汽车设计计算书
旅居房车设计说明书
THD5040XLJ 旅居车设计计算书编制:审核:批准:辽宁华驰专用汽车制造有限公司2014年5第1章绪论1.1 旅居车的发展现状旅居车是集住宿、餐饮、运输、娱乐为一体的旅行车,最初起源于吉普赛人的大篷车(Caravan)。
之后,随着世界范围内旅游业的发展和航空动力学在房车制造技术上的运用,便捷且时尚的现代旅游房车得到了迅速的发展。
美国房车工业协会近期发布了2010年7月房车新车销售数据统计,根据统计报告,相对于2009年7月,2010年7月美国房车新车销售总量增加53%,其中自行式房车销售增加125%,拖挂式房车销售增加48%。
随着销售高峰季节的过去,相对于2010年上半年,房车销售增长速度趋于缓和。
与2010年6月26,600辆相比,2010年7月自行式房车销量为25,600辆;拖挂式房车由241,600辆下降到201,800辆。
在欧洲,卡尔文俱乐部(The Caravan Club)是颇具规模的房车俱乐部。
它拥有近80000个房车会员、200个营地,提供旅游服务、旅游咨询、保险等服务项目。
英国的大篷车俱乐部(Motor Caravanners’Club)是有42年悠久历史的唯一一个房车爱好者自我服务的俱乐部,它拥有近3000个营地,大部分在乡村,靠近小酒馆、公园、体育俱乐部、游船地等。
最早登陆中国大陆地区的房车是原装进口豪华配置的高档次旅行休闲车,每台最低售价在70多万元左右,最高可达100多万元。
金黄河旅行车有限责任公司成立于1999年,是中国国内首家从事房车租赁、制造研发、房车经营代理和旅游项目的股份制公司。
至2000年时,又有多家公司正式投产旅居车。
中国的房车产业在这一年真正迈出了自己的步伐。
房车在美国、欧洲已经是人们休闲旅游甚至生活的一部分。
由于欧美的福利制度比较完善,房车消费的主要市场是退休人群,因为他们有时间、积蓄和想脱离城市喧嚣,走进大自然放松的诉求。
美国的家庭房车拥有率在2005年时已经达到9%-10%,这个数字还在增长,个人购买在数量上要多于租赁,在最近的5年中,新车销售量达140多万辆,每年生产的房车30多万辆(拖挂式居多),每年新房车零售额可到90亿美元左右。
设计计算翻边、翻孔
计算翻孔力:f=1.1πtσs(D-d)
f----翻孔力(N)t----材料厚度(mm)σs----材料屈服强度
D----翻孔直径(mm) d----毛坯预制孔直径(mm)
测量得翻孔直径φ105预冲孔直径φ100
f=1.1x3.14x0.8x210x(105-100)=2901.36N
汽车模具
设计计算书
令号
件号
工序
工序名称
翻边翻孔
计算内容
翻边力、翻孔力、压料力校核
计算翻边力F:(材料:ST14σb=350 Mpa t=0.8σs=210 Mpa)
F=1.25LtKσb
F----翻边力(N) L----翻边口线周长(mm)
t=材料厚度(mm)σb =材料抗拉强度Mpa k系数0.2-0.3
压料力F压=0.25-0.3F取0.28
F压=0.28X224000=62272N
查《汽模标准》,选择QM73N/mm;预计选用22根弹簧
预压20mm,则产生的压缩力F2
则,F2=144.3*20*22=63492N>F卸=62272N
工作行程10mm,则总压缩量为30mm,产生压缩力F3。
则,F3=144.3*30*22=95238N>F卸=62272N
由此可知,所选弹簧符合件中序翻边卸料力要求。
参考资料:
1、《冲压手册》王孝培主编2、《汽模标准》
设计者:审核:
AST-FOR-703-12版次A
易燃液体运输半挂车设计计算书
易燃液体运输半挂车设计计算书1、产品简介:该车为道路运输三轴半挂式车辆(见图1-1.1),运输介质为乙醇。
罐车的卸料方式为上装下卸。
罐体为卧式钢制焊接直圆筒结构,罐体截面为圆形,罐体内置3块防波板。
罐体内径φ2010mm,长度为9400mm,容积为28.16m³,半挂车总长度为9900mm,罐体的主体材料为碳素结构钢Q235B。
罐体上部设置DN500mm人孔2个、DN32mm呼吸阀2个。
罐体下部设置DN100卸料口1个。
罐体上部设置操作平台护栏。
后部设置为扶梯,工具箱、卸料箱等图1-1.12、设计参数的确定2.1 设计条件1.三轴半挂式罐式车辆,装料方式为上装重力装料,卸料方式为重力底部卸料;2.罐体设计代码:LGBF ;3.运输介质:乙醇。
4.乙醇的物化特性:GB12268 UN编号1170、类别3类;HG20660 易燃程度:易燃(在空气中爆炸极限为3.3%-19%)性状:易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激。
有酒的气味和刺激的辛辣滋味,微甘。
熔点(℃):-114.1℃ ,沸点(℃):78.3℃饱和蒸气压(绝压):0.029436Mpa 密度γ:0.7769×10³kg/m ³ 5. 主要材质:罐体及封头材质:碳素结构钢Q235B (抗拉强度R m 375MPa ,屈服强度R el 235 MPa ,延伸率A ≥26%)2.2 半挂车参数的确定该车的额定载质量21000 kg ,整备质量为9000 kg 。
则该半挂车最大总质量30000 kg 。
取前悬为1100mm (含气管接头100mm ),轴距4680mm+1310mm+1310mm 。
根据GB1589-2004《汽车外廓尺寸、轴荷及质量限值》要求,半挂车并装三轴≤24000kg 。
满载轴荷计算如下:整备质量:G 1=9000 kg 设计载质量:G 2=21000 kg 最大总质量:G=30000 kg 车架罐体及附加质量G 01=5100 kg悬挂质量:G 02=3300 kg通过零部件质量以及位置计算得:空载时车架罐体以及附件的重心距离后三轴中心距离为:2140 mm 货物重心位置至后三轴中心距离为:2205mm 空载时轴荷分配:牵引销K 1=2140 kg 后三轴 K 2= 6860 kg 满载时轴荷分配:牵引销R 1=2140+5990205221000⨯= 9870kg则三后轴:R 2 =30000 - R 1 = 20130kg <24000kg罐体容积V=λG2×1.05=28.38m ³(系数1.05为考虑预留约5%的气相空间) 根据罐体尺寸选用截面形状如下图1-1.2:(截面面积A=3.17 m 2 )图1-1.2 罐体截面形状2.3 罐体的当量内直径:Di=2010mm2.4 罐体设计压力:P=0.03 MPa2.5 罐体设计温度:50 ℃(根据GB 18564.1-2006中5.4.5)2.6 罐体计算压力:(根据GB 18564.1-2006中5.4.3)P c1= P1=2×H×1×103×9.8=0.039 MPa式中:P1:2倍静态水压力,MPa;H:罐体内高尺寸,H取2.01m。
整车离合系统计算(滑磨功+离合器储备系数 离合器性能设计计算书
