喷雾干燥法制备阿司匹林肠溶微囊的实验研究

合集下载

阿司匹林肠溶缓释片

阿司匹林肠溶缓释片

阿司匹林肠溶缓释片的制备专业班级:13级制药二班姓名:王广建课程名称:药物新剂型与新技术摘要:阿司匹林(Aspirin)是一种应用历史悠久的非甾体抗炎药,近几年来更是成为血栓栓塞性疾病治疗的首选药物。

阿司匹林通过使环氧化酶乙酰化失活来减少血栓素A2的生成,进而抑制血小板聚集,达到减少血管堵塞的发生率,有效地预防血栓形成的目的。

但长期大量服用阿司匹林易造成胃肠道不良反应,如胃溃疡,胃肠穿孔甚至胃出血。

现需要改变其剂型进而减少其不良反应的发生,延长药物半衰期,缓慢释药,使其血药浓度在较长时间内不会出现大的波动,改善药效,更好的提高生物利用度。

本文对阿司匹林肠溶缓释片的制备工艺及质量标准进行了考察。

关键词:血栓;抗血栓的药物;制备工艺1.绪论1.1血栓栓塞性疾病的概况血栓栓塞性疾病是我国居民死亡的主要原因之一,多见于老年人。

近年来,随着人民生活水平的提高,生活节奏的加快,以及饮食结构的不合理性,血栓栓塞性疾病的发病率逐年升高,同时发病人群也向年轻化方向发展。

据统计,自2001年至今,由血栓引发的脑梗死、心肌梗死、冠心病的致死率一直位居前4位,以心血管疾病为例,我国冠心病的发病率高达82人/10万,急性心肌梗死发病率为46人/10万,并且以5%的速度逐年递增。

血栓是指人体血液在血管或心脏内形成的血液凝块,栓塞是指已形成的血栓部分脱落,随血液流向血管远端,堵塞血管腔。

由血栓栓塞导致的常见病有:冠状动脉血管栓塞导致的心肌梗塞(AMI)及心绞痛;脑血管栓塞导致的脑血栓中风;肺动脉栓塞导致的肺梗塞、肺源性心脏病;肢体动脉栓塞导致的肢端疼痛或坏死,肢体静脉栓塞导致的局部水肿和疼痛,全身毛细血管内弥漫性栓塞引发的播散性血管内凝血等。

血栓栓塞性疾病因发病率逐年增加,致残率和死亡率较高,给患者及其家庭乃至整个社会都带来了沉重的精神和经济负担。

因此对抗栓药物的研究具有十分重要的意义。

1.2血栓的形成机制血栓的形成机制较为复杂,简单来说,人体血液中存在着抗凝血系统和凝血系统。

微囊的制备方法研究进展

微囊的制备方法研究进展
溶液,并达到一定的固形物含量。高的固形物含量不仅
稳定性。李仲昆等…用单凝聚法制备荨麻提取物微囊, 采用正交设计法对荨麻提取物微囊制备工艺进行了研 究。
1.2复凝聚法
有利于干燥过程中对芯材的保留,也能提高干燥工艺的 产品得率。②壁材溶液与芯材混合,进行粗分散和均 质。③喷雾干燥。孙伟张等n们采用喷雾干燥法制备阿 司匹林肠溶微囊,建立微囊质量评价方法。制备方法 为:称取一定量的丙烯酸树脂Ⅱ号,用95%乙醇溶解使 浓度为2%,将药物溶解于丙烯酸树脂Ⅱ号溶液中,药
亚太传统医药
Asia-Pacific Traditional
V01.7No.1
Medicine
Jan.20 1 1
中期得到了迅猛发展,而且发展速度越来越快。发展至 今已有80多年的历史,其制备技术和新出现的制备工 艺在医药、生物医学、食品、化妆品方面应用广泛,是受
到国内外广泛关注的新制剂方法之一。制备MC可根
亚太传统医药
Asia.Pacitic Traditional Medicine
、,b1.7No.1
Jan.201l
3缩聚法
3.1界面缩聚法n3】 本法是在分散相(水相)与连续相(有机相)的界面
一层保护层。乳化剂的选择和用量相当重要,有时要选 两种以上乳化剂,产生协同作用而提高稳定效果。 6展望 微囊作为一种高新科技成果,改变着传统的产品形 式。现在正在转化为实用技术,深入到医药、食品、化妆 品等领域,改变着传统的产品形式,让人们享受新型技 术带来的高效、舒适和便捷。药物微囊化对于提高药物
上发生单体的缩聚反应,如其中一相用水,水相中含1,6
一己二胺和碱,另一有机相含对苯二甲酰氯的环己烷、 氯仿的溶液。将以上两相接触后,在界面处进行缩聚反

微囊化技术在药剂学中的应用

微囊化技术在药剂学中的应用

微囊化技术在药剂学中的应用【摘要】微囊是采用成膜材料将固体、液体或气体等活性物质包合成的微小粒子。

药物微囊化后,可制成片剂,颗粒剂,胶囊剂和注射剂等多种剂型,并赋予药物新的性质和用途。

【关键词】微囊化;缓释;靶向性微囊技术是20世纪40年代最先由美国威斯康星大学的渥斯特教授发明的,他采用空气悬浮法制备了微囊,并成功地运用于药物的包衣。

50年代,美国NCR(国家现金出纳公司)的格林采用相分离复合凝聚法制备了明胶微囊并将其制成无碳复写纸,获得了专利。

60年代,高分子聚合方法应用于微囊制造,取得了鼓舞人心的成就。

伴随着制药新技术的发展,微囊的粒径从微米级到纳米级。

目前,我国医药行业已有一些微囊产品,但为数不多。

多数微囊技术还停留在研究阶段,没有转化为生产力,但药物被微囊包埋以后,具有其他剂型无可比拟的优越性,应用前景非常广阔。

本文就其在药剂学中的应用作以下综述。

1 提高药物的稳定性β-胡萝卜素接触空气中的氧气会被氧化,胡富强等[1]采用复凝聚法制备β-胡萝卜素微囊,研究表明β-胡萝卜素原料药于光照条件下半衰期为6.9 d,而β-胡萝卜素微囊在相同条件下半衰期为24.8 d,β-胡萝卜素微囊为原料药的3.6倍,将β-胡萝卜素制成微囊可增加药物制剂的稳定性。

维生素C性质极不稳定,分子中含有连烯二醇基[-C(OH)=C(OH)-]的结构,具有很强的还原性及内酯环的结构极易水解。

一方面与空气接触自动氧化生成脱氢抗坏血酸,脱氢抗坏血酸水解生成2,3-二酮C古罗糖酸,并可进一步氧化生成苏阿塘酸和草酸,从而失去治疗作用。

另一方面维生素C的水溶液不稳定。

pH过高或过低都能使内酪环水解,并可进一步发生脱羧反应而生成糠醛。

后者受空气影响经氧化和紧合而呈黄色。

空气、光、热和重金属都可加速本反应的发生。

廖志平[2]通过将其制成维生素C微囊缓释片达到解决其不稳定的问题,同时达到控制药物释放,维持稳定药物浓度,减少给药次数,降低药物不良反应的目的。

喷雾冷冻干燥技术在药物微球制备中的应用

喷雾冷冻干燥技术在药物微球制备中的应用

喷雾冷冻干燥技术在药物微球制备中的应用制药工程陈文煌 2007045021摘要:喷雾冷冻干燥技术是近年来发展起来的新型低温干燥技术,本文综述了喷雾冷冻干燥技术的工艺优化研究进展,分析了该技术发展现阶段的特点,并对喷雾冷冻干燥技术的应用前景进行了展望,最后给出了喷雾冷冻干燥技术在药物微球制备中的实际应用,希望能为喷雾冷冻干燥技术的推广应用提供借鉴与帮助。

关键词:喷雾冷冻干燥工艺蛋白质微球综述前言:干燥工艺是最古老的单元操作之一,广泛应用于国民经济各个领域。

而随着生物工业的快速发展,喷雾冷冻干燥在制药技术中发挥着重要作用。

喷雾冷冻干燥技术(Spray Freeze Drying)[1] 是用于制备蛋白、多肽类微球的一种新方法,即将溶解了蛋白质的溶液通过一个气雾喷嘴喷于冷的蒸汽相中,蒸汽相下面是低温液体层,小液滴通过蒸汽相的时候开始冻结,当接触到低温液体层时,小液滴完全冻结,将收集得到的冻结物置于冷冻干燥器中干燥,低温低压下使冰升华,得到干燥粉末。

实质上,喷雾冷冻干燥法是喷雾干燥和冷冻干燥法两者的互补结合。

由于喷雾冷冻干燥法是在比喷雾干燥低的温度下进行的,所以通常会对蛋白质产品带来较少的破坏[2]。

由于喷雾冷冻干燥法制备的产品具有良好的稳定性和很好的复水性[3],比传统冷冻干燥具有更好的品质,所以特别适用于那些具有较高市场价值的产品制备和具有较高共晶点和玻璃化转变温度的溶液[4]。

Maa [5]等首次提出应用喷雾冷冻干燥技术制备蛋白质微球,并与喷雾干燥技术比较。

喷雾干燥和冷冻干燥法都常被用于生产天然植物提取物、医药产品和生物化工产品的粉状产品。

但是,冷冻干燥得到的是饼状产品,必须通过机械磨碎来获得粉状产品,因此造成产品的颗粒直径>1 mm,粒径分布范围广,且磨碎产生的热量会造成产品质量降低,二次加工过程对产品纯度以及品质也造成一定的影响。

喷雾干燥直接通过雾化的方式形成雾滴并在与热气体介质接触的过程中蒸发溶剂,从而产生干燥粉末。

中药制药新技术喷雾干燥技术(实验室小型喷雾干燥机)

中药制药新技术喷雾干燥技术(实验室小型喷雾干燥机)

