高等代数§1.6 重 因 式

合集下载

第九节 有理系数多项式

第九节 有理系数多项式

f (x) 的一阶导数; f (x) 的导数 f (x) 称为 f (x) 的 二阶导数; 等等. f (x) 的 k 阶导数记为 f (k)(x) .
§1.6 重因式
多项式导数的基本公式: ( f (x) + g(x) ) = f (x) + g (x) , (c f (x) ) = c f (x) , ( f (x) g(x) ) = f (x) g(x) + f (x) g(x) , 可推广 ( f m (x) ) = m ( f m -1(x) f (x) ) . 可推广
如果 f (x) 的标准分解式为
r2 f ( x) cp1r1 ( x) p2 ( x) psrs ( x),
§1.6 重因式
那么 p1(x) , p2(x) , … , ps(x) 分别是 f (x) 的 r1 重,
r2 重 , … , rs 重因式. 指数 ri = 1 的那些不可约因式
因此
从而
p (x) | ( kg(x) p(x) + p (x) g(x) ) ,
pk (x) | f (x), 证毕
§1.6 重因式
所以 p (x) 是 f (x) 的 k - 1 重因式.
推论 1 如果不可约多项式 p(x) 是 f (x) 的 k 重因式(k 1),那么 p(x) 是 f (x) , f (x) , … , f (k-1)(x) 的因式,但不是 f (k)(x) 的因式. 证明 根据定理1 对 k 作数学归纳法即得. 证毕
高等代数
第一章 多项式 Polynomial
第六节 重因式
§1.6 重因式
一、重因式的概念
定义 1 不可约多项式 p(x) 称为多项式 f (x) 的 k 重因式,如果 pk(x) | f (x) , 但 pk+1(x) | f (x) . 如果 k = 0 , 那么 p(x) 不是 f (x) 的因式;如果 k = 1 , 那么 p(x) 称为 f (x) 的单因式;如果k > 1 ,那么 p(x) 称为 f (x) 的重因式.

《高等代数》多项式试题库

《高等代数》多项式试题库


(1 �
i)x 2
� 1 ;(vi) 1 �
1 2!
x

1 3!
x3
���
1 n!
xn
��
;
其中

多项式.
3. 零多项式是
, 零次多项式是
.
n
m
4.
� � 设 多 项 式 f ( x) � ai x i , g ( x) � bi x i
i �1
i �1
,
则 f (x)g(x) 的 k 次 项 系 数
二 证明题
1. 证明 x f k (x) 的充分必要条件是 x f (x) .
2. 证明 . x 8 � x 7 � x 5 � x 4 � x 3 � x � 1 x 12 � x 9 � x 6 � x 3 � 1
3. 证明 x d �1 整除 x n �1 的充要条件是 d n .
4. 证明, 若 x 3 � x 2 � x � 1 f ( x 4 ) � xg (x 4 ) � x 2 h(x 4 ) ,则 x � 1 同时整除 f ( x), g ( x), h( x) . 与例 2 联系,将此题推广到一般结果,并证明你的结论.
(C)若 g (x) Q f (x) ,则 g ( x) R f ( x) ;(D)若 g (x)� R f (x) ,则 g ( x)� q f ( x) .
3. 设 p(x) f (x), p(x) g (x) ,则 p( x) 整除于
.
① f ( x) � g ( x) ;② f 2 ( x) � g 2 ( x) ;③ f ( x) g ( x) ;④ f 3 (x) � g 3 (x) .
a2 � b2 n