离合器设计计算书一、滑磨功及温升计算滑磨功计算公式:L=m·r r2·n e2·(n2/1800) /(i g2·i o2)(一档)单位面积滑磨功:L/S/2温升:t=Y·L/(m·c)式中: L–滑磨功m–汽车整备质量(2850kg)r r–车轮滚动半径(0.377m)n e–发动机转速(按照1500r/min)i g–变速器传动比(一档起步4.313)i o–驱动桥传动比(4.1)c–压盘的比热容,铸铁比热容为481.4J/(kg·℃)m–压盘质量,为3.85kgY–传到压盘的热量所占的比例。
对于单片离合器,Y=0.5;摩擦片外径:265mm 摩擦片内径:175mm计算得滑磨功:L=15980.92单位面积滑磨功:L/S/2=0.257 (J/mm2)温升:t=Y·L/(m·c) =4.31℃结论:滑磨功的评定是通过温升来判断的,如计算得到单位面积滑磨功≤0.28 J/mm2,一次一档起步温升在8℃以下,即可以满足使用要求,由计算结果可见滑磨功及温升满足要求。
二、后备系数计算离合器盖总成扭矩容量计算公式:Tc=F·μ·Z·Rc=448N.m式中:Tc–离合器传扭能力,[Tc]为N·mF–离合器最小压紧力(6700N)μ–摩擦系数(经试验测得μ最小为0.33,为保险起见计算时按0.3取值)Z–摩擦片面数,单片离合器Z取2Rc=(D3-d3)/(D2-d2)/3–摩擦面有效半径,[Rc]为mmD–摩擦片外径(265mm)d–摩擦片内径(175mm)后备系数公式:β=Tc/Temax=1.72式中:Tc –离合器传扭能力(通过上式得到Tc为448N.m)Temax –发动机最大扭矩(260N.m)结论:后备系数1.72满足此类车型要求。
三、踏板力计算当离合器峰值分离力:1950N 拨叉比:2,液压比:1.69,踏板杠杆比6.132,得踏板力=1950/6.132/2/1.69/0.85=111N四、踏板行程计算分离系统杠杆比:i=20.73(踏板比:6.132,液压比:1.69,拨叉比:2)踏板总行程:L1=L*i/η+L2=164+9.2=173.2式中:i-分离系统杠杆比L-离合器分离行程(7.5mm)L1-踏板行程L2-空行程(9.2mm)η-行程效率(0.95mm)结论:现离合器分离行程为7.5mm,计算踏板行程在173.2左右,超出设计值165。
制动系统设计计算书
底盘制动系统设计计算书目录1基本参数输入 ......................................................................................................................- 1 -2制动系统的相关法规 ..........................................................................................................- 2 -3整车制动力分配计算 ..........................................................................................................- 2 -3.1汽车质心距前后轴中心线距离的计算 ...........................................................................- 2 -3.2理想前后地面制动力的计算 ............................................................................................- 2 -3.3前后制动器缸径的确定 ..................................................................................................- 4 -3.4确定制动力分配系数 ......................................................................................................- 5 -3.5确定同步附着系数Φ0 ....................................................................................................- 5 -4制动力分配曲线的分析 ......................................................................................................- 5 -4.1绘制I曲线和β曲线 ......................................................................................................- 5 -4.2前后制动器制动力分配的合理性分析 ...........................................................................- 6 -4.2.1制动法规要求 ................................................................................................................- 7 -4.2.2前后轴利用附着系数曲线的分析 ................................................................................- 7 -5制动系统结构参数的确定 ..................................................................................................- 9 -5.1制动管路的选择 ..............................................................................................................- 9 -5.2制动主缸的结构参数的确定 ..........................................................................................- 9 -5.2.1轮缸容积的确定 ........................................................................................................- 10 -5.2.2软管容积增量的确定 ................................................................................................