中药制药新技术喷雾干燥技术(试验室小型喷雾干燥机)干燥在制药生产中占有紧要地位。

近年来有很多适合中药生产的干燥技术和设备问世喷雾干燥是干燥技术(试验室小型喷雾干燥机)中较为的方法之一,由于其干燥效率高,对有效成分破坏少,浸膏粉溶解性好又适合工业化大生产,已越来越多地被利用于中药提取液的干燥以及新产品的开发。

目前已有利用此技术制备微囊、应用PVA进行薄膜包衣等新工艺的讨论报道。

因此,喷雾干燥技术在中药生产以及新剂型的开发上起着愈来愈紧要的作用。

1 基本原理、设备及流程喷雾干燥是流化技术用于液态物料干燥的一种较好的方法。

其基本原理是利用雾化器将yi定浓度的液态物料,喷射成雾状液滴,落于yi定流速的热气流中,使之快速干燥,获得粉状或颗粒状制品。

其特点是:瞬间干燥,适用于热敏性物料;产品质量好,保持原来的色香味,且易溶解;可依据需要调整和掌控产品的粗细度和含水量等质量指标;制剂体积小;有利于制剂卫生。

喷雾干燥设备一般由干燥室、喷头、空气滤过器、预热器、气粉分别室、收集桶、鼓风机构成。

喷雾器是喷雾干燥设备的关键部分,它影响到产品的质量和能量消耗。

常用试验室小型喷雾干燥机有三种类型:压力式小型喷雾干燥机、气流式小型喷雾干燥机、离心式小型喷雾干燥机。

压力式小型喷雾干燥机应用较多,它适用于粘性药液,动力消耗Z小。

气流式喷雾器结构简单,适用于任何粘度或稍带固体的药液。

离心式喷雾器适用于高粘度或带固体颗粒料液的干燥,但造价较高。

另外还有流动造粒干燥机、喷粉塔以及适用于教学和科研的自动间歇喷雾干燥机等。

喷雾干燥简单工艺流程为:药材提取浓缩喷雾收集药粉。

实在操作过程(压力式喷雾干燥)如下:中药饮片置提取罐内蒸汽加热浸出数次,浸出液通过真空抽滤管抽入减压浓缩罐内,浓缩至yi定浓度,药物由导管经流量计至喷头下,进入喷头的压缩空气(39123104~49104104Pa),将药液自喷头经涡流器利用离心力增速成雾滴喷入干燥室,再与热气流混合进行热交换后很快即被干燥。

