重庆市第一中学2020学年高二数学下学期期末考试试题 理(含解析)
:重庆市第一中学2020-2021学年八年级下学期第一次月考数学试题(解析版)
由解集为x>7,得到2﹣a≤7,
解得ห้องสมุดไป่ตู้≥﹣5,
分式方程去分母得:ay+5﹣y+3=﹣4,
解得:y= ,
∵y为正整数解,且y≠3,
∴a=0,﹣1,﹣2,﹣5,﹣11,
又∵a≥﹣5,
∴a=0,﹣1,﹣2,﹣5,
∴满足条件的整数a的和为﹣8.
故选:C.
【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
A 48B.49C.50D.51
【答案】A
【解析】
【分析】由于图②平行四边形有8个=3+2+1+2+1﹣1,图③平行四边形有15个=4+3+2+1+3+2+1﹣1,则第⑥个图有7+6+5+4+3+2+1+6+5+4+3+2+1﹣1个平行四边形,由此即可求出答案.
【详解】解:∵图②平行四边形有8个=3+2+1+2+1﹣1,
①a=22.5;
②刚出发时,小新的速度为80米/分;
③图象中线段DE表示小新和小达两人停止了运动;
④公园入口到湖心亭的距离为2250米,其中正确说法的个数是()
A.1B.2C.3D.4
【答案】C
【解析】
【分析】根据函数图像,可知公园入口和银杏林相距1800米,小新到达银杏林时,他们两人一共走了:1800+1350=3150米,小达的速度为:1800×2÷60=60(米/分),当小新到达银杏林时,小达距离银杏林1350米,进而求出a的值,由DE∥BG,可知小新变慢后的速度和小达的速度相等,即60米/分,进而即可判断④.
2020学年山东省济宁市高二下学期期末考试数学试题(解析版)
2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
西安中学高二数学下学期期末考试试题理含解析
当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.
四川省成都市外国语学校2023-2024学年高二下学期期末考试数学试题(含解析)
成都外国语学校2023-2024学年度下期期末考试高二数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分.3.答题前,考生务必先将自己姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1i)3i z +=-,则z =( )A .BCD 2.函数()(3)e xf x x =-的单调增区间是( )A .(,2)-∞B .(0,3)C .(1,4)D .(2,)+∞3.关于线性回归的描述,有下列命题:①回归直线一定经过样本点的中心;②相关系数r 越大,线性相关程度越强;③决定系数2R 越接近1拟合效果越好;④随机误差平方和越小,拟合效果越好.其中正确的命题个数为( )A .1B .2C .3D .44.设1cos 662a =︒︒,2sin13cos13b =︒︒,c =)A .a b c>>B .a b c<<C .a c b<<D .b c a<<5.在空间直角坐标系中,(0,0,0)P ,(1,0,0)A ,(0,2,0)B ,(0,0,3)C ,三角形ABC 重心为G ,则点P 到直线AG 的距离为( )A .67B C D6.已知点(A ,抛物线2:4C y x =上有一点()00,P x y ,则202||2y PA +的最小值是( )A .10B .8C .5D .47.有5名大学生到成都市的三所学校去应聘,若每名大学生至多被一个学校录用,每个学校至少录用其中一人,则不同的录用情况种数是( )A .390B .150C .90D .4208.双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,,右支上一点P 满足12PF PF ⊥,直线l 平分12F PF ∠,过点1F ,2F 作直线l 的垂线,垂足分别为A ,B .设O 为坐标原点,则OAB △的面积为( )A.B.C.D .10二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有错选的得0分.9.若“[4,6]x ∃∈,210x ax -->”为假命题,则实数a 的取值可以为( )A .8B .7C .6D .510.我国5G 技术研发试验在2016~2018年进行,分为5G 关键技术试验、5G 技术方案验证和5G 系统验证三个阶段.2020年初以来,5G 技术在我国已经进入高速发展的阶段,5G 手机的销量也逐渐上升.某手机商城统计了2022年5个月5G 手机的实际销量,如下表所示:月份2022年1月2022年2月2022年3月2022年4月2022年5月月份编号x 12345销量y (部)5096a185227若y 与x 线性相关,且求得回归直线方程为ˆ455yx =+,则下列说法正确的是( )A .142a =B .y 与x 的相关系数为负数C .y 与x 正相关D .2022年7月该手机商城的5G 手机销量约为365部11.已知定义在R 上的函数()y f x =满足132f x ⎛⎫-⎪⎝⎭为偶函数,(21)f x +为奇函数,当10,2x ⎡⎤∈⎢⎥⎣⎦时,()0f x '>,则下列说法正确的是( )A .(0)0f =B .4133f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C .函数()y f x =为R 上的偶函数D .函数()y f x =为周期函数三、填空题:本题共3小题,每小题5分,共15分.12.若“12x <<”是“|2|1x m -<”的充分不必要条件,则实数m 的取值范围为__________.13.若7270127(2)(1)(1)(1)x a a x a x a x -=+++++++ ,则0127a a a a ++++ 的值为__________.14.若数列{}n a 满足111n n d a a +-=,(*n ∈N ,d 为常数),则称数列{}n a 为调和数列.已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320222022x x x x ++++= ,则92014x x +的最大值为__________.四、解答题:共77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c,设向量4sin ,m A ⎛= ⎝ ,1cos ,2cos 22n A A ⎛⎫= ⎪⎝⎭ ,()f A m n =⋅ ,π5π,46A ⎡⎤∈⎢⎥⎣⎦.(1)求函数()f A 的最小值;(2)若()0f A =,a =b c +=,求ABC △的面积.16.(本小题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,224PA BC AD AB ====,AD ⊥平面PAB ,PA AB ⊥,E 、F 分别是棱PB 、PC 的中点.(1)证明://DF 平面ACE ;(2)求平面ACE 与平面PAD 的夹角的正弦值.17.(本小题满分15分)某校为了解本校学生课间进行体育活动的情况,随机抽取了50名男生和50名女生,通过调查得到如下数据:50名女生中有10人课间经常进行体育活动,50名男生中有20人课间经常进行体育活动.(1)请补全22⨯列联表,试根据小概率值0.05α=的独立性检验,判断性别与课间经常进行体育活动是否有关联;体育活动合计性别课间不经常进行体育活动课间经常进行体育活动男女合计(2)以样本的频率作为概率的值,在全校的男生中任取4人,记其中课间经常进行体育活动的人数为X ﹐求X 的分布列、数学期望和方差.附表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.18.(本小题满分17分)已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点别为1F ,2F ,过点1F 的动直线l 交E 于A ,B 两点,点A 在x 轴上方,且l 不与x 轴垂直,2ABF △的周长为2AF 与E 交于另一点C ,直线2BF 与E 交于另一点D ,点P 为椭圆E 的下顶点,如图.(1)求E 的方程;(2)证明:直线CD 过定点.19.(本小题满分17分)定义运算:m n mq np p q =-,已知函数ln 1()1x x f x a -=,1()1g x x=-.(1)若函数()f x 的最大值为0,求实数a 的值;(2)若函数()()()h x f x g x =+存在两个极值点1x ,2x ,证明:()()121220h x h x a x x --+<-;(3)证明:222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.成都外国语学校2023-2024学年度下期期末考试高二数学试卷 参考答案:1.A【分析】利用复数的运算性质求出共辄复数,再求模即可.【详解】因为(1i)3i z +=-,所以23i (3i)(1i)34i i 34i 112i,1i (1i)(1i)22z ----+--=====-++-,所以12i z =+,z ==,故C 正确.故选:A .2.D【分析】对函数求导,根据导函数的正负,确定函数的单调递增递减区间即得.【详解】由()(3)e xf x x =-求导得,()(2)e xf x x '=-,则当2x >时,()0f x '>,即函数()(3)e xf x x =-在(2,)+∞上单调递增;当2x <时,()0f x '<,即函数()(3)e x f x x =-在(,2)-∞上单调递减,故函数()(3)e xf x x =-的单调递增区间为(2,)+∞.故选:D .3.C【分析】根据回归直线方程的性质,相关系数、决定系数及随机误差平方和的意义判断各项的正误即可.【详解】对于①,回归直线一定经过样本点的中心,故①正确;对于②,相关系数r 的绝对值越接近于1,线性相关性越强,故②错误;对于③,决定系数R 越接近1拟合效果越好,故③正确;对于④,随机误差平方和越小,拟合效果越好,故④正确.故选:C .4.C【分析】利用二倍角公式及两角差的正弦公式化简,再根据正弦函数的性质判断即可.【详解】()1cos 66sin 30cos 6cos30sin 6sin 306sin 242a =︒︒=︒︒-︒︒=︒-︒=︒,sin26b =︒,sin 25c ====︒,因为sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,所以sin 26sin 25sin 24︒>︒>︒,故a c b <<.故选:C .5.B【详解】在空间直角坐标系中,(0,0,0)P ,(1,0,0)A ,(0,2,0)B ,(0,0,3)C ,三角形ABC 重心为G ,所以12,,133G ⎛⎫ ⎪⎝⎭,(1,0,0)PA =,22,,133AG ⎛⎫=- ⎪⎝⎭,所以PA 在AG上的投影为:PA AG AG⋅== 所以点P 到直线AG=.故选:B .6.B【分析】结合坐标运算和焦半径公式,转化22||2(||||)22y PA PF PA +=+-,再利用数形结合求最值.【详解】已知抛物线2:4C y x =上有一点()00,P x y ,则2004y x =,即2004y x =.又243>⨯,故(A 在抛物线2:4C y x =的外部,则()()220002||2||2||21|224y y PA PA x PA x PA ⎛⎫+=+=+=++- ⎪⎝⎭∣,因为抛物线2:4C y x =的焦点为(1,0)F ,准线方程为1x =-,则0||1PF x =+,故()2002||21||22(||||)22y PA x PA PF PA +=++-=+-.由于||||||PF PA AF +≥,当A ,P ,F 三点共线(P 在A ,F 之间)时,||||PF PA +取到最小值||5AF ==,则202||2(||||)22y PA PF PA +=+-的最小值为2528⨯-=.故选:B .【分析】根据录用的人数,结合组合和排列的定义分类讨论进行求解即可.【详解】若5人中有且仅有3人被录用,满足条件的录用情况有35A 60=种,若5人中有且仅有4人被录用,满足条件的录用情况有1143435322C C C A 180A =种,若5人都被录用,满足条件的录用情况有1122335453332222C C C C A A 150A A +=种,由分类加法计数原理可得符合要求的不同的录用情况种数是390.故选:A .8.D【分析】根据给定条件,求出2a ,结合几何图形及双曲线定义可得OAB △的面积212S a =得解.【详解】由双曲线222:1(0)5x y C a a -=>=,解得220a =,令直线1F A 交2PF 的延长线交2PF 于Q ,直线2F B 交1PF 于N ,则1PA FQ ⊥,2PB F N ⊥,由PA 平分12F PF ∠,且1290F PF ∠=︒,得112245PFQ PQF PF N PNF ∠=∠=∠=∠=︒,则1||PA PF =,2||PB PF =,||||||2AB PA PB a =-==,显然A ,B 分别为线段1FQ ,2F N 的中点,而O 是12F F 的中点,于是//OA PQ ,1//OB PF ,145OAB APQ APF OBA ∠=∠=︒=∠=∠,即90AOB ∠=︒,||||||OA OB AB a ===,所以OAB △的面积2211||1022S OA a ===.故选:D .【点睛】关键点点睛:本题求出OAB △面积的关键是作出点Q ,借助几何图形的特征,结合双曲线定义求得||AB =.【分析】根据条件,将问题转化成即1x a x -≤在[]4,6恒成立,令1()f x x x=-,利用其单调性,求出()f x 的最大值,即可求解.【详解】因为“[4,6]x ∃∈,210x ax -->”为假命题,所以[4,6]x ∀∈,210x ax --≤恒成立,即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[4,6]x ∈.令1()f x x x =-,易知1()f x x x=-在[]4,6上是增函数,所以max 135()(6)666f x f ==-=,所以356a ≥.故选:ABC .10.AC【分析】对A ,根据样本中心在回归直线上即可求解;对B ,从表格数据看,y 随x 的增大而增大,即可判断;对C ,因为y 与x 正相关,所以y 与x 的相关系数为正数,故可判断;对D ,将月份编号7x =代入到回归直线即可求解判断.【详解】对A ,1234535x ++++==,509618522755855a ay +++++==,因为点(),x y 在回归直线上,所以55845355a+=⨯+,解得142a =,所以选项A 正确;对C ,从表格数据看,y 随x 的增大而增大,所以y 与x 正相关,所以选项C 正确;对B ,因为y 与x 正相关,所以y 与x 的相关系数为正数,所以选项B 错误;对D ,2022年7月对应的月份编号7x =,当7x =时,ˆ4575320y=⨯+=,所以2022年7月该手机商城的5G 手机销量约为320部,所以选项D 错误.故选:AC .11.AD【分析】首先利用函数的奇偶性得到函数的对称轴和对称中心,结合关系式的变换得到函数周期判断B ,利用特殊值代入判断A ,根据导函数判断函数单调性结合关系式和偶函数定义判断C ,根据函数的关系式和单调性判断D .