- 10 -5.2.3主缸容积的确定 ........................................................................................................- 10 -5.2.4主缸活塞直径的确定 ................................................................................................- 11 -5.2.5主缸行程的确定 ..........................................................................................................- 11 -5.3踏板机构的选择 ............................................................................................................- 11 -5.4制动踏板杠杆比的确定 ................................................................................................- 12 -5.4.1真空助力比的确定 ....................................................................................................- 12 -5.4.2踏板行程的确定 ........................................................................................................- 12 -5.4.3主缸最大压力的确定 ................................................................................................- 12 -5.4.4主缸工作压力的确定 ................................................................................................- 13 -5.4.5 最大踏板力的确定......................................................................................................- 13 -6驻车性能的计算 ................................................................................................................- 13 -7制动性能的校核 ..................................................................................................................- 14 -7.1制动减速度的计算 ..........................................................................................................- 15 -7.2错误!未定义书签。
转向系统设计计算书
4结论说明∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7
3.4转向器的内外轮转角:
根据整车设计要求和阿克曼几何原理,可得出理想的阿克曼转角曲线,具体计算如下:
ctg -ctg = 其中K——主销距L——轴距
ctg -ctg =0.55
根据我们设计的转向系统从整车装配数模中可取转向系统需要的设计硬点并建立Adams仿真计算模型,在不考虑轮胎侧偏和所有组件都为刚性的情况下可仿真出实际的内外轮转角曲线。
代入公式Rmin=6549mm即最小转弯半径的理论为6.5m。
3.2转向系的角传动比计算
齿轮齿条式转向系的角传动比i0ω=L/rcosθ
其中L——梯形臂长度;
r——主动小齿轮的节圆半径;
θ——齿轮与齿条的轴交角;
其中L=146.8光洋:r =6.351恒隆:r =6.75θ=20°,θ=25°(优化后)
静态原地转向阻力矩是汽车使用中最大极限转向所需力矩,汽车在沥青或者混凝土路面上的原地转向阻力矩采用下面的经验公式计算:
=
式中 ——轮胎与地面间的滑动摩擦系数,一般取0.8左右。
——转向阻力矩,单位N·mm;
——前轴负荷,单位N;
——轮胎气压,单位MPa。
根据整车参数,CC6460K/KY车满载前轴荷为1070㎏,约为10486N,轮胎气压为230KPa,梯形臂L1=147㎜,转向器梯形底角α=76°,动力受压面积S=9.18㎝2。
升降机设计计算书
汽车升降机设计计算书一、概述汽车升降机是用于停车库出入口至不同楼层间,升降搬运车辆的机械装置,它代替停车库中车库的一部分,它只起搬运作用,无直接存取作用。
二、升降机设备构成汽车升降机主要由以下主要部件组成(如图一)图一1、框架:主要包括前后主立柱、主导轨、立柱导轨、配重导轨、前后横梁、左右侧梁等。
(土建井道结构的与完全钢结构的类似)。
2、动力部:主要包括动力部底座(型钢组焊件)、垂直双出轴减速器,制动电机、钢丝绳卷筒、改向绳轮组等。
3、提升托板系统:主要由提升梁、支撑梁、车道板(3mm花纹钢板)、提升护栏等组成。
4、钢丝绳组:汽车升降机所使用的钢丝绳为按国标生产的8X19S-13-NF载人电梯用钢丝绳。
5、配重组:主要包括配重框架及配重块、调整配重块等,配重框架由型钢组焊而成。
6、安全系统:为确保升降动作的准确可靠、保证人车的安全,设备配置了多种安全保护装置。
7、电气控制系统:汽车升降机在控制方式上设有自动和手动两种控制方式。
8、其他:包括机房安全护栏、安全隔网、爬梯等,同时可以配套提供自动库门,如中分双拆轿门等。