高等代数几个重要定理的证明-毕业论文

高等代数几个重要定理的证明-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印--- 摘要代数是学学的心础课程,是其它课程的要提.本文共分三大部分,第一大部分主要介绍了高等代数课程的七个重要定理的内容、证明.因高等代数中提出了许多新概念、新定义、新定理,譬如多项式、数域、线性空间、映射等,且都是较为抽象的内容,故此将其中各章节中的重要定理列举出来,并寻找多个定理证明来加深对其的理解及认识.第二大部分主要介绍了在高等代数学习中遇到的问题及解决的方法.第三大部分则主要讲了高等代数在实际问题中的应用中的两种应用方法,即矩阵密码与保密通讯和情报信息检索模型.关键词:定理证明;矩阵;行列式;线性空间;高等代数应用AbstractHigher algebra is the core curriculum of university mathematics,and it is an important prerequisite for learning other courses. This paper is divided into three parts,and the first part mainly introduces the seven important theorems in advanced algebra course content. Because of Higher Algebra put forward many new concepts and new definition, theorems, such as polynomial, the number of domain, linear space mapping, etc., which are more abstract content.Therefore one of the important theorem of various sections of the list, and to find a proof of the theorem to deepen understanding and understanding of these.The second part mainly introduces the problems and solutions in the study of higher algebra. The third part focuses on the application of advanced algebra in the practical application of the two methods, namely, matrix cryptography and secure communications and information retrieval model.Key words:Theorem proving;matrix;determinant;application of Advanced algebra目录TOC \o "1-2" \u 前言11 定理阐述及证明21.1因式分解及唯一性定理21.2最大公因式存在定理41.3最小数原理51.4替换定理61.5哈密尔顿-凯莱定理81.6带余除法101.7行列式计算定理121.8定理:在数域上,任意一个对称矩阵都合同于一对角矩阵132 高等代数的重要定理在相关的对应理论中的作用、地位与应用132.1因式分解及唯一性定理142.2 最大公因式存在定理142.3 最小数定理142.4 替换定理142.5 哈密尔顿-凯莱定理152.6 带余除法152.7 行列式计算定理152.8 对称矩阵合同于对角矩阵153 高等代数的学习15结束语17参考文献18引言高代数是范学校学业的学生所学习的一门主要,是学的继与高.它的内容由多项式理论、解理论、线性空间理论三大部分组成.这三大部分的特殊性在于其中的定理和概念较多,具体的模型稀少,,可引导用的例题较少,计算性弱,逻辑性强.在对高等代数几个重要定理的证明方法的探索中,能够改变我们的思维,增强大家都思维能力,辑思维能力和代数计算.此外,高等代数已经是从事科学研究的科技人员必备的数学基础知识,因它是理论化学与理论物理的不可替代的代数基础知识,也已经渗透到了管理、经济、科学技术等多项领域,除此以外,矩阵又有了新的意,尤其是对矩阵的数值分析方面的贡献.由是对于本文探索高等代数的定理新证明又有了重大意义.1 定理阐述及证明1.1因式分解及唯一性定理:理容:数上有的多式都可一地解为域,一些可多项的积,所说的性是说,如有个分式,则,同在当排因的次后有,,且是些零数.证法一:首先要证明的式分解式是否存在,我们对的次数作数学归纳法.因为一次性多项式都是不可约的,所以当时结论成立.先,同设此论对于数的多项式已成立.如果,那么然论成,不是约的,,其的次数都.由归纳假和都可以分解成数上一些多式的积.把,的分式来就可以得到的一个式.由归纳法原理,可知结论普遍成立.下证它的一性.设可以解成约项式的积.如果还有另一个分解,其中都可约多项式,于是. (1)我们对作归纳法.当,是不可约多项式,由定义一定有且现在设可约式的时性已证.由(1)因此,能尽中的一个,.因为也可多式,,(2)在(1)式两边消去,就有.由归纳假设,有,即,(3)并且适当排列次序之后有,,(4)即(2),(3),(4)三式加起来就是我们所要证得,即证明了分解的唯一性.[1]证法二:可以对因式的用数学归纳法.对于可多式,也是对于的情来说,理成立.假定对于能分解成个不可约因式的乘积的多项式来说,定理成立.们明对于能可因的积的多项来说也立.等(1)表明,积可以被可多式整.性,若项与的积能被可多式,则有一能被的,且某一能被.适当调整的次序,可以假定即.但不是可约多项式,而的次数是零,所以必须是一个多项式:(2), 把的表示式代入式(1)的右端,得:,等端除为的多项式,得出式,令那么是一个能分解成不约多项式乘积的多项式.于是由归纳假定得,亦即,并且可以假定(3)其及都是次多式.令,由(2)及(3)得,这样得到明1.2最大公因式存在定理:如果中意个项在中存一个大因,且表示为的一个合,即中项式使.证法一:数学归纳法证明:将定理证明过程中会用到的引理列出:引理[1]:如有式成,和有同的因式.下面用归纳证明大因式在定理.(种形证)证明当或时,的最大公因式为或,显然有或当且时,不妨设,令,下面对n实行归纳法:.当时设,则(非零常数)或,当时,,于是的最大公因式为,有. 当(非零常数)时,由于,故的最大公因式为,由引理,的最大公因式也为,且有定理成立..假对于的自然,定都成.看n时情形设,则或,⑴时,,于是的最大公因式为,有.⑵时,设,则或⑶时,的最大公因式为,由引理,的最大公因式也为,且有.⑷当时,由归纳假设,存在最大公因式,且由引理,的最大公因式也为,进而的最大公因式也是.所以,对于一切都存在最大公因式.由于所以,取,,则有.[3]1.3最小数原理:负整数集合的任意一个非空子集一定含一个最小数,接下来通过构造的方法证明最大公因式存在定理.证明:分成两种情况当或时,的最大公因式为或,显然有或当且时,令,记,由于,所以,则是非负整数集的一个非空子集.由最小数原理,中存在最小数,故存在,且,即是中最小次数多项式.于是,有中多项式使由带余除法或或’若则,但,即,于是,与是中最小次数多项式矛盾.因此,从而.同理可证:.于是是与的公因式.设是与的任一公因式,则,,由得:,所以是与的最大公因式,且有.1.4替换定理:设无关的量组(1)可由组(2)线表,则,且(2)中个量使得向组,(3)与量(2).证法1.由可知性无的向组由量(2)表示,则有:可由向量组线性表示.从而,由可向量线性表示,得(3)性关.那么根据前面所提供的定理,可知至少有一个向量能用其前个向量线性表示.在向量组(3)中将除去,剩下个向量为(4)这时向量组(4)与(2)等价.同理可得(6)如果线性无关向量组的元素个数,则进行次可得向量组(7)则这个组(7)不含向,但量组(7)与向组(2)价.此又于可由,则可由性出.这与性关,故.由以上的证明过程可以的知向量组同向量组(2)等价. [4]证法2.运极无组的性质证,之后过扩极大关组来证明向量的价.设向组的极大无关组(8),然,因(1)可由线性表示,所也是的一个大无关,又因为性无关,因,又,故.因为的秩为,然,当选,可以把(1)为的一个极无关.因为,均是的极无关组,因此和等价,因此是极1.5哈密尔顿-凯莱定理:设是数上一个阵,是的,则:.