【详解】因为132f x ⎛⎫-⎪⎝⎭为偶函数,111133()(1)2222f x f x f x f x f x f x ⎛⎫⎛⎫⎛⎫⎛⎫-=+⇔-=+⇔=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故函数图象关于直线12x =对称,(21)f x +为奇函数,(21)(21)(1)(1)f x f x f x f x -+=-+⇔-+=-+,函数图象关于(1,0)对称,对于D ,()(1)(1)f x f x f x =-=-+,(2)(1)()f x f x f x +=-+=,故2是函数的周期,函数为周期函数,故D 正确;对于A ,(21)(21)f x f x -+=-+,令0x =,(1)(1)f f =-,故(1)0f =,又(0)(11)(1)0f f f =-==,故A 正确;对于C ,131222f f f ⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,即函数在10,2⎛⎫⎪⎝⎭上递增,函数图象关于(1,0)对称,故函数在13,22⎛⎫ ⎪⎝⎭上递减,故函数在11,22⎡⎤-⎢⎥⎣⎦上递增,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,故函数不是偶函数,故C 错误;对于B ,124333f f f ⎛⎫⎛⎫⎛⎫=> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,故选:AD .【点睛】抽象函数的判断一般会从函数奇偶性、周期性和对称性的定义推得相关的函数性质;12.【详解】由|2|1x m -<,得2121m x m -<<+,因为“12x <<”是“|2|1x m -<”的充分不必要条件,所以集合{12}x x <<∣是集合{2121}x m x m -<<+∣的真子集,所以211212m m -≤⎧⎨+≥⎩(不同时取等号),解得112m ≤≤,所以实数m 的取值范围为112m ≤≤.故答案为:112m ≤≤.13.128【详解】令0x =,得701272128a a a a ++++== .14.2【分析】根据调和数列,可得{}2n x 为等差数列,即可根据等差数列求和公式得22920142x x +=,进而利用不等式即可求解.【详解】数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,故221n n x x d +-=,所以{}2n x 为等差数列,由222212320222022x x x x++++= ,所以()2212022202220222xx +⨯=,故22120222x x +=,所以22920142x x +=,故22920149201422x x x x +=≥,故920141x x ≤,由于()222920149201492014920142224x x x x x x x x +=++=+≤.当且仅当92014x x =时等号成立,故92014x x +的最大值为2.故答案为:2.15.【详解】(1)ππ()4sin cos cos sin 2cos 233f A m n A A A ⎛⎫⎛⎫=⋅=⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭πsin 222sin 23A A A ⎛⎫==- ⎪⎝⎭.因为π5π,46A ⎡⎤∈⎢⎥⎣⎦,所以ππ4π2,363A ⎡⎤-∈⎢⎥⎣⎦,所以当π4π233A -=,即5π6A =时,()f A有最小值(2)因为()0f A =,所以π2sin 203A ⎛⎫-= ⎪⎝⎭,所以π2π3A k -=,k ∈Z ,因为π5π,46A ⎡⎤∈⎢⎥⎣⎦,所以2π3A =.由正弦定理,2sin sin sin b c a B C A====,所以sin 2b B =,sin 2c C =.又因为sin sin B C +=,所以22b c +=,得b c +=,由余弦定理有:2222cos a b c bc A =+-,所以3bc =.所以11sin 322ABC S bc A ==⨯=△.16.【详解】(1)如图所示,连接EF .因为E ,F 分别是棱PB ,PC 的中点,所以//EF BC ,2BC EF =.因为//AD BC ,2BC AD =,所以//EF AD ,EF AD =,所以四边形ADFE 是平行四边形,则//AE DF .因为AE ⊂平面ACE ,DF ⊂/平面ACE ,所以//DF 平面ACE .(2)因为AD ⊥平面PAB ,PA 、AB ⊂平面PAB ,所以AD PA ⊥,AD AB ⊥,又因为PA AB ⊥,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AP ,AD的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.由题中数据可得(0,0,0)A ,(2,0,4)C ,(1,2,0)E ,(2,0,4)AC = ,(1,2,0)AE =.设平面ACE 的法向量为(,,)n x y z = ,则240,20,n AC x z n AE x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩令2x =,得(2,1,1)n =--.因为PA AB ⊥,AB AD ⊥,PA AD A = ,所以AB ⊥平面PAD .平面PAD 的一个法向量为(1,0,0)AB m ==.设平面ACE 与平面PAD 的夹角为θ,则cos cos ,n m n m n m θ⋅====.故sin θ==,即平面ACE 与平面PAD17.【详解】(1)依题意,列出22⨯列联表如下:课间不经常进行体育活动课间经常进行体育活动合计男302050女401050合计7030100零假设为0H :性别与课间经常进行体育活动相互独立,即性别与课间是否经常进行体育活动无关,因为220.05100(30102040)1004.762 3.8415050703021x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.05α=的独立性检验,我们推断0H 不成立,即认为性别与课间是否经常进行体育活动有关联,此推断犯错误的概率不大于0.05.(2)由题意得,经常进行体育活动者的频率为202505=,所以在本校中随机抽取1人为经常进行体育活动者的概率为25,由题意得2~4,5X B ⎛⎫⎪⎝⎭,则4422()C 155kkk P X k -⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭,0,1,2,3,4k =,可得04042281(0)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,131422216(1)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,222422216(2)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,31342296(3)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,40442216(4)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,X 的分布列为:X 01234P816252166252166259662516625X 的数学期望为28()455E X np ==⨯=,X 的方差为2224()(1)415525D X np p ⎛⎫=-=⨯⨯-= ⎪⎝⎭.18.【分析】(1)利用椭圆的第一定义和离心率,求解椭圆方程;(2)设点()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,2AF 的方程为11(1)1y y x x =--,联立直线与椭圆的方程,根据韦达定理求出点的坐标,同理得到点的坐标,进而得到直线的方程,根据对称性,如果直线CD 过定点,则该定点在x 轴上,即可得到定点坐标7,05⎛⎫⎪⎝⎭;【详解】(1)由椭圆定义可知122AF AF a +=,122BF BF a +=,所以2ABF △的周长为4a =,所以a =,所以c a =,所以1c =,又2221b a c =-=,所以椭圆的方程:2212x y +=.(2)(ⅰ)设点()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,则直线2AF 的方程为11(1)1y y x x =--,则1111x x y y -=+,由11221112x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩得,221111112210x x y y y y ⎡⎤⎛⎫⎛⎫--⎢⎥++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以211322211111121212y y y x x y x y --==-++⎛⎫-+ ⎪⎝⎭,因为221112x y +=,所以221122x y +=,所以2113123y y y x =-,故13123y y x =-,又111133311111134112323x x y x x y y y y x x ---=+==+=--,同理,24223y y x =-,2423423x x x -=-,由A ,1F ,B 三点共线,得121211y yx x =++,所以211221x y x y y y -=-,直线CD 的方程为43111431342323y y y x y x x x x x ⎛⎫---=- ⎪---⎝⎭,由对称性可知,如果直线CD 过定点,则该定点在x 轴上,令0y =得,()()()()()1431431433423y x x x y y x x y y --+--=--()()21211121212112134343423232323232323x x y y y x x x x x y y x x x ⎛⎫⎛⎫----+-- ⎪ ⎪----⎝⎭⎝⎭=⎛⎫-- ⎪--⎝⎭()()()()()()()()1221121221211212122134344372323325y x y x y y x y x y y x y x y y x y x y --+--+-===----+-,故直线CD 过定点7,05⎛⎫ ⎪⎝⎭.19.【分析】(1)求导后,分类讨论单调性,进而得到最值,求出a 的值即可;(2)条件等价于()0h x '=有两个不等的正根,结合判别式非负,以及韦达定理求出a 的范围,要证()()121220h x h x a x x --+<-,即证22212ln 0x x x -+<,令1()2ln (1)x x x x x ϕ=-+>求导确定函数()x ϕ的单调性,证明结论.(3)利用(1)结论可得则当1n >时,22211111ln 1111n n n n n⎛⎫⎛⎫+<+-=<- ⎪ ⎪-⎝⎭⎝⎭,进而利用裂项相消求和证明结论.【详解】(1)由题意知:()ln 1f x a x x =-+,()1(0)af x x x∴'=->,①当0a ≤时,()0f x '<,()f x 在(0,)+∞单调递减,不存在最大值.②当0a >时,由()0f x '=得x a =,当(0,)x a ∈,()0f x '>;(,)x a ∈+∞,()0f x '<,∴函数()y f x =的增区间为(0,)a ,减区间为(,)a +∞.max ()()ln 10f x f a a a a ∴==-+=,1a ∴=.(2)1()()()ln h x f x g x a x x x=+=-+ ,22211()1a x ax h x x x x -+-'∴=--=,“函数()h x 存在两个极值点1x ,2x ”等价于“方程22211()10a x ax h x x x x -+-'=--==有两个不相等的正实数根”;故212124010a x x x x a ⎧∆=->⎪=⎨⎪+=>⎩,解得2a >.()()11221212121211ln ln a x x a x x h x h x x x x x x x -+-+--=--()()()21122112121212ln ln ln ln 2x x a x x x x a x x x x x x x x --+-+-==---,要证()()121220h x h x a x x --+<-,即证1212ln ln 1x x x x -<-,121x x = ,不妨令1201x x <<<,故1211x x =<,由1212ln ln 1x x x x -<-得22212ln 0x x x -+<,令1()2ln (1)x x x x xϕ=-+>,222222121(1)()10x x x x x x x x ϕ-+---'=--==<在(1,)+∞恒成立,所以函数()x ϕ在(1,)+∞上单调递减,故()(1)0x ϕϕ<=.()()121220h x h x a x x -∴-+<-成立.(3)由(1)知,ln 10x x -+≤,即ln 1x x ≤-,∴当1n >时,22211111ln 1111n n n n n ⎛⎫⎛⎫+<+-=<- ⎪ ⎪-⎝⎭⎝⎭,222111111111ln 1ln 1ln 1111232231n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴++++⋯++<-+-+⋯+-=-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫∴+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】知识点点睛:本题以新定义为载体,考查了利用导数研究函数单调性和最值,考查了不等式的放缩,裂项相消求和知识,属于难题.。
安徽省阜阳第一中学2023-2024学年高二下学期期末考试数学试题(含答案)
阜阳第一中学2023-2024学年高二下学期期末考试数学考生注意:1.本试卷满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷,草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 2. 已知复数(是虚数单位),则( )A. B. C. D. 3. 已知双曲线的左焦点到其渐近线的距离为,则该双曲线的离心率为( )A. 2B. C.D. 4. 已知函数,则不等式的解集为( )A. B. C. D. 5. “”是“直线被圆截得的弦长为”的( )A. 充分不必要条件B. 必要不充分条件C 充要条件D. 即不充分也不必要条件6. 已知正实数满足,则的最小值为( ).{}1,0,1,2,3,{2}A B x x =-=<∣()R A B =I ð{}3{}2,3{}1,0,1-{}1,0,1,2-12i 2iz=+i z =42i --42i -+42i-42i+22221(0,0)x y a b a b -=>>(),0F c -12c ()()221ln 11f x x x=+-+()()211f x f x -<-22,33⎛⎫-⎪⎝⎭()0,∞+(),0∞-20,3⎛⎫ ⎪⎝⎭5a =-:0l x a ++=()(2215x y -+-=4,x y 2420x xy +-=x y +A.B.C.D.7. 已知直三棱柱的各顶点都在同一球面上,且,,则此球的表面积等于( )A.B. C. D. 8. 已知集合,若且互不相等,则使得指数函数,对数函数,幂函数中至少有两个函数在上单调递减的有序数对的个数是( )A. 36B. 42C. 72D. 84二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知向量,则下列命题正确的有( )A. 若,则B. 若,则C. D. 的最大值为310. 已知在棱长为2的正方体中,分别是的中点,点为正方形内(包括边界)的动点,则下列说法中正确的是( )A. 平面B. 平面平面C. 三棱锥D. 若点到直线与到直线的距离相等,则点的轨迹为圆的一部分11. 已知函数及其导函数,若,则( )A. B. C.D. 111ABC A B C -3,5,120AB AC BAC ∠=== 1AA =256π376π78π96π1114,3,2,,,,2,3234A ⎧⎫=---⎨⎬⎩⎭,,a b c A ∈x y a =log b y x =c y x =()0,∞+(),,a b c ())sin ,cos ,1a b θθ==-π6θ=a b ⊥ 2π3θ=a b ∥ a b= a b -1111ABCD A B C D -,,,M N P Q 111111,,,AA CC C D D A E ABCD PQ //MBN PMN ⊥11BB D P MBN -E 1BB AD E ()f x ()f x ',x ∀∈R ()()33,f x f x +=-()()8f x f x '=-'()()17f f -=()()132f f ''-+=20241()i f i ='=∑()()042f f +=三、填空题:本题共3小题,每小题5分,共15分.12. 