三、主要技术参数设备型号:PQS停车尺寸:≤5000×1900×1550mm停车质量:≤1700Kg升降速度:14m∕min左右四、设计依据GB5083-1985生产设备安全卫生设计导则GB50256-1996电气装置安装工程GB7909-1999机械式停车设备通用安全要求GB3811-1983起重机设计规范GB6067-1995起重机械安全规程JBfΓ8713-1998机械式停车设备类别、型号与基本参数JB∕T××××——××××汽车专用升降机标准(送审稿)五、起升机构原动机选择及参数计算1、主要参数:载车板1160Kg,汽车1700Kg,人75Kg,配重组900Kg最大起升载荷Q=1160+1700+75-900=2035Kg初定提升速度V=14m∕min,传动效率n总=0.99X0.95=0.94其中联轴器取0.99,滑轮组取0.952、起升机构简图I-轴承座2-卷筒一3-轴4-轮毂5.滚动轴承座6-联轴器7-减速制动电机8-卷筒二9-动力部底座3、起升电机减速机选择提升功率N=QV∕612011总=4.66KW选用平阳减速机厂5.5KW电机,输出转速8.8,输出扭矩4550Nm,传动比16L74,径向载荷29900N,使用系数0.854、扭矩及功率验算A、提升扭矩计算:作用在每个卷筒上的扭矩T=2035∕2×0.517∕2×1.26/0.99=3348Nm(卷筒直径Φ517)电机双出轴,每个轴可输出扭矩4550Nm3348Nm<<4550Nm o故输出扭矩满足要求。
自卸车设计计算书
目录第一章绪论 (1)1.1、项目的提出 (1)1.2、轻量化自卸车设计要点 1.2.1 轻量化自卸车底盘的选取.............................................................................2 1.2.2 专用汽车设计的主要工作是总体布置和专用工作装置匹配.....................2 1.2.3 针对专用汽车品种多、批量少的生产持点.................................................2 1.2.4 可靠性.............................................................................................................2 1.2.5 液压系统设计要点.. (2)1.3、国内外自卸汽车的发展概况 (3)第二章轻型自卸车主要性能参数的选择 (5)2.1自卸车底盘的选取 (5)2.2整车技术参数的确定 (6)2.2.1整车技术参数表 (6)2.2.2 容积利用系数 2.2.3 质心位置 (7)第三章自卸车车厢的结构与设计 (11)3.1自卸汽车车厢的结构形式 (11)3.1.1车厢的结构形式 (11)3. 1.2车厢选材 (11)3. 2车厢的设计规范及尺寸确定 (11)3. 2.1车厢尺寸设计 (11)错误!未找到引用源。
(12)错误!未找到引用源。
(17)错误!未找到引用源。
(17)错误!未找到引用源。
(17)第一章绪论1.1、项目的提出专用自卸车是装有液压举升机构,能将车厢卸下或使车厢倾斜一定角度,货物依靠自重能自行卸下或者水平推挤卸料的专用汽车。
自卸汽车主要运输砂、石、土、垃圾、建材、煤炭、矿石、粮食、化肥和农产品等散装货物。
它具有以下多种分类方式:a、按用途分类:公路运输的普通自卸车;非公路运输的重型自卸车,主要用于矿区装卸作业与大中型土建工程。
悬架系统设计计算书
3、后悬架静挠度的计算
前悬架垂向变形量(mm)
2、弹簧刚度计算 2.1、前悬架弹簧刚度计算
空载 56.15497608
半载 85.68500616
b 255.7 弹簧与下摆臂垂线的夹角(空间)a 、 rad 弹簧的刚度 N/mm
考虑在悬架系统中衬套的刚度约为悬架刚 度的15%~30%;共有衬套2个; 这里取 值为15%
后轴荷(kg)
半载
满载
单侧前悬架非簧载质量(kg)
单侧后悬架非簧载质量(kg)
前悬侧倾心高 mm
后悬侧倾心高 mm
参数值 475 460 452
819.15
857.96
950.34
900 900 1905 200 300 114 147.2928 150.33 86 120.7072 149.67
9 10 10.69 57.45
G ——弹簧材料的剪切弹性模量,这里
由于弹簧的材料为合金弹簧钢丝,所以, 取为80000 MPa;
G
i ——弹簧工作圈数,初取6.0圈;
Dm ——弹簧中径,初取130mm; d ——弹簧钢丝直径,mm。
d 由公式(5)可以得的计算公式如下 d 4 i • 8 • Dm3 • Cs G
G i Dm d 弹簧钢丝直径为:d
K m * ( H
3.2 前后悬架侧倾角刚度
1 前悬架螺旋弹簧作用的侧倾角 刚度
K s
1 2
C
s
(B p
lb n
cos )2
弹簧中心线与下控制臂的垂线的夹角 a 参数
前悬架的侧倾角刚度 K sf
N.mm/rad
考虑衬套扭转时的刚度有约为15%~20% 的影响;
deg 13.2
搅拌车设计计算书全解
混凝土搅拌运输车设计计算书湖北汇合专用汽车有限公司二〇一四年五月二十日混凝土搅拌运输车设计计算书一.上车的设计计算。
1.搅拌筒几何容积的确定根据中机函[2015]7号文件《关于规范混凝土搅拌运输车《公告》管理要求的通知》中第1条1、2、3款要求:1)混凝土搅拌运输车应符合下表规定:2)混凝土搅拌运输车的搅拌筒填充率应不小于51.5%(填充率定义:搅拌筒搅动容量与几何容量之比,用百分比表示)。
3)混凝土搅拌运输车的搅动容量应符合下式要求:搅动容量≤载质量(kg)/ 混凝土密度(kg/m3)×110%注:混凝土密度采用GB/T 26408-2011《混凝土搅拌运输车推荐的2400kg/m3。
根据上述要求:HH5142GBJ型混凝土搅拌运输车搅拌筒几何容积搅拌容积(搅拌容积=载质量(kg)/ 混凝土密度(kg/m3))应满足如下要求:V d/ V j≥0.515V≤V d/1.1=3.6 m3V——设计额定搅拌容积即装载容积(m3)V d——混凝土搅拌运输车搅动容量(m3)V j ——搅拌筒几何容积(m 3)HH5142GBJ 型混凝土搅拌运输车的搅拌容积选定为3.5 m 3。
2.搅拌筒设计尺寸的计算根据上述第一部分对HH5142GBJ 型混凝土搅拌运输车搅拌容积与搅拌筒几何容积的确认,先对搅拌筒的设计尺寸进行计算并进行校核。
根据中华人民共和国建筑工业行业标准JG/T5094-1997《混凝土搅拌运输车》,搅拌筒的斜置角α的取值选为13.5o 。
由于运输车必须保证在坡度为14%的路面上行驶且出料口面对下坡方向时不产生外溢,故在计算搅拌罐的额定装载容量时取混凝土与搅拌轴线的夹角0arctan(0.14)8ααα=+≈+图2.1搅拌罐体图搅拌筒目前一般采用梨形,底部(称为前锥)是较短的锥形,中部是圆柱形,上部(后锥)是较长的锥形,研究发现:搅拌筒中下部的外形接近球体形状为最佳,这时,不仅搅拌效果好,搅拌效率高,而且也因搅拌筒重心适当前移,对合理分配运载底盘前后桥负荷,提高搅拌输送车的装载能力是有利的。
8米纯电动客车冷却系统设计计算书