微囊的制备方法

微囊的制备方法

微囊的制备方法
微囊是一种具有微小空间结构的囊泡,能够在内部封装各种物质,具有广泛的应用价值。

微囊的制备方法对于其性能和应用具有重要影响。

下面将介绍几种常见的微囊制备方法。

首先,常见的微囊制备方法之一是乳化法。

乳化法是利用乳化剂将油相和水相混合,形成乳液,然后通过适当的方法使乳液中的油滴包裹在水相中,形成微囊。

这种方法操作简单,成本较低,适用于一些化学品、药物等微囊的制备。

其次,还有一种常见的微囊制备方法是溶剂挥发法。

溶剂挥发法是将需要包裹的物质溶解在有机溶剂中,然后将溶液滴入水相中,通过搅拌或超声等方法使有机溶剂挥发,形成微囊。

这种方法制备的微囊具有较小的粒径和较好的分散性,适用于一些需要微小粒径的微囊制备。

另外,还有一种常见的微囊制备方法是凝胶化学法。

凝胶化学法是利用凝胶化学原理,将需要包裹的物质溶解在适当的溶剂中,然后通过添加交联剂或者调节pH值等方法形成凝胶,最终形成微囊。

这种方法制备的微囊具有较好的稳定性和载药性能,适用于一些需要长期释放的微囊制备。

最后,还有一种常见的微囊制备方法是喷雾干燥法。

喷雾干燥法是将需要包裹的物质溶解在适当的溶剂中,然后通过喷雾器将溶液雾化成小液滴,经过干燥后形成微囊。

这种方法制备的微囊具有较好的流动性和可控性,适用于一些需要固体微囊制备。

综上所述,微囊的制备方法有多种多样,不同的方法适用于不同的物质和应用场景。

在实际制备过程中,需要根据具体情况选择合适的方法,并结合实际操作进行调整和优化,以获得理想的微囊产品。

希望本文介绍的内容能对微囊的制备方法有所帮助,谢谢阅读!。

喷雾干燥法制备微胶囊方法

喷雾干燥法制备微胶囊方法

Journal of Microencapsulation,June2005;22(4):377–395Preparation of cross-linked chitosan microspheresby spray drying:Effect of cross-linking agent on the properties of spray dried microspheresK.G.H.DESAI1&H.J.PARK1,21School of Life Sciences and Biotechnology,Korea University,Sungbuk-ku,Seoul,South Korea,and2School of Life Sciences and Biotechnology,Korea University and Department of Packaging Science,Clemson University,Clemson,SC,USA(Received4September2004;accepted10December2004)AbstractChitosan microspheres cross-linked with three different cross-linking agents viz,tripolyphosphate (TPP),formaldehyde(FA)and gluteraldehyde(GA)have been prepared by spray drying technique. The influence of these cross-linking agents on the properties of spray dried chitosan microspheres was extensively investigated.The particle size and encapsulation efficiencies of thus prepared chitosan microspheres ranged mainly between4.1–4.7m m and95.12–99.17%,respectively.Surface morphol-ogy,%erosion,%water uptake and drug release properties of the spray dried chitosan micro-spheres was remarkably influenced by the type(chemical or ionic)and extent(1or2%w/w)of cross-linking agents.Spray dried chitosan microspheres cross-linked with TPP exhibited higher swelling capacity,%water uptake,%erosion and drug release rate at both the cross-linking extent (1and2%w/w)when compared to those cross-linked with FA and GA.The sphericity and surface smoothness of the spray dried chitosan microspheres was lost when the cross-linking extent was increased from1to2%w/w.Release rate of the drug from spray dried chitosan microspheres decreased when the cross-linking extent was increased from1to2%w/w.The physical state of the drug in chitosan-TPP,chitosan-FA and chitosan-GA matrices was confirmed by the X-ray diffrac-tion(XRD)study and found that the drug remains in a crystalline state even after its encapsulation. Release of the drug from chitosan-TPP,chitosan-FA and chitosan-GA matrices followed Fick’s law of diffusion.Keywords:Chitosan microspheres,spray drying,tripolyphosphate,formaldehyde,gluteraldehyde,swelling, erosion,sustained releaseIntroductionThere has been considerable interest in recent years in developing controlled or sustained drug delivery systems by using biopolymers.Controlled or sustained release drugs provide many advantages in comparison with conventional forms:reduced side effects,drug Correspondence:Professor H.J.Park,307,School of Life Sciences and Biotechnology,Korea University,1,5-Ka,Anam-Dong, Sungbuk-ku,Seoul-136-701,South Korea.Tel:82232903450.Fax:8229535892.E-mail:hjpark@korea.ac.krISSN0265-2048print/ISSN1464-5246online#2005Taylor&FrancisDOI:10.1080/02652040500100139378K.G.H.Desai&H.J.Parkconcentration kept at effective levels in plasma and improved utilization of drug and decrease the dosing times(Kim et al.2002).Of the different drug delivery systems,nano or microparticles based drug delivery systems gained significant importance(Ravi Kumar 2000).With the attractive properties and wider application range,they occupy unique position in drug delivery technology(Ravi Kumar2000).The use of microspheres-based therapy allows drug release to be carefully tailored to the specific treatment site through the choice of appropriate formulation ing innovative microencapsulation technologies and by modifying the polymeric matrix,microspheres can be developed into an optimal drug delivery system which will provide desired release profile(Benita1996; Ravi Kumar2000).Chitosan,a natural biopolyaminosaccharide,is obtained by alkaline deacetylation of chitin that is found widely in nature.Chitosan has attracted significant interest in recent years.This is largely due to the proposed novel application of the polymer in phar-maceutical,food and various industrial and biotechnological fields.These applications are possible because of the polymer reactive groups and their biodegradability,low toxicity and biocompatibility(Hejazi and Amiji2003).Due to the easy availability of free amino groups in chitosan,it carries a positive charge and,thus,in turn reacts with many negatively charged surfaces/polymers(Ko et al.2002).This principle has been used for the produc-tion of chitosan microcapsules and microspheres to control drug release(Hejazi and Amiji2003).Chitosan microspheres are most widely studied drug delivery systems for the controlled release of drugs viz.antibiotics,anti-hypertensive agents,anti-cancer agents, anti-inflammatory agents,proteins,peptide drugs and vaccines(Sinha et al.2004). Chitosan microspheres can be synthesized by a number of different techniques such as solvent evaporation,spray drying,coacervation,emulsification/internal gelation and suspen-sion cross-linking(Sinha et al.2004).Although numerous techniques are available for the synthesis of microparticles,spray drying technique is widely used in the pharmaceutical industries because of its numerous advantages over other methods.The advantage of spray drying technique for applica-tion to microencapsulation is that it is reproducible,rapid and easy to scale up(Masters 1991;Benita1996;He et al.1999;Sinha et al.2004).Spray drying technique can be used to produce dry powders,granules or agglomerates from drug-excipient solutions and suspensions(Wang and Wang2002).The particle size of the microparticles prepared by spray drying technique ranged from microns to several tens of microns and had a relatively narrow distribution(Masters1991).Recently,a number of articles have been published describing the preparation of controlled release microparticles by such a spray drying tech-nique.For example,microparticles composed of the water soluble polymers used as the carrier for intra-articular delivery of dexamethasone(Pavenetto et al.1994)or sustained release dosage form(Maa and Prestrelski2000)for the delivery of acetazolaminde (Di Martino et al.2001),butorophanol(Chang and Li2000),dexamethasone hydrochloride and toremifene citrate(Kortesuo et al.2000),erythromycin and clarithromycin(Zgoulli et al.1999).Water insoluble polymer polylactic acid or poly(lactide co-glycolide)was prepared for the delivery of rifampicin(Bain et al.1999a,b,O’Hara and Hickey2000) and gentamycin(Prior et al.2000).Ideally,a delivery system might be developed to release a drug at precisely the rate it is required for different application.Chitosan-based microspheres have been prepared by spray drying technique(He et al.1999;Huang et al.2002;2003a,b;Filipovic-Grcic et al. 2003).However,as an unfavourable factor,spray dried chitosan microspheres swell quickly in water and release the encapsulated drug immediately(Genta et al.1995).The drug release kinetics from spray dried chitosan microspheres is affected by the concentrationPreparation of cross-linked chitosan microspheres379 and molecular weight of the chitosan,solubility of the drugs,especially the chitosan matrix(cross-linked or non-cross-linked)(He et al.1999).Therefore,non-cross-linked spray dried chitosan microspheres are unsuitable for sustained drug delivery(Genta et al. 1995;He et al.1999).In order to stabilize the spray dried chitosan microspheres,cross-linking agents such as GA and FA have been used(He et al.1999).In an earlier work (Desai and Park2005),TPP has been demonstrated as a new stabilizing agent for the preparation of chitosan microspheres by spray drying technique covering the influence of concentration and molecular weight of the chitosan and drug loading on the properties of spray dried chitosan-TPP microspheres.However,the effect of different cross-linking agents on the properties of spray dried chitosan microspheres is not studied so far.In continuation of the ongoing programme of research to develop the chitosan based microspheres for the release of drugs(Ko et al.2002;Lee et al.2003),one now reports the influence of three different cross-linking agents(TPP,FA and GA)on the proper-ties(%encapsulation efficiency,size,surface morphology,%erosion,%swelling and release behaviour)of spray dried chitosan microspheres.Therefore,the objective of the pre-sent study was to prepare the chitosan-TPP,chitosan-FA and chitosan-GA microspheres by spray drying technique through a novel process as well as to examine the influence of the above mentioned three different cross-linking agents on the properties of thus prepared microspheres.Acetaminophen was used as a model drug candidate.Materials and methodsMaterialsAcetaminophen(99.5%purity)was purchased from Kanto Chemical Co.,Inc.(Tokyo, Japan).Chitosan(medium molecular weight)was purchased from Sigma-Aldrich Chemie (Steinheim,Germany).The average molecular weight of chitosan was determined by batch mode method using multi-angle laser light scattering(MALLS)photometer according to the method of Chen and Tsaih(1998).The average molecular weight of the chitosan was found to be1.336Â106.The%N-deacetylation of chitosan was determined by the 1NMR spectroscopy method(Hirai et al.1991;Lavertu et al.2003).The degree ofdeacetylation of the chitosan was found to be82.10%.FA(35%)and GA(25%)were purchased from Showa Chemicals(Japan).All other chemicals were of analytical grade and used as received.Ultrapure water(Millipore,USA)water was used throughout the study.Preparation of cross-linked chitosan microspheres by spray dryingModel drug,acetaminophen(0.5%w/v)was dissolved in300ml of1%v/v acetic acid solution.Then the chitosan was dissolved in the drug solution by stirring it overnight.About 10ml of different cross-linking agents(see Table I)(TPP or GA or FA)was added dropwise into the aqueous chitosan-drug solution with constant stirring at8000rpm for30min using a Young Ji HMZ20DN stirrer(Hana Instruments).Thus prepared chitosan-TPP-drug or chitosan-GA-drug or chitosan-FA-drug solution was then spray dried to obtain the cross-linked chitosan microspheres loaded with the drug.Spray drying was performed using a SD-05spray drier(Lab Plant,UK),with a standard0.5mm nozzle.Spray drying conditions such as inlet temperature,liquid flow and drying air flow were set at170 C, 2ml minÀ1,1.2m3minÀ1,respectively.The atomizing air pressure was60kPa.When the liquid was fed to the nozzle with peristaltic pump,atomization occurred by the force of the compressed air,disrupting the liquid into small droplets.The droplets,together withhot air,were blown into a chamber where the solvent in the droplets was evaporated and discharged out through an exhaust tube.The dry product was then collected in a collection bottle.The preparation process of cross-linked chitosan microspheres through a novel process by spray drying method is shown in Figure 1.Loading efficiencyAbout 10mg of drug-loaded chitosan-TPP or chitosan-GA or chitosan-FA micro-spheres were dissolved in 50ml of 0.1N HCl.The solution was passed throughTable I.Preparation of crosslinked chitosan microspheres by spray drying method.Formulation code Chitosan concentration (%w/v)Chitosanmolecular weightCross-linking agent Cross-linking extent (%w/w)Drug loading (%w/v)F11.0 1.336Â106Tripolyphosphate 10.5F21.0 1.336Â106Tripolyphosphate 20.5F31.0 1.336Â106Formaldehyde (35%)10.5F41.0 1.336Â106Formaldehyde 20.5F51.0 1.336Â106Gluteraldehyde (25%)10.5F6 1.0 1.336Â106Gluteraldehyde 20.5Spray dried chitosan-TPP or chitosan-FA or chitosan-GAmicrospheres loaded with acetaminophenFigure 1.Preparation process of cross-linked chitosan microspheres by spray drying.380K.G.H.Desai &H.J.Parka0.22m m membrane filter(Millipore,USA)and then the drug content was assayed by measuring the absorbance at201nm( max of acetaminophen in0.1N HCl)after suitable dilution using UV spectrophotometer(Shimadzu1601PC,Japan).Experiments were performed in triplicate(n¼3)and loading efficiencies were calculated using equation(1).Loading efficiencyð%Þ¼Calculated drug concentrationTheoretical drug concentrationÂ100ð1ÞMeasurement of particles sizeSpray dried chitosan microspheres exhibited quick swelling in liquid medium and,hence, sizes could not be determined using a laser diffraction technique in a particle size analyser. Therefore,the particle size was determined by microscopy.Briefly,$5mg of cross-linked chitosan microspheres were taken on a glass slide and sizes of$200spherical particles were measured each time(n¼3)by using a biological microscope(Olympus,Japan).Erosion studySpray dried placebo chitosan-TPP,chitosan-FA and chitosan-GA microspheres(200mg) were immersed in phosphate buffer solution(pH7.4)and stirred at100rpm for6h. After6h,microspheres were separated by centrifuge(3000rpm,10min)and dried in a temperature controlled oven(JEIO TECH,FO600M,South Korea)at40 C for24h to dry the microspheres completely;these were weighed to calculate the mass loss. Surface morphologyThe surface morphology of the spray dried chitosan microspheres cross-linked with TPP, FA and GA was examined by means of Hitachi(Japan)scanning electron microscope.The powders were previously fixed on a brass stub using double-sided adhesive tape and then were made electrically conductive by coating,in a vacuum,with a thin layer of platinum ($3–5nm),for100s and at30W.The pictures were taken at an excitation voltage of15kv and a magnification of1.8,2,3.5,4,4.5or800k.Swelling studyThe dynamic swelling properties of the spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres in the dissolution medium(phosphate