已知某种零件的尺寸(单位:)在内的为合格品.某企业生产的该种零件的尺寸服从正态分析,且,则估计该企业生产的1000个零件中合格品的个数为__________.13. 已知函数,将图象向右平移个单位长度得到函数的图象,若是偶函数,在上恰有4个零点,则__________.14. 已知椭圆左、右焦点分别是是椭圆上两点,四边形为矩形,延长交椭圆于点,若,则椭圆的离心率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 已知函数.(1)求曲线在处的切线方程;(2)求函数的极值.16. 如图,在四棱锥中,底面为矩形,为等边三角形,为的中点,(1)证明:平面平面;(2)求二面角的正弦值.17. 过抛物线焦点的直线交于两点,特别地,当直线的倾斜角为时,.(1)求抛物线的方程;(2)已知点,若,求的面积(为坐标原点).的的mm [5.12,5.28]X ()25.2,N σ( 5.28)0.08P X >=()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭()f x π6()g x ()g x ()f x ()0,πω=2222:1(0)x y C a b a b+=>>12,,,F F A B 12AF BF 2AF C P 243AP BF =C ()21exx x f x -+=()y f x =()()0,0f ()f x P ABCD -ABCD ABP V E PB 4,AB BC DP ===BDP ⊥ADE D BP C --2:2(0)C y px p =>F l C ,A B l π3163AB =C ()1,2P -PA PB ⊥OAB V O18. 某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的列联表:产品合格不合格合计调试前451560调试后35540合计8020100(1)根据表中数据,依据的独立性检验,能否认为参数调试与产品质量有关联;(2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为,求的分布列和数学期望;(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为,求使事件“”的概率最大时的取值.参考公式及数据:,其中.0.0250.010.0050.0015.0246.6357.8791082819. 如果无穷数列满足“对任意正整数,都存在正整数,使得”,则称数列具有“性质”.(1)若等比数列的前项和为,且公比,求证:数列具有“性质”;(2)若等差数列的首项,公差,求证:数列具有“性质”,当且仅当;(3)如果各项均为正整数的无穷等比数列具有“性质”,且四个数中恰有两个出现在数列中,求的所有可能取值之和..22⨯0.01α=X X Y Yk =k ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α{}n a (),i j i j ≠k k i j a a a =⋅{}n a P {}n a n n S 241,12,120q S S >=={}n a P {}n b 11b =d ∈Z {}n b P d ∈N {}n c P 131215122,5,4,10{}n c 1c阜阳第一中学2023-2024学年高二下学期期末考试数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD【10题答案】【答案】AB【11题答案】【答案】AC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】4【14题答案】四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1)(2)极小值,极大值【16题答案】【答案】(1)证明略 (2【17题答案】【答案】(1) (2)【18题答案】【答案】(1)依据的独立性检验,可认为参数调试与产品质量无关联 (2)分布列略,数学期望 (3)875【19题答案】【答案】(1)证明略; (2)证明略;(3),为840210x y +-=1e 23e24y x =0.01α=94132154。
高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题
2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
第一中学高二数学下学期期中试题文
陕西省西安市长安区第一中学2019-2020学年高二数学下学期期中试题 文注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,总分150分,考试时间120分钟.2。
答题前,考生须将自己的学校、班级、姓名、学号填写在本试卷指定的位置上.3。
选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其他题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项。
1。
设复数z 1=1-i ,z 2i ,其中i 为虚数单位,则12zz 的虚部为( )ABCD2.“m >0”是“函数f (x)=m +2log x (x ≥1)不存在零点"的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3。
已知双曲线221k-=(k>0)的一条渐近线与直线x-2y-3=0x y平行,则双曲线的离心率是()B.3C.43D.5 A.524.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限。
在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A。
3 B.2 C.1 D。
05。
《张丘建算经》卷上一题大意为今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布,现在一月(按30天计)共织布390尺,最后一天织布21尺,则该女第一天共织多少布?()A.3尺B。
4尺C。
5尺D。
6尺6.用系统抽样法从130件产品中抽取容量为10的样本,将130件产品从1~130编号,按编号顺序平均分成10组(1~13号,14~26号,…,118~130号),若第9组抽出的号码是114,则第3组抽出的号码是()A.36 B.37 C.38 D.397.已知f(x)=Asin(ωx+φ)在一个周期内的图象如图所示,则y=f(x)的图象可由函数y=cos x的图象(纵坐标不变)如何变换得到()A 。
2021-2022学年河南省信阳市高二下学期期末数学(理)试题(解析版)
2021-2022学年河南省信阳市高二下学期期末数学(理)试题一、单选题1.复数112izi-=+(i为虚数单位)的共轭复数是A.135i+B.135i-+C.135i-D.135i--【答案】B【分析】根据复数除法运算,化简复数,再根据共轭复数概念得结果【详解】1i13i12i5z---==+,故z的共轭复数13i5z-+=.故选B.【点睛】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题. 2.已知袋中有大小、形状完全相同的4个红色、3个白色的乒乓球,从中任取4个,则下列判断错误的是()A.事件“都是红色球”是随机事件B.事件“都是白色球”是不可能事件C.事件“至少有一个白色球”是必然事件D.事件“有3个红色球和1个白色球”是随机事件【答案】C【分析】对事件分类,利用随机事件的定义直接判断即可.【详解】因为袋中有大小、形状完全相同的4个红色、3个白色的乒乓球,所以从中任取4个球共有:3白1红,2白2红,1白3红,4红四种情况.故事件“都是红色球”是随机事件,故A正确;事件“都是白色球”是不可能事件,故B正确;事件“至少有一个白色球”是随机事件,故C错误;事件“有3个红色球和1个白色球”是随机事件,故D正确.故选:C3.如图是两个变量的散点图,y关于x的回归方程可能是()A .3ln 2y x =+B .3e 1x y =-C .322y x =-+D .1210y x =+ 【答案】C【分析】有散点图可知y 与x 负相关,结合选项的单调性可得.【详解】由散点图可知,y 与x 负相关,易知,当0x >时,函数3ln 2y x =+单调递增,故A 错误;因为函数3e 1x y =-和1210y x =+单调递增,故BD 错误. 故选:C .4.由曲线cos y x =,坐标轴x 轴、y 轴及直线2x π=围成的图形的面积等于( )A .1B 2C 3D .2【答案】A【分析】根据所围成图形用定积分可求得阴影部分的面积,然后根据定积分的定义求出所求即可.【详解】曲线cos y x =,坐标轴x 轴、y 轴及直线2x π=围成的图形的面积,22001cos sin |S xdx x ππ===⎰,故选:A .5.冬季奥林匹克运动会,是世界规模最大的冬奥综合性运动会,自1924年起,每四年举办一届.第24届由中国2022年2月在北京举办,分北京赛区、延庆赛区、张家口赛区三个赛区共15个比赛项目.为了宣传奥运精神,红星实验学校组织了甲乙两个社团,利用一周的时间对外进行宣传,将每天宣传的次数绘制成如下频数分布折线图,则以下不正确的为()A.甲社团众数小于乙社团众数B.甲社团的极差大于乙社团的极差C.甲社团的平均数大于乙社团的平均数D.甲社团的方差大于乙社团的方差【答案】C【分析】分析两社团的众数得大小,判断A;计算出两社团的极差,判断B;算出两社团的平均数,判断C,分析两社团频数的波动性,判断D.【详解】A选项,甲社团众数为2,乙社团众数为3,所以A正确;B选项,甲社团极差为3,乙社团的极差为2,所以B正确;C选项,甲社团平均数为223254337++++++=,乙社团的平均数为223433437++++++=,故两社团平均数相等,所以错误;D选项,由图可知,甲社团的频数的波动性较大,故其方差大于乙社团方差,D正确,故选:C.6.已知x y ,之间具有线性相关关系,若通过10组数据(i x ,i y )(i =1,2, (10)得到的回归方程为ˆ 2.15yx =-+ ,且10120i i x ==∑,则101i i y =∑=( ) A .8 B .0.8 C .-2 D .-2.1【答案】A【分析】依据回归方程ˆ 2.15yx =-+过点(,)x y ,即可求得101i i y =∑的值. 【详解】依题意知,20210x ==, 因为回归方程为ˆ 2.15yx =-+过点(,)x y , 所以可以计算出: 2.1250.8y =-⨯+=, 所以101100.88i i y ==⨯=∑,故选:A .7.中国古代中的“礼、乐、射、御、书、数”,合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每次讲一艺.讲座次序要求“数”不在第一次也不在第六次,“礼”和“乐”不相邻,则“六艺”讲座不同的次序共有( ) A .480种 B .336种 C .144种 D .96种【答案】B【分析】根据给定条件,求出“数”不在第一次也不在第六次的不同次序数,去掉其中的“礼”和“乐”相邻的不同次序数即可计算作答.【详解】依题意,“数”不在第一次也不在第六次的不同次序数有:1545A A ,“数”不在第一次也不在第六次时,“礼”和“乐”相邻的不同次序数有:142342A A A ,所以所求“六艺”讲座不同的次序数共有:1514245342A A A A A 336-=.故选:B8.A ,B ,C 三名员工在参加了公司的某项技能比武后,都知道了自己的和他人的名次(无并列名次),随后A ,B ,C 三人一起到了车间告诉主管比赛的成绩,A 说:我不为第1名;B 说:A 没说谎;C 说:我不为第3名,公司公布了三人的名次后主管发现:B 说了假话,C 说了真话,则A ,B ,C 的比赛名次依次为( ) A .1,2,3 B .1,3,2C .2,3,1D .3,2,1【答案】B【分析】根据主管发现B 说了假话,可知A 说谎了,从而判断A 的名次,根据C 说了真话可判断C 的名次,进而判断B 的名次.【详解】因为B 说:A 没说谎,又主管发现B 说了假话,所以A 为说谎者,所以A 为第1名.又C 说:我不为第3名,且已知C 说了真话,所以C 为第1名或第2名,又A 为第1名,所以C 为第2名, 从而B 为第3名, 故选:B .9.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为A .3761()2C B .2741()2A C .2741()2C D .1741()2C 【答案】B【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.10.定义1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,()int x 为不超过x 的最大整数,例如()int 3.13=,()int 11=,()int 1.62-=-,若区间[],m n (n m -为正整数)在数轴上任意滑动,则区间[],m n 取盖数轴上整数的个数为( ) A .()()()1int sgn n m n n -+-- B .()()()int sgn n m n n -+- C .()()()1sgn int n m n n -+-- D .()()()1sgn int n m n n -++-【答案】C【分析】先分析出区间[],m n 上整数的可能个数,结合sgn()x 与()int x 的定义可得答案.. 【详解】因为n m -为整数,所以当n 为整数时,m 也为整数,所以此时[],m n 覆盖数轴上1n m -+个整数, 当n 不是整数时,m 也不是整数,所以此时[],m n 数轴上覆盖n m -个整数.可以验证:区间[],m n 覆盖数轴上整数的个数为()()–1sgn i )t (n n m n n +--, 故选: C.11.用红、黄、蓝,紫四种颜色随机地给正四面体的四个顶点染色,则“恰有一个面上的三个顶点同色”的概率为( ) A .12B .13C .14D .316【答案】D【分析】求得每个顶点各有四种涂色方法总数为256n =,再求得 “恰有一个面上的三个顶点同色“包含的基本事件个数m ,结合古典摡型的概率公式,即可求解. 【详解】用红、黄、蓝、紫四种颜色随机地给正四面体的四个顶点染色, 基本事件总数44256n ==,恰有一个面上的三个顶点同色“包含的基本事件个数111443C C C 48m ==,则“恰有一个面上的三个顶点同色“的概率为48325616m p n === 故选:D.12.二进制数是用0和1表示的数,它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,二制数()0122k a a a a ⋯(*k N ∈)对应的十进制数记为k m ,即1001122...22k k k k k m a a a a --=⨯+⨯++⨯+⨯ ,其中01a =, {}01123i a i k ∈=⋯,(,,,,),则在0128a a a a ⋯,,,中恰好有2个0的所有二进制数0182(...)a a a 对应的十进制数的总和为( ) A .1910 B .1990 C .12252 D .12523【答案】D【分析】利用等比数列前n 项和以及组合数问题可解【详解】根据题意得 8760812812222m a a a =⨯+⨯+⨯+⋯+⨯ ,因为在0128a a a a ⋯,,,中恰好有2个0的有28C =28种可能,即所有符合条件的二进制数()01282 a a a a ⋯ 的个数为28.所以所有二进制数()01282 a a a a ⋯对应的十进制数的和中,82出现28C =28次,72,62…,2,02均出现27C =21次,所以满足0128a a a a ⋯,,,中恰好有2个0的所有二进制数()01282 a a a a ⋯对应的十进制数的和为27602878C 2+2+...