证法一:是.因为矩阵都是的多项式,次数不超过,故此由矩阵的运算性质,可以写成.其中都是数字矩阵.设(6)而(7)比较(6)和(7)得(8)以依次从右边乘以(8)的第一式,第二式,…,第式,第式,得(9)把的个式子一块儿起来,就成了,右边,故.证法二:幂级数证法对于,由行列的拉普公式可得标准方程其中表示的伴随矩阵,的系数取自于的形式幂级数.因为所以可逆且为其逆矩阵,因此:将写成的次数取自于的形式幂级数,可得可以注意到中的元素都是的次数不超过的多项式,因此是零矩阵,等式两的系数,可得:,即. [5]1.6带余除法:对于中两个多项,其中,中的项存在,使(1)成立,其中,并且这样是唯一决定的.证法一:(1)中的存在性可以由高等代数北师大第四版课本上第八页所提及的除法直接得出,如果.下面设.令的次数分别为.对的次数作第二数学归纳法.当时,显然取,(1)式成立接下来讨论的情形,假设当次数时,的存在已证,现在看当次数等于时的情形.令的项,然有同的,因多项的数或为0.7对于者,取对于者,由归假,对在使其中,于是,也就是说,有,使成立.由归纳法原理,对的存在性就证明了.下面明性,设另有项使,其中,于是,即如果,又,那么,且有,但,所以不可能立,这就,因此证法二:用限维性来证明的带除法理.引理1:数上的任何线性关向量组构的一基;引理2:上一元多项式中,小于的组成的是上的;引理3:在中,一个互相同的项式组都是无关的.叙述:设是一元多项式环中的任意两个多项式,并且,那么存在唯一一对多项式满足:(1)(2)证明:设先证存在性,如果,那么就是满足定理条件(1)和(2)的唯一,如果,那么由引理2可知,中的个多项式组成的集合是线性空间的一组基.事实上,由引理3知,是一个线性无关集合,再由引理1和引理2的结论可知,它构成了的一组基.因为,所以在数域中存在唯一的一组数令,,于是满足定理的条件.再证唯一性:由于数域中的数是唯一的,所以也是唯一的1.7行列式计算定理:1.首先给出一个上三角行列式行列其实于主对线上素乘积即行列式计算定理.2.定义:数域上列式转化为三角行列式i ;ii ,;iii 换列式中的.比如把行列式的-2倍加到,得到再把第一行加到第三行,得到-2,我们将形如,,其分为三行列式和.1.8定理:在数域上,任意一个对称矩阵都合同于一对角矩阵对角矩阵:形式为的矩阵,其中是数,通常称为对角矩阵.对称矩阵:矩阵称为对称矩阵,如果:数域上矩阵之,如果有上的矩阵,使.合同是间的一个关系,具备下列三个特点:1)自反性:;2)对称性:由即得;3) 传递性:由和即得.2 高等代数的重要定理在相关的对应理论中的作用、地位与应用2.1因式分解及唯一性定理,我们前把它成几个能再,只是续分解这个是由于我们,并它不能,实际上这是相对于系数的数域而言的,并不是绝对的.因式分解及唯一性定理是对我们初中多项式分解知识有更深刻更宽广的认知,可是该并给出能够解多项式的以上便是多项式理论中的地位与局限.此外,初阶的因式分解定理常应用于初中考试题中.2.2 最大公因式存在定理我们在维纳的经典控制论等学科里常常会用到最大公因式,这说明最大公因式不仅是数学中的重要概念,而且在多个学科里都占据着不可替代的地位,因此在求解两个多项式之间的最大公因式时所用的辗转相除法是最大公因式定理的核心内容,它又被称为欧几里得算法,历史源远流长,是现代人们已得知的最古老的算法,这就是最大公因式存在定理的地位.辗转相除法是证明与计算最大公因式的核心,并且应用范围十分广泛.当需要寻找剩余定理的数时,它会被用来解丢翻图方程;在现代密码学里,RSA的主要构成部分就是它……这些都是辗转相除法应用里的沧海一粟.2.3 最小数定理,它等故此在解决许多存在性问题时常会用到最小数定理,证法与之结合解题常有2.4 替换定理替换定理是高等代数量空间理论的又.它应用广泛,可以被,也可被用于比较大无关量组向量的;亦;也可被用于证明基的扩充性,替换定理可以使这些问题可以得到更好的解决.2.5 哈密尔顿-凯莱定理哈密尔顿-凯莱定理是线性代数中的,是式所具备的一个,它揭示了和它式之间的关系,并且在解决.哈密尔顿-凯莱定理的应用可谓十分广泛,在计算方面可以辅助证明方阵的幂与方阵的逆阵,在证明方面即矩阵多项式等于零的有关问题中,可以使问难快速的得到解决.2.6 带余除法高等代数课程中占有重要地位的多项式的整除理论的基础就是带余除法,它是初等代数中最最基础,最最重要也是最直白的定理及工具.带余除法在初等代数中常被用到,常在小学初中的试卷中以应用题的形式出现,而在做这一类题的时候,就需要把题目外面包裹的各种各样的情境忽略掉而直接注意题目的本2.7 行列式计算定理,计算理,学习行列式的计算是学好高等代数的重要基石.,也很要,学会行列式的,我们可以应用它,还可以应用它求.2.8 对称矩阵合同于对角矩阵矩阵概念在高等代数课程的应用与内容中占据了非常广泛且重要的地位.首先,线性方程组的重要性质里就包含了矩阵的知识,例如它的系数矩阵和增广矩阵,除了线性方程组之外,许多问题的研究也常常会用到矩阵,甚至会研究有关于矩阵的方面.此外,对称矩阵、对角矩阵也是矩阵理论的重要研究对象.矩阵的应用方面包括,保密通讯技术时常会用到矩阵,信息的解码和编码也是需要用到矩阵密码这个技巧的.3 高等代数的学习《等代数》与相同,是学习的大学生要学习的核心课程之,是数学在,通过对高等代数的学习,我们可以加强自身的数学素养.在对高等代数的学习过程中,我们应该注意以下几点要求,可以让我们对这门课程的学习领悟更加深刻,更加透彻.高等代数里的抽象概念非常多,学生理解起来就有困难,譬如数域,映射,线性空间等概念,这些概念的特点就在于它们从很多具体的例子中被抽象出来的,总的来说学习高等代数时首要的是注意解相关.一方面,等代数这门课程的理与概念基本属于学专业的,由此,学生首先应注重对课程义的领会和运用,在充分理解定义定理后,我们对这门课的理解也就更深刻,在面对一些复杂的题目时更容易领会解答,从而使学生解高等代数象的内容,也会使学生对这门课程产生,唯有这样,才能对数学学习有正的度.另一方面,寻求正确的学习策略是在以培养学习的兴趣,端正学习的态度的条件下所进行的十足紧要的学习步骤.有些同学学习刻苦努力,但是成绩不算太好,就把原因归结为自己太笨,自暴自弃,其实这不是计算能力的问题,而是因为概念理解能力不行,即习对大家来说,要从、象的高等代数思维蛮困难的,故此我们在学习过程中,不应只是一味努力,也要注重学习方法,课前预习,课后复习,借力于具体的例子来理解抽象的定义定理,加深对定理的理解和掌握,寻找正确的途径学习高等代数.总而言之,学习高等代数,基本上就是在熟练掌握代数方法的同时尝试深入理解几何意义.结束语在完成这篇论文的近一百天的过程中,我再次复习了OFFICE的使用方法,对此更加熟练;阅读了许多关于高等代数重要定理的书本与论文,使我对高等代数的理解变得深刻,兴趣愈发浓厚,这也是我在大学真真正正用心去做,独立思考的稚嫩的成果,希望写论文的这段人生体验能让我在以后的学习生活中乘风破浪,积极进取.参考文献[1]王萼芳,石生明.高等代数[M].第四版.北京:高等教育出版社,2013:18.[2]张禾瑞,郝鈵新.高等代数上[M].第二版.北京人民教育出版社,1979:58.[3]苏白云,张瑞.最大公因式存在定理的两个新证法[D].河南郑州:河南财经政法大学数学与信息科学系,2013.[4]杜奕秋.替换定理的若干证明方法[D].吉林四平:吉林师范大学数学学院,2006.[5]邓勇.关于Cayley-Hamilton定理的新证明[D].新疆喀什:喀什师范学院数学系,2015.[6]王萼芳,石生明.高等代数[M].第四版高等教育出版社2013:8.[7]邓勇.多项式带余除法定理的一种新证明[D].新疆喀什:喀什大学数学与统计学院,[8]韦城东,尹长明,何世榕,庞伟才.大学数学学习成败的原因的成败分析[D].广西:广西师范学院学报,2006.[9]王喜建.高等代数课程教学中的几点体会[D].广东:广东五邑大学数学物理系[10]白永成,郑亚林.数学中的基本元素[D].陕西:安康师专学报,1998.[11]欧阳伦群,欧阳伦键.高等代数学习中的困惑与解决对策[D].湖南:当代教育理论与实践,2015.[12]熊斌,周瑶.最小数原理[D].数学通讯:教师阅读,2017.[13]李丽花.哈密尔顿-凯莱定理的应用[D].上海电力学院学报,2008.[14]侯波,郭艳红.高等代数教学的几点探索[D].学园,2015.[15]张爱萍.可逆矩阵的判定及求法[D].赤峰学院学报(自然科学版),2011.。