buffer solution,pH7.4) were determined.Spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres of known weight(200mg)without containing the drug were placed in phosphate buffer solution(pH7.4)for a period of6h.The swollen chitosan-TPP,chitosan-FA and chitosan-GA microspheres were collected by a centrifuge and the wet weight of the swollen microspheres was determined by first blotting the particles with filter paper to remove absorbed water on surface and then weighing immediately on an electronic balance. The weight of the swollen microspheres was determined at a pre-determined time period (0.5,1,2,4and6h)to accuracy of0.01mg using an electronic balance.The percentagePreparation of cross-linked chitosan microspheres381of swelling of the cross-linked spray dried chitosan microspheres in the dissolution media was then calculated using equation(2).S SW¼W tÀW oW oÂ100ð2Þwhere S SW is the percentage of swelling of spray dried chitosan-TPP or chitosan-FA or chitosan-GA microspheres,W t denotes the weight of the spray dried microspheres at time t and W o is the initial weight of the microspheres.Equilibrium water uptake(%water uptake)of the cross-linked chitosan microspheres(placebo)were also determined by measuring the extent of swelling of the matrices in phosphate buffer solution(pH7.4). To ensure complete equilibrium,the samples were allowed to swell for24h.X-ray diffractionThe physical state of the model drug(acetaminophen)in the spray dried chitosan-TPP, chitosan-FA and chitosan-GA matrices was assessed by XRD studies.X-ray powder diffraction patterns of neat acetaminophen,spray dried placebo chitosan microspheres and chitosan-TPP,chitosan-FA and chitosan-GA microspheres loaded with drug were obtained at room temperature using a Philips X’Pert MPD diffractometer(Philips,The Netherlands) with Co as anode material and graphite monochromator operated at a voltage of40kV. The samples were analysed in the2 angle range of2–60 and the process parameters were set as scan step size of0.025 (2 ),scan step time of1.25s and time of acquisition of1h. In vitro drug releaseThe in vitro release of the model drug(acetaminophen)from spray dried chitosan-TPP, chitosan-FA and chitosan-GA microspheres was determined using a dissolution apparatus (TW-SM,Wooju Scientific,Co.,Korea).In order to suspend the spray dried chitosan microspheres in the dissolution medium,25mg of microspheres were taken into the previously soaked cellulose dialysis bag(molecular weight cut-off8000)containing3ml of dissolution media and tied to the paddle.The in vitro release studies of acetaminophen were carried out at paddle rotation of100rpm in900ml of phosphate buffer solution (pH7.4and37 C).An aliquot of the release medium(5ml)was withdrawn through a sampling syringe attached with0.22m m membrane filter(Millipore,USA)at pre-determined time intervals(0.5,1,2,3,4,5and6h)and an equivalent amount of fresh dissolution medium which was pre-warmed at37 C was replaced.Collected samples were then analysed for acetaminophen content by measuring the absorbance at202nm ( max of acetaminophen in phosphate buffer solution(pH7.4))after suitable dilution using UV spectrophotometer(Shimadzu1601PC,Japan).In vitro release studies were performed in triplicate(n¼3)for each microsphere formulation in an identical manner. Results and discussionPreparation of cross-linked chitosan microspheres by spray dryingChitosan is currently receiving a great deal of interest in pharmaceutical applications. The main reasons for this increasing attention are certainly its interesting intrinsic properties.Spray drying is a well-known process,which is used to produce dry powders, granules or agglomerates from drug excipient solutions and suspensions(He et al.1999). 382K.G.H.Desai&H.J.ParkRecently,a number of articles have been published describing the preparation of chitosan microspheres by such a spray drying method(Genta et al.1995;He et al.1999; Huang et al.2002;2003a,b;Filipovic-Grcic et al.2003).The drug release kinetics from chitosan microspheres is affected by the concentration and molecular weight of the chitosan,solubility of the drug and encapsulating process,especially the cross-linked chitosan matrix density(Sinha et al.2004).Non-cross-linked spray dried chitosan microspheres cannot be kept suspended in water because of swelling and dissolution. As a result,the release rate of the drug from non-cross-linked spray dried chitosan microspheres is rapid(more than90%of the drug release within0.5h)(Genta et al.1995). Therefore,non-cross-linked spray dried chitosan microspheres are unsuitable for the sustained release application.To date,the most common cross-linkers used with chitosan are chemical cross-linking agents(FA and GA)and ionic cross-linking agents(genipin, TPP).Their reaction with chitosan is well-documented(Berger et al.2004).More recently, TPP has been demonstrated as a new stabilizing agent for the preparation of chitosan microspheres by spray drying method(Desai and Park2005).However,comparative study, i.e.the influence of different cross-linking agents(TPP,FA and GA)on the properties of spray dried chitosan microspheres is not studied so far.Therefore,this paper reveals their effects on the size,%encapsulation efficiency,%swelling,%erosion,surface morphology and release behaviour of the spray dried chitosan microspheres.Thus,cross-linked chitosan microspheres by spray drying method were prepared as an effort to explore the possibility of them being used as sustained release carriers for drugs.Properties of spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheresThe properties of spray dried chitosan microspheres(yield,mean size and encapsulation efficiency)loaded with the drug are presented in Table II.The yield(%)of the spray dried chitosan microspheres cross-linked with different cross-linking agents ranged mainly between39.3–45.8%.Generally,yield of the microspheres prepared by the spray drying method depends upon the spray drying conditions(inlet temperature,flow rate and compressed air flow).Under the present spray drying conditions,yield of drug loaded chitosan microspheres did not vary much with the varying amount of different cross-linking agents.The particle size of the spray dried chitosan microspheres cross-linked with TPP, FA and GA ranged between4.1–4.7m m.However,the particle size decreased slightly(see Table II)when the cross-linking extent of TPP,FA and GA increased from1to2%w/w. Generally,the spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres could be produced with higher(95.12–99.17%)encapsulation efficiencies.However,as the Table II.Results of mean particle size,%encapsulation efficiency,%yield,%erosion and%water uptake of spray dried chitosan-TPP(F1and F2),chitosan-FA(F3and F4)and chitosan-GA(F5and F6)microspheres (Values are expressed as meanÆstandard deviation).Formulation codeMeanparticle size(m m)Encapsulationefficiency(%)Yield(%)%Erosion%WateruptakeF1 4.5Æ0.899.17Æ1.041.210.1Æ1.4365.2Æ11.3 F2 4.1Æ0.596.42Æ1.443.58.8Æ1.1340.3Æ5.3 F3 4.7Æ0.799.03Æ1.340.4 6.8Æ1.3312.6Æ4.8 F4 4.3Æ0.395.12Æ0.639.3 5.1Æ0.7295.8Æ7.6 F5 4.6Æ0.898.81Æ1.145.8 3.7Æ0.8266.2Æ4.6 F6 4.2Æ0.495.61Æ1.242.6 2.9Æ0.6245.2Æ8.1Preparation of cross-linked chitosan microspheres383384K.G.H.Desai&H.J.Parkcross-linking extent of TPP,FA and GA increased from1to2%w/w,the encapsulation efficiencies of spray dried chitosan microspheres decreased slightly(see Table II). Surface morphologyThe surface morphologies of spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres are shown in Figures2and 3.The new process of preparation of chitosan-TPP,chitosan-FA and chitosan-GA microspheres by spray drying method produced the microspheres with spherical shape and smooth surface.However,well-defined change in the surface morphology of spray dried chitosan microspheres was observed when the cross-linking extent of TPP,FA and GA was increased from1to2%w/w. For instance,microspheres cross-linked with1%w/w of TPP or FA or GA were completely spherical and had a smooth surface(see Figure2(a,b and c)).Whereas,in the case of microspheres cross-linked with2%w/w of TPP or FA or GA,although the microspheres were spherical,but had a depressed(wrinkles)surface.However,spray dried chitosan microspheres prepared with FA or GA had more depressed surfaces(see Figure3(b and c)) than those prepared with TPP(Figure3(a)).The pictures of the SEM study revealed that chemical cross-linking(GA or FA)had a remarkable effect on the surface morphology of spray dried chitosan microspheres than the ionic cross-linking(TPP).On the other hand, drug(acetaminophen)crystals were adhered to the surface of the spray dried chitosan microspheres due to its extreme crystalline nature.Erosion of matricesThe chitosan microspheres prepared by cross-linking with different cross-linking agents are stirred in dissolution media(phosphate buffer,pH7.4)for6h.These results,given in Table II,indicate that erosion decreases with an increase in cross-linking of the matrices. Among the three cross-linking agents used,GA-cross-linked microspheres show the least erosion,i.e.2.9–3.7%,but the FA-and TPP-cross-linked microspheres show erosions of5.1–6.8%and8.8–10.1%,respectively.The percentage erosion of TPP-cross-linked microspheres is higher than the FA-and GA-cross-linked matrices because the latter cases involves actual chemical reactions between FA or GA and chitosan and,therefore, FA-chitosan or GA-chitosan is a stronger and more rigid matrix than the ionically(TPP) cross-linked matrix.The surface morphology of spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres after their erosion study was also examined by SEM and the same are presented in Figure4.It can be seen that the chitosan-TPP microspheres (Figure4(a))did not maintain the form of sphere indicating the poor rigidity of the spray dried chitosan-TPP matrix.Spray dried chitosan-FA(Figure4(b))and chitosan-GA (Figure4(c))microspheres maintained their spherical shape even after6h,indicating the more rigidity of the chitosan-FA and chitosan-GA matrices.Swelling behaviourIt is not known whether the macro-molecular chains of polymer are fixed by ionic cross-linking or chemical cross-linking,the swelling ability of the polymer decreases. However,the swelling ability of spray dried chitosan is higher than the pure chitosan (Mi et al.1999).The swelling experiments of spray dried chitosan-TPP,chitosan-FA and chitosan-GA microspheres were conducted in dissolution media(pH7.4).The swelling capacity(%)of spray dried chitosan microspheres cross-linked with different cross-linkingagents (TPP,FA and GA)increased with time.The influence of different cross-linking agents (TPP,FA and GA)at a cross-linking extent of 1and 2%w/w on the swelling behaviour of spray dried chitosan microspheres is depicted in Figures 5and 6,respectively.From Figures 5and 6,it is very clear that the swelling capacity of the cross-linkedspray Figure 2.Scanning electron microscopic pictures of spray dried chitosan microspheres cross-linked with 1%w/w TPP (a),FA (b)and GA (c).Preparation of cross-linked chitosan microspheres 385dried chitosan microspheres was influenced by the nature of the cross-linking,i.e.chemical or ionic cross-linking.For instance,spray dried chitosan microspheres cross-linked with FA or GA (chemical cross-linking)exhibited lower swelling capacity when compared to those cross-linked with TPP (ionic cross-linking)(see Figures 5and 6).Depending on thenature Figure 3.Scanning electron microscopic pictures of spray dried chitosan microspheres cross-linked with 2%w/w TPP (a),FA (b)and GA (c).386K.G.H.Desai &H.J.Parkof the cross-linkers (chemical or ionic cross-linking agents),the main interactions forming the network are covalent or ionic bonds (Berger et al.2004).In the case of chemical cross-linking,the aldehyde groups form covalent imine bonds with the amino groups of chitosan,due to resonance established with adjacent double ethylenic bonds via a Schiffreaction Figure 4.Scanning electron microscopic pictures of spray dried chitosan-TPP (a),chitosan-FA (b)and chitosan-GA microspheres after their erosion study (cross-linking extent 1%w/w).(Berger et al.2004).These aldehydes allow direct reaction in aqueous media,under mild conditions with or without the addition of auxiliary molecules such as reducers (Monteiro and Airoldi 1999;Berger et al.2004).Ionic interactions between the negative charges of the cross-linker (TPP)and positively charged groups of chitosan are the main interactions inside the network.Therefore,chemically cross-linked (covalent)chitosan matrices are more rigid and,hence,these (chitosan-FA and chitosan-GA)matrices exhibited lower swelling capacity (lower water uptake (see Table II))than the ionically cross-linked (chitosan-TPP)matrix.On the other hand,as the extent of cross-linking increased from 1to 2%w/w,the swelling capacity of the spray dried chitosan microspheres decreased considerably.These results sup-port that the more tightly cross-linked chitosan-TPP or chitosan-FA or chitosan-GA matrix does not swell (lower water uptake (see Table II))as much as the loosely cross-linked chitosan-TPP or chitosan-FA or chitosan-GA matrix.At lower levels of TPP or FA or GA (i.e.lower cross-link density),the network is loose and has a high hydrodynamic free volume to accommodate more of the solvent molecules,thereby inducing chitosan-TPP or chitosan-FA or chitosan-GA matrix swelling.The water uptake in hydrogels depends upon the extent of hydrodynamic free volume and availability of hydrophilic functional groups for the water to establish hydrogen bonds.Higher water uptake values were observed at lower levels of crosslinking (see Table II)and vice versa observed in the present study confirm the formation of rigid chitosan-TPP or chitosan-FA or chitosan-GA networks through a new process due tocross-linking.1002003000.51246Time (h)S w e l l i n g (%)TPPFA GAFigure 5.The influence of 1%w/w TPP,FA and GA on the swelling behaviour of spray dried chitosan microspheres.。