+2+2+C 2=21255+28256=12523⨯⨯()故选:D .二、填空题13.若一组观测值()11,x y ,()22,x y ,…,(),n n x y (10n ≥)对应的点位于同一直线上,则x ,y 的相关系数为______. 【答案】±1【分析】根据相关系数的定义可得答案.【详解】由已知条件和相关系数的定义得,x ,y 的相关系数为±1. 故答案为:±114.6212x x ⎛⎫- ⎪⎝⎭的展开式子中各项系数之和为___________.【答案】1【分析】求二项展开式中各项系数之和,令1x =代入运算求解.【详解】令62112x x x ⎛⎫=- ⎪⎝⎭,的展开式中各项系数之和为621211⎛⎫-⨯ ⎪⎝⎭=1 故答案为:1.15.在如图的数表中,仅列出了前6行,照此排列规律还可以继续排列下去,则数表中第n (3n ≥)行左起第3个数为_______.【答案】262n n -+ 【分析】根据题意先确定每行最后一个数,再求结果【详解】依排列规律得,数表中第1n -行最后一个数为(1)123(1)2n n n -++++-=第()3n n ≥行左起第3个数为2(1)6322n n n n --++=. 【点睛】本题考查归纳推理,考查基本分析求解能力,属基础题. 16.已知函数43e x y -=的图象与函数ln(1)14x y --=的图象关于某一条直线l 对称,若P ,Q 分别为它们上的两个动点,则这两点之间距离的最小值为______.【分析】整体代换求解直线l 的解析式,利用导数的几何意义求解函数43e x y -=的图象上到直线l 距离最短的点,即为点P ,即可求解,P Q 两点间的最短距离. 【详解】解:令1t x =-,则1x t =+,4341e =e x t y -+=,ln(1)1ln 144x t y ---==. 因为41e t y +=与ln 14t y -=关于直线y t =对称, 所以函数43e x y -=与函数ln(1)14x y --=关于直线1y x =-对称, 所以P ,Q 两点之间距离的最小值等于P 到直线1y x =-距离最小值的2倍, 函数43e x y -=在00(,)P x y 点处的切线斜率为0434e x k -=, 令0434e 1x -=得,032ln 24x -=,014y =, 所以点P 到直线1y x =-距离的最小值为d ==所以这两点之间距离的最小值为)1ln 222d +=.故答案为:ln 2)2+.三、解答题17.在复平面内,复数222(34)z a a a a i =--+-- (其中a R ∈). (1)若复数z 为实数,求a 的值; (2)若复数z 为纯虚数,求a 的值;(3)对应的点在第四象限,求实数a 的取值范围. 【答案】(1)1a =-或4;(2)2a =;(3)()2,4【分析】(1)根据复数为实数条件列方程解得结果,(2)根据纯虚数定义列式求解,(3)根据复数几何意义列不等式解得结果【详解】(1)因为复数z 为实数,所以2340a a --=, 所以1a =-或4;(2)因为复数z 为纯虚数,所以2220340a a a a ⎧--=⎨--≠⎩,所以2a =(3)因为z 对应的点在第四象限,所以2220340a a a a ⎧-->⎨--<⎩ 解不等式组得,24a <<, 即a 的取值范围是()2,4.【点睛】本题考查复数相关概念以及复数几何意义,考查基本分析求解能力,属基础题. 18.人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标是否“质量优等”进行测量,由测量结果绘成如下频率分布直方图. 其中质量指数值分组区间是 [20,25),[25,30),[30,35),[35,40),[40,45].当指标测量值不低于35时,记为“质量优等”.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关; 甲有机肥料 乙有机肥料 合计 质量优等 质量非优等 合计(2)在乙种有机肥料的测试中,根据数据分析,可以认为质量指数值Y 服从正态分布(,)N μσ,其中μ近似等于样本平均数x , 5.6σ≈.请估计质量指数值落在区间(38.1,49.3)内的概率.(同一组中的数据以这组数据所在区间中点的值代替))附∶ ①()()()()()22n ad bc x a b c d a c b d -=++++②若Y 服从正态分布(,)N μσ,则()0.683P Y μσμσ-<<+=,(22)0.954P Y μσμσ-<<+=,(33)0.997P Y μσμσ-<<+=.【答案】(1)填表见解析;有99.9%的把握认为,“质量优等”与使用不同的肥料有关 (2)0.157【分析】(1)根据直方图先求得“质量优等”的频率,然后不全列联表,结合独立性检验公式,即可求解(2)根据直方图先求平均数,然后结合正态分布的对称性即可求解. 【详解】(1)由直方图可知,使用甲有机肥料的“质量优等”频数为(0.1100.010)510060+⨯⨯=,使用乙有机肥料的“质量优等”频数为(0.0400.020)510030+⨯⨯=, 由上可得2⨯2列联表为()()()()()()2222004200120018.18210010011090n ad bc x a b c d a c b d -⨯-==≈++++⨯⨯⨯2 10.8280.001P x ≥≈()∴有99.9%的把握认为,“质量优等”与使用不同的肥料有关(2)22.50.127.50.232.50.437.50.242.50.132.5x =⨯+⨯+⨯+⨯+⨯=于是Y 近似服从正态分布2(32.5,5.6)N由题知,(38.149.3)(3)P Y P Y μσμσ<<=+<<+1[(33)()]2P Y P Y μσμσμσμσ=-<<+--<<+ 1(0.9970.683)0.1572=-=19.设关于某产品的明星代言费x (百万元)和其销售额y (千万元),有如下表的统计表格:i 1 2 3 4 5 合计 ix (百万元)1.261.441.591.711.827.82iw (百万元)2.00 2.99 4.02 5.00 6.03 20.04iy (百万元)3.204.80 6.50 7.508.00 30.001.56x =, 4.01w =,6y =,5148.66i i i x y ==∑,51132.62i i i w y ==∑,()5210.20i i x x=-=∑,()52110.14i i w w=-=∑表中3(1,2,3,4,5)i i w x i ==.(1)在坐标系中,作出销售额y 关于广告费x 的回归方程的散点图;(2)根据散点图指出:ln y a b x =+,3y c dx =+哪一个适合作销售额y 关于明星代言费x 的回归方程(不需要说明理由),并求出此回归方程.附:对于一组数据()11,u v ,()22,u v ,……,(),n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()211niii ni iu v uun u vβ==-⋅-⋅=⋅∑∑,v u αβ=-.【答案】(1)答案见解析(2)3y c dx =+适合,31.15 1.21y x =+【分析】(1)根据表中的数据,在坐标系中作出散点图即可;(2)根据散点图可看出销售额y 关于明星代言费x ,呈指数形式增长,故3y c dx =+适合作销售额y 关于明星代言费x 的回归类方程,利用最小二乘法求回归方程即可. 【详解】(1)解:散点图如下:(2)根据散点图可知,3y c dx =+适合作销售额y 关于明星代言费x 的回归类方程; 令3w x =,则y c dw =+是y 关于w 的线性回归方程,由已知条件得,()515215 1.21iii ii w y w yd w w ==⋅-⋅⋅==-∑∑,1.15c y d w =-⋅=,所以31.15 1.21 1.15 1.21y w x =+=+,故回归方程为:31.15 1.21y x =+20.如图,曲线BRA 是一段二次函数的图象,B 在y 轴上,A 在x 轴上,R 为抛物线段上一动点,以R 为切点的抛物线的切线与x 轴交于P 点,与y 轴交于Q 点,已知抛物线段上存在一点D 到x ,y 轴的距离分别为32,12,且OA =1,OB =2.过B 作BC x ∥轴,与PQ 交于C .(1)求抛物线段BRA 的方程;(2)求图中阴影部分的面积取得最小值时,R 点到y 轴的距离.【答案】(1)()22201y x x =-≤≤2【分析】(1)根据题意可得1,0A ,()0,2B -,13,22D ⎛⎫- ⎪⎝⎭在抛物线方程上,待定系数法求解抛物线方程即可;(2)设()200,22R x x -,利用导数求解直线PQ 的方程,进而得到,C P 坐标,即可求得四边形OBCP 的面积,x ,y 轴与抛物线路段BRA 所围成的面积为定值,利用基本不等式求解四边形OBCP 的面积最小值即可.【详解】(1)解:设抛物线段BRA 的方程为()20y ax bx c a =++≠,由已知得,1,0A ,()0,2B -,13,22D ⎛⎫- ⎪⎝⎭,代入()20y ax bx c a =++≠得,23112420c a b c a b c -=⎧⎪⎪-=++⎨⎪=++⎪⎩,解得202a b c =⎧⎪=⎨⎪=-⎩,所以抛物线段的方程为()22201y x x =-≤≤.(2)解:设R 点到y 轴的距离为()00(0,1)x x ∈,由已知得,()200,22R x x -,则PQ 的斜率为()200224x x '-=,所以PQ 的方程为()()2000224y x x x x --=-,令0y =得,00122x x x =+,即001,022x P x ⎛⎫+ ⎪⎝⎭,令2y =-得,02x x =,即0,22x C ⎛⎫- ⎪⎝⎭, 因为x ,y 轴与抛物线路段BRA 所围成的面积为定值,所以图中阴影部分的面积取得最小值等价于直角梯形OBCP 的面积S 取得最小值.四边形OBCP 的面积为0000122212222x xx OP BC S OB x x ⎛⎫++ ⎪+⎝⎭=⋅=⋅=+, 因为()00,1x ∈,所以0012S x x ≥=+= 当且仅当0012x x =,即0x = 所以图中阴影部分的面积取得最小值时,R 点到y轴的距离为2. 21.刷抖音是现在不少人喜爱的娱乐方式,既可以在工作之余借助其消除疲劳,还可以学会不少知识,现在抖音里有一款“生活常识答题”程序游戏,其规则如下:每次点击开始答题后,需连续依次回答A ,B ,C 三类题,当回答一类题结束时会根据正确率出现“优秀”或“加油”图标,若三类题答题结束后出现一个或两个“优秀”图标,则最后会显示80分,出现三个“优秀”图标,则显示200分,否则会显示-20分.小张同学正确回答A ,B ,C 三类题出现“优秀”的概率依次分别为45,34,23.(1)记小张同学答题活动结束出现“优秀”的图标个数为X ,求X 的分布列与数学期望; (2)小张同学如果答题4次,求4次中至少有2次获得200分的概率. 【答案】(1)分布列见解析,13360; (2)328625. 【分析】(1)求出X 的所有可能值,再利用互斥事件、相互独立事件的概率公式计算各个取值的概率,列出分布列并计算期望作答.(2)利用(1)中信息,利用对立事件概率、独立重复试验的概率列式计算作答. 【详解】(1)依题意,X 的所有可能值为0,1,2,3,11114111311123(0),(1)5436054354354320P X P X ==⨯⨯===⨯⨯+⨯⨯+⨯⨯=,431412132134322(2),(3)543543543305435P X P X ==⨯⨯+⨯⨯+⨯⨯===⨯⨯=,所以X 的分布列为:数学期望为13132133()0123602030560E X =⨯+⨯+⨯+⨯=. (2)由(1)知,小张每次获得200分的概率为25,设小张获得200分的次数为Y ,于是得041344323328(2)1(1)1(0)(1)1C ()C ()()555625P Y P Y P Y P Y ≥=-≤=-=-==--=,所以4次中至少有2次获得200分的概率为328625. 22.已知函数()21e 2x f x x =-,()()1R g x ax a =+∈.(1)求()f x 的图象在x =0处的切线方程;(2)当[)0,x ∈+∞时,()()f x g x ≥成立,求a 的取值范围.(结论:当1a > 时,函数e x y x a =--在[)0,∞+上存在唯一的零点) 【答案】(1)1y x =+ (2)(],1-∞【分析】(1)求出函数的导数,从而求出切线的斜率,根据导数的几何意义即可求得答案;(2)构造函数()()()h x f x g x =-,将[)0,x ∈+∞时,()()f x g x ≥成立的问题,转化为函数的最值问题,进而求出函数导数,根据导数的最值,分类讨论,判断导数的正负,从而判断函数的单调性,解得答案.【详解】(1)()e xf x x '=-,所以切线的斜率为()01,(0)1f f '==,所以()f x 的图象在0x =处的切线方程为()()00y f f x '-=,即1y x =+;(2)令()()()h x f x g x =-,所以21()e 12x h x x ax =---,所以,()e x h x x a '=--,设()e ,()e 1x x m x x a m x '=--∴=-, 因为[)0,x ∈+∞,所以()0m x '≥,所以()h x '在[)0,∞+上单调递增,所以()()01h x h a ''≥=-,当1a ≤时,()10h x a '≥-≥,所以21()e 12xh x x ax =---在[)0,∞+上单调递增,所以()()00h x h ≥=,所以当[)0,x ∞∀∈+,()()f x g x ≥成立;当1a >时,因为()e x h x x a '=--在()0,∞+上存在唯一的零点,不妨设为0x ,又()h x '的导函数为e 10x -≥在[)0,∞+上恒成立,所以()h x '在[)0,∞+上单调递增, 所以[]00,x x ∈时,()0h x '≤,所以()h x 在[]00,x 上单调递减,所以()()000h x h <=, 即当1a >时,存在()00,x ∈+∞,()()00f x g x <,与题意不符, 所以a 的取值范围为(],1-∞.。
第一中学高二数学下学期期中试题理
陕西省西安市长安区第一中学2019—2020学年高二数学下学期期中试题 理时间:120分钟选择题(本大题共12小题,每小题5分,共60分).1.设集合2{|430}A x xx =-+<,{|230}B x x =->,则=AB ( )A .3(3,)2-- B .3(3,)2- C .3(,3)2D .3(1,)22.在复平面内,复数11i+的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3。
已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c,则λ=( )A . 14B .12 C .1 D .24。
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳5。
下列叙述中正确的是( ) A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"bac -≤B .若,,a b c R ∈,则22""abcb >的充要条件是""a c >C .命题“对任意x R ∈,有2x≥”的否定是“存在x R ∈,有2x≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ6. 设()ln f x x =,0a b <<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A 。
q r p =<B .q r p =>C .p r q =<D .p r q =>7。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
浙江省金华市十校2023-2024学年高二下学期6月期末调研考试数学试题(含答案)