8米纯电动客车冷却系统设计计算书一、设计依据:驱动电机厂家提供的相关参数如下:二、散热器相关参数的理论设计计算2.1散热器的匹配选型2.1.1求散器最大散热量散器最大散热量由式(1)Q p=β*Q w得到式中: Q W为电机系统最大发热量,由设计输入可知Q W=Q m+ Q c=20+3.4裕量系数β:一般客车取β=1.2将以上参数代人式(1),Q p=β*Q w =28.08Kw散热器最大散热量为28.08KW2.1.2求散器散热面积S散热器散热面积S为式3 :S=Q/(kΔt)式中,k为散热系数,该散热器k=324KJ/m2*℃;Δt为液气平均温差式4Δt=t wcp-t acp式中,t wcp为冷却液极限温度,根据经验取t wcp=70℃t acp为热平衡时空气温度,式5 t acp=t a1+0.5Δta式中t a1为极限风温,根据经验取t1a=38℃Δt a为散热器进出空气温差,按公式计算式6 :Δta= Q p /(3600F f C paγa V a)式中,C pa为空气定压比热,C pa=1.013Kj/kg℃(空气参数)γa V a为质量风速,其中空气风速为V a=8m/s,γa V a=(1.128kg/m3*(6m/s)=9.024kg/m2*sF f为散热器正对面积,根据布置空间大小设计,此处取F f=0.56*0.648=0.36288m2由Q p =28.08kw=101088KJ/h得出Δt a=8.465℃,t acp=42.23℃,Δt=27.77℃,S=11.24 m2取散热裕量系数ξ=1.10所以得出:S’=ξ*S=1.10*11.24=12.364 m2所以散热器(水箱)基本要求应为:散热功率>28.08KW散热面积≥12.364 m2散热系数≥324KJ/m2*℃下表为选择的散热器要技术指标,对比理论数据,各性能指标符合要求。
2.2该款电驱动客车冷却系统选用无级调速电子风扇,通过驱动电机绕阻温度和电机控制器模块温度智能控制风扇起停及风扇转速。
油罐半挂车设计计算书
FR36M3GYY型运油半挂车设计计算书Q/FJTW.C.09-14FJ-FR36M3GYY-01设计:校对:审批:日期:整车计算书一、轴荷分配计算:半挂车总质量:34320(kg)半挂车整备质量:12000(kg)半挂车额定载质量:22320(kg)轴距:7280+1350(mm)后悬:1500(mm)整车外形尺寸:11526×2495×3710(mm)罐体外形尺寸:11160×2360×1740(mm)满载下轴荷分配计算:Rb=4806×(34320-3000)÷8030+3000≈21745(kg)Ra=34320-21745=12575(kg)空载下轴荷分配计算:Rb=4806×(12000-3000)÷8030+3000≈8386(kg)Ra=12000-8386=3614 (kg)结论:经计算,罐体轴荷分配满足<<GB1589-2004 道路车辆外廓尺寸、轴荷及质量限值>>要求。
二、罐体强度计算计算依据:GB 18564.1-2006附录D.2罐体设计δ=P C D i ÷( 2[σ]t φ)式中:δ-------- 罐体计算厚度,单位为毫米(mm);P C ----- 计算压力,单位为兆帕(MPa);D i -------- 罐体当量内直径,单位为毫米(mm),非圆形罐体横截面折算成等面积的等效圆形截面积直径。
[σ]t-----设计温度下,罐体材料许用应力,单位为兆帕(MPa); φ-------- 焊接接头系数,按JB/T4735或JB/T4734的规定选取。
根据以上公式,经查询及计算结果如下:P C----0.15MPa(GB 18564.1-2006 5.4.3.2 d)D i----φ2165mm(非圆形罐体横截面折算成等面积的等效圆形截面积直径。
)[σ]t---- 188MPa (JB4735-1997表4-1)φ----焊接接头系数取0.85(JB4735-1997 3.7.1)δ=0.15×2165÷(2×188×0.85)=1.1mm依据GB 18564.1-2006附录D2.2罐体最小厚度(表D.1)的要求,当罐体当量直径大于1800mm时,罐体最小厚度应≥4mm,经上述强度计算,并考虑腐蚀裕量,罐体材料选取5mm/Q345B钢板制造。
挂车设计计算书
前言ST9430型鹅颈式半挂车主要是为了装运大中型设备而设计的。
该列车牵引车采用斯太尔1491·280/S29/6×4型半挂牵引车。
支承装置、车轴装置及制动系统等,各承受的负荷基本上与已定型产品的设计相吻合,这几部分不再重新进行计算,本设计计算书只对该列车的动力性有关技术参数,半挂车车架强度进行计算。
一、列车的基本技术参数(一)汽车列车1、外形尺寸(长×宽×高)(空载)(mm) 16500×3200×29552、整备质量(Kg) 21840前桥载质量(Kg) 4560中桥载质量(Kg) 8130后桥载质量(Kg) 91503、装载质量(Kg) 300004、最大总质量(包括驾乘2人)(Kg) 51970前桥载质量(Kg) 5440中桥载质量(Kg) 16680 后桥载质量(Kg) 29850 (二)半挂车1、外形尺寸(长×宽×高)(空载)(mm) 12830×3200×17702、平台尺寸(长×宽)(mm) 9000×32003、整备质量(Kg) 12980牵引销(Kg) 3830后轴(Kg) 91504、装载质量(Kg) 300005、满载质量(Kg) 42980牵引销(Kg) 13130后轴(Kg) 298506、轴距(mm) 9890+12207、轮距(mm) 1680/9158、前悬(mm) 4509、承载面高度(空载)(mm) 86010、前回转半径(mm) 98411、间隙半径(mm) 2356(三)牵引车1、车型斯太尔1491·280/S29/6×42、整备质量(Kg) 88603、轴距(Kg) 2925+13504、轮距(mm)前轮 1939后轮 18005、牵引座前置距(mm) 3006、牵引座接合面高度(mm) 14907、牵引座 90#8、最大功率(马力/转/分) 280/2400 9、最大扭距(公斤·米/转/分) 109/1400二、列车的动力性计算㈠、列车动力性参数及计算公式 1.发动机扭距M eM e =M emax - (n M -n e )2N ·m式中M emax ——发动机最大扭距,1068N ·M ; M ——发动机最大功率时对应的扭距,M p =9550 =9550× =820N ·M ;n M -发动机最大扭距时对应的转速,1400r/min ; n P -发动机最大功率时对应的转速,2400r/min ; n e -发动机转速。
某8米商用车转向系统设计计算书
转向系统设计计算书1、前言在转向系的设计中,为保证整车具有较高的机动性,降低地板高度,转向器采用左立右输出的布置方式,转向梯形为整体式梯形结构设计,转向系由方向盘、转向管柱、整体式动力转向器、转向垂臂、转向前直拉杆、转向中间摇臂总成和转向后直拉杆组成,转向后直拉杆带动前桥的转向节臂使前轮左右转动实现车辆的转向。
该车的转向系统设计与传统商用车转向系设计方法基本一致,主要考虑的是商用车低速行驶时,发动机不直接驱动车辆,发动机的转速较低,所以要求转向助力泵在低速时能提供较大的压力及流量。
2、选型说明某8米商用车前轴最大载荷3000Kg, 按照GB7258-2017标准要求,前轴载荷超过4000Kg,应采用动力转向。
