2011年高三数学复习统计案例部分
2011年高考数学试题分类汇编13——概率与统计(理科)
概率与统计(理)江苏 5 .从 1, 2, 3,4 这四个数中一次随机取两个数,则此中一个数是另一个的两倍的概率为 ______1答案:3安徽理( 20)(本小题满分13 分)工作人员需进入核电站达成某项拥有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超出10 分钟,假如有一个人10 分钟内不可以达成任务则撤出,再派下一个人。
此刻一共只有甲、乙、丙三个人可派,他们各自能达成任务的概率分别p , p , p ,假定 p , p , p 互不相等,且假定各人可否达成任务的事件互相独立.(Ⅰ)假如按甲最初,乙次之,丙最后的次序派人,求任务能被达成的概率。
若改变三个人被派出的先后次序,任务能被达成的概率能否发生变化?(Ⅱ)若按某指定次序派人,这三个人各自能达成任务的概率挨次为q , q , q ,此中q , q , q 是 p , p , p 的一个摆列,求所需派出人员数目X 的散布列和均值(数字希望) EX ;(Ⅲ)假定p p p ,试剖析以如何的先后次序派出人员,可使所需派出的人员数目的均值(数字希望)达到最小。
(20)(本小题满分13 分)此题考察互相独立事件的概率计算,考察失散型随机变量及其分布列、均值等基本知识,考察在复杂情境下办理问题的能力以及抽象归纳能力、合情推理与演绎推理,分类读者论论思想,应意图识与创新意识.解:( I)不论以如何的次序派出人员,任务不可以被达成的概率都是(1 p1 )(1 p2 )(1p3 ) ,所以任务能被达成的概率与三个被派出的先后次序没关,并等于1 (1 p1 )(1 p2 )(1 p3 ) p1p2p3p1 p2p2 p3p3 p1p1 p2 p3 .( II)当挨次派出的三个人各自达成任务的概率分别为q1 , q2 , q3时,随机变量X的散布列为X123P q1(1 q1 )q2(1 q1 )(1q2 )所需派出的人员数目的均值(数学希望)EX 是EX q12(1 q1 ) q23(1 q1 )(1 q2 ) 3 2q1q2q1q2 .( III)(方法一)由(II)的结论知,当以甲最初、乙次之、丙最后的次序派人时,EX 3 2 p1p2p1 p2 .依据常理, 先派出达成任 概率大的人,可减少所需派出的人 数目的均.下边 明: 于 p 1 , p 2 , p 3 的随意摆列 q 1 , q 2 , q 3 ,都有3 2q 1q 2 q 1q 2 3 2 p 1 p 2 p 1 p 2 , ⋯⋯⋯⋯⋯⋯⋯⋯(*)事 上,(3 2q 1 q 2 q 1 q 2 )(3 2 p 1p 2 p 1 p 2 )2( p 1 q 1 ) ( p 2 q 2 ) p 1 p 2q 1q 22( p 1 q 1 ) ( p 2 q 2 ) ( p 1 q 1 ) p 2 q 1 ( p 2q 2 )(2 p 2 )( p 1 q 1 ) (1 q 1 )(( p 2 q 2 )(1 q 1 )[( p 1 p 2 ) ( q 1q 2 )]0.即( *)建立 .(方法二)( i )可将( II )中所求的EX 改写 3(q 1 q 2 ) q 1 q 2 q 1 , 若交 前两人的派出 序,3 (q 1 q 2 ) q 1 q 2 q 1, .由此可 ,当q 2q 1 ,交 前两人的派出 序可减小均.( ii )也可将( II )中所求的EX 改写 32q 1 q 2 q 1q 2 ,或交 后两人的派出 序,32q 1 q 3 q 1q 3 .由此可 ,若保持第一个派出的人 不 ,当q 3q 2 ,交后两人的派出 序也可减小均.合( i )( ii )可知,当 (q 1 ,q 2 ,q 3 )( p 1 , p 2 , p 3 ) , EX 达到最小 . 即达成任 概率大的人 先派出,可减小所需派出人 数目的均 , 一 是符合常理的 .北京理 17.本小 共13 分以下茎叶 了甲、 乙两 个四名同学的植 棵 。
2011年高考数学试题分类新编——概率统计与排列组合二项式定理
概率(g àil ǜ)统计与排列组合二项式定理安徽理 (12)设,则 .(12)【命题意图】本题考查二项展开式.难度中等.【解析】,,所以.(20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化? (Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目的分布列和均值(数字期望);(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于(II )当依次派出的三个人各自完成任务的概率分别为时,随机变量X 的分布列为X 1 23P所需派出的人员数目(shùmù)的均值(数学期望)EX 是(III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时,根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于的任意排列321,,q q q ,都有……………………(*)事实上,即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为,或交换后两人的派出顺序,则变为.由此可见,若保持第一个派出的人选不变,当时,交换后两人的派出顺序也可减小均值.综合(i )(ii )可知,当时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )(B)(C)(D)(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为.故选D.(20)(本小题满分(mǎn fēn)10分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份2002 2004 2006 2008 2010 需求量(万吨)236246257276286 (Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程;(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
2011年高考数学一轮复习精品课件:统计和统计案例
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 规律总结 规律总结
│ 规律总结
│ 规律总结
│ 变量的相关性与统计案例
│ 知识梳理
知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 要点探究
要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 用样本估计总体
│ 知识梳理
知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 知识梳理
│ 要点探究 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 要点探究
│ 规律总结 规律总结
│ 规律总结
│ 规律总结
2011高考数学总复习课件11.4 统计案例
解析
r>0且丁最接近1,残差平方和越小,相关性
越高,故选D.