金华十校2023-2024学年第二学期期末调研考试高二数学试题卷本试卷分选择题和非选择题两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共58分)一、单选题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知向量,且,则( )A.11B.-11C.D.3.已知是实数,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知函数的对称中心为,则能使函数单调递增的区间为()A.B. C. D.5.函数的图象为()A. B.C. D.122i,12i z z =+=-+12z z -()()1,2,3,a b x x ==-()2a a b ⊥+ x =112112-x 152x x +…2x …()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭π,06⎛⎫ ⎪⎝⎭()f x π0,4⎡⎤⎢⎥⎣⎦ππ,42⎡⎤⎢⎥⎣⎦π3π,24⎡⎤⎢⎥⎣⎦3π,π4⎡⎤⎢⎥⎣⎦()ln cos x xf x x=6.已知随机变量,且,则( )A.0.4B.0.2C.0.8D.0.17.高二某班男生20人,女生30人,男、女生身高平均数分别为,方差分别为170、160,记该班全体同学身高的平均数为,方差为,则( )A. B.C.D.8.已知当时,,若函数的定义域为,且有为奇函数,为偶函数,则所在的区间是( )A.B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.在正方体中,( )A.B.直线与所成角为C.平面D.直线与平面所成角为10.投掷一枚质地均匀的硬币两次,记“第一次正面向上”为事件,“第二次正面向上”为事件,“至少有一次正面向上”为事件,则下列判断正确的是( )A.与相互独立B.与互斥C..D.11.在中,已知,则( )A.B.C.的外接圆直径为10D.的面积为非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.()1,4X N ~()()0.20.1P X a P X ==……19a P X ⎛⎫<<= ⎪⎝⎭170cm 160cm 、X 2s 2165,165X s >>2165,165X s <>2165,165X s ><2165,165X s <<[)0,1x ∈()33xf x =-()f x R ()1f x +()2f x +()3log 300f (),0∞-10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭()1,∞+1111ABCD A B C D -1AC BD ⊥1BD CD π411A C ∥1AB C1BC 11BB D D π6A B C A B A B ()23P BC =∣()()()()P C P A P B P AB =+-ABC ()4cos 3sin 4sin 9,6B B C A AC ++-==A B >2AB BC=ABC ABC I212.已知集合,集合,则__________.13.若,则__________.14.在三棱锥中,,且,若三棱锥的外接球表面积的取值范围为,则三棱锥体积的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)某校开展一项名为“书香致远,阅读润心”的读书活动,为了更好地服务全校学生,需要对全校学生的周平均阅读时间进行调查,现从该校学生中随机抽取200名学生,将他们的周平均阅读时间(单位:小时)数据分成5组:,根据分组数据制成了如图所示的频率分布直方图.(1)求的值,并估计全校学生周平均阅读时间的平均数;(2)用分层抽样的方法从周平均阅读时间不小于6小时的学生中抽出6人,从这6人中随机选出2人作为该活动的形象大使,求这2人都来自这组的概率.16.(本题满分15分)如图,在四棱锥中,四边形为正方形,为等边三角形,分别为的中点,,垂足为.(1)证明:平面;(2)若,求平面与平面形成的锐二面角的余弦值.17.(本题满分15分)已知分别为三个内角的对边,且.(1)证明:;{}1,2,3,4,5,6A ={14}B x x =∈-<<R∣A B ⋂=5250125(21)x a a x a x a x +=+++⋯+2a =A BCD -,AC AB BD AB ⊥⊥10,3AC BD AB ===A BCD -661π,409π4⎡⎤⎢⎥⎣⎦A BCD -[)[)[)[)[]2,4,4,6,6,8,8,10,10,12a [)6,8P ABCD -ABCD PAD 2,AB E F =、AD BC 、EG PF ⊥G EG ⊥PBC 3cos 4PAB ∠=-PAB PCD ,,a b c ABC ,,A B C ()()sin 22cos sin A B a cA B Ab++-+=22b a ac -=(2)求的最小值.18.(本题满分17分)已知函数.(1)若,求函数在点处的切线方程;(2)求函数在区间上的最大值的表达式;(3)若函数有两个零点,求实数的取值范围.19.(本题满分17分)二项分布是离散型随机变量重要的概率模型.我们已经知道,若,则.多项分布是二项分布的推广,同样是重复次试验,不同的是每次试验的结果不止2种,而有种,记这种结果为事件,它们的概率分别为,则.现考虑某厂生产的产品分成一等品、二等品、三等品和不合格品,它们出现的概率分别为,从该厂产品中抽出个,研究各类产品出现的次数的情况,就是一个多项分布.由于产品很多,每次抽取可以看作是独立重复的.(1)若从该厂产品中抽出4个,且和分别为和0.05,求抽出一等品1个、二等品2个,三等品1个的概率;(2)现从该厂中抽出个产品,记事件出现的次数为随机变量.为了定出这一多项分布的分布列,只需求出事件的概率,其中为非负整数,.(i )求;(ii )对于上述多项分布,求在给定的条件下,随机变量的数学期望.cos aA b+()1eln x f x ax x x -=--2a =()f x ()()1,1M f ()f x []1,3()g a ()f x a (),X B n p ~()C (1)k k n kn P X k p p -==-n m m 12,,,m A A A 12,,,m p p p 120,1i m p p p p +++= …1A 2A 3A 4A 1234,,,p p p p n 123,,p p p 4p 0.15,0.70,0.10n i A ,1,2,3,4i X i ={}11223344,,,B X k X k X k X k =====()1,2,3,4i k i =1233k k k k n +++=()P B 22X k =1X金华十校2023-2024学年第二学期调研考试高二数学卷评分标准与参考答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的题号12345678答案D D B C C A B C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.题号91011答案ACD ACD BCD三、填空题:本题共3小题,每小题5分,共15分.12.13.4014.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解:(1)依题意可得,解得又,即估计全校学生周平均阅读时间的平均数为6.92小时.(2)由频率分布直方图可知和三组的频率的比为所以利用分层抽样的方法抽取6人,这三组被抽取的人数分别为记中的3人为中的2人为中的2人为,从这6人中随机选出2人,则样本空间共15个样本点;设事件选出的2人都来自,则共3个样本点,所以.16.解:(1)如图,连接,在中,,在正方形中,,又因为平面,所以平面.又因为,所以平面,而平面,所以.因为平面,所以平面.{}1,2,3⎡⎤⎣⎦()0.020.050.10.1821a ++++⨯=0.15a =()30.0250.1870.1590.1110.052 6.92⨯+⨯+⨯+⨯+⨯⨯=[)[)6,88,10、[]10,120.15:0.1:0.053:2:1=3,2,1,[)6,8[)123,,,8,10a a a []12,,10,12b b 1c {}121311121123212221313231121121Ω,,,,,,,,,,,,,,a a a a a b a b a c a a a b a b a c a b a b a c b b b c b c =:A [)6,8{}121323,,A a a a a a a =()31155P A ==,PE EF PAD PE AD ⊥ABCD EF AD ⊥PE EF ⊂、,PEF PE EF E ⋂=AD ⊥PEF BC ∥AD BC ⊥PEF EG ⊂PEF EG BC ⊥BC PF ⊂、,PBC BC PF F ⋂=EG ⊥PBC(2)因为,所以,则,则如图以为原点,分别为轴,过且垂直为轴建系,则,则,设为平面的法向量,则,取,同理平面的法向量.所以,故平面与平面形成的锐二面角的余弦值.17.解:(1)因为所以,即;(2)因为,又,所以,因此,于是,3cos 4PAB ∠=-PB ==PF ==cos PEF ∠==E ,EA EF ,x y E ABCD z ()()1,0,0,1,2,0A B ()()31,0,0,1,2,0,0,2G C P ⎛--- ⎝()30,2,0,1,,2AB PA ⎛== ⎝ ()1111,,n x y z = PAB 11110,230,y x y =⎧⎪⎨+=⎪⎩)12n =PCD )22n =-12341cos ,77n n -==-PAB PCD 17()()sin 22cos sin A B A B A+-+()()()sin 2cos sin sin sin sin A B A A B AB AA++-+==sin sin B b a cA a b+==22b a ac -=222cos 2b c a A bc+-=22b a ac -=cos 2c a A b +=2cos b A a c =+()2sin cos sin sin sin sin B A C A A B A =+=++即,故,因为,所以,即,所以,当且仅当时,“=”成立.故.18.解:(1)易知函数的定义域为.当时,.,所以在点处的切线斜率,又,即点坐标为,所以点处的切线方程为.(2)因为.所以,当时,易知在上恒成立,所以在上单调递减,故函数在区间上的最大值为.当时,令,则在上单调递增,且当时,,当时,,所以在上有唯一的一个零点.令,则该方程有且只有一个正根,记为,则可得()sin sin B A A -=2B A =ππ3C A B A =--=-π03A <<1cos 12A <<sin 1cos cos cos sin 2cos a A A A A b B A+=+=+…cos A =cos aA b+()f x ()0,∞+2a =()12eln ,0x f x x x x x -=-->()()111112e 2e 112e x x x f x x x x x ---⎛⎫=+--=+- ⎪⎝⎭'M ()()011112e 21k f ⎛⎫==+-⎝'= ⎪⎭()012e 101f =--=M ()1,1M ()21121y x x =-+=-()1e ln ,0xf x ax x x x -=-->()()11111ee 11e x x xf x a ax x a x x ---⎛⎫=+--=+- ⎪⎝⎭'0a …()0f x '<()0,∞+()f x ()0,∞+()f x []1,3()01e 101f a a =--=-0a >()11e,0x g x a x x-=->()g x ()0,∞+0x →()g x ∞→-x ∞→+()g x ∞→+()0g x =()0,∞+11e0x a x--=()000x x >-+单调递减单调递增所以函数在区间上的最大值为,由,有:当时,;当时,.故(3)由(2)可知,当时,在上单调递减,故此时函数至多有一个零点,不符合题意.当时,在时,单调递减,在时,单调递增;且,所以,①又时,,当时,为了满足有两个零点,则有.②对①两边取对数可得,③将①③代入②可得,解得.所以实数的取值范围为19.解:(1)记从该厂产品中抽出4个,且恰好抽出一等品1个、二等品2个,三等品1个为事件,则,(2)(i ),x()00,x ()0,x ∞+()f x '()f x ()f x []1,3()(){}max 1,3f f ()()211,33e 3ln3f a f a =-=--22ln303e 1a +<<-()()11g a f a ==-22ln33e 1a +-…()()233e 3ln3g a f a ==--()2222ln31,3e 12ln33e 3ln3,.3e 1a a g a a a +⎧-<⎪⎪-=⎨+⎪--⎪-⎩…0a …()f x ()0,∞+()f x 0a >()00,x ()f x ()0,x ∞+()f x 0101e0x a x --=0101e x a x -=0x →()f x ∞→+x ∞→+()f x ∞→+()f x ()010000e ln 0x f x ax x x -=--<00ln 1ln a x x =--()010000eln ln 0x f x ax x x a -=--=<1a <a 01a <<M ()12212413213C C C 40.1530.710.10.0882P M p p p ==⨯⨯⨯⨯⨯=(){}()11223344,,,P B PXk X k X k X k =====331122441121231234C C C C k k k k k k k k n n k n k k n k k k p p p p ------=⋅⋅⋅(ii )若把事件作为一方,则作为另一方,那么随机变量分布列为,即服从二项分布列为,同理可知:.所以.所以在给定的条件下,随机变量服从二项分布,即所以此时,随机变量的数学期望为()()()()()()312411212312341112212334!!!!!!!!!!0!!k k k k n k n k k n k k k n p p p p n k k n k k k n k k k k k ------=⋅⋅⋅⋅-⋅-----⋅331241241234123412341234!111!!!!!!!!!k k k k k k k k n n p p p p p p p p k k k k k k k k =⋅⋅⋅⋅=⋅⋅⋅⋅⋅1A 1234A A A A =++1X ()112341,P X k X X X n k =++=-1X ()()()1111111!1!!n kk n P X k p p k n k -==⋅-⋅-()()()22222222!1!!n k k n P X k p p k n k -==⋅-⋅-()()()1212112212121212!,1!!!n k k k k n P X k X k p p p p k k n k k --===⋅⋅--⋅⋅--()()()1122112222,P X k X k P X k X k P X k ======∣()()()()122122121222121222!!1/1!!!!!n k k n k k k k n n p p p p p p k k n k k k n k ---=⋅⋅--⋅-⋅--⋅-()()11221111222!1!!11k n k k n k p p k n k k p p ---⎛⎫⎛⎫=- ⎪ ⎪⋅----⎝⎭⎝⎭22X k =1X 1122,1p X B n k p ⎛⎫~- ⎪-⎝⎭1X ()1221p n k p -⋅-。
湖南省郴州市2024_2025学年高二数学下学期期末教学质量监测试题含解析