高等代数

高等代数
因式分解定理
说明
的标准分解式, ① 若已知两个多项式 f ( x ), g ( x ) 的标准分解式, 则可直接写出
( f ( x ), g( x ) ) .
f ( x ), g ( x ) 的标准
( f ( x ), g( x ) ) 就是那些同时在
分解式中出现的不可约多项式方幂的乘积, 分解式中出现的不可约多项式方幂的乘积,所带 方幂指数等于它在 f ( x ), g ( x ) 中所带的方幂指数 中较小的一个. 中较小的一个.
(
)(
x2 + 2
)
(在有理数域上) 在有理数域上)
= x 2 = x 2
(
)(
x+ 2
)(
x2 + 2
)
(在实数域上) 在实数域上)
(
) ( x + 2 ) ( x 2i ) ( x +
在复数域上) 2i (在复数域上)
)
§1.5 因式分解定理
一,不可约多项式
定义: 定义: 设 p( x ) ∈ P[ x ] ,且 ( p ( x ) ) ≥ 1 ,若 p( x )
f ( x ) = p1 ( x ) p2 ( x ) ps ( x )
= q1 ( x )q2 ( x ) qt ( x )

pi ( x ), q j ( x ) ( i = 1,2, , s ; j = 1,2, , t . ) 都是不可约
多项式. 多项式 作归纳法. 对 s 作归纳法. 若 s = 1, 则必有 s = t = 1, f ( x ) = p1 ( x ) = q1 ( x )
§1.5 因式分解定理
例如, 例如,若 f ( x ), g ( x ) 的标准分解式分别为

高等代数(第1章)

高等代数(第1章)
i
称为系数在数域P中的一元多项式,简称为数域P上 符号x 可以是为未知数, 的一元多项式.
也可以是其它待定事物.
习惯上记为f (x),g(x)……或f, g……上述形 n 式表达式可写为 i
2012-12-2
f (x)
a
i0
i
x
8
几个概念:

零多项式 ——系数全为0的多项式 多项式相等 —— f (x)=g(x)当且仅当同次项的系 数全相等 (系数为零的项除外) 多项式 f (x)的次数 ——f (x)的最高次项对应的幂 次,记作(f (x)) 或deg (f (x)) .
数域 一元多项式 整除的概念 最大公因式 因式分解定理 重因式 多项式函数 复系数与实系数多项式的因式分解 有理系数多项式
3
2012-12-2
§1