3. 已知 x 、 y 之间的数据如表所示,则回归直线过点
( D )
x y A.(0,0) 解析 1.08 2.25 1.12 2.37 1.19 2.40 C.(0, y ) 1.28 2.55 D.( x , y )
B.( x ,0)
3 7.309
4
5
6
7
8 5.670
9
10
6.991 6.640
6.288 6.182
5.421 5.318
相应的散点图如图所示,从图中可以看出,变换的 样本点分布在一条直线附近,因此可以用线性回归 方程拟合.
由表中数据可得r≈-0.996.|r|>0.75.认为x与z之
ˆ ≈-0.298, 间具有线性相关关系,由表中数据得 b
„,(xn,yn)中,回归方程的截距和斜率的最小二乘
ˆ b
i 1
( xi x)( yi y )
i 1
n
( xi x)
n
2
,
a ˆ
ˆx y b
.
其中 x
1n xi n i 1
, y
1n yi n i 1
, ( x, y )
称
为样本点的中心. (4)相关系数
解
2
(1) x 66.8, y 67.01,
2
x 4 462.24, y 4 490.34,
2 xi i 1 10
44 794,
10
10
i 1
yi2
44 941.93, xi yi 44 842.4
i 1
2011届高考数学第一轮复习精品试题:统计.doc
2011届高考数学第一轮复习精品试题:统计必修3 第2章统计§2.1 抽样方法重难点:结合实际问题情境,理解随机抽样的必要性和重要性,在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法.考纲要求:①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.经典例题:某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?当堂练习:1.为了了解全校900名高一学生的身高情况,从中抽取90名学生进行测量,下列说法正确的是()A.总体是900 B.个体是每个学生C.样本是90名学生D.样本容量是90 2某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:①1000名考生是总体的一个样本;②1000名考生数学成绩的平均数是总体平均数;③70000名考生是总体;④样本容量是1000,其中正确的说法有:()A.1种B.2种C.3种D.4种3.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为()A.120 B.200 C.150 D.1004.从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为()A.1000 B.1200 C.130 D.13005.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5,10,15,20,25,30 B.3,13,23,33,43,53C.1,2,3,4,5,6D.2,4,8,16,32,486.从N个编号中抽取n个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为()A.Nn B.n C.Nn⎡⎤⎢⎥⎣⎦ D.1Nn+⎡⎤⎢⎥⎣⎦7.某小礼堂有25排座位,每排有20个座位。
2011年高考数学统计及统计案例配套试卷及答案
2011年《新高考全案》高考总复习配套测评卷单元检测卷(十二)统计及统计案例时间:90分钟,满分:150分一、选择题(共8小题,每小题7分,满分56分)1.在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码,这是运用哪种抽样方式来确定中奖号码的?( )A .抽签法B .系统抽样C .随机数表法D .分层抽样 由题意知中奖号码为0068,0168,0268,…,9968,符合系统抽样. B2.一个容量为20的样本数据分组后,组距与频率如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4,(60,70),2.则样本在区间(-∞,50)上的频率是( )A .0.20B .0.25C .0.50D .0.70 频率=频数样本容量=2+3+4+520=1420=0.7.D3.某高中在校学生2000人,高一级与高二级人数相同并都比高三级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二级参与跑步的学生中应抽取( )A .36人B .60人C .24人D .30人全校参与跑步有2000×35=1200人,高二级参与跑步的学生=1200×32+3+5×2002000=36.A4.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K 为( )A .40B .30C .20D .12抽样距=120030=40.A5.线性回归方程y ∧=bx +a 必过点( )A .(0,0)B .(x ,0)C .(0,y )D .(x ,y )因为a =y -b ·x ,所以y ∧b 2-4ac =bx +y -b x ,当x =x 时,y =y ,所以回归方程过点(x ,y ).D6.如图表示甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是( )A.56分 B .57分 C .58分D .59分甲的中位数是32,乙的中位数是26,故中位数之和是58分. C7.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A .若k 2的观测值为k =6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D .以上三种说法都不正确 C8.(2009·四川高考题)设矩形的长为a ,宽为b ,其比满足b ∶a =5-12≈0.618,这种矩形给人以美感称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定用以上各数据与0.618(或0.6)的差进行计算,以减少计算量,说明多思则少算.甲批次的平均数为0.617,乙批次的平均数为0.613.A二、填空题(共6小题,每小题7分,满分42分) 9.(2009·湖北高考题)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在内的频数为________,数据落在(2,10)内的概率约为________.观察直方图易得频数为200×0.08×4=64,频率为0.1×4=0.4. 64 0.4 10.(2009·重庆高考题)从一堆苹果中任取5只,称得它们的质量为(单位:克): 125 124 121 123 127,则该样本标准差s =________(克)(用数字作答).因为样本平均数x =15(125+124+121+123+127)=124,则样本方差s 2=15(12+02+32+12+32)=4,所以s =2211.(2009·辽宁高考题)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为 980h,1020h,1032h ,则抽取的100件产品的使用寿命的平均值为________h.从第一、二、三分厂的抽取的电子产品数量分别为25,50,25,则抽取的100件产品的使用寿命的平均值为980+2×1020+10324=1013.101312.在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下表:若y 与x x =30,y=93.6, 5i =1x 2i =7900, 5i =1x i y i =17035,∴回归直线的斜率 b = 5i =1x i y i -5x y5i =1x 2i -5x 2=17035-5×30×93.67900-4500≈0.8809.0.8809 13.(2009·广东高考题)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:则图中判断框应填________,输出的s =________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)该程序框图是统计该6名队员在最近三场比赛中投进的三分球总数,所图中判断框应填i≤6,输出的s=a1+a2+…+a6.i≤6;a1+a2+…+a614.给出下列命题:①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.其中错误的命题序号是________(将所有错误命题的序号都填上).本题三个命题重点考查简易逻辑用语、统计案例和统计等基本概念.①中原命题的非命题是“对∀x∈R,都有x2+x+1≥0”,所以①错误;②中说法不正确,“患慢性气管炎和吸烟有关”只是说明“患慢性气管炎”和“吸烟”有一定的相关关系,但不是确定关系,所以“有吸烟习惯的人,未必患慢性气管炎”;③中,由于抽样比为26300+270+210=1 30,所以高一学生被抽到的人数为130×300=10人,高二学生被抽到的人数为130×270=9人,高三学生被抽到的人数为130×210=7人,尽管高三学生抽到的人数少,但每个学生被抽到的机会均等,所以“高三学生被抽到的概率最小”这种说法错误.①②③三、解答题(共4小题,满分52分)15.(2009·广东高考题)(本小题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差.(1)由茎叶图可知:甲班身高集中于160∶179之间,而乙班身高集中于170∶180之间。
江苏专用2011高考数学二轮复习专题六第2讲统计与充计案例(精)
频率
(2)估计数据落在 1.15,1.30中的概率为多少;
(3) 将上面捕捞的 100 条鱼分别作一记号后再放回水 库.几天后再从水库的多处不同位置捕捞出 120 条鱼, 其中带有记号的鱼有 6 条. 请根据这一情况来估计该水 库中鱼的总条数.