湖南省郴州市2024-2025学年高二数学下学期期末教学质量监测试题(含解析)一、单选题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合,,则()A.B.C.D.2.若复数的模为5,虚部为-4,则复数()A.B.C.或D.3.已知等比数列中,,数列是等差数列,且,则()A.3B.6C.7D.84.刘徽(约公元225年—295年),魏晋期间宏大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不行割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形如图1所示,当变得很大时,这个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想得到的近似值为()A.B.C.D.5.设,,,则()A.B.C.D.6.已知平面对量,满足,,,若,则的最大值为()A.1B.C.D.27.为了加强新冠疫苗的接种工作,某医院欲从5名医生和4名护士中抽选了3人(医生和护士均至少有一人)安排到,,三个地区参与医疗支援工作(每个地区一人),方案要求医生不能去地区,则安排方案共有()A.264种B.224种C.200种D.236种8.已知函数(且).若函数的图象上有且只有两个点关于原点对称,则的取值范围是()A.B.C.D.二、多选题(每小题4分,共20分)9.甲、乙两名同学在本学期的六次考试成果统计如图,甲、乙两组数据的平均值分别为、,则()A.每次考试甲的成果都比乙的成果高B.甲的成果比乙稳定C.肯定大于D.甲的成果的极差大于乙的成果的极差10.已知,则下列结论肯定正确的是()A.B.C.D.11.关于函数有下述四个结论,其中正确的结论是()A.是偶函数B.在上有3个零点C.在上单调递增D.的最大值为212.如图所示,正三棱柱各棱的长度均相等,为的中点,、分别是线段和线段上的动点(含端点),且满足,当、运动时,下列结论中正确的是()A.是等腰三角形B.在内总存在与平面垂直的线段C.三棱锥的体积是三棱柱的体积的D.三、填空题:每小题4分,共20分.请把答案填在答题卡的相应位置.13.已知直线是函数的一条对称轴,写出的一个可能值为________.14.已知随机变量,满足,, ________.15.已知的绽开式中的各项系数的和为2,则该绽开式中的常数项为________.16.已知扇形半径为1,,弧上的点满足,则的最大值是________;最小值是________.四、解答题(共70分. )17.在中,内角,,的对边分别为,,,且(1)求;(2)若的面积为,为的中点,求的最小值.18.已知正项数列的前项和为,对有 .(1)求数列的通项公式;(2)若,求的前项和 .19.如图,矩形中,,,为的中点,把沿翻折,满足 .(1)求证:平面平面;(2)求二面角的余弦值.20.足不出户,手机下单,送菜到家,轻松逛起手机“菜市场”,拎起手机“菜篮子”,省心又省力.某手机App(应用程序)公司为了了解居民运用这款App运用者的人数及满足度,对一大型小区居民开展5个月的调查活动,从运用这款App的人数的满足度统计数据如下:月份 1 2 3 4 5不满足的人数120 105 100 95 80(1)请利用所给数据求不满足人数与月份之间的回来直线方程,并预料该小区10月份的对这款App不满足人数:(2)工作人员发觉运用这款App居民的年龄近似听从正态分布,求的值;(3)工作人员从这5个月内的调查表中随机抽查100人,调查是否运用这款App与性别的关系,得到如表:运用App不运用App女性48 12男性22 18能否据此推断有99%的把握认为是否运用这款App与性别有关?参考公式:, .附:随机变量:,则,,(其中 )P(K2≥k0)0.15 0.10 0.05 0.025 0.010k0 2.072 2.706 3.841 5.024 6.63521.已知圆经过两点,且圆心在直线上.(1)求圆的方程;(2)设,是圆上异于原点的两点,直线,的斜率分别为,,且,求证:直线经过肯定点,并求出该定点的坐标.22.某校高二年级为了丰富学生的课外活动,每个星期都实行“欢乐体育”活动.在一次“套圈圈”的嬉戏中,规则如下:在规定的4米之外的地方有一个目标物体,选手站在原地丟圈,套中目标物即获胜;规定每小组两人,每人两次,套中的次数之和不少于3次称为“最佳拍档”,甲、乙两人同一组,甲、乙两人丟圈套中的概率为别为pi,p2,假设两人是否套中相互没有影响.(1)若,设甲、乙两人丟圈套中的次数之和为,求的分布列及数学期望 . (2)若,则嬉戏中甲乙两人这一组要想获得“最佳拍档”次数为16次,则理论上至少要进行多少轮嬉戏才行?并求此时,的值.答案解析部分一、单选题1.设集合,,则()A.B.C.D.【答案】 C【考点】交集及其运算【解析】【解答】解:故答案为:C【分析】依据交集的定义求出A∩B即可.2.若复数的模为5,虚部为-4,则复数()A.B.C.或D.【答案】 C【考点】复数的代数表示法及其几何意义,复数求模【解析】【解答】设,,∴ ,解得,∴ .故答案为:C【分析】设复数,,依据复数的模求出x的值,即可求出复数z的值。
重庆市垫江中学校2019-2020学年高二下学期期末联考数学试卷含答案
重庆市垫江中学校2019-2020学年高二下学期期末联考数学试卷含答案数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回。
第Ⅰ卷(选择题 共60分)一、选择题。
(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.(改编)若21i z i =+(其中i 是虚数单位),则z =( ) A .4 B .2 C .1 D 22.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0。
97,0。
86,0。
65,0.55,则拟合效果最好的回归模型对应的相关指数R2的值是()A.0。
55 B.0。
86 C.0。
65D.0.973.在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A.0.05B.0。
1 C.0。
15D.0。
24.(改编)曲线y=x2+ln x在点(1,1)处的切线方程为( )A.3x-y-2=0 B.x-3y+2=0 C.3x+y-4=0 D.x+3y-4=05.(改编)某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种6.从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.错误!B.错误!C.错误!D.错误!7.(改编)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元) 4 2 3 5销售额y (万元) 49 26 39 54根据上表可得回归方程+=a x b y 中的∧b 为9。
重庆市第一中学高二数学下学期期末考试试题理(扫描(2021年整理)
重庆市第一中学2017-2018学年高二数学下学期期末考试试题理(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市第一中学2017-2018学年高二数学下学期期末考试试题理(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市第一中学2017-2018学年高二数学下学期期末考试试题理(扫描版)的全部内容。
湖南省长沙市第一中学2023-2024学年高二下学期第二次阶段性考试数学试题(含答案)
长沙市第一中学2023—2024学年度高二第二学期第二次阶段性检测数学时量:120分钟 满分:150分得分__________.一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足()1i 2i z -=+,则复数z 的虚部为( ) A.32 B.32- C.3i 2 D.3i 2- 2.已知某校高三(1)班有51名学生,春季运动会上,有17名学生参加了田赛项目,有22名学生参加了径赛项目,田赛和径赛都参加的有9名同学,则该班学生中田赛和径赛都没有参加的人数为( ) A.25 B.23 C.21 D.193.已知向量()()1,2,2,1a b ==,则向量a 在向量b 上的投影向量的坐标为( ) A.42,55⎛⎫⎪⎝⎭ B.84,55⎛⎫ ⎪⎝⎭ C.48,55⎛⎫ ⎪⎝⎭ D.24,55⎛⎫ ⎪⎝⎭4.已知直线,,a b c 是三条不同的直线,平面,,αβγ是三个不同的平面,下列命题正确的是( ) A.若,a c b c ⊥⊥,则a ∥b B.若a ∥,b a ∥α,则b ∥αC.若a ∥,b α∥,c a α⊥,且c b ⊥,则c α⊥D.若,βαγα⊥⊥,且a βγ⋂=,则a α⊥5.若将大小形状完全相同的三个红球和三个白球(除颜色外不考虑球的其他区别)排成一排,则有且只有两个白球相邻的排法有( ) A.6 B.12 C.18 D.366.若()()21ln 1f x x x=+-,设()()()0.33,ln2,2a f b f c f =-==,则,,a b c 的大小关系为( ) A.c a b >> B.b c a >> C.a b c >> D.a c b >>7.已知等比数列{}n a 的前n 项和为1631,,872n S a S S ==,若n S λ…恒成立,则λ的最小值为( )A.14 B.13 C.12D.1 8.已知222211228x y x y +=+=,且12120x x y y +=,则()()2212122x x y y +-++的最大值为( )A.9B.12C.36D.48二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.关于二项式31x ⎛ ⎝的展开式,下列说法正确的有( ) A.有3项 B.常数项为3C.所有项的二项式系数和为8D.所有项的系数和为010.已知曲线:44C y y x x =+,则( ) A.曲线C 在第一象限为双曲线的一部分 B.曲线C 的图象关于原点对称 C.直线2y x =与曲线C 没有交点 D.存在过原点的直线与曲线C 有三个交点11.若定义域为R 的函数()f x 不恒为零,且满足等式()()()2xf x x f x =+',则下列说法正确的是( ) A.()00f = B.()f x 在定义域上单调递增 C.()f x 是偶函数 D.函数()f x '有两个极值点三、填空题(本题共3小题,每小题5分,共15分)12.某小球可以看作一个质点,沿坚直方向运动时其相对于地面的高度h (单位:m )与时间t (单位:s )存在函数关系()2269h t t t =-++,则该小球在2s t =时的瞬时速度为__________m /s .13.若随机变量X 服从正态分布()22,N σ,且()30.66P X =…,则(1)P X <=__________.14.在四面体ABCD 中,且3,AB CD AC BD AD BC ======点,P Q 分别是线段AD ,BC 的中点,若直线PQ ⊥平面α,且α截四面体ABCD 形成的截面为平面区域Ω,则Ω的面积的最大值为__________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()cos 12cos b C c B +=-.(1)证明:2a b c +=; (2)若95,cos 16c C ==,求ABC 的面积. 16.(本小题满分15分)由四棱柱1111ABCD A B C D -截去三棱锥111D A DC -后得到如图所示的几何体,四边形ABCD 是菱形,4,2,AC BD O ==为AC 与BD 的交点,1B O ⊥平面ABCD .(1)求证:1B O ∥平面11A DC ;(2)若二面角11O AC D --的正切值为6,求平面11A DC 与平面11BCC B 夹角的大小. 17.(本小题满分15分)已知函数()()()ln 1e xf x ax a x =+--.(1)当1a =时,求证:()2f x <-;(2)若()f x 存在两个零点,求实数a 的取值范围. 18.(本小题满分17分)短视频已成为当下宣传的重要手段,某著名景点利用短视频宣传增加旅游热度,为调查某天南北方游客来此景点旅游是否与收看短视频有关,该景点对当天前来旅游的500名游客调查得知,南方游客有300人,因收看短视频而来的280名游客中南方游客有200人.(1)依据调查数据完成如下列联表,并根据小概率值0.001α=的独立性检验,分析南北方游客来此景点旅游是否与收看短视频有关联;(2)为了增加游客的旅游乐趣,该景点设置一款5人传球游戏,每个人得到球后都等可能地传给其余4人之一,现有甲、乙等5人参加此游戏,球首先由甲传出.(i )若*i ∈N ,求经过i 次传递后球回到甲的概率;(ii )已知*m ∈N ,记前m 次传递中球传到乙的次数为X ,求X 的数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++;若12,,,m Y Y Y 为随机变量,则()11m mi i i i E Y E Y ==⎛⎫= ⎪⎝⎭∑∑. 附表:19.(本小题满分17分)已知双曲线22:1C x y -=,过()2,0R 的直线l 与双曲线C 的右支交于,P Q 两点. (1)若PQ =l 的方程,(2)设过点R 且垂直于直线l 的直线n 与双曲线C 交于,M N 两点,其中M 在双曲线的右支上. (i )设PMN 和QMN 的面积分别为12,S S ,求12S S +的取值范围;(ii )若M 关于原点对称的点为T ,证明:M 为PQN 的垂心,且,,,P Q N T 四点共圆.长沙市第一中学2023—2024学年度高二第二学期第二次阶段性检测数学参考答案一、二、选择题1.A 【解析】()()()()2i 1i 2i 13i 1i 1i 1i 22z +++===+--+,故z 的虚部为32.故选:A. 2.C 【解析】设高三(1)班有51名学生组成的集合为U ,参加田赛项目的学生组成的集合为A ,参加径赛项目的学生组成的集合为B ,由题意集合A 有17个元素,B 有22个元素,A B ⋂中有9个元素,所以A B ⋃有1722930+-=个元素.所以该班学生中田赛和径赛都没有参加的人数为513021-=.故选:C.3.B 【解析】12214||145,||415,cos ,,5||55a b a b a b a b ⋅⨯+⨯=+==+=〈〉===⨯∣,∴向量a 在向量b 上的投影向量为2,1484cos ,5,555b a a b b⎛⎫⋅⋅=⨯= ⎪⎝⎭,故选:B. 4.D 【解析】对于A ,若,a c b c ⊥⊥,则a b 、可能平行,可能异面,可能相交,故A 错误; 对于B ,若a ∥,b a ∥α,则b ∥α或b α⊂,故B 错误;对于C ,以长方体ABCD A B C D '-'''为例,AB ∥平面,A B C D CD ''''∥平面,,A B C D BC AB BC CD ⊥''⊥'',但BC 与平面A B C D ''''不垂直,故C 错误;故选D.5.B 【解析】除颜色外不考虑球的其他区别,将三个白球分成两堆,只有一种分法,大小形状完全相同的三个红球排成一排也只有一种排法,将白球插空有24A 12=种可能,故选:B.6.D 【解析】由题意知()(),00,x ∞∞∈-⋃+,由()()21ln ()1f x x f x x⎡⎤-=-+-=⎣⎦-, 所以()f x 为偶函数,当()()()210,,ln 1x f x x x∞∈+=+-单调递增, 因为()()()()0.333,ln2,2a f fb fc f =-===,且00.3112222,0ln2lne 1=<<=<<=,所以0.3ln223<<,所以()()()0.3ln223f f f <<-,即a c b >>.故选:D.7.C 【解析】设等比数列{}n a 的公比为q ,由6387S S =,得()6338S S S -=-,则()45612318a a a a a a ++=-++,即()()312312318q a a a a a a ++=-++, 因为1230a a a ++≠,所以318q =-,解得12q =-,所以11122n n a -⎛⎫=- ⎪⎝⎭,所以1112211113212nn nS ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,当n 为奇数时,11132nn S ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以112n S S =…,当n 为偶数时,1111323nn S ⎡⎤⎛⎫=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以()max 12n S =,所以12λ….