2.1 转向器的选型此车型选用BC8657整体式循环球动力转向器,此转向器具有结构紧凑、重量轻、输出扭矩大,回正性能良好等特点,转向器输出扭矩4043N.m,传动比18.85:1,满足某8米商用车的使用要求,因此我们选择了BC8657型号的转向器,主要性能参数见表1表1转向器主要性能指标2.2转向油泵的选型根据动力转向器的性能参数,选择合适流量和工作压力的转向油泵,确定参数如下:序号项目公路客车1 最大压力13.7MPa2 控制流量13L/min3 公称排量14ml/r3.转向梯形的计算分析为保证汽车转向行驶时,内外转向轮均能绕同一瞬时转向中心在不同半径的圆周上作无滑动的纯滚动,转向梯形的实际转角应尽量接近理轮上的内、外转向轮的理想转角关系为:cotθ0-cotθ1='ML式中:θ0——外转向轮转角;θ1——内转向轮转角;M’——两主销中心线与地面的交点间的距离;L ——轴距。
注:转向梯形设计中主销中心距的说明:是过与转向节臂相连的拉杆(横拉杆或双拉杆)球销中心点作与主销中心线垂直的平面,该平面与主销中心线的交点,两主销中心线上这样两个交点之间的距离。
3.1 已知参数主销中心点距离 M=1593 mm前轮距 B1=1893 mm滚动半径 r1=383.5mm 图1主销内倾角 8°前轮外倾角 1°3.2 计算参数3.2.1 两主销中心线的延长线与地面交点之间的距离M’M’=M+2tg8°(92·sin1°+rcos1°)=1593+2tg8°(92·sin1°+384·cos1°)=1701 mm3.2.2 梯形设计中主销中心距M ” 如图2M ”=M+2tg8°8cos8abtg ⎛⎫-⎪⎝⎭=1593+2 tg8°106.3588cos8tg ⎛⎫-⎪⎝⎭=1629mm 设转向梯形臂长为mm=22b c +=2258170+=179.6mm 设转向梯形底角为ee=arctg c b =arctg 17058=71°10′图23.3 最小转弯直径的计算如图3所示,已知参数:轴距L=4600mm , 整车宽度B=2280mm , 前悬h=950mm , 主销中心延长线与地面交点之间 距离 M ’=1793mm主销与前轮中心的距离f=150mm , 以外轮印记中心线的轨迹测量转弯直径时:2R min =maxsin Lb +f图3以汽车前端最外侧处测量转弯直径时:2R ’min ()22max '2L B M L h tgb ⎛⎫-+++ ⎪⎝⎭此时汽车的通道宽度: T=min max ''2L B M R tgb +⎛⎫-+ ⎪⎝⎭根据标准GB7258-2017的要求,2R ’min ≤24m ,T ≤7.2m 。
SCM5252混凝土搅拌运输车车设计计算书
8立方米混凝土搅拌运输车设计计算书一•上车的设计计算 1.搅拌筒几何容积的确定根据经验公式:V/V j W 0.5~0.65(取0..567)求出:V j=14.1V ――设计额定装载容积V= 8(m3)V j ――搅拌筒几何容积(m3)2.搅拌输送车上车部分的设计校核(1) .上车后防护栏的校核后防护栏截面如上图,取参考坐标系yz轴,分成4部分分别计算惯性矩:2A|=27X3=81 mmA II=80X3=240 m 2y i=-80+1.5=-78.5mm Z I=50-3-(30-3)/2=33.5mmy ii =-80/2=-40mm Z II =50-1.5=48.5mmA山=(100-6) 3=282 mm 2y|||=-1.5mm z|||=0mm2A iv=30X3=90 mmy IV=-30/2=-15mm z IV=-50+1.5=-48.5mm2A= A i + A II + Am + A H I =693 mmy c= (A i 约i+ A ii 纫| + Am 沏ii + A IV约IV)/A =-25.47 mm Z C= (A i 淮|+ A ii ^Z|| + Am XZ||| + A|v ^Z|v)/A =27.01 mm l l zc=1/12 17X33+81 X(80-1.5-25.47)2=227847.40mm4I II zc=1/12 X>803+240X80/2-25.47)2=178669.01mm fl lll zc=1/12 X4 X33+282 X25.47-3/2)2=162237.67mm4I IV zc=1/12 XX303+90X25.47-30/2)2=16615.88mm4I zc= I I zc + I II zc + I III zc + I IV zc=585369.96 mm4W ZC= l zc/y max=585369.96/(80-25.47)=10734.82mn?(2) .上车侧防护栏的校核JOrvi7侧防护栏截面如上图,取参考坐标系yz轴,分成5部分分别计算惯性矩:A1=12X3=36 mmy1=-30+1.5=-28.5mm z1=55-3-12/2=46mmA2=30X3=90 mmY 2=-30/2=-15mm z2=55-1.5=53.5mm4A3=(110-6) 3=312 m 2y3=-1.5mm Z3=0mm2A4=30X3=90 mmy4=-30/2=-15mm z4=-55+1.5=-53.5mmA5=12X3=36 m 2y5=-30+1.5=-28.5mm Z5=-(55-3-12/2)=-46mmA= A i + A2 + A3+ A4+ A5=564 mm y c= (A i ><yi+ A2 约2 + A3 约3 + 人4约4+ A5>^5)/A =-9.25 mm z c= (A1 >Z1+ A2 >Z2 + A3 >Z3 + A4 %+ A5 >Z5)/A =0 mm I1zc=1/12 X2X33+36><30-1.5-9.25)2=13367.25mm4 12zc=1/12 乌X303+90 ><30/2-9.25)2=9725.625mm4 13zc=1/12 X04 X33+312 X9.25-3/2)2=18973.5mm i4 I IV zc=1/12 XX303+90X30/2-9.25)2=9725.625mm4 l5z c=1/12 X2X33+36X30-1.5-9.25)2=13367.25mm4 I zc= I1zc + I2zc + I3zc + I4zc+ I5zc =65159.25 mm4 W zc= I zc/y max=65159.25/(30-9.25)=3140.2mm3(3).与汽车车体连接螺栓的强度校核由于搅拌车在满载运输途中,经常突然刹车,此时螺栓受到惯性力作用,此力比平稳行驶时力大得多,按此力校核螺栓的剪切强度。
制动系统设计计算书
制动系 统设计 计算书
(Φ 式制动 器,前:后= :)
mm
轴距L= 1765
空载
满载
811.700565 827.34375
785
843.3
885
960
478
510
0.54
0.53
后轴负 荷G2 (kg) 后轴质 量分配 % 3.汽车动 轴荷分配 计算: 3.1 动轴 荷计算: 当汽 车以减速 度jt制动 时,由于 减速度而 产生的惯 性力,使 轴荷分配 相应改 变:
=
Lb - b hg
=
4.4 满载 时前后轴 附着力 矩:(道 路附着系 数Φ =0.65时 的附着力 矩) 前轴附着 力矩:
j0
=
Lb - b hg
=
Mj前 = Pt1' ? Rk1 =
#VALUE!