数域


要说的话:对所要讨论的问题,通常要明确所考 虑的数的范围,不同范围内同一问题的回答可能 是不同的。例如,x2+1=0在实数范围与复数范围 内解的情形不同。 常遇到的数的范围:有理数集 、实数集、复数集 共性(代数性质):加、减、乘、除运算性质 有些数集也有与有理数集 、实数集、复数集相同 的代数性质 为在讨论中将其统一起来,引入一个一般的概 念——数域。
解之得
a
6 5
,b
13 5
,c
6 5
.
2012-12-2
15
例2 设 f (x), g(x)与h(x)为实数域上多项式.证明:如果 f 2(x)= x g2(x)+ x h2(x) 则 f (x)=g(x)=h(x)=0 证:反证. 若f (x)0,则f 2(x) 0.由 若g(x)0,由于

高等代数第章多项式重因式与重根

高等代数第章多项式重因式与重根
fx k p k 1 x p x g x p k x g x
p k 1 x k p x g x p x g x
px gx,px p x,
px pxgx, 从而 p x k p x g x p x g x ,
于是 p x 是 f x 的k-1重因式。
推论1: 若不可约多项式 p x 是 f x 的k重因式
2、 cf x cfx;
3、 fx g x fxg x fxg x;
4、 fmxm fm1xfx.
定理1.6.1: 若不可约多项式 p x 是 f x
的k重因式(k>1),则 p x 是 f x 的k-1重因
式,特别多项式 f x 的单因式不是 f x 的因
式。
证: fxpkxgx,
一、多项式函数
1. 定义:设 fx a 0 a 1 x L a n x n F x ,对
c F , 数 fc a 0 a 1 c L a n c n F称为当
x c 时 f x 的值,若 f c 0, 则称c为 f x 在
F中的根或零点。
2. 定义(多项式函数):设 f xFx, 对
的最大公因式 d x , f x 的重因式的重数恰好是 d x
中重因式的重数加1。此法不能求 f x 的单因式。 2、分离重因式,即求 f x 的所有不可约的单
因式:
fxa nffx x ,fxp 1xp 2xLp sx
例1.6.1 在 Q x 中分解多项式
fx x 4 2 x 3 1 1 x 2 1 2 x 3 6
fxx22x32
例1.6.2:求多项式 f x3pxq有重因式的条件。
p0 3x 9q
2p
3x2 p
3x2 9q x 2p

高等代数--第八章 多项式_OK

高等代数--第八章 多项式_OK
24
因此有
但是 (q(x) q(x)) (g(x)) (r(x) r(x))
矛盾。这就证明了
(g(x)) (r(x) r(x))
q(x)称为g(x)除f(x)的商,r(x)为余式
q(x) q(x),r(x) r(x)
25
例题
f 3x3 4x2 5x 6, g x2 3x 1
an :首项系数;
n为(1)的次数,记为 ( f (x)) 。 零多项式不定义次数。
11
运算:
n
m
f (x) ai xi , g (x) bj x j
i0
j0
加法:如n≥m,为方便,在g(x)中令

bn bn1 bm1 0
对于加减法: f (x) g(x)
n
(ai bi )xi
p(x)|f(x). 反过来,如果p(x)|f(x),p(x)|g(x),那 么p(x)一
定整除它们的线性组合 r(x)=f(x)-q(x)g(x)
由此可见,如果g(x),r(x)有一个最大 公因式 d(x),那么d(x)也是f(x),g(x)的一个 最大公因式。
36
定理2 对于P[x]中任意两个多项式 f(x),g(x),在P[x]中存在一个最大公因式d(x), 且d(x)可以表示成f(x),g(x)的一个线性组合,即有P[x]中多项式u(x),v(x)使
定义4 所有系数在数域P中的多项式的全体,
称为数域P上的一元多项式环,记为P[x],
P称为P[x]的系数域
BACK
19
§3 整除的概念
以后讨论都是在某一固定的数域P上的 多项式环中进行。 带余除法 整除 整除的性质
20
带余除法
对于P[x]中任意两个多项式f(x)与g(x),其

高等代数教案1

高等代数教案1

《高等代数》教案一、课程性质与目的各种数学理论在代数中取得了整合与统一,而高等代数是代数学的最基础部分。

高等代数是数学与应用数学、计算机科学、信息与计算等专业的重点基础课程,是这些专业硕士研究生入学考试的必考科目。

这是因为,它不仅是后续课程必备的数学基础,在理论和实际中有着广泛的应用背景,更重要的是这门课程的学习,对提高学生的抽象思维能力,掌握具体与抽象、特殊与一般、有限与无限等辩证关系,对数学思想、数学思维品质的形成,对培养数学感、数学基本功提高数学修养、数学素质,以及训练严谨的思维和严格的逻辑推理能力都有着特殊而重要的作用。

二、教学基本要求要求学生熟练掌握本课程的基本概念、基本理论和基本运算。

通过课程教学及大量的习题训练等教学环节,使学生做到概念清晰、推理严密及运算准确,以及提高运用已掌握的知识分析问题和解决问题的能力。

三、教学内容、学时分配及要求授课章节 §1.1 数域 §1.2 一元多项式 教学方法与手段 课堂讲授 课时安排 3 教学目的与要求:1. 掌握数域的概念。

2. 掌握一元多项式的定义、有关概念和基本运算性质。

教学重点、难点:一元多项式的定义、有关概念和基本运算性质 教学内容:§1.1 数域一、引言我们在处理一个数字问题时,往往要用到一些数。

按照所研究的问题,我们常常要明确规定所考虑的数的范围。

例如,求方程440x -=的根。

在有理数范围内此方程无根,在实数范围内,在复数范围内,这个方程有四个根:。

由此可见,同一问题在不同的数的范围内可能有不同的结论。

因此,在这种情况下,要明确规定所考虑的数的范围。

某个范围内的数的全体构成的集合称为数集。

另外,在作代数问题时,不但要考虑一些数,而且往往要对这些数作加减乘除四种运算。

因此所考虑的数集还必须满足条件:其中任两个数的和差积商仍在这个集合内。

根据以上的需要,人们引进了如下所谓数域的概念。

二、数域的定义定义1. 设P 是由一些复数组成的集合,其中包括0与1。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲(Higher Algebra)学时数: 72 学分: 4 适用专业: 小学教育(数学与科学方向)一课程的性质、目的和任务1. 课程性质:高等代数是小学教育本科专业的一门重要的专业基础课程。