解 (1)根据频率分布直方图可知,频率=组距 ×(频率/ 组距),故可得下表: 分组 频率 1.00,1.05 0.05 1.05,1.10 0.20 1.10,1.15 0.28 1.15,1.20 0.30 1.20,1.25 0.15 1.25,1.30 0.02 (2)0.30+0.15+0.02=0.47, 所以数据落在[1.15,1.30)中的 概率约为 0.47. 120×100 (3) =2 000,所以水库中鱼的总条数约为 2 000. 6
主干知识梳理
1.统计 (1)抽样方法:简单随机抽样、系统抽样、分层抽样. (2)利用样本频率分布估计总体分布 ①频率分布表和频率分布直方图. ②总体密度曲线. ③茎叶图. (3)用样本的数字特征估计总体的数字特征 ①众数、中位数. x1+x2+„+xn ②平均数 x = . n ③方差与标准差 1 2 方差 s = [(x1- x )2+(x2- x )2+„+(xn- x )2]. n 1 2 2 2 标准差 s= [( x - x ) + ( x - x ) +„+ ( x - x ) ]. 2 n n 1
解 (1)因为在 20 至 40 岁的 58 名观众中有 18 名观众收 看新闻节目,而大于 40 岁的 42 名观众中有 27 名观众 收看新闻节目,所以,经直观分析,收看新闻节目的观 众与年龄是有关的.
(2)从题中所给条件可以看出收看新闻节目的共 45 人, 5 1 随机抽取 5 人,则抽样比为 = ,故大于 40 岁的观众 45 9 1 应抽取 27× =3(人). 9 (3)抽取的 5 名观众中大于 40 岁的有 3 人,在 20 至 40 岁的有 2 人,记大于 40 岁的人为 a1,a2,a3,20 至 40 岁 的人为 b1,b2,则从 5 人中抽取 2 人的基本事件有(a1, a2),(a1,a3),(a2,a3),(b1,b2),(a1,b1),(a1,b2), (a2,b1),(a2,b2),(a3,b1),(a3,b2)共 10 个,其中恰 6 3 有 1 人为 20 至 40 岁的有 6 个,故所求概率为 = . 10 5
8-1统计与统计案例
专题8 第1讲统计与统计案例一、选择题1.(2011·湛江测试)某学校进行问卷调查,将全校4200名同学分为100组,每组42人按1~42随机编号,每组的第34号同学参与调查,这种抽样方法是() A.简单随机抽样B.分层抽样C.系统抽样D.分组抽样[答案] C[解析]一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.(文)(2011·重庆文,4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3C.0.4 D.0.5[答案] C[解析]在[114.5,124.5]范围内的频数m=4,样本容量n=10,∴所求频率410=0.4. (理)(2011·四川理,1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5) 4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是()A.16B.13C.12D.23[答案] B[解析]因为[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3故[31.5,43.5)的概率为12+7+366=13,故选B.3.(2011·山东理,7)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额大约为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] 依题意:x =3.5,y =42, 又b ^=9.4,∴42=9.4×3.5+a ^. 而a ^=9.1,∴y ^=9.4x +9.1, 当x =6时,y ^=65.5,故选B.4.(2011·大连模拟)某养兔场引进了一批新品种,严格按照科学配方进行喂养,四个月后管理员称其体重(单位:kg),将有关数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据标准,体重超过6kg 属于超重,低于5kg 的不够分量.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该批兔子的总数和体重正常的频率分别为( )A .1000,0.50B .800,0.50C .800,0.60D .1000,0.60[答案] D[解析] 第二组的频率为1-0.25-0.20-0.10-0.05=0.40,所以兔子总数为4000.40=1000只,体重正常的频率为0.40+0.20=0.60.故选D.5.(文)(2011·江西文,7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x[答案] D[解析] 由图可以不难发现众数为5.中位数为5+62=5.5,平均值x =2×3+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930(理)(2011·江西理,6)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0 B. 0<r 2<r 1 C. r 2<0<r 1 D .r 2=r 1[答案] C[解析] 对于第一组数据x -=10+11.3+11.8+12.5+135=11.75,y -=1+2+3+4+55=3.∑i =15(x i -x -)(y i -y -)=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)…(x 5-x -)(y 5-y -)=1.75×(-2)+(-0.45)×(-1)+0.05×0+0.75×1+1.25×2=0.2. ∑i =15(x i -x -)2=(x 1-x -)2+(x 2-x -)2+…+(x 5-x -)2=1.752+(-0.45)2+0.052+0.752+1.252=5.3925.∑i =15(y i -y -)2=(y 1-y -)2+(y 2-y -)2+…+(y 5-y -)2=(-2)2+(-1)2+02+12+22=10, 代入公式中有r 1=0.25.3925×10=0.27.09≈0.0282.同理r 2中∑i =15(x i -x -)(y i -y -)=-4.36<0,故r 2<0,∴r 2<0<r 1,故选C.6.(2011·湖南理,4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C[解析] ∵6.635<K 2=7.8<10.828,∴我们有99%的把握认为二者有关,或者说在犯错的概率不超过1%的前提下二者有关. 7.(2011·合肥二检)甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差. 上面说法正确的是( ) A .③④ B .①②④ C .②④ D .①③④[答案] A[解析] 由茎叶图知甲同学的成绩为72,76,80,82,86,90;乙同学的成绩为69,78,87,88,92,96.故甲同学成绩的中位数小于乙同学成绩的中位数,①错;计算得甲同学的平均分为81,乙同学的平均分为85,故甲同学的平均分比乙同学的平均分低,因此②错、③对;计算得甲同学成绩的方差小于乙同学成绩的方差,故④对.所以说法正确的是③④,选A.8.(2011·东北四市联考)在2011年5月1日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:y ^=-3.2x +a (参考公式:回归方程y ^=bx +a ,a =y --b x -),则a =( )A .