阿司匹林的制造实验报告(3篇)

阿司匹林的制造实验报告(3篇)

第1篇一、实验目的1. 了解阿司匹林的制备原理和过程。

2. 掌握实验室合成阿司匹林的操作技能。

3. 学习并应用重结晶技术对阿司匹林进行纯化。

4. 通过实验,验证阿司匹林的性质和药理作用。

二、实验原理阿司匹林,化学名为乙酰水杨酸,是一种常用的解热、镇痛、抗炎药物。

实验室制备阿司匹林通常采用水杨酸与乙酸酐在浓硫酸催化下进行酰基化反应,生成阿司匹林。

反应式如下:COOH + CH3COOH → COOCH3 + CH3COOH三、实验仪器与药品1. 仪器:烧杯、锥形瓶、量筒、温度计、水浴锅、搅拌器、布氏漏斗、抽滤瓶、蒸馏装置等。

2. 药品:水杨酸、乙酸酐、浓硫酸、氢氧化钠、活性炭、蒸馏水、无水乙醇等。

四、实验步骤1. 准备工作:将水杨酸、乙酸酐、浓硫酸、氢氧化钠、活性炭等药品按照一定比例称量,准备好实验仪器。

2. 酰基化反应:将称量好的水杨酸和乙酸酐加入锥形瓶中,缓慢加入浓硫酸,搅拌均匀。

将锥形瓶置于水浴锅中,加热至75-80℃,保持恒温反应30分钟。

3. 停止反应:将反应液移至烧杯中,加入适量的氢氧化钠溶液,调节pH值至7-8。

加入活性炭,搅拌10分钟,使反应液中的杂质吸附在活性炭上。

4. 过滤:将反应液用布氏漏斗过滤,收集滤液。

5. 重结晶:将滤液加入适量的无水乙醇,搅拌均匀,静置。

待晶体析出后,用抽滤瓶进行抽滤,收集晶体。

6. 干燥:将收集到的阿司匹林晶体放入干燥器中,干燥至恒重。

五、实验结果与分析1. 阿司匹林的性状:白色针状或板状结晶,mp.135-140℃,易溶于乙醇,可溶于氯仿、乙醚,微溶于水。

2. 阿司匹林的药理作用:解热、镇痛、抗炎。

通过实验,可以观察到阿司匹林在药物浓度范围内对实验动物的解热、镇痛、抗炎作用。

六、实验讨论1. 酰基化反应的温度对阿司匹林产率有较大影响,温度过高或过低都会导致产率下降。

实验中,温度控制在75-80℃为宜。

2. 在重结晶过程中,乙醇的浓度对阿司匹林的纯度有较大影响。

阿司匹林缓释微囊的制备及体外释放研究

阿司匹林缓释微囊的制备及体外释放研究

第4期2020年8月No.4 August,2020近年来,人们逐渐研制开发出缓释、控释制剂,使药物在体内缓慢释放,减少药物的刺激性。

微囊是将药物包在载体材料中制备成的球形微粒,将药物包覆于囊材中制成微囊可提高药物的稳定性,延长药物的体内作用时间。

本研究测定阿司匹林微囊化的制备工艺及缓释性能,以明胶和阿拉伯胶为囊材,采用复凝聚法制备阿司匹林微囊,以包埋率、载药率、收率为指标,通过正交试验优选制备工艺,通过体外药物释放度测定其释药性能,得出阿司匹林微囊的最佳工艺条件[1]。

1 材料与仪器试剂:明胶、阿拉伯胶、氢氧化钠、阿司匹林、无水乙醇、戊二醛。

仪器:超声波振荡器、恒温磁力搅拌器、电热恒温鼓风干燥箱、气浴恒温振荡器、数显恒温水浴锅、紫外可见分光光度计、天平、电动搅拌器、扫描电镜、精密pH 计、数显恒温真空干燥箱。

2 方法2.1 正交试验的设计本研究选取了囊材囊心比(A )、固化时间(B )、25%戊二醛的量(C )3个因素作为主要影响条件,设计3因素3水平的正交试验,因素水平如表1所示。

表1 因素水平序号囊材囊心比固化时间/h戊二醛加入量/mL12∶11223∶12334∶1342.2 缓释微囊制备方法取1 g 阿司匹林,研磨后加入阿拉伯胶溶液置于60 ℃的水浴中恒定转速搅拌,搅拌中加入明胶,控制加入明胶的速度,混合溶液温度维持在50 ℃左右,并且保持pH 在3.0~4.0。

加入两倍30 ℃的蒸馏水,继续搅拌,冷却到32~35 ℃时,移到冰浴中,搅拌,急速降温到10 ℃以下,用NaOH 溶液调节pH 至8.0~9.0,加入戊二醛,固化对应的时间后,从冰浴中取出,停止搅拌,静置待其下沉,置于显微镜下观察。

清去上清液,用蒸馏水清洗2~3次,烘干,称重。

2.3 标准曲线的测定阿司匹林-乙醇溶液标准曲线的测定:取25 mg 阿司匹林加入50.0 mL 容量瓶中定容(0.5 mg/mL ),用移液管分别取 0.5、1.0、2.0、3.0、4.0、5.0 mL 加入乙醇50.0 mL 定容,在300 nm 波长处测吸光度。

喷雾干燥法制备可挥发农药微胶囊

喷雾干燥法制备可挥发农药微胶囊

喷雾干燥法制备可挥发农药微胶囊赵延河;李沅;谭凤芝;曹亚峰;刘兆丽【摘要】以自制的辛烯基琥珀酸淀粉酯(SSOS)为壁材,以氯化苦为芯材,采用喷雾干燥法制备了微胶囊.通过单因素实验考察了固形物质量分数、壁芯比、进口温度、交联剂用量对微胶囊包埋率的影响,对氯化苦微胶囊进行模拟释放研究,并通过扫描电镜对微胶囊进行表征.结果表明,在固形物质量分数4%、壁芯比3:1、进口温度190℃ 、交联剂用量0.9%时,微胶囊的包埋率最高达到77.54%.检测微胶囊的缓释效果,3 d后释放基本完全.通过SEM观察微胶囊的表面结构,粉末颗粒囊壁光滑完整,没有出现裂痕及孔洞,呈特有的骷髅状.微胶囊制备成功且具有良好的释放性.【期刊名称】《大连工业大学学报》【年(卷),期】2019(038)002【总页数】4页(P97-100)【关键词】微胶囊;辛烯基琥珀酸淀粉酯;喷雾干燥;包埋率【作者】赵延河;李沅;谭凤芝;曹亚峰;刘兆丽【作者单位】大连工业大学轻工与化学工程学院 ,辽宁大连 116034;大连工业大学轻工与化学工程学院 ,辽宁大连 116034;大连工业大学轻工与化学工程学院 ,辽宁大连 116034;大连工业大学轻工与化学工程学院 ,辽宁大连 116034;大连工业大学轻工与化学工程学院 ,辽宁大连 116034【正文语种】中文【中图分类】TQ314.10 引言氯化苦化学名为三硝基甲烷,是一种无色或微黄色油状液体,易挥发,有刺激性气味,剧毒,常作为一种土壤熏蒸剂来应用。

因为氯化苦有极高的蒸汽压(25 ℃时为3.17 kPa),所以施用到土壤中的氯化苦大部分会散发到空气中,散发量占使用量的60%以上,这使得熏蒸效果极大地降低,而且散发到大气中的氯化苦对周围人畜产生严重危害[1]。

所以研究减少氯化苦散发的技术对于提高熏蒸处理效果以及保护大气环境有着重要的意义。

微胶囊技术是一种用天然或合成高分子材料将固体、液体等物质包埋形成微小粒子的技术,它使被包埋物质与外界环境隔离,有效保护了其原有活性,增加其贮存稳定性[2-4]。

喷雾制粒法制备阿司匹林肠溶缓释胶囊

喷雾制粒法制备阿司匹林肠溶缓释胶囊

1. 1 材料 阿司匹林( 山东新华制药股份有限公 司) , 淀粉(华北制药厂) , 药用糊精(石家庄红旗化工 厂) , 聚丙烯酸树脂(连云港制碘厂)。 1.2 仪器 B J 一 Z 360M型包衣造粒机(北京天民高 科技 开发公司) ,8411 型电动震筛机(浙江上虞市化 验机械厂) , 智能药物溶出仪(天津大学无线电 D800 厂) ,i1 V3000 紫外分光光度计( 日 津) 。 本岛 1.3 阿司匹林肠溶缓释颗粒的制备 将处方量的 阿司匹 淀粉、 林、 糊精混合均匀, 置包衣造粒机主机 转盘中, 喷雾制粒, 并用聚丙烯酸树脂包衣。 1.4 含量测定 取本品 15 粒, 研细, 用中性乙醇 35m 1分数次研磨, 并移人50m1量瓶中, 充分振摇, 用 水适量洗涤研钵数次, 洗液合并于50ml 量瓶中, 再 用 水稀释至刻度, 摇匀, 滤过, 精密量取滤液 loc nl
阿司匹林对胃粘膜的直接损伤是由于它在胃内 酸性条件中为非离子型, 具有亲脂性, 易渗透进人胃
粘膜 上皮细 胞内, 细胞内的pH较高, 阿司匹 林转化
为离子型, 改变细胞内的渗透压, 造成离子返流, 导
致胃 (7 本制剂制 损伤[ )。 成肠溶型缓释颗粒, 药物在
胃液中释放量极少, 可以避免对胃 粘膜的直接损伤。 所采用的喷雾制粒法制备阿司匹林肠溶缓释颗 粒, 方法可靠, 重现性好, 易于进行扩大化生产。 总之, 本研究从阻断阿司匹林胃肠道毒副作用 的两个途径人手, 设计研制了阿司匹林肠溶缓释胶 囊, 药物的体外释放行为符合规定, 达到了设计要
用小剂量阿司匹林。但近年研究发现, 小剂量阿司 匹林仍然引起糜烂、 溃疡和出血等胃肠粘膜损害。
而 其 诱发的 且 所 糜烂60%是无 症状的6 我院 [ 1, 通过