它不仅是应用学科的重要工具课,而且在近代数学理论中也是一门很重要的理论基础课。

2. 教学目的:通过本课程的学习使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法,以加深对初等数学内容的理解,并为进一步学习其它课程打下良好的基础。

同时培养学生独立思考、科学抽象思维、正确的逻辑推理和迅速准确的运算能力,以及树立辩证唯物论观点。

从而为培养合格的中小学数学教师和各种高级专门人才奠定基础。

3. 教学任务:通过本课程的教学与实践,使学生初步系统掌握高等代数的基本内容和利用代数手段处理问题的基本方法;进一步提高学生的抽象思维能力和严格的逻辑推理能力;促进学生对具体与抽象、特殊与一般、有限与无限等辩证关系的理解;培养和提高学生独立提出问题、分析问题和解决问题的能力及运用所学理论指导中小学教学实践和其它工作的能力。

同时注意加强对学生的数学基本素养的培养,为今后做一名合格的中小学数学教师和继续学习深造奠定基础。

二课程教学的基本要求1. 通过本课程教学的主要环节, 使学生了解多项式、行列式、矩阵、线性方程组理论、向量空间、线性变换和欧氏空间等高等代数中的基本概念和基本原理.2. 使学生在了解基本概念和基本原理的基础上, 理解高等代数中各种概念和原理的深刻内涵和它们之间的相互联系.3. 要突出传授数学思想和数学方法,使学生初步掌握运用高等代数的概念和原理分析问题和解决问题的方法.三课程教学的内容和要求第一章多项式理论【教学内容】§1.1 数环与数域§1.2 一元多项式§1.3 多项式的整除性§1.4 最大公因式§1.5 多项式的因式分解§1.6 重因式和重根§1.7 特殊域上的多项式【教学要求】(1)了解数环和数域的概念和判别方法,理解数域的最小性;(2)理解一元多项式的定义、运算、运算律、次数和次数定理;(3)掌握带余除法定理及其应用;理解多项式整除概念和性质,了解其与带余除法的区别(4)理解最大公因式的存在性,掌握最大公因式的求法和表示法;(5)掌握多项式互素的概念和性质;(6)掌握不可约多项式的概念、性质和唯一分解定理;(7)理解并掌握重因式的概念和多项式有无重因式的判别法;(8)掌握多项式函数的概念,理解多项式相等和多项式函数相等的区别与联系;(9)掌握复数和实数域上的多项式的因式分解定理以及不可约多项式的类型。

高等代数多项式46重因式与重根

高等代数多项式46重因式与重根

2x
2
x
1
x2
2
由于 f x, f x x 12 ,
故 x 1 是 f x的3重因式,x2 2是 f x 的单因式,
故 f x 在Q上的标准分解式为
f x x 13 x2 2
2020/7/12
高等代数
问题:多项式 f x 在 F x 中没有重因式, f x 在 F x 中是否也没有重因式?
因而不是f (k) x的因式。
推论2:不可约多项式 p x 是 f x 的重因式的
充要条件是 p x 是 f x与 f x 的公因式。
证:必要性由推论1立得。
充分性,若p x是 f x 与 f ' x 的公因式,则
p x不是 f x 的单因式(否则,由推论1知 p x 不是 f x 的因式),故 p x 是 f x 的重因式。
推论1: 若不可约多项式 p x 是 f x 的k重因式
(k>1),则 p x 是 f x, f ' x, , f (k1) x 的因式,但 不是 f (k) x 的因式。
证: p x 是 f x 的k-1重因式,
p x 是 f x 的k-2重因式,
……………
2020/7/12
高等代数
p x 是f (k1) x的(k-(k-1)=1)单因式,
f x x5 3x4 x3 5x2 6x 2
在Q上的标准分解式。
2020/7/12
高等代数
解: f ' x 5x4 12x3 3x2 10x 6,
利用辗转相除法求得:
f x, f ' x x2 2x 1 x 12
把 f x单因式化,得
f
f x,
x f
x

高等代数 第一章 多项式

高等代数 第一章 多项式
证明 S显然非空. x1 x2 S ,则
x1 a1 b1i, x2 a2 b2i, a1, a2 ,b1,b1 Z
那么
x1 x2 (a1 b1i) (a2 b2i) (a1 a2 ) (b1 b2 )i S x1x2 (a1 b1i)(a2 b2i) (a1a2 b1b2 ) (b1a2 a1b2 )i S
x2 1 , ax3, x3 3x 2
x
x 1
都不是多项式。
定义2: f x, g x 是两个多项式,
f x gx
亦最称c高为次首项项,。
除系数为0的项之外,同次项的系数都相等。 多项式的表法唯一。
方程 a0 a1x L an xn 0 是一个条件等式而不是 两个多项式相等。
定义3: 设 f x a0 a1x L anxn, an 0, 非负整数n称为 f x 的次数,记为:
一、多项式的概念
中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。
例: 4a+3b, 3x2 2x 1, 3 y 1 .
25
在多项式中,每个单项式叫做多项式的项。这是 形式表达式。
后来又把多项式定义为R上的函数:
f x a0 a1x L anxn
但对这两种定义之间有什么联系在中学代数中 并没有交代。
ai 称为i次项系数。
高等代数中采用形式观点定义多项式,它在两方 面推广了中学的多项式定义:
1. 这里x不再局限为实数而是任意的文字或符号。 2. 系数可以是任意数域。
例1: f x 1 2x 3x2 9x3 是Q上多项式;
f x 3 2x x2 是R上多项式;
f x 3 ix 5x2 是C上多项式。
附:和号与积号

