠B =90°,则可判定四边形ABHD 为矩形,所以DH =AB =2EF ,HC =BC -AD =2,然后在Rt △DHC 中,利用勾股定理计算出DH =所以EF 8.C【解析】∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°−55°=35°,∴∠DAF=∠BAD−∠BAE−∠FAE=90°−35°−35°=20°,故答案为:20°,故选C.9.A【解析】∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=AEB=45°.∴AB=AE=2.∵由勾股定理得:BE==,∴BC=BE=.∴DE=AD-AE=BC-AB=-2故选:A.点睛:本题考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键.10.C【解析】试题分析:根据题意设小长方形的长为x,宽为y,则可知2(2x+3y)=700,且2y+x=2x,解得y=50,x=100,所以小长方形的周长为300米.故选:C.11.矩形 5cm【解析】试题解析:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形。
八年级数学《矩形2》教案
B、AB=BC,AO=COC、AO=CO,BO=DO,AC⊥BDD、AO=BO,CO=DO3、知识拓展:ABCD的对角线AC,BD交于点O,△ABO是等边三角形,AB=4cm,求 ABCD的面积(精确到0.01cm)例题精讲:4、四边形是人们日常生活和生产中应用较广泛的一种几何图形,尤其是矩形,用途更多。
请看下面生活应用:①为庆祝五一节,学校交给八(2)班同学一个任务:在广场上布置一个矩形的花坛,同学们计划用“串红”摆成两条对角线,如果一条对角线用了38盆“串红”还需要从花房中搬来多少盆“串红”?为什么?如果一条对角线用了49盆呢?为什么?②给你一根足够长的绳子,你能用这根绳子来检查数学课本是否是矩形吗?说明方法并用数学知识来说明理由。
过程。
2.参与活动交流【教师活动】1.教师出示实际问题并引导学生探究2.画出数学图形,借此图形进行分析3. 教师给出参考答案【学生活动】1.学生发表自己的看法2.倾听教师讲解3.感悟矩形判定在生活中的应用矩形的三个判定方法。
【【媒体使用】出示问题,操作演示,实物投影展示学生探索结果,呈现证明过程,强调注意事项全课小结,内化新知这节课我们学习了哪些知识?你能说一下吗?矩形的判定方法:1、矩形的定义:【教师活动】1.教师提出问题2.组织学生交流3. 教师给出本节的知识技能方面的总结4. 学生提出还存在【设计意图】小结:学生对本节课的体会,收获进行总结。
其目的是:(1)加深学生对知识的有一个角是直角的平行四边形是矩形2、矩形判定定理:A、对角线相等的平行四边形是矩形B、三个角都是直角的四边形是矩形的疑惑,教师答疑解惑【学生活动】思考、回答教师提出的问题,参与交流理解,促进学生课堂的反思(2)让学生理解数学思想和方法。
(3)让学生感受学有所成的喜悦。
【媒体使用】呈现本节要点推荐作业,延展新知作业:必做题P112 1、2、3选做题:略1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.【教师活动】安排作业【学生活动】记录作业7.作业:必做题和选做题。
halcon gen_rectangle2 理解
halcon gen_rectangle2 理解
Halcon中的gen_rectangle2函数是用于生成矩形的一种图像处理函数。
该函数可以根据给定的参数生成一个矩形,并将其以图像的形式输出。
gen_rectangle2函数接受多个参数,包括矩形的中心点坐标、矩形的宽度、高度以及旋转角度等。
通过调整这些参数,可以得到不同形状和大小的矩形。
使用gen_rectangle2函数可以方便地在图像中生成矩形,从而用于后续的图像处理和分析任务。
在使用过程中,可以调整参数以适应具体的应用场景和需求。
总之,Halcon中的gen_rectangle2函数是一个用于生成矩形的实用工具,可以通过调整参数来生成不同形状和大小的矩形,为图像处理任务提供便捷支持。
矩形判定2
你能想一个办法确定 谁做的门是矩形吗?
方法一.
定义:有一个角是直角的平行四边形是矩形.
A D
若
ABCD ∠B=90°
则四边形ABCD是矩形。
B
C
有一个角是直角
有两个角是直角 有三个角是直角 的 四边形是矩形吗?
八年级 数学
猜想加证明
有三个角是直角的四边形是矩形吗?
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.