故选:C.8.C 【解析】依题意,()11,A x y 与()22,B x y 为圆22:8O x y +=上一点,且π2AOB ∠=,得ABO 为等腰直角三角形,设M 为AB 的中点,则点M 在以O 为圆心,2为半径的圆上,即224M M x y +=, 故()()()222222121212122414122M M x x y y x x y y x y ⎡⎤++⎛⎫⎛⎫⎡⎤+-++=-+=-+⎢⎥ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦, 因为点M 到定点()1,0的距离的最大值为3d =,因此()()2212122x x y y +-++的最大值为36.9.BCD 【解析】对A,因为二项式31x ⎛ ⎝的展开式中共有4项,故A 错误;对B,二项式31x ⎛- ⎝的展开式中通项为()33321331C (C (1)03kk k kkkk T xk x --+⎛⎫==- ⎪⎝⎭剟,令3302k -=,得2k =,所以常数项为2203C (1)3x -=,故B 正确; 对C,二项式31x ⎛- ⎝中,所有项的二项式系数和为328=,故C 正确; 对D ,令1x =,得310x ⎛= ⎝,故D 正确.故选:BCD.10.AC 【解析】当0,0x y >…时,曲线22:14y C x -=,为焦点在y 轴上的双曲线的一部分;当0,0x y <>时,曲线22:14y C x +=,为焦点在y 轴的棈圆的一部分;当0,0x y <<时,曲线22:14y C x -=,为焦点在x 轴上的双曲线的一部分;当0,0x y ><时,曲线C 没有图象.由图象可知,A 正确,B 错误,结合曲线C 的渐近线可知C 正确,D 错误.11.AD 【解析】对于A ,令0x =得()200f =,即()00f =,A 正确;对于B ,若()f x 在定义域上单调递增,当0x <时,()()00f x f <=,令3x =-,得()()3330f f ----'=>,即()30f '-<,与()f x 在定义域上单调递增矛盾,故B 错误;对于C ,若()f x 是偶函数,则()()f x f x -=,且()()f x f x -='-',因为()()()2xf x x f x =+', 所以()()()2xf x x f x --=+'--,所以()()()()22x f x x f x +=-+-,即()20xf x =, 得0x =或()0f x =,又()00f =,所以()0f x =恒成立,矛盾,故C 错误; 对于D ,当0x ≠时,()()()()221x f x f x fx xx '+⎛⎫==+ ⎪⎝⎭,记()()()21g x f x f x x ⎛'⎫==+ ⎪⎝⎭, 则()()()()()222222211g x f x f x f x f x x x x x ⎛⎫⎛⎫⎛⎫'⎛⎫=-++=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭'⎭⎝⎭,所以()()()()22242241x x f x g x f x xx x ++⎛⎫=++= ⎪⎝⎭',令2420x x ++=,解得1222x x =-=-+()f x 不恒为零,所以在12,x x 两边()g x '异号, 所以12,x x 为()g x 的极值点,所以函数()f x '有两个极值点,D 正确.故选:AD三、填空题12.-2 【解析】由函数()2269h t t t =-++,可得()46h t t =-+',则()24262h =-⨯+=-',所以该小球在2s t =时的瞬时速度为-2.故答案为:-2.13.0.34 【解析】X 服从正态分布()22,N σ,则()(1)(3)1310.660.34P X P X P X <=>=-=-=….故答案为0.34.【解析】四面体ABCD拓展为长方体,如图所示,3,AB AC AD ===设111,,AC a A B b AA c ===,则有22222210,7,? 2,9,a b b c a b c c a ⎧+=⎪⎪+====⎨⎪+=⎪⎩解得 因为点,P Q 分别是线段,AD BC 的中点,所以PQ ⊥底面1A BC , 又有直线PQ ⊥平面α,所以α∥底面1A BC ,设平面α与ABC ACD ABD BCD 、、、的交线分别为:,,,MF MH FG GH , 因为α∥底面1,A BC BCD 分别与平面1,A BC α交于,GH BC ,所以GH ∥BC ,同理FM ∥BC ,所以GH ∥FM ,同理FG ∥HM ,所以四边形FGHM 为平行四边形, 且1FGH AQC ∠∠=,在1Rt A BC中,1111sin A B AC ACB ACB BC BC ∠∠==== ()11111sin sin π2sin22sin cos 5AQC ACB ACB ACB ACB ∠∠∠∠∠=-===所以1sin sin FGH AQC ∠∠== 设BG k =,则3GD k =-,由GH ∥BC,所以3,3GH GD kGH BC BD -== 由GF∥AD,同理可得3kGF =GF GH +=因为平行四边形FGHM 围成一个平面区域Ω,面积为S ,2sin 2GF GH S GF GH FGH GH ∠+⎫=⋅⋅=⋅=⎪⎝⎭…当且仅当2GF GH ==时取等号.四、解答题15.【解析】(1)法一:根据正弦定理()()cos 12cos sin cos sin 2sin sin cos b C c B B C B C C B +=-⇒+=-, 整理得()sin cos sin cos sin 2sin sin sin 2sin B C C B B C B C B C ++=⇒++=, 因为πA B C ++=,所以()sin sin sin sin 2sin A B C A B C =+⇒+=, 由正弦定理可得2a b c +=;法二:由()()cos 12cos ,cos cos 2b C c B b C c B b c +=-++=,由射影定理知cos cos b C c B a +=(因为sin cos sin cos sin B C C B A +=),故2a b c +=. (2)因为9cos 16C =,由余弦定理可得2222cos c a b ab C =+-,即229258a b ab =+-, 又5c =,故10a b +=,从而22525()1008ab a b +=+=,解得24ab =, 因为9cos 16C =,所以sin 16C ==,所以11sin 2422164ABCSab C ==⨯⨯=. 16.【解析】(1)四边形ABCD 是菱形,4,2,AC BD O ==为AC 与BD 的交点,1B O ⊥平面ABCD .∴以直线1,,OA OD OB 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()0,0,0,2,0,0,0,1,0,2,0,0,0,1,0O A B C D --,设()10,0,B a , 由()110,1,AA BB a ==得()12,1,A a ,由()110,1,CC BB a ==得()12,1,C a -,则()()()11114,0,0,2,0,,0,0,A C D A a O B a =-==,设平面11A DC 的法向量为(),,m x y z =,则1110,40,20,0m AC x x az m DA ⎧⋅=-=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩取1y =,得()0,1,0m =,11001000m OB a m OB ∴⋅=⨯+⨯+⨯=⇒⊥,又1OB ⊄平面11A DC ,1OB ∴∥平面11A DC .(2)取11AC 的中点()0,1,M a ,则1B M∥OD ,又四边形ABCD 是菱形,1,AC BD B O ⊥⊥平面1,ABCD B O AC ⊥,故AC ⊥面1B MDB ,则11,OM AC OM AC ⊥⊥,又DM ∥1OB ,故11DM AC ⊥.所以OMD ∠为二面角11O AC D --的平面角.则tan 6OMD ∠=,得a = 故()()1110,1,23,2,1,0BB B C ==-, 设平面11BCC B 的法向量为()111,,n x y z =,则11111110,0,20,0n BB y x y n B C ⎧⎧⋅=+=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩取11z =,得()3,n =--,(1cos,213m n ⨯-∴==-⨯,∴平面11A DC 与平面11BCC B 夹角的余弦值为2,∴平面11A DC 与平面11BCC B 夹角为π6.法二:(1)将几何体补成四棱柱,用常规法做. (2)找到平面角两分,两个法向量各两分,后面一样. 17.【解析】(1)当1a =时,()ln e ,0xf x x x =->.先证明:e 1,0x x x >+>,设()e 1xg x x =--,则()e 10xg x =->',即()()00g x g >=,即e 1x x >+,类似地有1e ,0ln 1x x x x x ->⇒-厔,因此()()()ln e 112xf x x x x =-<--+=-,证毕.(2)令()()ln 1e 0xax a x +--=,得()ln e xax ax x +=+,设()ln g x x x =+,显然()g x 在定义域上单调递增,而e e lne x x x x +=+,则()()e,e xxg ax g ax =∴=,依题意,方程exax =有两个不等的实根,显然0a ≠,故1ex xa =存在两个不同的零点, 设()ex x h x =,则()()1e xh x x -=-', (i )当0a <时,则0x <,此时()h x 在(),0∞-上单调递增,()1h x a=最多一个零点,不合题意; (ii )当0a >时,此时0x >,当01x <<时,()0h x '>,当1x >时,()0h x '<,()h x ∴在()0,1上单调递增,在()1,∞+上单调递减,()max 1()1eh x h ==,要使()1h x a =有两个零点,则11ea <,解得e a >, 综上可知,e a >.18.【解析】(1)将所给数据进行整理,得到如下列联表:零假设0H :南北方游客来此景点旅游与短视频无关联.220.001500(20012080100)800034.63210.828300200280220231x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.001α=的独立性检验,我们推断0H 不成立,即认为南北方游客来此景点旅游与收看短视频有关联,此推断犯错误的概率不大于0.001. (2)(i )设经过i 次传递后回到甲的概率为()()11111,12444i i i i P P P P i --=-⨯=-+…,1111545i i P P -⎛⎫-=-- ⎪⎝⎭,又111055P -=-≠,所以15i P ⎧⎫-⎨⎬⎩⎭是首项为15-,公比为14-的等比数列,所以1111554i iP -⎛⎫=-⨯- ⎪⎝⎭. (ii )方法一:设第i 次传递时甲接到球的次数为i Y ,则i Y 服从两点分布,()i i E Y P =,设前m 次传递中球传到甲的次数为Y ,()123111114144(),155********mmm mi i m i i m m E Y E Y E Y P P P P ==⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭===++++=-⨯=⨯-+- ⎪ ⎪⎝⎭⎝⎭+∑∑,因为()()4m E Y E X -=,所以()111525254mm E X ⎛⎫=+-⨯- ⎪⎝⎭.方法二:设第i 次传递时,乙接到球的概率和次数分别为i q 与i X ,则i X 服从两点分布,()i i E X q =, 由题可知()1111111,4545i i i i q q q q --⎛⎫=--=-- ⎪⎝⎭,又114q =,所以111520q -=,所以15i q ⎧⎫-⎨⎬⎩⎭是首项为120,公比为14-的等比数列,1111111,5204554i ii i q q -⎛⎫⎛⎫-=⨯-=-⨯- ⎪ ⎪⎝⎭⎝⎭,()111111441()15514mm m m i i i i i i m E X E X E X q ===⎡⎤⎛⎫-⨯--⎢⎥⎪⎝⎭⎢⎥⎛⎫⎣⎦====-⨯⎪⎛⎫⎝⎭-- ⎪⎝⎭∑∑∑,故()111525254mm E X ⎛⎫=+-⨯- ⎪⎝⎭.19.【解析】(1)设()()1122,,,P x y Q x y ,直线:2l x my =+,因为直线l 与双曲线右支相交,故11m -<<, 联立双曲线方程221x y -=,得()()2221430,Δ43m y my m -++==+, 则12122243,11m y y y y m m -+==--, 故12PQ y =-==即4292470m m -+=,解得213m =,或273m =(舍去),因此3m =±,从而直线l的方程为23x y =±+.(2)(i )若0m =,则22MN a ==,由(1)可知,PQ ==此时1212S S MN PQ +=⋅= 当0m ≠时,设()()3344,,,M x y N x y ,直线1:2n x y m=-+, 由(1)同理可知2343422224433,111111m m m y y y y m m m m--+====----,故34MN y =-=注意到1212S S MN PQ +=⋅12==令()22120,t m m ∞=+-∈+,则12S S +=>综上可知,12S S +的取值范围是)∞⎡+⎣.(ii )先证明M 为PQN 的垂心,只需证明0MP NQ ⋅=,注意到,()()MP NQ MR RPNR RQ RP RQ MR NR ⋅=++=⋅+⋅,而()()11222,2,RP RQ x y x y ⋅=-⋅-()()()2121212221x x y y m y y =--+=+,同理34211MR NR y y m ⎛⎫⋅=+⎪⎝⎭, ()212342111MP NQ m y y y y m ⎛⎫⋅=+++ ⎪⎝⎭()()()22222222213131313101111m m m m m m m m m ⎛⎫-+ ⎪+++⎝⎭=+=-=----, 因此MP NQ ⊥,又MN PQ ⊥,故M 为PQN 的垂心,因此180NMP NQP ∠+=, 再证明,,,P Q N T 四点共圆,即只需证明:NTP NMP ∠∠=. 因为,M T 关于原点对称,则22221P T P M P M P M P M PT PM P T P M P M P M P My y y y y y y y y y k k x x x x x x x x x x --+--⋅=⋅=⋅==--+--, 同理可得1NT NM k k ⋅=;则11tan tan 1111NT PT NM PM PM NMNT PT NM PM NM PMk k k k k k NTP NMP k k k k k k ∠∠---====+++,即NTP NMP ∠∠=,因此180NTP NQP ∠∠+=,因此,,,P Q N T 四点共圆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年重庆一中高 2020 级高二下期期末考试数学试题卷(理科)第Ⅰ卷 选择题(共 60 分) 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知 是虚数单位,复数,则复数 ( )A.B.C.D.【答案】D【解析】分析:利用复数的运算法则,分子和分母同乘以分母的共轭复数,将分母实数化,化简求得结果.详解:,故选 D. 点睛:该题考查的是有关复数的运算,涉及到的知识点有复数的除法运算以及复数的乘法运 算,熟练掌握其运算法则是解题的关键,属于简单题目.2. 