1-6重因式

1-6重因式

1.若d ( x ) = 1, 则f ( x )无重因式;
2.若d ( x ) ≠ 1, 则d ( x )的每个不可约因式都是f ( x ) 的重因式;
高等代数
例1 设p( x )是f ′( x )的k − 1重因式,证明: (1) p( x )未必是f ( x )的k 重因式;
(2) p( x )是f ( x )的k 重因式 ⇔ p( x ) | f ( x ).
( f ( x ), f ′( x )) 的结果写出来 的结果写出来.

有无重因式. 判别多项式 f ( x ) 有无重因式
f ( x ) = x 5 − 10 x 3 − 20 x 2 − 15 x − 4
推论5 推论 不可约多项式 p( x )为 f ( x ) 的 k重因式
高等代数
⇔ p( x )为 ( f ( x ), f ′( x )) 的 k − 1 重因式. 重因式.
为不可约多项式, 其中 pi ( x ) 为不可约多项式, 则 pi ( x ) 为 f ( x ) 重因式. 的ri + 1 重因式.
说明
高等代数
根据推论3、 可用辗转相除法 可用辗转相除法, 根据推论 、4可用辗转相除法,求出 ( f ( x ), f ′( x )) 是否有重因式. 来判别 f ( x )是否有重因式.若有重因式 ,还可由
小结
1、重因式的定义与性质定理及推论 、 2、重因式的求法 、
高等代数
作业: P45 16 作业: 练习: 练习: P45 16
高等代数
注: 1)此规定来源于数学分析,目前只看作一个形 1)此规定来源于数学分析 此规定来源于数学分析,
式的定义。 式的定义。 2)基本公式 基本公式: 2)基本公式:

高等代数课件--§1.6 重因式

高等代数课件--§1.6 重因式
则p(x)是f(x)的导数f (x)的k1重因式. 推论1 若不可约多项式 p(x)是f(x)的
k(k1)重因式, 则p(x)是f (x), f (x),…,
f (k1)(x)的因式, 但不是f (k)(x)的因式.
推论2
不可约多项式p(x)是f(x)的重因式
的充分必要条件是p(x)是f(x)与f (x)的公因式 推论3 多项式f (x)没有重因式的充分必
二、重因式的判别和求法
如果我们知道多项式的标准分解式,则
其重因式就非常容易知道是什么,但是多
项式的标准分解式并不容易得到,因此,
我们需要考虑其它的方法求重因式。
导数
设多项式为f(x)=anxn+ an1xn1+…+ a1x+a0, 称多项式 nanxn1+(n1) an1xn2+…+ 2a2x+a1 为f (x)的导数,记为f (x)。
4x8。
解:因为f (x)=4x3+15x2+12x4, 由辗转
相除法得
( f(x), f (x))= x2+4x+4=(x+2)2
所以 f(x)=(x+2)2(x2+x2) =(x+2)3(x1)例3ຫໍສະໝຸດ 设f(x)P[x], 证明
f (x)| f(x) f(x) =a(xb)n,a,b P
要条件是( f(x), f (x))=1.
推论4
设f(x)P[x], 若
m1
( f1 x , f 2 ( x )) p1
x p2 x ps x
m2 ms
其中p1(x), p2(x),…, ps(x)是互不相同的首项系 数为1的不可约多项式 ,则pi(x)为f(x)的mi+1 重因式, i =1,2,…, s .

高等代数第章多项式重因式与重根

高等代数第章多项式重因式与重根
的方幂和。
定理1.7.2(因式定理):多项式 f x 有一个 因式 x c 的充要条件是 f c 0。
证明:设 fxxcqxr, 若 f c 0, 即 r 0 ,
故 x c 是 f x 的一个因式。
若f x 有一个因式 x c , 即 xc f x, 故r 0 , 此即 f c 0 。
推论2:不可约多项式 p x 是 f x 的重因式的
充要条件是 p x 是 f x 与 f x 的公因式。
证:必要性由推论1立得。
充分性,若p x 是 f x 与 f ' x 的公因式,则
p x 不是 f x 的单因式(否则,由推论1知 p x 不是 f x 的因式),故 p x 是 f x 的重因式。
定义1: 不可约多项式 p x 称为 f x 的k重因式
k N , 如果pk x f x,而 pk1x f x。 当k=1时,p x 就称 f x 的单因式,
当k>1时,p x 称为 f x 的重因式。 如果 f x 的标准分解式为:
fx a n p 1 k 1x p 2 k 2x L p s k sx , 则 p1x,L,psx分别是 f x 的因式,且分别为
(k>1),则 p x 是 fx,f'x,L,f(k 1 )x的因式,但
不是 f (k ) x 的因式。
证: p x 是 f x 的k-1重因式,
p x 是 f x 的k-2重因式,
……………
p x 是f (k1) x 的(k-(k-1)=1)单因式,
因而不是f (k ) x 的因式。
的最大公因式 d x , f x 的重因式的重数恰好是 d x
中重因式的重数加1。此法不能求 f x 的单因式。 2、分离重因式,即求 f x 的所有不可约的单