-24B .35.6C .40.5D .40[答案] D[解析] 价格的平均数是x -=9+9.5+10+10.5+115=10,销售量的平均数是y -=11+10+8+6+55=8,由y ^=-3.2x +a 知b =-3.2,所以a =y --b x -=8+3.2×10=40,故选D.二、填空题9.(2011·湖北文,11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.[答案] 20[解析] 属简单题,关键是清楚每一层的抽取比例都一样是n N.由于所有超市共计200+400+1400=2000家,需抽取100家,则抽取比例为1002000所以中型超市抽取400×1002000=20家.10.(文)(2011·广东文,13)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.(理)(2011·广东理,13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.[答案] 185[解析] 设儿子身高y 与父亲身高x 有关系,列表如下:∵x =13(173+170+176)=173,y =13+176+182)=176,∑i =13x i y i =173×170+170×176+176×182=91362,∑i =13x 2i =1732+1702+1762=89805, ∴b ^=91362-3×173×17689805-3×1732=1,a ^=y -b ^x =176-173=3 ∴回归直线方程为y ^=x +3, ∴x =182时,y ^=182+3=185(cm).11.(文)(2011·西城抽样)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有________名.[答案] 40[解析] 由题知,成绩大于等于80分且小于90分的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.(理)(2011·福州二检)若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.[答案] 12[解析] 若a -表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a -+3.又15∑i =15 (a i -a -)2=3,∴15∑i =15[(2a i +3)-(2a -+3)]2=15∑i =15 (2a i -2a -)2=12. 12.把容量为1000的某个样本数据分为10组,并填写频率分布表.若前3组的频率依次构成公差为0.05的等差数列,且后7组的频率之和是0.79.则前3组中频率最小的一组的频数是________.[答案] 20[解析] 设前3组中频率最小的一组的频率是x .由题意得前3组的频率之和是1-0.79=0.21,则x +(x +0.05)+(x +0.05×2)=0.21,由此解得x =0.02,即前3组中频率最小的一组的频率是0.02,相应的频数是0.02×1000=20.三、解答题13.(2010·广东文,17)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.[解析](1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共十个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),∴P(A)=610=3 5.14.(文)(2011·郑州二次质检)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分析估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.参考公式及数据:K2=(a+b)(c+d)(a+c)(b+d),[解析] 甲班优秀人数为30人,优秀率为3050=60%,乙班优秀人数为25人,优秀率为2550=50%,所以甲、乙两班的优秀率分别为60%和50%. (2)因为K 2=100×(50×50×55×45=99≈1.010,所以由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(理)(2011·广东广州)某校高三(1)班的一次数学测试成绩的茎叶图如图所示和频率分布直方图如图所示,都受到不同程度的破坏,但可见部分如下,据此回答如下问题:(1)求全班人数;(2)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)由茎叶图知,分数在[50,60)之间的频数为2,由频率分布直方图知,分数在[50,60)之间的频率为0.008×10=0.08,所以,全班人数为20.08=25(人).(2)分数在[80,90)之间的人数为25-2-7-10-2=4人,分数在[80,90)之间的频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4;[90,100]之间的2个分数编号为5,6. 则在[80,100)之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中至少有一个在[90,100]之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)共9个,故至少有一份分数在[90,100]之间的概率是915=35.15.(2011·安徽文,20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求的直线方程预测该地2012年的粮食需求量.[解析] 由所给数据分析,年需求量与年份之间近似直线上升,可对数据进行预处理如下表对预处理后的数据,容易算出x =0,y =3.2∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260∑i =15x 2i =16+4+0+4+16=40∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=26040=6.5,∴a ^=y -b ^x =3.2 ∴所求回归直线方程y -257=6.5(x -2006)+3.2即y =6.5(x -2006)+260.2(2)当x =2012时,y =6.5(2012-2006)+260.2=299.2万吨=300万吨 故预测2012年粮食需求量约为300万吨.。
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)一、选择题:1. (2011北京文)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( )(A)2 (B)3 (C)4 (D)51.【答案】C【解析】执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C2.(2011北京理)执行如图所示的程序框图,输出的s 值为( )(A )-3 (B )-12(C )13 (D )22.【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
3. (2011福建文)某校选修乒乓球课程的学生中,高一年级有30名, 高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A. 6B. 8C. 10D.12解析:由30:406:,n =可得8n =,答案应选B 。
4. (2011福建文)阅读右图所示的程序框图,运行相应的程序,输出的结果是( )A.3B.11C.38D.1234.解析:110,12310,a a =<=+=<2321110,11a a =+=>=,答案应选B 。