阿司匹林肠溶片的研究进展

阿司匹林肠溶片的研究进展

阿司匹林肠溶制剂的研究进展摘要:本文综述了近年来阿司匹林肠溶制剂的各种剂型及其研究进展,指明了阿司匹林的研究趋势和发展方向,从而达到提高阿司匹林的药效和生物利用度并且降低其胃肠道等不良反应的目的。

关键词:阿司匹林;肠溶片;肠溶胶囊;肠溶滴丸;肠溶微囊;肠溶缓释制剂阿司匹林又名乙酰水杨酸,在1897年由德国化学家Felix Hoffmann 博士首次合成。

为经典的非甾体抗炎药,其药效主要与剂量有关。

大剂量服用可以消炎;中剂量服用可以镇痛;小剂量服用可以防止血小板凝结引发血管堵塞,同时可以有效地防止血栓引起的心血管疾病等。

近年来,随着对其药理作用的不断深入研究,又发现许多临床新用途。

如可改善原发性高血压患者血管内皮功能,抑制白血病细胞的增殖,防治老年痴呆等,成为目前比较活跃的常用药之一。

阿司匹林同时抑制了COX1和COX2的生物活性,在抗炎同时损害胃黏膜,长期大剂量服用易造成胃溃疡和胃出血。

因此,选择合适的剂型将有利于减少阿司匹林对胃肠道的不良反应。

肠溶剂型则成为研究的热门话题之一。

阿司匹林用特殊肠溶材料包衣后,由于肠溶衣在酸性条件下即胃液中不溶解,而在碱性条件下即肠液中溶解并释放出药物达到治疗的目的,因此,可有效防止阿司匹林在胃中分解失效,避免对胃黏膜的刺激。

1 肠溶片阿司匹林新剂型研究中研究最多且应用最广的即为阿司匹林肠溶片。

将乙酰水杨酸(80目)与淀粉、微晶纤维素、羧甲基淀粉钠用40目不锈钢筛混合均匀。

加入预先配好的2%HPMC 醇水溶液(内含酒石酸或枸橼酸)制成软材,通过18目不锈钢筛或尼龙筛制粒,湿颗粒于50~60℃烘箱干燥1~2小时,干颗粒过18目筛整粒,加入滑石粉充分混匀后压片,然后再用适宜的肠溶包衣材料(如丙烯酸树脂II号)包衣即可。

Manoj等将其制成可供咀嚼的阿司匹林肠溶片,临床用于预防缺血发作、心肌梗死、心房颤动或其他手术后的血栓形成,方便患者的服用,用于急救用药。

现行的《国家食品药品监督管理局标准》( 国标法) 规定小剂量阿司匹林肠溶片含量测定采用酸碱中和法,操作繁琐,用两种滴定液,滴定终点不明显,难以辨认,容易造成误差;辅料对小剂量阿司匹林肠溶片含量测定影响较大,按照现行标准进行含量测定发现,含量测定结果与理论含量相比一般偏高4.5%~6%。

阿司匹林的微型制备方法研究

阿司匹林的微型制备方法研究

阿司匹林的微型制备方法研究中国教育科研杂志2009年第21卷第12期(总第170期阿司匹林的微型制备方法研究广西桂林师范高等专科学校(541001)张业覃雯王凯刘贤贤3l摘要采用微型化学实验探讨了制备阿司匹林的方法,即在浓硫酸的催化下,水杨酸经过与乙酸酐发生酰化反应得到产品.实验结果表明,在无水条件和一定的反应温度(50~80℃)下,阿司匹林的微型化学实验既节约实验经费,缩短反应时间,减少污染,又可适当增加产量,有效地提高了实验效率.关键词阿司匹林合成微型实验AbstractThemicroscalechemicalexperimentofsynthesizingaspirinwasstudied.Withthec atalysisofsulfuricacid,aspirinWaspreparedbythe acetylationreactionofsalicyhcacidandaceticanhydride.Theresultsindicatedthat,underthe anhydrousconditionsandatthereactiontemperature5O~8O℃.themieroscalechemicalexperimentsynthesizingaspirincoulds~tveexperimentalfu nding,shortenthereactiontimeandreducecontaminant.furthermore,itcouldincreasetherateofproduction.Sotheefficiencyhasbeengreatlyimprov ed.KeywordsAspirinSynthesisMicroscaleexperiment中图分类号:06-3文献标识码:A文章编号:1845-5820(2009)12J-(0031)一(02)微型化学实验是以尽可能少的化学试剂来获取所需化学信息的实验方法与技术,是近代发展起来的一门实验技术.相对常规化学实验而言,微型化学实验不仅可以节省仪器,药品,而且操作安全,携带方便,还可激发学生的学习兴趣,培养学生的环保意识,强化学生的动手能力,有助于全面提高学生素质,符合绿色化学的宗旨.当前,如何使微型实验在深化药物化学实验教学改革,强化学生实验技术f~~iJll练,创新意识,节约时间和经费,智能开发及环保意识的培养上发挥更大的作用,是丞待研究的研究课题0?.阿司匹林学名乙酰水杨酸,不仅是常用的退热止痛药,近年来还发现其具有抑制血小板凝聚,预防和治疗老年人心血管系统疾病等作用].阿司匹林的制备是药物化学实验的典型实验之一b],采用微型化学实验来研究阿司匹林的制备,对于以微型化学实验理念来探讨药物化学实验具有重要的指导意义.因此,本文选择阿司匹林的制备来进行微型化学实验研究.一,实验部分(一)实验原理.在浓硫酸的催化下,水杨酸通过与乙酸酐发生酰化反应而得,合成路线如下:O洲+(CH3cO)2oc,cH.+CH3COOHcOOH~COOHSchemel(--)实验仪器与药品.微型实验仪器一套(云南大学研制);乙酸酐(AR);醋酸酐(AR);水杨酸(AR);浓硫酸(AR);无水乙醇(AR).(三)实验步骤.称取O.1g水杨酸,放入15mL圆底烧瓶中,加入0.2mL乙酸酐,用滴管加入半滴浓Hso4,摇匀,待水杨酸溶解后将圆底瓶放在50%水浴中,5rain后取出圆底烧瓶,冰浴冷却,加入10.0mL冷水,出不规则白色晶体,继续冷却l0 min,过滤,干燥后得产品0.12g,产率90%,熔点133~135~2.用3 mL95%fl~J乙醇水溶液重结晶,冷却后析出白色结晶,减压过滤.抽干,将精产品转入表面皿中,干燥,熔点134.9—135.7℃(文献值135136qc).二,结果与讨论(一)微型实验和常规实验相比较.与常规实验相比,微型实验试剂用量大大减少,水杨酸的用量由10.0g减少至0.1g,乙酸酐的用量由25.0mL缩减至0.2mL,浓硫酸的用量由5滴降低到0.5滴,且重结晶的水和乙醇用量也大大减少,产率也有所升高,具体结果见表1.由此可见,阿司匹林的微型实验合成方法可以大大节约实验经费,减少污染,同时对学生进行规范操作也提出更高,更严的要求,有利于培养学生严谨的科学态度.表1微型实验和常规实验的比较Table1Thecomparisonofmicroscaleexperimentandgeneralex- penment实验方法水杨酸(gJ乙酸酐(mL)浓浓硫酸(滴)冷水(mL)产率微型实验O.1O.2O.510.09O.1%常规方法1O.025.O5250.087_3%(二)反应温度的影响.通过分析阿司匹林的反应原理,可以看出该反应属于放热反应,且需要吸收能量来引发反应进行【6】, 如果反应体系吸收了过高的能量,待反应被引发后迅速放热,反应体系的能量可能会促使浓硫酸碳化有机试剂,或引起水杨酸的自身缩合等反应,引人副产物,导致反应颜色加深或反应不成功,因此反应温度的控制是实验成功的关键.结合以上的1.3部分的实验步骤,笔者就不同的反应温度对产率的影响分别进行了研究,并一~作了对比,结果见表2.表2反应温度对反应的影响Table2Theeffectofreactiontemperaturetosynthesisreaction反应温度(℃)反应体系的颜色反应时间(min)产率)40无色透明2087-250无色透明59O.160无色透明589.670无色透明590.080无色透明589.890棕色585.4100棕黑色560_3l1O棕黑色552.7由表2可以看出,在反应温度为40,反应体系不能迅速吸收热量而导致反应时间加长;在反应温度高于90%时,反应体系的颜色会由于有机试剂被浓硫酸碳化而加深,且(下转第33页)国教育科研杂志2009年第21卷第12期(总第170期)体之间的相互作用.进入九十年代后,隐喻的认知研究一方面继承了雷考夫和约翰逊的经验论,同时又吸收了皮亚杰的建构论思想,继续向纵深发展.(二)中国隐喻研究中对人本原则的揭示.在中国隐喻研究有其深厚的传统,大致可分为认知哲学,诗学,修辞学三个研究阶段与研究模式.《周易》,《文心雕龙》,《文则》分别代表了这三个隐喻研究的最高成就.1,秦汉以前的研究重点为认知哲学.先秦时期初创了后世的隐喻思想,同时偏重于哲学认知层面,实践了"近取诸身,远取诸物"的原则.由符号(卦象)和文字(卦辞)组成的隐喻奇书《周易》是这~阶段的最高成就代表.《周易》最早提出了"近取诸身,远取诸物"的隐喻原则.这一原则揭示了隐喻的本质和工作机制,指明了后世中国隐喻研究的整体布局和发展思路.2,汉魏至唐宋时期为诗学研究阶段.汉魏至唐宋时期,隐喻认知方面的研究逐渐淡化,转入隐喻的诗学功能研究.这一阶段的最高成就是刘勰的《文心雕龙》.这部作品注重从文学本身探究隐喻的特性与作用,系统全面地论述了隐喻的定义,特征,分类与功能.3,宋代以后至清末为修辞学研究阶段.其中成书于十二世纪末的修辞学专着《文则》归纳出"比喻十法",代表了这一阶段的修辞学研究最高成就.这一时期也有一些隐喻认知方面的研究.明代《喻林》序言中指出:"故夫立言者必喻,而后其言至;知言者必喻,而后其理砌.岂能舍譬悟理,损象而明道乎?",意指"言事不可无譬",这可以说是唐宋以来中国认知隐喻研究的空谷足音.(转引自张沛《隐喻的生命》,2004:63)4,二十世纪初隐喻研究由传统进入现代时期.以朱自清,闻一多,朱光潜,钱钟书,王瑶等人为代表的一代学者对中西方隐喻研究做了初步的整合,奠定了与西方隐喻研究相侔互证的中国现代隐喻研究传统.特别是钱钟书先生更是深入发掘了隐喻研究的人本原则.他指出"把文章通盘地人化或生命化"不仅是"中国固有的文学批评的一个特点",也是一切科学,文学,哲学,人生观,—-+-一—+一一—-+一一—●一-—一一+一—●一一+一+一—一一+.-4-.+一+--4--+一+33宇宙观的概念的根源,即"我们对于世界的认识,不过是一种比喻,象征的,像煞有介事的诗意的认识".钱钟书先生的隐喻认知研究正是对"近取诸身,远取诸物"思想的回归与新证,而且与当代西方隐喻研究理念互相呼应.5,八十年代以来至今隐喻表现为多元化研究时期.随着西学东淅,中国隐喻传统把关注的目光从本土资源投向了西方当代隐喻理论,结合本土资源,介绍,评述,佐证西方当代隐喻理论,表现出水平化吸收,多元化研究的时代特色.如耿占春的《隐喻》(1993),季广茂的《隐喻视野中的诗性传统》(1998),王松亭的《隐喻的机制和社会文化模式》(1999)束定芳的《隐喻学)(2000),张沛的《隐喻的生命》(2o04)等.中国汉语学界和中国外语学界隐喻研究往往没有将中国隐喻传统和西方隐喻研究传统融会贯通,"由此出现两种研究方法上的偏差:拘泥于传统(特别是传统修辞一隅),或无视本土传统而简单引进西方隐喻理论".(张沛,2004:70)三,结语人体认知以经验为基础,在认识建构规律的作用下,原始初民选择了"近取诸身,以己度物"的方式来认知外部世界中各种抽象,复杂.陌生的事物.自然与人类不是对立的,而是同源同构同化的.隐喻就是联系二者的纽带和桥梁.隐喻设定了两种事物之间的关系,在人的肉体与宇宙万物间建立了最原始的关系.通过隐喻,自然同化为"人的自然",同时人也同化为"自然的人".人与自然得以合二为一,和谐相处.这就是隐喻的人本原则给我们的启示.参考文献1.(德)恩斯特.卡西尔着,甘阳译.人论[M].上海:20042.(德)恩斯特.卡西尔.语言与神话[M].北京:19883.束定芳.隐喻学研究[M].上海,2000.4.王松亭.隐喻的机制和社会文化模式[M].哈尔滨:19995.王铭玉.迈向二十一世纪的语言学~语言学的八大发展趋势[J].解放军外国语学院,1995;(5)6,张沛.隐喻的生命[M].北京:2004(上接第31页)反应产率降低,反应甚至会不成功;在反应温度为50~80℃时,反应体系的颜色为无色透明,产率达到90%.因此,由该研究结果可以得出结论:反应的最优反应温度为5O~8O℃.(三)其它因素的影响.结晶过程中,如果无晶体出现,可以用玻棒磨擦圆底烧瓶内壁来引发晶核的形成,以促使产品结晶.此外,也可以通过加入晶种来促使产品结晶.水分的存在会引起乙酸酐的水解,使得参与乙酰化反应的乙酸酐的量减少,从而导致反应产率降低,故无水操作是影响实验产率高低的重要的条件,反应试剂应该经过无水处理.三,注意事项(一)乙酸酐有毒并有较强烈的刺激,取用时应注意不要与皮肤直接接触,防止吸人大量蒸气.加料时最好于通风橱内操作,物料加入烧瓶后,应尽快安装冷凝管,冷凝管内事先接通冷却水.(二)浓硫酸具有强腐蚀性,应避免触及皮肤或衣物.(三)由于阿司匹林微溶于水,所以洗涤结晶时,用水量要少些,温度要低些,以减少产品损失.四,结论笔者探讨了微型化学实验制备阿司匹林的合成方法,即在浓硫酸的催化下,水杨酸通过与乙酸酐发生酰化反应得到产品.实验结果表明,适当减少试剂用量,严格限制水杨酸的干燥程度,控制反应温度在50~80"C的范围以减少副产物,可使阿司匹林的微型化学实验既节约实验经费,缩短实验时间,减少污染,又可适当增加产量,从而有效地提高了实验效率.参考文献1崴贵晴.微型化学实验与微型仪器的研制[J].化学通报,1999;(1):48~51 2.黄忠京.微型有机化学实验教学初探[JJ_广西民族大学(自然科学版),2007;13(2):106—1083.周宁怀,王德琳.微型有机化学实验[M].北京:科学出版社,19994.潘英明,黄砾,等.化学实验教学改革的趋势:微型化学实验[J].继续教育教学与研究,2005;(1):68—715.孙铁民.药物化学实验[M].北京:中国医药科学出版社,20086.惠春.药物化学实验[M].北京:中国医药科学出版社,2006。