#VALUE! #VALUE!
后轴附着 力矩:
4.5 最大 管路压力 :
产生 最大管路 压力矩时 (Φ =0.65)的 管路压力 为最大管 路压力, 故当Φ =0.65时,
表二
为汽车制 动时前后 在不同减 速度jt/g 值时动轴 荷分配 比:
表二 (见下 页):
jt/g=φ
G1' 空载 满载
G2' 空载 满载
4.汽车制 动力的计 算: 4.1.汽车 制动时所 需的制动 力Pτ(轴 制动力) 当汽车 以减速度 jt/g制动 时,前后 各自所需 的制动力 为: 前轴: Pτ1=G1 '×jt/g× 9.8 (N) 后轴: Pτ2=G2 '×jt/g× 9.8 (N)
0.1 58.5 57.9 41.5 42.1
0.2 62.2 61.9 37.8 38.1
脚手架汽车通设计算书
汽车通道计算书一、荷载1、自重荷载标准值:钢筋混凝土自重标准值 Wz = 25.50 kN/m3楼板模板(包括梁模板)自重标准值 Wm = 0.50 kN/m2脚手架自重标准值 Wj = 1.00 kN/m22、施工活荷载标准值:施工人员及设备荷载标准值 Wh = 3.00 kN/m23、荷载的分项系数:永久荷载的分项系数为1.2可变荷载的分项系数为1.44、荷载效应组合:荷载设计值 = 1.2×永久荷载标准值+1.4×可变荷载标准值二、支撑说明地面标高:-0.100m梁顶标高: 5.950m梁截面尺寸:700mm×1200mm梁底主龙骨采用25a #Q235工字钢,实现汽车通道,做法如下图。
立面图:剖面图:模板:15厚胶合板次龙骨:40×90木方@100小横杆:10#槽钢@1200主龙骨:双拼25a# Q235工字钢两组,其余两支提供梁施工操作面施工分配梁:双拼16# Q235工字钢支撑梁:双C钢。
三、承载计算3.1 模板承载计算模板采用15mm厚普通胶合多层板模板,参数如下:1、荷载计算模板按三跨连续梁(如下图),L取1000mm宽板带进行计算。
荷载设计值:1.225.5 1.21 1.20.51 1.43141.52/q kN m =⨯⨯⨯+⨯⨯+⨯⨯= 2、承载验算按照抗弯强度验算≤=368l mm按照挠度验算≤=330l mm按照剪应力验算≤=1.11561vbhf l q故梁底胶合板净跨度不得大于330mm ,梁底模板下需设置次龙骨木方。
3.2 次龙骨承载验算次龙骨采用40mm ×90mm 木方@100mm ,参数如下。
1、恒荷载荷载计算次龙骨间距取100mm ,计算跨度L 取1200mm ,线荷载设计值:1.225.5 1.20.1 1.20.50.1 1.430.1 4.19/q kN m =⨯⨯⨯+⨯⨯+⨯⨯= 最大弯矩:==⨯⨯=⋅22max 0.10.1 4.19 1.20.61M ql kN m 最大剪力:==⨯⨯=max 0.60.6 4.19 1.2 3.02V ql kN最大挠度:ω⨯⨯===⨯⨯44max 0.6770.677 4.191200 2.6910010090002430000ql mm EI2、承载验算按照抗弯强度验算:σ===≤=2261000011.30/13/54000m M N mm f N mm W 满足要求 按照剪应力验算:⨯===≤=⨯223020405001.26/ 1.4/243000040v VS f N mm f N mm Ib 满足要求 按照挠度验算:ω=≤=max 2.69 4.8250Lmm mm 满足要求。
汽车涂装空调设计计算书
最大冷负荷: Q V 空 i / 3600 213390 1.2 57.52 / 3600 4091.4kw (其中
空气密度取 1.2kg/m3)
C 至 D 过程焓差: i‘ iD iC 52.17 46.76 5.41kj / kg
风机尺寸:4318mm*2510mm*3193,风机出口软连接长 250mm,风机段长至少 5m。 风机和电机重:4.65t。 3 初、中效段 1、过滤精度: 根据喷漆作业空气洁净度要求,一般涂装喷漆要求空气尘埃粒子直径小于 10um,装饰性涂 装要求粒子直径小于 5um,高级装饰性涂装小于 3um。室外空气经空调至喷漆室,设计 4 道过滤,空调初效段一般选用过滤袋过滤等级为 G3/G4,为第 1 道过滤,过滤掉空气中粒子 直径大于 10um 的颗粒;中效过滤精度选用 F5/F6,之后空气中粒子直径小于 5um。 2、滤袋个数: 考虑到后面功能段(喷淋、表冷)过水等原因,我们取空调截面经济风速不能大于 2.5m/s。 所以空调净截面积>213390/3600/2.5=23.7m2,考虑到空调骨架、内部挡风板对风速的影响, 截面积要取大一些,我们取空调截面尺寸(宽*高)为:5.5m*5m。根据过滤器样本,行业 标准过滤袋尺寸为 592mm*592mm*600mm*6 袋,额定风量为 3400m3/h*个,所以该机组所 需滤袋个数为:213390/3400=63 个。 4 冷、热负荷与湿负荷 1、气象参数: 涂装空调因为有特殊的工艺条件,不同于一般舒适性空调,整个喷涂过程须保证恒定的温湿 度。因此在计算空调冷热负荷时,有必要考虑空气的极限参数,由此计算冷热负荷的最大量。 不同地区室外气象参数不同,芜湖地区冬季最低温度-4℃,最低相对湿度 50%;夏季最高温度 37℃,最高相对湿度 65%。 2、送风温湿度:
游乐卡丁车设计计算书
游乐卡丁车设计计算书一、 车架强度及刚度计算 1、车架强度校验 车架受力示意图:图一 前端受冲击的受力图车身自重为G k =399kg,按均布载荷考虑,则q=l Gk =3999.81.4⨯=2793(N/m ) 最大速度v=12km/h=3.3m/s故冲击载荷Rc=t mv =549 3.30.2⨯=9058。
5(N) 支座反力Ra=9.80.70.9570.131.4Gk Qk Rc ⨯⨯+⨯-⨯=3999.80.715000.9579058.50.131.4⨯⨯+⨯-⨯=2139(N )Rb=9.80.70.4430.131.4Gk Qk Rc ⨯⨯+⨯+⨯=3999.80.715000.4439058.50.131.4⨯⨯+⨯+⨯=3270(N )图二 后端受冲击的受力图支座反力Ra=9.80.70.9570.131.4Gk Qk Rc ⨯⨯+⨯+⨯=4509.80.715000.9579058.50.131.4⨯⨯+⨯+⨯=3822(N)Rb=9.80.70.4430.131.4Gk Qk Rc ⨯⨯+⨯-⨯=4509.80.715000.4439058.50.131.4⨯⨯+⨯-⨯=1589(N ) 为了保证其安全性,取大值。
Ra=3822(N )(图二),Rb=3270(N )(图一) 材料的抗弯模量W=16.822×10-6(m 3)材料Q235的抗拉强度σb =335(Mpa ),安全系数取n=5 材料Q235的许用应力为[σ]=nbσ=67(Mpa )车架的剪力图和弯矩图如下:图三 车架的剪力弯矩图危险断面在离后轴中心443mm 处 在离后轴中心443mm 的弯矩M 2=Rb ×0.957-q ×0.957×0。
957/2=3270×0.957-2793×0.957×0。
957/2=1850(Nm) σ=W M =61850416.88210-⨯⨯=27.4(Mpa )<[σ] 符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计计算书
一、 质量参数
1、 相关参数:
整备质量: 4500kg
载质量 : 8850 kg
最大总质量:13350 kg
2、 轴荷分布
空载:
转向桥: 2025 kg
驱动桥: 2475 kg
各桥负荷比: 45%、55%
满载:
转向桥: 4670 kg
驱动桥: 8675 kg
各桥负荷比: 35%、65%
二、 发动机功率选择计算
计算参数:
传动效率 ηT =0.85
汽车总质量 M t =13350KG
最高车速 V max =75km/h(满载) 85 km/h (空载)
空气阻力系数 C D =0.7
迎风面积 A=3.2m 2
滚动阻力系数 f=0.0165
最大功率
P max =3max max ***1()0.9360076140
t D M g f C A V V =63.76kw (76.7 kw 空载) 考虑空调系统和其它电器设备影响发动机使用特性曲线的P max ,(比万有特性曲线的P max 小)发动机的最大功率比设计的最大功率应大。
P max = P max *1.24=79kw (90 kw )
比功率:
比功率=max 1000*t
P M =5.92(7.12) 三、 发动机外特性曲线
四、动力性计算
设计参数:总质量M t=8850KG
总重量 G T= M t*g=86730
滚动阻力系数 f=0.0165
滚动阻力 F f= G T*f=5637.45N
空气阻力系数 C D=0.7
主减速比 i0=5.833
1档传动比 i1=7.312
传动效率η=0.85
轮胎滚动半径 r=0.407m
发动机最大扭矩T=265
发动机最大扭矩时转速 n=1600rpm
迎风面积 A=3.5
1、最高车速
⑴、各档最大功率及对应车速和发动机转速
⑵、利用软件进行分析得出相关数据(满载)
2 / 2
⑶、结论:空载时最高车速为81km/h,满载时最高车速为75km/h。
2、最大爬坡度
⑴、利用软件进行分析得出相关数据(满载)
⑶、结论:最大爬坡度28.5%。
2、加速性能
利用软件进行分析得出相关数据(满载)
2 / 2
2 / 2
五、 油耗计算 设计参数:
总质量 M t =8850 滚动阻力系数 f=0.0165 空气阻力系数 C D =0.7 速度 V=60
阻力功率P r
P r =3***1()0.9360076140t D M g f C A V V =44KW 主减速比 5.833 变速箱五档速比 1
轮胎滚动半径 r=0.407m 车速V 时发动机转速n=05**0.377*v i i r =2343 柴油重度 j=8.1N/L 查负荷特性曲线 油耗Q=
P *1.02**r e g v j
=18L/100KM。