5. (2011广东理) 设S 是整数集Z 的非空子集,如果S b a ∈∀,,有S ab ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,T ∪V=Z, 且T c b a ∈∀,,,有T c ab ∈,;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是( )A. T,V 中至少有一个关于乘法是封闭的B. T,V 中至多有一个关于乘法是封闭的C. T,V 中有且只有一个关于乘法是封闭的D. T,V 中每一个关于乘法是封闭的5. 解析:(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ,若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D 。
2011年高考文科数学试题汇编----概率与统计(学生用)
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
概率与统计(文)江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______安徽文(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A)110(B)18(C)16(D)15安徽文(20)(本小题满分10分)(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y bx a=+;(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.北京文16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.福建文4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A.6 B.8 C.10 D.12福建文7.如图,矩形ABCD中,点E为边CD的重点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A.14B.13C.12D.23福建文19.某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现求a、b、c的值;5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2011版高三数学一轮精品复习学案:第十章统计、统计案例(10.1随机抽样)
2011版高三数学一轮精品复习学案:第十章统计、统计案例【知识特点】1.统计中所学的内容是数理统计中最基本的问题,通过这些内容主要来介绍相关的统计思想和方法,了解一些有关统计学的基本知识,并能够应用几个基本概念、基本公式来处理实际生活中的一些基本问题。
2.统计案例为新课标中新增内容,主要是通过案例体会运用统计方法解决实际问题的思想和方法。
增加了统计和统计案例后,使得高中数学的整个体系更加完善了,有利于开阔数学视野,丰富数学思想和方法。
【重点关注】1.从对新课标高考试题的分析可以发现,主要考查抽样方法、各种统计图表、样本数字特征等。
对这部分的考查主要以选择题和填空题的形式出现。
2.统计案例中的独立性检验和回归分析也会逐步在高考题中出现,难度不会太大,多数情况下是考查两种统计分析方法的简单知识,以选择题和填空题为主。
【地位与作用】《全国新课程标准高考数学考试大纲》中对考生能力要求明确界定为空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识等六个方面,其中数据处理能力是首次提出的一个能力要求,这定义为:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。
数据处理能力主要依据统计(高考考试大纲对知识点要求如下表所示)或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题,对统计的要求已提升到能力的高度。
统计的思想方法广泛应用于自然科学和社会科学的研究中,统计的语言不仅是数学的语言,也是各学科经常引用的大众语言,统计知识是作为一个新时期公民所比备的知识。
统计学就是应用科学的方法收集、整理、分析、描述所要研究的数据资料,然后根据所得到的结果,进行推断或决策的一门实用性很强的科学。
统计这部分内容,在高中数学新课程中,主要分布在必修3第二章(约16课时)与选修2—3第三章(约9课时)。
相对于高中学生的认知水平和生活经历还相对不是很高,所以它只能属于非重点内容,所出的相关题目一般来说都相对比较简单。
高考数学试题解析分项版 专题13 统计 理
高考数学试题解析分项版 专题13 统计 理一、选择题:1. (2011年高考山东卷理科7) 某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为(A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元3. (2011年高考湖南卷理科4)通过随即询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由()()()()()d b c a d c b a bc ad n K ++++-=22算得,()8.7506050602020304011022≈⨯⨯⨯⨯-⨯=K . 附表:()k K P ≥20.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是A.在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B. 在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C. 由99%以上的把握认为“爱好该项运动与性别有关”D. 由99%以上的把握认为“爱好该项运动与性别无关”5.(2011年高考陕西卷理科9)设11(,)x y ,22(,)x y ,, (,)n n x y 是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是(A )x 和y 相关系数为直线l 的斜率 (B )x 和y 的相关系数在0到1之间(C )当n 为偶数时,分布在l 两侧的样本点的个数一定相同 (D )直线l 过点(,)x y 【答案】D【解析】:由y bx a =+得y bx a =+又a y bx =-,所以y bx y bx y =+-=则直线l 过点(,)x y ,故选D6. (2011年高考四川卷理科1)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( ) (A)16 (B)13 (C)12 (D )23答案:B解析:大于或等于31.5的数据所占的频数为12+7+3=22,该数据所占的频率约为221663=. 二、填空题:3. (2011年高考广东卷理科13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 、和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm. 【解析】185cm.22217017618217317633(173173)(170176)(170173)(176176)(176173)(182176)1(173173)(170173)(176173)x y b a y b ∧∧∧++∴====--+--+--∴==-+-+-∴=-•由题得父亲和儿子的身高组成了三个坐标(173,170)、(170,176)、(176,182),其中前面的是父亲的身高,173+170+17617617331182+3=185.x y b x a y cm ∧∧∧∧=-=∴=+∴=•孙子的身高为4.