高等代数

高等代数

不妨设 p | b0 但 p | c0 .
§1.9 有理系数多项式
另一方面, p | an . p | bl , p | cm . 假设 b0 , b1 ,, bl 中第一个不能被 p 整除的数为 bk ,
x k 的系数,得 比较两端
ak bk c0 bk 1c1 b0ck
反证法. 若 h( x )不是本原的,则存在素数 p,
p | d r , r 0,1,, n m .
又 f ( x ) 是本原多项式,所以 p 不能整除 f ( x ) 的 每一个系数.
§1.9 有理系数多项式
令 ai 为 a0 , a1 , , an 中第一个不能被 p 整除的数,即
§1.9 有理系数多项式
r 证: 是 f ( x ) 的有理根, s r ∴ 在有理数域上, ( x ) | f ( x ) , s 从而 ( sx r ) | f ( x ).
又 r , s 互素, sx r 本原. 由上推论,有
f ( x ) ( sx r )(bn1 x n1 b1 x b0 )
矛盾.
在这里 p | d i j , p | ai b j , p | ai 1b j 1 , 故 h( x )是本原的.
§1.9 有理系数多项式
二、整系数多项式的因式分解
定理11 若一非零的整系数多项式可分解成两
个次数较低的有理系数多项式,则它一定可分解 成两个次数较低的整系数多项式的乘积.
例4
x x x , 判断 f ( x ) 1 x 2! 3! p!
2
3
p
( p 为素数)在 Q 上是否可约.
§1.9 有理系数多项式
解: 令 g( x ) p ! f ( x ), 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) 故 f ( x ) 与 ( f ( x ), f ( x )) 有完全相同的不可约因式, f ( x) 且 的因式皆为单因式. ( f ( x ), f ( x ))
例2
解:
f ( x ) x 5 15 x 3 10 x 2 60 x 72 在 求 f '( x ) 5 x 45 x 20 x 60
f ( n1) ( x ) 0.
基本公式:

( f ( x ) g( x ))' f '( x ) g '( x ) (cf ( x ))' cf '( x ) ( f ( x ) g( x ))' f '( x ) g( x ) f ( x ) g '( x )
称多项式 n1 n 2 f '( x ) nan x ( n 1)an1 x a1 为 f ( x )的一阶微商(导数).
归纳地,可定义 f ( x )的高阶微商.
( k 1)
f ''( x ) ( f '( x ))',, f
(k )
( x) ( f
( x ))',,
若 k 1, 则称 p( x )为 f ( x )的单因式.
若 k 1, 则称 p( x )为 f ( x )的重因式. (若 k =0, p( x ) 不是 f ( x ) 的因式.)
例1
2 2 2 设 f ( x ) ( x 2) , p( x ) x 2.
问: p( x ) 是否为 f ( x ) 的重因式? 在 [ x ]中,p( x )是 f ( x )的2重因式. 在 [ x ]中,p( x ) 不是 f ( x )的重因式.
说明: 若 f ( x )有标准分解式
f ( x ) cp ( x ) p ( x ) p ( x ),
r1 1 r2 2 rs s r r ( f ( x ), f '( x )) p11 1 ( x ) p22 1 ( x ) psrs 1 ( x ), 则 f ( x) cp1 ( x ) p2 ( x ) ps ( x ). ( f ( x ), f '( x ))
§1.6 重 因 式
一、 k 重因式 定义1 设 p( x ), f ( x ) P[ x ], 若 (1) p( x ) 为数域 P 的不可约多项式, (2) pk ( x ) | f ( x ), (3) pk 1 ( x ) | f ( x ) , 则称 p( x ) 为 f ( x )的k重因式.
r1 1 rs s
其中 p1 ( x ),, ps ( x ) P上互不相同的不可约多项式, 是 则pi ( x )是 f ( x )的ri 1 重因式. 说明
根据推论3、4可用辗转相除法,求出 ( f ( x ), f ( x ))
来判别 f ( x )是否有重因式.若有重因式 ,还可由
( f ( x ), f ( x )) 的结果写出来.
r1 r2
f ( x ) ( x 3)2 ( x 2)3 .
推论3 数域 P 上多项式 f ( x ) 无重因式
( f ( x ), f '( x )) 1.
说明: 尽管在不同数域中, f ( x )的重因式不同.但由
推论3可知, f ( x ) 有无重因式与数域扩大无关.
推论4 设f ( x ) P[ x ],( f ( x ), f '( x )) p ( x ) p ( x ),
推论1 不可约多项式 p( x )是 f ( x )的k 重因式 ( k 1)
p( x )是 f ( x ), f ( x ), , f ( k 1) ( x )的因式,但不是
f ( k ) ( x )的因式.
推论2 不可约多项式 p( x )是 f ( x )的重因式 p( x )是 f ( x ), f ( x ) 的公因式.
说明: 若 p( x )为 f ( x )的k 重因式,则存在 g ( x ) P[ x ],
k 使得 f ( x ) p ( x ) g( x ), 其中( p( x ), g ( x )) 1.
二、重因式的判定
f ( x ) an x n an1 x n1 a1 x a0 , 定义2 设; mf m1 ( x ) f '( x )
定理1 若不可约多项式 p( x )是 f ( x )的 k重因 式 ( k 1 ), 则 p( x )是 f '( x )的 k 1重因式.
思考: 定理1的逆命题是否成立?
f ( x ) x 3 1, p( x ) x. 反例:
4 2
实数域上的标准分解式.
( f ( x ), f '( x )) x 3 x 2 8 x 12, 则 f ( x) 2 x x 6 ( x 3)( x 2). ( f ( x ), f '( x ))
设 f ( x ) ( x 3) ( x 2) , 则 r1 2 r1 r2 5 r1 r2 r2 3 3 ( 2) 72
相关文档
最新文档