喷雾干燥法制备红霉素肠溶缓释微囊 孙伟张 1 ,曾仁杰 1 ,景利 1 ,张勤

喷雾干燥法制备红霉素肠溶缓释微囊 孙伟张 1 ,曾仁杰 1 ,景利 1 ,张勤

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
·646 ·
红霉素原料 (1000 ×0. 7)
中国医院药学杂志 2001 年第 21 卷第 11 期 Chin Hosp Pharm November ,2001 Nov ,Vol 21 ,No. 11
表 1 回收率试验结果 ( n = 3)
红霉素微囊 (1∶3) (3000 ×0. 7)
图 1 1∶4) (3000 ×0. 7)
加入量/ mg 12. 6 25. 0 75. 1
测得量/ mg 12. 65 24. 79 76. 08
回收率/ % 100. 42 99. 15 101. 43
·645 ·
喷雾干燥法制备红霉素肠溶缓释微囊
孙伟张1 ,曾仁杰1 ,景利1 ,张勤1 ,赵俊峰2 (1. 成都军区总医院 ,四川 成都 ,610083 ;2. 贵阳医学院药学系 96 级实习生)
[ 摘要 ] 目的 :采用喷雾干燥法制备红霉素肠溶缓释微囊 ,并考察其释放特性 。方法 :以红霉素为囊心物 , Eudragit S 100 为包 衣材料 ,蓖麻油为增塑剂 ,乙醇为溶剂 ,将囊心物与囊材按 1∶2 ,1∶3 和 1∶4 的比例喷雾干燥制备微囊 。结果 :经电镜扫描和 X2 射线衍射测定表明 ,囊心物 :囊材按 1∶4 比例制备的微囊外形圆整 ,包裹完全 ;体外释放度测定显示 ,微囊能稳定地在人工肠液 中缓慢释放 ,药物 1 h 释放量不超过 30 % ,12 h 释放量不低于 90 %。与市售红霉素肠溶片相比 ,有明显缓释作用 。结论 :喷雾 干燥法制备微囊 , 工艺稳定 、可连续操作 ,制备的红霉素微囊有很好的肠溶行为和缓释特征 。 [ 关键词 ] 喷雾干燥法 ;红霉素 ; Eudragit S100 ;微囊 [ 中图分类号 ] R943 [ 文献标识码 ] A [ 文章编号 ] 100125213 (2001) 1120645203

喷雾干燥法制备罗红霉素掩味肠溶缓释微球

喷雾干燥法制备罗红霉素掩味肠溶缓释微球

喷雾干燥法制备罗红霉素掩味肠溶缓释微球于泮力;王洪光;王超【期刊名称】《中国抗生素杂志》【年(卷),期】2011(036)008【摘要】Objective To prepare roxithromycin enteric masking microsphere by spray drying and get the optima masking technique and study the characterization of microsphere. Methods Orthogonal designing was applied to investigate and optimize the technique operation of spray drying .Influence of the polymer material Eudragit L100 dosage, the ratio of core and polymer material were studied using embedding ratio(ER)as a standard;also, the masking effect was investigated. Results The optimal condition for spray drying technique is as follows, temperature as 145℃. Spray pressure as 0.35MPa. Feeding rate as 15mL/min, the best ratio of core and polymer material as 1:4, By which, the ratio of embed (ER) could reach 96.38% with good masking effect, the drug released was no more than 30% in lh, not less than 99% in 24h. Conclusion The roxithromycin microspheres prepared by the established method were round and full, with satisfying ER, good masking effect and slow release.%目的采用喷雾干燥法制备罗红霉素肠溶掩味微球,得到最佳掩味工艺.并对微球性质进行考察.方法以包封率为评价指标,对喷雾干燥工艺参数进行正交优化设计,并考察EudragitL100用量、微球芯材比对微球性能的影响,同时对掩味效果进行考察.结果最优工艺条件为进风温度145℃;进料速度10mL/min;喷雾压力0.3MPa;药物与EudragitL100材料的质量比1:4;制得的微球外形良好,包封率可达96.38%;药物掩味效果良好;药物在人工肠液中缓慢释放,药物1h释放量不超过30%,24h不低于99%.结论所得制备工艺可行,实验条件制得的微球球形圆整,包封率较高,掩味效果良好,有很好的缓释特征.【总页数】4页(P613-616)【作者】于泮力;王洪光;王超【作者单位】青岛科技大学药学系,青岛,266042;青岛科技大学药学系,青岛,266042;青岛科技大学药学系,青岛,266042【正文语种】中文【中图分类】R978.1+5【相关文献】1.喷雾干燥法制备阿奇霉素掩味肠溶缓释微球 [J], 牟颖林2.喷雾干燥法制备桃金娘油肠溶微囊 [J], 曾雪萍;李可;唐星;3.乳化溶剂扩散法制备罗红霉素肠溶微球及影响因素考察 [J], 贺颖;冯丽莉;陶安进;崔福德4.喷雾干燥法制备诺西肽掩味微囊的研究 [J], 潘岳峰;韩静;杨静;殷莉梅;张立军;何建勇5.喷雾干燥法制备麦冬皂苷肠溶微球的影响因素 [J], 冯怡;沈岚;徐德生;林晓因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碍组血脂变化相类似,3组HDL2C含量都下降,而TC水平在各组之间差异无显著性(P>0.05)。