(2011年高考安徽卷江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s 【答案】7【解析】因为信件数的平均数为10685675++++=,所以方差为2s =222221[1(107)2(67)3(87)4(57)5(67)]5⨯-+⨯-+⨯-+⨯-+⨯-=7.三、解答题:1. (2011年高考辽宁卷理科19)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(II )试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x a 的样本方差()()()2222111n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为样本平均数.解析:(I )X 可能的取值为0,1,2,3,4,且()48110,70P X C === ()13444881,35C C P X C === ()224448182,35C C P X C ===()31444883,35C CP X C ===()48110,70P X C ===即X 的分布列为X 01234P170 835 1835 835 170X 的数学期望是:()1818810123427035353570E X =⨯+⨯+⨯+⨯+⨯=. 2. (2011年高考全国新课标卷理科19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表 指标值分组 [)94,90[)98,94[)102,98[)106,102[)110,106频数82042228B 配方的频数分布表 指标值分组 [)94,90[)98,94[)102,98[)106,102[)110,106频数41242328(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为)102(10294()94(422≥<≤<⎪⎩⎪⎨⎧-=t t t y从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)3. (2011年高考广东卷理科17)(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足≥175且y ≥75,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).【解析】解:(1)987,573514=⨯=,即乙厂生产的产品数量为35件。
辽宁名校2011届高三数学单元测试:统计案例、框图(20201129035938)
辽宁名校2011届高三数学单元测试一统计案例、框图注意事项:1 .本试题分为第I 卷和第n 卷两部分,满分150分,考试时间为120分钟.2 •答第I 卷前务必将自己的姓名•考号•考试科目涂写在答题卡上•考试结束,试题和答题卡一并收回.3.第I 卷每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号(ABCD 涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第I 卷(选择题,共60 分)一、选择题:本大题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题 目要求的. 1 .下列说法中错误的是()A. 如果变量x 与y 之间存在着线性相关关系,则我们根据试验数据得到的点 散布在某一条直线的附近B.如果两个变量 x 与y 之间不存在着线性关系,那么根据它们的一组数据 写出一个线性方程C. 设X , y 是具有相关关系的两个变量,且 X 关于y 的线性回归方程为 ? = bx a , b 叫做回归系 数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量y 与x 之间是否存在线性相关关系2 .对两个变量y 与x 进行线性回归分析,分别选择了4个不同的模型,它们的相关系数 程度最好的模型是C. 工序流程图中的流程线表示两相邻工序之间的衔接关系D. 结构图中基本要素之间一般为概念上的从属关系或逻辑上的先后关系 4. 为了探究色盲是否与性别有关,调查的者,那么下列说法正确的是 A .色盲与性别没有关系B .色盲与性别关系很小 C.有很大的把握说色盲与性别有关 D .ABC 都不正确5.若回归直线方程中的回归系数 b = 0,则相关指数A . r =1B . r =0D .无法确定 已知y 与x 之间数据如下表所示,则C. r = T y 与x 之间的线性回归方程过点(X i ,yJ(i =1,2, ,n)不能r 如下,其中拟合A .模型1的相关系数r 为0.98C.模型3的相关系数r 为0.503 .下列判断不正确的是A. 画工序流程图类似于算法的流程图B. 在工序流程图中可以出现循环回路B .模型2的相关系数r 为0.80 D .模型4的相关系数r 为0.25,自上而下,逐步细化350名男性中有39名色盲患者,500名女性中有6名色盲患21.1675,2.3925y 的回归方程为y =0.577x-0.448 ,如果某人36岁,那么这个( )B .在20.3%附近的可能性比较大 D .以上解释都无道理8. A .总工程师和专家办公室C.总工程师、专家办公室和开发部 : B .开发部 D .总工程师、专家办公室和所有七个部硕士 博士 合计 男 162 27 189女 143 8 151 合计305 35 340 根据以上数据,则 A .性别与获取学位类别有关 B.性别与获取学位类别无关 C.性别决定获取学位的类别 D .以上都是错误的 10 .为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了 100位居民进行调查,经过计算 2K :0.99,根据这一数据分析,下列说法正确的是父母吸烟 父母不吸烟合计 子女吸烟237 83320 子女不吸烟 678 522 1200 合计 915 6051520 ()A. 有99%的人认为该栏目优秀B. 有99%的人认为该栏目是否优秀与改革有关系C. 有99%的把握认为电视栏目是否优秀与改革有关系D. 没有理由认为电视栏目是否优秀与改革有关系 11 .为了研究子女吸烟与父母吸烟的关系,调查了 1520青少年及其家长,得数据如下则下列结论较准确的一个是 A. 子女吸烟与父母吸烟无关 B. 有95%的把握说子女吸烟与父母吸烟有关C. 有99%的把握说子女吸烟与父母吸烟有关D. 有99.9%的把握说子女吸烟与父母吸烟有关12 •为了表示n 个点与相应回归直线在整体上的接近程度,我们表示它常用n—B. '% - y C.i di =1D . ' y x -yy2.25 2.37 2.40 2.55 A . (0,0 ) B . (1.1675,0)C.(0,2.3925)D .人的年龄x 与人体脂肪含量的百分数人的脂肪含量 A . —定 20.3%C.无任何参考数据第H卷(非选择题,共90 分)二、填空题:本大题共4小题,每小题4分,共16分•把答案填在横线上.13 .有下列关系:(1)人的年龄与其拥有的财富之间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)苹果的产量与气候之间的关系;(4)森林中的同一树木,其横截面直径与高度之间的关系;(5)学生与其学校之间的关系•其中有相关关系的是_______________ .14 •在对两个分类变量进行独立性检验时,我们若计算得到K2 =4.05,则我们所做出的判断出错的可能性是_________________ .15 •对于一组数据的两个回归模型,我们计算的残差平方和分别是168和197,那么拟合效果较好的是______________________________ .16 •下面的图示中,是流程图的是__________ 。