若集合,,则()A.B.C.D.【答案】C【解析】分析:把 A 中元素代入 B 中解析式求出 y 的值,确定出 B,找出两集合的公共元素,从而求得其交集.详解:把 A 中代入 B 中得:,即,则故选 C.点睛:由二次函数的值域求法,运用列举法化简集合 B,再由交集的定义,即可得到所求.3. 已知函数 的定义域为,则函数的定义域是( )A.B.C.D.【答案】A【解析】分析:首先根据题中所给的函数 的定义域为,得到和同时有意义以及分母不等于零的条件,得到 所满足的条件,求得 的范围,进一步求得函数的 定义域.详解:由题意可得,解得,所以函数的定义域为 ,故选 A.点睛:该题考查的是有关函数定义域的求解问题,需要注意函数定义域的定义是使得式子有 意义的 的取值所构成的集合,注意抽象函数定义域确定的原则,偶次根式要求被开方式大于 等于零,分式要求分母不等于零,最后求得结果.4. “若 或 ,则”的否命题是( )A. 若 且 ,则.B. 若 且 ,则.C. 若 且 ,则.D. 若 或 ,则.【答案】B 【解析】分析:根据原命题的否命题是条件和结论同时否定,得到的命题是否命题,注意“或” 的否定为“且”. 详解:根据命题否定的规则,可知“若 或 ,则”的否命题是“若 且 ,则.”故选 B.点睛.该题考查的是有关四种命题的问题,关于原命题的否命题的形式是条件和结论同时否定,此时要注意“或”的否定为“且”.5. 条件 : ,条件 :,则 是 的( )A. 充分但不必要条件 B. 必要但不充分条件C. 充要条件 D. 既不充分又不必要条件【答案】A【解析】分析:由已知中条件 : ,条件 :,我们可以求出对应的集合 P,Q,然后分析两个集合间的包含关系,进而根据“谁小谁充分,谁大谁必要”的原则,确定 q 是 p的什么条件,进而根据互为逆否的两个命题真假性一致得到答案.详解: 条件 : ,条件 :,q 是 p 的充分但不必要条件根据互为逆否的两个命题真假性一致可得是 的充分但不必要条件.故选 A.点睛:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中求出对应的集合 P,Q,然后分析两个集合间的包含关系,进而根据“谁小谁充分,谁大谁必要”的原则,确定 q 和 p之间的关系式解答本题的关键.6. 从 , , , , 中任取 个不同的数,事件 为“取到的 个数之和为偶数”,事件 为“取到的 个数均为偶数”,则()A.B.C.D.【答案】D 【解析】分析:用列举法求出事件“取到的 个数之和为偶数”所包含的基本事件的个数,求出 ,同理求出,根据条件概率公式即可求得结果.详解:事件 “取到的 个数之和为偶数”所包含的基本事件有: (1,3)、(1,5)、(3,5)、(2,4),事件 B=“取到的 个数均为偶数”所包含的基本事件有(2,4)故选 D.点睛:利用互斥事件的概率及古典概型概率公式求出事件 A 的概率,同样利用古典概型概率 计算公式求出事件 AB 的概率,然后直接利用条件概率公式求解.7. 已知幂函数是定义在区间上的奇函数,则下列成立的是( )A. C. 【答案】AB. D. 与 大小不确定【解析】分析:由已知条件,结合奇函数的定义域必然关于原点对称可得解得或 ;故需对或 两种情况分别进行讨论,从而确定结果.详解: 幂函数是定义在区间上的奇函数,解得或.当时,函数当时,函数且 ,不合题意;综上可知故选 A.点睛:根据奇函数的定义域关于原点对称的性质求出 m,然后根据幂函数的性质即可得出结论.8. 从 人中选出 人分别参加 年北京大学的数学、物理、化学、生物暑期夏令营,每人只能参加其中一项,其中甲、乙两人都不能参加化学比赛,则不同的参赛方案的种数共有( )A.B.C.D.【答案】C【解析】分析:本题是一个分步计数问题,先看化学比赛,甲,乙两人都不能参加化学比赛由 4 种选法,然后看其余三个,可以在剩余的五人中任意选,根据分布计数原理得到结果.详解:由题意知本题是一个分步计数问题,先看化学比赛,甲,乙两人都不能参加化学比赛由 4 种选法,然后看其余三个,可以在剩余的五人中任意选.共有故选 C.点睛:分步要做到“步骤完整”-----完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分布后再计算每一步的方法数,最后根据分布乘法计数原理,把完成每一步的方法数相乘,得到总数.9. (原创)定义在 上的偶函数 满足:对任意的实数 都有,且,.则的值为( )A.B.C.D.【答案】B【解析】分析:首先根据题中所给的条件,判断出函数图像的轴对称性以及函数的周期性,并求得函数的周期,应用函数的周期性,得到函数值之间关系,最后求得结果.详解:根据题意, 是偶函数,且对任意的实数 ,都有,得到其图像关于直线 对称,并且其周期为 2,所以有,从而得到,故选 B.点睛:该题考查的是有关函数值的求和问题,在解题的过程中,涉及到的知识点有函数的奇偶性,函数的周期性等,正确处理函数值之间的关系式解题的关键.10. 函数 是定义在区间上的可导函数,其导函数为 ,且满足,则不等式的解集为( )A. C. 【答案】CB. D.【解析】分析:由题意构造函数求导可知函数是区间上的增函数,把原不等式转化为,结合求得 x 的范围.详解:则函数是区间上的增函数.由不等式,得,解得,又由,得,即.故选 C.点睛:该题考查的是有关解不等式的问题,在解题的过程中,涉及到的知识点应用导数研究函数的单调性,构造新函数,结合题意求得对应的不等式的解集.11. 甲、乙、丙三人用擂台赛形式进行训练.每局两人单打比赛,另一人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打 局,乙共打 局,而丙共当裁判 局.那么整个比赛的第 局的输方( )A. 必是甲 B. 必是乙 C. 必是丙 D. 不能确定【答案】A【解析】分析:根据丙共当裁判 8 局,因此,甲乙打了 8 局;甲共打了 12 局,因此,丙共打了 4 局,利用乙共打 局,因此乙丙打了 13 局,因此共打了 25 局,那么甲当裁判 13 局,乙当裁判 4 局,丙当裁判 8 局,由于实行擂台赛形式,因此,每局都必须换裁判;即,某人不可能连续做裁判,因此,甲做裁判的局次只能是:1、3、5、……、23、25;由于第 11 局只能是甲做裁判,显然,第 10 局的输方,只能是甲.详解:根据题意,知丙共当裁判 8 局,所以甲乙之间共有 8 局比赛,又甲共打了 12 局,乙共打了 21 局,所以甲和丙打了 4 局,乙和丙打了 13 局,三人之间总共打了(8+4+13)=25 局,考查甲,总共打了 12 局,当了 13 次裁判,所以他输了 12 次.所以当 n 是偶数时,第 n 局比赛的输方为甲,从而整个比赛的第 10 局的输方必是甲.故选 A.点睛:该题考查的是有关排列组合在打比赛中的应用,在解题的过程中,涉及到的知识点有分类加法计数原理,以及推理问题,正确理清其关系式解题的关键.12. 设函数,若存在唯一的正整数 ,使得,则实数 的取值范围是( )A.B.C.D.【答案】C【解析】分析:设找出满足条件的不等式组解之即可.详解:设两个函数图象如图:在同一个坐标系中画出它们的图象,结合图象要使存在唯一的正整数使得只要即解得故选 D. 点睛:该题考查的是有关零点存在性定理的应用,在解题的过程中,要正确理解零点存在性 定理的内容,会利用其得到相关的不等式组,并且结合图形来研究.第Ⅱ卷 非选择题(共 90 分) 二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 已知随机变量,若,则__________.【答案】【解析】分析:根据随机变量 服从正态分布,知正态曲线的对称轴是 x=1,且依据正态分布对称性,即可求得答案.详解:随机变量 服从正态分布曲线关于 x=1 对称,故答案为:0.8. 点睛:该题考查的是有关正态分布的问题,在解题的过程中,要熟练应用正态分布曲线的轴 对称性解决问题.14. 二项式的展开式中, 的系数为 ,则实数 __________.(用数字填写答案)【答案】【解析】因为,所以令,解得 ,所以=15 ,解得 .考点:本小题主要考查二项式定理的通项公式,求特定项的系数,题目难度不大,属于中低 档.视频15. 定义在 上的单调函数 ,满足对,都有,则 __________.【答案】【解析】分析:先根据函数的单调性与恒成立,求出函数的解析式即可.详解:因为函数是定义在 上的单调函数,对恒成立所以存在常数 c,使得,又. 故答案为 10. 点睛:该题考查的是有关求函数值的问题,在解题的过程中,需要明确常函数的概念,以及 会应用题的条件,得到相应的关系式,求得结果.16. 设函数,若对任意给定的,都存在唯一的,满足,则正实数 的最小值是__________.【答案】【解析】分析:此题的突破口在于如何才会存在唯一的 x 满足条件,结合 的值域或者图象,易知只有在 的自变量与因变量存在的一一对应关系时,即只有当时,才会存在一一对应.详解:根据 的函数,易得出其值域为:R,又时,值域为时,其值域为 R,的值域为 上有两个解,要想,在上只有唯一的,必有,所以:解得: ,当 时,x 与存在一一对应关系,且,所以有:,解得:或者(舍去),,,综上所述,故答案是 . 点睛:该题考查的是有关参数的取值范围及最值的问题,在解题的过程中,需要认真审题,理解存在唯一的 x 满足条件的等价结果是函数关系式一一对应的,从而得到相应的式子,求 得结果. 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17. 第 届世界杯足球赛在俄罗斯进行,某校足球协会为了解该校学生对此次足球盛会的关 注情况,随机调查了该校 名学生,并将这 名学生分为对世界杯足球赛“非常关注”与 “一般关注”两类,已知这 名学生中男生比女生多 人,对世界杯足球赛“非常关注”的 学生中男生人数与女生人数之比为 ,对世界杯足球赛“一般关注”的学生中男生比女生少 人. (1)根据题意建立 列联表,判断是否有 的把握认为男生与女生对世界杯足球赛的关 注有差异? (2)该校足球协会从对世界杯足球赛“非常关注”的学生中根据性别进行分层抽样,从中抽 取 人,再从这 人中随机选出 人参与世界杯足球赛宣传活动,求这 人中至少有一个男生的 概率.附:,.【答案】(1) 没有 的把握认为男生与女生对世界杯足球赛的关注有差异(2)【解析】分析:(1)根据题中的条件,得到相关的数据,从而列出列联表,根据公式求出 的 值,与临界值比较,即可得出结论; (2)根据比例,即可确定男生和女生抽取的人数,确定所有基本事件、满足条件的基本事件, 即可求出至少有一个男生的概率. 详解:(1)可得 列联表为:男生 女生 合计非常关注一般关注合计,所以没有 的把握认为男生与女生对世界杯足球赛的关注有差异.(2)由题意得男生抽 人,女生 人,.点睛:该题考查的是有关统计的问题,涉及到的知识点有列联表,独立检验,古典概型等, 在解题的过程中,注意从题的条件中读取相关的信息,合理利用题的条件是解题的关键. 18. 今年五一小长假,以洪崖洞、李子坝轻轨、长江索道、一棵树观景台为代表的网红景点, 把重庆推上全国旅游人气搒的新高.外地客人小胖准备游览上面这 个景点,他游览每一个景台的概率都是 ,且他是否游览哪个景点互不影响.设 表示小胖离开重庆时游览的景点数与没有游览的景点数之差的绝对值.(1)记“函数是实数集 上的偶函数”为事件 ,求事件 的概率.(2)求 的分布列及数学期望.【答案】(1) (2)分布列见解析,【解析】分析:(1)根据函数 是偶函数的条件,从而有,得到 ,根据独立重复试验中,相应的概率公式求得结果;(2)根据题意,得到 的可取值,求得对应的概率,列出分布列,利用期望公式求得 的值.详解:(1)因为在 上的偶函数,所以 ;从而.(2)显然 的可能取值为 , , ,;;;所以 的分布列为:.点睛:该题考查的是有关概率的求解以及分布列和其期望的问题,在解题的过程中,涉及到的知识点有独立重复试验中成功次数对应的概率,随机变量的分布列以及期望,正确理解题意是解题的关键.19. 如图(1),在中,, , . , 分别是 , 上的点,且,,将沿 折起到的位置,使,如图(2).(1)求证:平面;(2)若 是 的中点,求直线 与平面 所成角的大小.【答案】(1)见解析(2)【解析】分析:(1)根据题中的条件,利用线面垂直的判定定理证得结果; (2)建立相应的空间直角坐标系,利用空间向量法求得线面角的正弦值,从而求得角的大小.详解:(1)证明:∵,,∴.∴,,∴ 平面 ,又平面 ,∴.又,∴平面.(2)解:如图所示,以 为坐标原点,建立空间直角坐标系,则,,,,.设平面 的法向量为,则,.又,,∴.令 ,则 , ,∴.设 与平面 所成的角为 .∵,∴.∴ 与平面 所成角的大小为 .点睛:该题所考查的是有关立体几何的问题,涉及到的知识点有线面垂直的判定,线面角的 大小的求解,在解题的过程中,需要把握线面垂直的判定定理的内容以及空间向量法求解线 面角的思路与过程,建立适当的空间直角坐标系是解题的关键.20. 已知椭圆,如图所示,直线 过点和点, ,直线 交此椭圆于 ,直线 交椭圆于 .(1)若此椭圆的离心率与双曲线的离心率互为倒数,求实数 的值;(2)当 ,, 为定值时,求面积 的最大值.【答案】(1)或(2)【解析】分析:(1)首先求得双曲线的离心率,从而求得椭圆的离心率,分两种情况求得 的 值; (2)先设出直线的方程,与椭圆方程联立,求得 M 的纵坐标,从而表示出三角形的面积,应用 导数求得结果.详解:(1)双曲线的离心率是 ,所以的离心率是 ,所以有或,所以或.(2)易得 的方程为,由,得,解得 或,即点 的纵坐标,,所以,令,,由,当 时, ;当时, ,若,则,故当 时,;若 ,则.∵在 上递增,进而 为减函数.∴当 时,,综上可得.点睛:该题考查的是有关直线与椭圆的问题,涉及到的知识点有椭圆的离心率,利用其离心率求其参数的问题,这里需要注意应该分两种情况,再者就是有关椭圆中三角形的面积问题,注意从函数的角度去处理.21. (1)求证:当实数 时,;(2)已知,,如果 , 的图象有两个不同的交点,.求证:.(参考数据:,,【答案】(1)见解析(2)见解析【解析】分析:(1)构造新函数的单调性,求得最值,得到结果;, 为自然对数的底数),,等价于,利用导数研究函数(2)根据题意,结合函数零点的定义,得到,两式相加,两式相减,简化式子,之后得到,构造新函数,利用导数真的结果.详解:证明:(1),,则增,所以,所以.(2)由题意,相加有,所以 在单调递,①相减有,从而,代入①有,即,不妨设,则 ,由(1)有.又,所以,即,设,则,,在单调递增,又,∴,∴,∴.点睛:该题考查的是有关应用导数研究函数的性质的问题,在解题的过程中,涉及到的知识 点有应用导数研究函数的单调性,利用导数证明不等式,函数的零点等,注意认真审题是解 题的关键 (二)选做题:共 10 分.请考生在 22、23 题中任选一题作答至选做题答题区域,标清题号. 如果多做,则按所做的第一题记分.22. 在直角坐标系 中,曲线 的参数方程是( 为参数),以该直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,直线 的极坐标方程为.(1)写出曲线 的普通方程和直线 的直角坐标方程;(2)设点,直线 与曲线 相交于 , 两点,且,求实数 的值.【答案】(1)(2)或或【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线 的普通方程为.直线 的直角坐标方程为.(2)由题可知,所以联立和得解析: (1) 故曲线 的普通方程为 直线 的直角坐标方程为,代入韦达定理即得答案, ..(2)直线 的参数方程可以写为( 为参数).设 两点对应的参数分别为 ,将直线 的参数方程代入曲线 的普通方程可以得到,所以或,解得或或23. 关于 的不等式(1)求整数 的值;. 的整数解有且仅有一个值为 ( 为整数).(2) 已知,若,求的最大值.【答案】(1)(2)【解析】试题分析:(1)求出不等式的解,根据其整数解有且仅有一个值为 ,得到关于 的不等式组,解不等式组即得整数 的值;(2)利用柯西不等式放缩即可证得结论.试题解析:(1)由有关于 的不等式的整数解有且仅有一个值为 ,则为整数,则(2)由有,由柯西不等式有当且仅当时,等号成立,所以的最大值为考点:绝对值不等式的解法及利用不等式求最值.,即,又。