A D
B
C
【例3】已知: 矩形ABCD的对角线AC、BD相 交于O,E、F、G、H分别是AO、BO、CO、 DO上的一点,且AE=BF=CG=DH。 求证:四边形EFGH是矩形。
A E F B D
O
H G C
【例4】 (2006· 山东青岛)已知:如图,在平行四 边形ABCD中,E、F分别为边AB、CD的中点, BD是对角线,AG∥DB交CB的延长线于G. (1)求证:△ADE≌△CBF; (2)若四边形BEDF是菱形,则四边形AGBD是 什么特殊四边形?并证明你的结论.
二.判断题
• • • • • • 对角线相等的四边形是矩形。 对角线互相平分且相等的四边形是矩形。 有一个角是直角的四边形是矩形。 四个角都是直角的四边形是矩形。 四个角都相等的四边形是矩形。 对角线相等且有一个角是直角的四边形是矩 形。 • 对角线相等且互相垂直的四边形是矩形。
例
已知:如图, ABCD的四个内角的平 分线分别相交于E、F、G、H, 求证:四边形 EFGH为矩形. 证明:∵AB∥CD ∴∠ABC+∠BCD=180° ∵BG平分∠ABC,CG平分∠BCD
对角线相等的四边形是矩形吗?
已知:如图,在 ABCD中,AC=DB 求证: ABCD是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内
容
18.2.1 矩形(二)
教学目标知识与技能
理解并掌握矩形的判定方法.
过程与方法
使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。
情感、态度与价值观
培养学生的推理论证能力和逻辑思维能力.
重点矩形的判定.
难点矩形的判定及性质的综合应用.
教材分析
本课是在学习了矩形的概念和性质的基础上,通过研究性质定理的逆命题探索判定的条件,并从定义出发证明结论,得到矩形的判定定理.
教学方
法
自主、合作、探究
课时安
排
1
学情分
析
教学过程
激情导入
展示目标
自主探究
师生活动设计意图
一、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找
来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办
法可以检测他做的是矩形像框吗?看看谁的方法可行?
1.掌握矩形的两个判定定理,能根据不同条件,选取适当的定理进行推理
计算;
2.经历矩形判定定理的猜想与证明过程,渗透类比思想,体会类比学
习和图形判定探究的一般思路.
问题:你还记得学习平行四边形的判定时,我们是如何猜想并进行证明的
吗?
同样,我们能否通过研究矩形性质的逆命题,得到
判定矩形的方法呢?
猜想1 对角线相等的平行四边形是矩形.
猜想2 三个角是直角的四边形是矩形.
问题3 如何证明这两个猜想?
通过讨论得到矩形的判定方法.
方法1:有一个角是直角的平行四边形叫做矩形;
方法2:对角线相等的平行四边形是矩形;
例1在的一组判
断题是为了让学
生加深理解判定
矩形的条件,老师
们在教学中还可
以适当地再增加
一些判断的题目;
小组合作
达标测评
方法3:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够
了.因为由四边形内角和可知,这时第四个角一定是直角.)
二、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;(×)
(2)有四个角是直角的四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)
(6)对角线互相平分且相等的四边形是矩形;(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不
同,则需要利用定义和判定方法证明或举反例,才能下结论.
例1 如图,在ABCD中,对角线AC,BD相交于
点O,且OA=OD,∠OAD=50°.求∠OAB的度数.
例2 (补充)已知ABCD的对角线AC、BD相交于点O,△AOB
是等边三角形,AB=4 cm,求这个平行四边形的面
积.
分析:首先根据△AOB是等边三角形及平行四
边形对角线互相平分的性质判定出ABCD是矩形,
再利用勾股定理计算边长,从而得到面积值.
三、随堂练习
1.(选择)下列说法正确的是().
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角
的四边形一定是矩形
(C)对角线互相平分的四边形是矩形(D)对角互补的平行四
边形是矩形
2.已知:如图,在△ABC中,∠C=90°, CD为中线,
延长CD到点E,使得 DE=CD.连结AE,BE,则四边形
ACBE为矩形.
四、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是形,根据的数
学道理是:;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角
例2是利用矩形
知识进行计算;
例3是一道矩形
的判定题,三个题
目从不同的角度
出发,来综合应用
矩形定义及判定
等知识的.
尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时
窗框是形,根据的数学道理是:
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
小组评
价与总
结
在“?”号处填上恰当的条件:
作业
课后反
思。