2.4 10例首次发病患者用药前、后血脂检测结果的比较 10例新病人在用药前血TC为(4.3±0.4) mmol・L-1,TG(1.2±0.3)mmol・L-1,HDL2C(1.4±0.2)mmol・L-1;患者在用药的第6周后血HDL2 C含量下降到(1.2±0.3)mmol・L-1,用药第8周后TG水平升高到(1.9±0.5)mmol・L-1。

与用药前及对照组比较,差异有显著性(P<0.05)。

表2 阴性、阳性和脑器质性3组之间血脂检测结果的比较( x±s)组别例数TG HDL2C TC阴性组53 2.7±0.83 1.1±0.4 4.4±0.8阳性组60 2.0±0.8 1.2±0.4 4.4±0.7器质性25 2.7±0.93 1.1±0.4 5.1±0.8注:3阴性;器质性组和阳性组TG水平相比较,P<0.05。

3 讨论经典抗精神病药物(如吩噻嗪类)主要是通过阻断多巴胺D2受体而发挥其抗精神病作用,同时它们还作用于D1受体、组胺H1受体、52HT2受体、乙酰胆碱受体等。

由于这类药物对受体作用的多样性,以及它们的治疗剂量和中毒剂量之间的范围很窄,而目前临床医生在药物的选择、疗效预测和剂量调节方面仍需凭借经验,由此而造成药物治疗剂量往往成了中毒剂量的潜在危险。

如广泛的认知功能的损害,则与H1受体阻断后所产生的镇静作用、D2受体阻断后引起的运动迟缓有关。

本文的实验结果表明,长时间服用吩噻嗪类药物的精神分裂症组、脑器质性精神障碍患者血脂含量与正常人相比,差异有极显著性。

近年来,流行病学前瞻性研究资料指出,高TG 有致AS的作用[4],当TG>1.3mmol・L-1时,sLDL 升高并易于通过动脉壁内皮细胞进入内皮下间隙。

在血循环中停留时间较长因其富含TG而抗氧化能力弱,易于被巨噬细胞摄取而促使泡沫细胞的形成[5],加速AS的发生、发展。

在本组病例中,阴性和脑器质性二组患者血脂变化的异常特征极为相似。

传统的抗精神病药物对受体作用的低选择性,引起血脂代谢异常,加上疾病病程的慢性化等因素作用下,最后可导致患者阴性症状和认知障碍加重。

我们的实验结果显示,吩噻嗪类药物引起的高TG 和低HDL2C有致AS的作用。

高TG可刺激内皮细胞产生纤溶酶原激活抑制物(PA I2Ⅰ)及增加凝血因子Ⅶ的活性,并促进血栓形成。

sLDL的生成与TG 水平有非常密切的因果关系。

高TG血症、低HDL2 C以及sLDL增多常同时存在,代谢上紧密相联系Austin等[6]称之为致粥样硬化性脂蛋白表型(atherogenic lipoprotein phenotype),这是一种高度危险的血脂类代谢紊乱综合征。

上述这些都是诱发心、脑血管疾病潜在的生物学危险因素,因此,临床医生一定要高度重视吩噻嗪类药物所引起高TG血症的危险性。

在治疗精神分裂症的同时服用扩管、降脂、降粘等药物,以改善和保护患者的认知功能,预防和降低诱发心、脑血管疾病的危险因素。

参考文献1 Davignon J,Cohn J S.Triglyceride:Arisk factor for coronary heart disease[J].Atherosclerosis,1996,124:572 文芳,李秋英,白雪光等.吩噻嗪类对精神分裂症患者血清高密度脂蛋白及其亚组分胆固醇含量的影响[J].中国药学杂志,1990, 25(6):3453 文芳,程自立,白雪光等.吩噻嗪类药物对血清载脂蛋白、脂蛋白含量的影响[J].中华精神科杂志,1998,31(1):1084 Castelli WP.Lipids risk factors and ischemic heart disease[J].Atherosclerosis,1994,124:15 Tribble DL,Holl L G,Wood PD,et al.Variations in oxidative suscep2 tibility among six low density lipoprotein subfractions of differing density and particle size[J].Arteriosclerosis,1992,93:1896 Austin MA,K ing MC,Vanizan KM,et al.Atherogenic lipoprotein phenotype.Aproposed genetic marker for coronary heart disease[J].Circulation,1990,82:495收稿日期:1999210228喷雾干燥法制备阿司匹林肠溶微囊的实验研究孙伟张1,曾仁杰1,景利1,张勤1,雷蕾2 (1成都军区总医院,四川成都610083;2贵阳医学院药学系95级实习生)摘要 目的:采用喷雾干燥法制备阿司匹林肠溶微囊,建立微囊质量评价方法。

方法:采用丙烯酸树脂Ⅱ号为包衣材料,篦麻油为增塑剂,乙醇为溶剂,阿司匹林为囊心物,将囊材与囊心物按1∶2和1∶4的比例喷雾干燥制成微囊。

结果:经扫描电镜和差示量热扫描法测定表明,微囊包裹形成。

囊心物∶囊材按1∶4较好,微囊能迅速在人工肠液中释放,45min释药达到75%,肠溶片45min释药低于60%。

结论:喷雾干燥法制备肠溶微囊,方法简单,工艺稳定,改变丙烯酸树脂Ⅱ号比例可控制药物释放速率。

关键词 喷雾干燥法;阿司匹林;丙烯酸树脂Ⅱ号;肠溶微囊;药物释放中图分类号:R971+.1 文献标识码:A 文章编号:100125213(2000)0720391203Study on preparation of enteric microcapsules of aspirin by spray dryingSun Weizhang,Zeng Renjie,Jing Li,et al(Department of Pharmacy of Chengdu G eneral Hos pital of PLA,Chengdu610083)ABSTRACT OB JECTIVE:To prepare enteric microcapsules of aspirin by spray2drying technique.METH ODS:Spray2drying using eudragitⅡas coating material,castor oil as plasticizers,alcohol as solvent where the drug was dissolved as the ratio to coating material was1∶2and1∶4.RESU LTS:The microcapsules were characterized by scanning electron microscopy(SEM)and differential scanning calorimetry(DSC).The release of microcapsules(1∶4)was75percent in artificial intestinal juice within45min.Meanwhile,only less than60percent of enteric2coated tablet release was obtained.CONC L USIONS:Spray2drying is a simple method with a reliability pro2 cess,the released rate of microcapsules can be controlled by changing the ratiot of EudragitⅡ.KE Y WOR DS Spray2drying;Aspirin;EudragitⅡ;enteric microcapsules;drug release 喷雾干燥法在药物微囊化中应用已相当广泛,它直接将囊心物与囊材的混合液分散成雾滴并迅速蒸发形成微囊,具有一次成囊、快速、易批量生产等特点。

国内外已有大量文献报道[1~3]。

阿司匹林(Aspirin)为传统的解热镇痛药,近年来发现阿司匹林有抗血栓、预防结肠癌和爱滋病的作用。

《中国药典》1995年版收载了阿司匹林肠溶片,有报道不同厂家的阿司匹林肠溶片体外溶出参数有显著差异,肠溶片溶出度存在严重问题[4.5]。

本文采用丙烯酸树脂Ⅱ号(EudragitⅡ)为包衣材料,阿司匹林为囊心物,按不同比例,经喷雾干燥制成微囊,并与肠溶片进行了体外释药对比实验。

现报道如下:1 材料和仪器1.1 药品 阿司匹林(山东新华制药股份有限公司);丙烯酸树脂Ⅱ号(江苏连云港制碘厂);95%乙醇(重庆化学试剂总厂,分析纯);蓖麻油(湖北天门市第二制药厂);阿司匹林肠溶片(广西桂林制药厂);其它试剂均为分析纯。

1.2 仪器 瑞士Buchi190Mini Spray Dryer;美国Beckman DU2640紫外可见分光光度仪;德国Met2 tller AE2200电子天平;日本Olympus光学显微镜; 79HW21型磁力搅拌器(江苏金坛市金城国胜实验仪器厂);ZRS24型智能溶出仪(天津大学无线电厂);CDR2L型差示扫描量热仪(上海天平仪器厂)。

2 方法与过程2.1 微囊的制备 称取一定量的丙烯酸树脂Ⅱ号,用95%乙醇溶解使浓度为2%,备用。

将阿司匹林溶解于丙烯酸树脂Ⅱ号溶液中,阿司匹林和丙烯酸树脂Ⅱ号按1∶2和1∶4的比例配成喷雾液,加入蓖麻油适量,充分搅拌均匀,进行喷雾干燥。

喷雾条件:进风温度:(80~84)℃;出风温度:(60~62)℃;加料速度:10ml・min-1;压缩空气流量:600NL・h-1;抽气泵:10。

2.2 含量测定2.2.1 测定方法选择 以95%乙醇为溶媒,微囊经乙醇溶解后,在240~360nm之间扫描同时对空白辅料、阿司匹林进行扫描,可见辅料对主药的测定有一定干扰。

参考文献[6]采用一阶导数法,发现在(289±1)nm处辅料的导数值为零,而阿司匹林有一谷振幅,因此选定在(289±1)nm处测阿司匹林的含量。

2.2.2 标准曲线的绘制 精密称取阿司匹林0.1001g,配成10,20,30,40,50,60μg・ml-1的溶液,于(289±1)nm处测一阶导数值,作标准曲线,得回归方程ΔA=1.064×10-3-2.5×10-4C(r= 0.9999)。

相关文档
最新文档