河北省2011年高考数学一轮复习精品导学案:10.3统计案例
第十章 统计、统计案例10.3统计案例【高考目标定位】一、考纲点击1。
了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;2。
了解回归分析的基本思想、方法及其简单应用. 二、热点提示1.本部分主要内容是变量的相关性及其几种常见的统计方法.在高考中主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来了解一些基本的统计思想;2。
本部分在高考中多为选择、填空题,也有可能出现解答题,都为中低档题. 【考纲知识梳理】1.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法;(2)随机误差:线性回归模型用y bx a e =++表示,其中a b 和为模型的未知数,e 称为随机误差.(3)样本点的中心在具有线性相关关系的数据1122(,),(,),,(,)n n x y x y x y 中,回归方程的截距和斜率的最小二乘估计公式分别为:121()()ˆˆˆˆ,.()niii nii x x y y bay bx x x ==--==--∑∑ 其中1111,,(,)n ni i i i x x y y x y n n ====∑∑称为样本点的中心。
(4)相关系数①()()niix x y y r --=∑②当0r >时,表明两个变量正相关; 当0r <时,表明两个变量负相关.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常||r 大于0。
75时,认为两个变量有很强的线性相关性。
2.残差分析(1)总偏差平方和把每个效应(观测值减去总的平均值)的平方加起来即:21()nii y y =-∑(2)残差数据点和它回归直线上相应位置的差异()iiy y -是随机误差的效应,称ii i ey y =-为残差。
(3)残差平方和21()niii y y =-∑.(4)相关指数22121()()niii nii y y Ry y ==-=-∑∑2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优质教育 卓越未来统计案例1.对有线性相关关系的两个变量建立的回归直线方程y ˆ=a ˆ+b ˆx 中,回归系数bˆ与0的大小关系为 .(填序号) ①大于或小于 ②大于 ③小于 ④不小于答案 ①2.如果有90%的把握说事件A 和B 有关系,那么具体计算出的数据 22.706.(用“>”,“<”,“=”填空) 答案 >3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是 .①模型Ⅰ的相关系数r 为0.98 ②模型Ⅱ的相关系数r 为0.80 ③模型Ⅲ的相关系数r 为0.50 ④模型Ⅳ的相关系数r 为0.25 答案 ①4.下列说法中正确的有:①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 . 答案 ①③基础自测优质教育 卓越未来例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:患慢性气管炎未患慢性气管炎总计 吸烟 43 162 205 不吸烟 13 121 134 合计56283339试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到 χ2=))()()(()(2c d b d c a b a bc ad n ++++- 2分=13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.6356分所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A ={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:转速x (转/秒) 1614128 每小时生产有缺点的零件数y (件)11985(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?优质教育 卓越未来解 (1)x =12.5,y =8.25,∑=41i i iy x=438,4x y =412.5,∑=412i i x =660,∑=412i iy=291,所以r =)4)(4(42412241241y yx xyx yx i ii ii ii --∙-∑∑∑====)25.272291()625660(5.412438-⨯--=25.6565.25≈62.2550.25≈0.995 4. 因为r >r 0.05,所以y 与x 有很强的线性相关关系. (2)yˆ=0.728 6x -0.857 1. (3)要使yˆ≤10⇒0.728 6x -0.857 1≤10, 所以x ≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3 下表是某年美国旧轿车价格的调查资料,今以x 表示轿车的使用年数,y 表示相应的年均价格,求y 关于x 的回归 方程.使用年数x 1 2 3 4 5 6 7 8 9 10年均价格y (美元)2 651 1 943 1 494 1 087765538484290226204解 作出散点图如图所示.优质教育 卓越未来可以发现,各点并不是基本处于一条直线附近,因此,y 与x 之间应是非线性相关关系.与已学函数图象比较,用y ˆ=e a x b ˆˆ 来刻画题中模型更为合理,令zˆ=ln y ˆ,则z ˆ=b ˆx +a ˆ,题中数据变成如下表所示: x 1 2 3 4 5 6 7 8 9 10 z7.8837.5727.3096.9916.6406.2886.1825.6705.4215.318相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r ≈-0.996.|r |>r 0.05.认为x 与z 之间具有线性相关关系,由表中数据得bˆ≈-0.298,a ˆ≈8.165,所以zˆ=-0.298x +8.165,最后回代z ˆ=ln y ˆ,即y ˆ=e -0.298x +8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计 学习积极性高 18 7 25 学习积极性一般61925优质教育 卓越未来合计2426 50(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019. (2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间的一组数据如下:x 3 4 5 6 7 8 9 y66697381899091已知∑=712i i x =280,∑=712i i y =45 309,∑=71i ii yx =3 487,此时r 0.05=0.754.(1)求x ,y ;(2)判断一周内获纯利润y 与该周每天销售件数x 之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)x =71(3+4+5+6+7+8+9)=6, y =71(66+69+73+81+89+90+91)≈79.86.优质教育 卓越未来(2)根据已知∑=712i i x =280,∑=712i i y =45 309,∑=71i ii yx =3 487,得相关系数r =)86.79730945)(67280(86.7967487322⨯-⨯-⨯⨯-≈0.973.由于0.973>0.754,所以纯利润y 与每天销售件数x 之间具有显著线性相关关系. 利用已知数据可求得回归直线方程为 yˆ=4.746x +51.386. 3.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x 1 2 3 5 10 20 30 50 100 200 y 10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y 与印刷册数的倒数x1之间是否具有线性相关关系,如有,求出y 对x 的回归方程. 解 首先作变量置换,令u =x1,题目所给数据变成如下表所示的10对数据: u 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y10.155.524.082.852.111.621.411.301.211.15然后作相关性检验.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系. 由公式得aˆ≈1.125,b ˆ≈8.973, 所以yˆ=1.125+8.973u , 最后回代u =x1,优质教育 卓越未来可得yˆ=1.125+x973.8, 这就是题目要求的y 对x 的回归曲线方程.回归曲线的图形如图所示,它是经过平移的反比例函数图象的一个分支.一、填空题1.对于独立性检验,下列说法中正确的是 .①2χ的值越大,说明两事件相关程度越大②2χ的值越小,说明两事件相关程度越小③2χ≤2.706时,有90%的把握说事件A 与B 无关④2χ>6.635时,有99%的把握说事件A 与B 有关答案 ①②④2.工人月工资y (元)依劳动生产率x (千元)变化的回归方程为y ˆ=50+80x ,下列判断正确的是 .①劳动生产率为1 000元时,工资为130元 ②劳动生产率提高1 000元时,工资平均提高80元 ③劳动生产率提高1 000元时,工资平均提高130元 ④当月工资为210元时,劳动生产率为2 000元 答案 ②3.下面是2×2列联表:优质教育 卓越未来y 1 y 2 合计 x 1 a 21 73 x 2 22 25 47 合计b46120则表中a ,b 的值分别为 . 答案 52,744.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为 . 答案 yˆ=x +1 5.在一次试验中,当变量x 的取值分别为1,21,31,41时,变量y 的值分别为2,3,4,5,则y 与x 1的回归曲线方程为 .答案 yˆ=x1+1 6.在一次对性别与说谎是否有关的调查中,得到如下数据:说谎 不说谎 合计 男 6 7 13 女 8 9 17 合计141630根据表中数据,得到如下结论中不正确的是 . ①在此次调查中有95%的把握认为是否说谎与性别有关 ②在此次调查中有99%的把握认为是否说谎与性别有关 ③在此次调查中有99.5%的把握认为是否说谎与性别有关 ④在此次调查中没有充分的证据显示说谎与性别有关 答案 ①②③优质教育 卓越未来7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (2χ≥3.841)≈0.05,P (2χ≥5.024)≈0.025.根据表中数据,得到2χ=30202723)7102013(502⨯⨯⨯⨯-⨯⨯≈4.844.则认为选修文科与性别有关系出错的可能性为 . 答案 5%8.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射后14天的结果如下表所示:死亡 存活 合计 第一种剂量 14 11 25 第二种剂量 6 19 25 合计203050进行统计分析时的统计假设是: . 答案 小白鼠的死亡与剂量无关 二、解答题9.在一次飞机航程中调查男女乘客的晕机情况,其二维条形图如图: (1)写出2×2列联表; (2)判断晕机与性别是否有关? 解 (1)晕机 不晕机 合计 男 10 70 80 女102030优质教育 卓越未来合计20 90 110(2)2χ=80309020)10702010(1102⨯⨯⨯⨯-⨯⨯≈6.366>5.024,故有97.5%的把握认为“晕机与性别有关”.10.某地10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元) 24466677810年饮食支出 y (万元)0.91.41.62.02.11.91.82.12.22.3(1)根据表中数据,确定家庭的年收入和年饮食支出之间是否具有相关关系;若具有相关关系求出y 与x 的回归直线方程;(2)如果某家庭年收入为9万元,预测其年饮食支出.解 (1)由题意知,年收入x 为解释变量,年饮食支出y 为预报变量,作散点图(如图所示).从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用回归直线方程刻画它们之间的关系. ∵x =6,y =1.83,∑=1012i i x =406,∑=1012i i y =35.13,∑=101i i iy x=117.7,∴bˆ≈0.172,a ˆ=y -b ˆx =1.83-0.172×6=0.798. 从而得到回归直线方程为yˆ=0.172x +0.798. (2)当x =9时,yˆ=2.346.因此,某家庭年收入9万元,其年饮食支出大约为2.346万元. 11.测得某国家10对父子身高(单位:英寸)如下:优质教育 卓越未来父亲身高(x ) 60 62 64 65 66 67 68 70 72 74 儿子身高(y )63.665.26665.566.967.167.468.370.170(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子的身高. 解 (1)x =66.8,y =67.01,∑=1012i i x =44 794,∑=1012i iy=44 941.93,x y =4 476.268,2x =4 462.24,2y ≈4 490.34,∑=101i i iy x=44 842.4.所以r =)10)(10(102101221012101y yx xyx yx i ii ii ii --∙-∑∑∑====)4.9034493.94144)(4.6224479444(27.4764104.84244--⨯-=748.611672.79≈0.980 4.因为r >r 0.05,所以y 与x 之间具有线性相关关系.(2)设回归直线方程为a x b yˆˆˆ+=.优质教育 卓越未来由=bˆ210121011010x xyx yx i ii ii -∙-∑∑===4.62244794447.762444.84244--=6.17172.79≈0.464 6. x b y aˆˆ-==67.01-0.464 6×66.8≈35.974 7. 故所求的回归直线方程为yˆ=0.464 6x +35.974 7. (3)当x =73英寸时,yˆ=0.464 6×73+35.974 7≈69.9, 所以当父亲身高为73英寸时,估计儿子的身高约为69.9英寸.12.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效? 解 根据题目所给的数据作出如下的列联表:色盲 不色盲 合计 男 38 442 480 女 6 514 520 合计449561 000根据列联表作出相应的二维条形图:从二维条形图来看,在男人中患色盲的比例为48038,要比女人中患色盲的比例5206大. 其差值为520648038-≈0.068,差值较大. 因而,我们可以认为“患色盲与性别是有关的”.优质教育 卓越未来根据列联表所给的数据可以有a =38,b =442,c =6,d =514,a +b =480,c +d =520, a +c =44,b +d =956,n =1 000, 由2χ=))()()(()(2d b c a d c b a bc ad n ++++-=95644520480)442651438(00012⨯⨯⨯⨯-⨯⨯≈27.1.由27.1>10.828,所以我们有99.9%的把握认为患色盲与性别有关系,这个结论只对所调查的480名男人和520名女人有效.。