Chiral phase transition and color superconductivity in an extended NJL model with higher-or
原虫概论阿米巴
3、生活史
经口
四核包囊 小肠下段脱囊 4个核滋养体
核分裂
8个单核小滋养体
肠粘膜
邹褶或隐窝,二分裂繁(以细菌粘膜 肠内容
物
已消化食物为食) 胞质分泌囊液
虫体团缩形成囊前期 包囊
包囊→滋养体→包囊为疾病阿米巴生活史型
在一定条件下
抵抗力下降
滋养体侵入肠粘膜组织
肠腔内
组织内(肠壁、肝脑) 、
染色后胞核形态特征是医学原虫病 原诊断的重要依据
致病特点
1、增殖作用:大量增殖到一定数量后引起 损害,血液、体液及分泌物中原虫的检查 可为临床诊断提供可靠信息。
2、播散作用:由于快速增殖而具有的全身 播散的倾向。病原学诊断不仅要考虑原发 病灶,而且还要考虑到继发病灶乃至全身 各器官。
3、机会致病:有些原虫对健康宿主不表现 出明显致病性,但当宿主免疫功能低下时, 可导致严重甚至致死性的感染。
常见医学原虫分类
1、生物学分类:隶属于4个纲: 动鞭纲 叶足纲 孢子纲 动基裂纲 (鞭毛虫)(阿米巴)(孢子虫) (纤毛虫) 2、按寄生部位分类:腔道内寄生原虫(肠
道、阴道)和血液及组织内寄生原虫(红 细胞内、有核细胞内、肝、肺、脑及其他 组织内寄生)。
阿米巴概述
以伪足为运动细胞器,多数生 活史有滋养体和包囊两个时期, 滋养体期为运动、摄食、繁殖和 致病期,包囊为静止期,是阿米 巴传播期。
对成形粪便,用碘液染色法查包囊。包囊形成有 间歇,故检查时应隔日1次并连续3次以上送检 为宜。 (2)十二指肠液或胆汁检查滋养体 (3)肠检胶囊法。 (4)小肠活组织检查,利用纤维胃镜取小肠粘 膜组织检查。
五、流行
、分布: 1本病在发达与发展中国家均有流行,我国平均 感染率为2.65%
磁共振成像技术中英文名词对照知识讲解
Analog-digital conversion ,ADC
模数转换
Arterial spin labeling ,ASL
动脉自旋标记
Balance fast field echo ,B-FFE
平衡式快速场回波
Blood oxygenation level dependent ,BOLD
N-乙酰天门冬氨酸
Palsed arterial spin labeling, PASL
脉冲式动脉自旋标记
Parallel acquisition technique ,PAT
并行采集技术
Phase contrast ,PC
相位对比
Proton density weighted imaging ,PDWI
一般性自动校准部分并行采集
Gradient recalled echo ,GRE
梯度回波
Gradient recalled echo–echo planar imaging,GRE-EPI
梯度回波平面回波成像
Half-fourior acquisition single-shot turbo spin Echo ,HASTE
半傅里叶采集单次激发快速自旋回波
Inversion recovery ,IR
反转恢复
Inversion recovery echo planar imaging ,IR-EPI
反转恢复平面回波成像
Inversion recovery–fast gradient recalled echo , IR-FGRE
对比增强磁共振血管成像
Chemical shift selective saturation,CHESS
土耳其比尔肯特大学研制出一种全硫属化物可变红外滤光片
● 藿
5
( c )
图 1 () a 斜蒸 发 几何 结 构 示 意 图, () 间可 变多 b空 层 滤光 片 结构 ,() 0层 A 2 3G l s S i e C2 s 一 es 2 es 4 S A 方 法 的研 究 [. 外 与 毫 米 J红 1
波学报 , 0 6 2 () 4 4 . 2 0 , 5 5:32 34
t soy 【 . e a C e sr, 00 7 () 15 r cp J C r l hmi y 20 , 72: 5— o 】 e t
哥召开 的 “ 红外 系统与光 电子技 术” S I PE专题
会议上 , 土耳其 比尔肯特大 学的研 究人员 HE a .s t
IF A E M N HY/ O . , o7 U 00 N R R D( O T L )V L 1 N .,J L2 1 3
图 2 该 红 外光 谱 仪 实验 装 置 的草 图
【 8 】Do el . iee t tn i eu n o —i e u w lFE D f rni ig t o s dn nvt o s a vr a r
d r u um e t k r e s b sn e ri fa e p e wh a e n l y u i g n a —n r r d s e — ・ -
1 . 58
[ ] i b O 6 . ai a d nndsrci 1 Tg u M, dnP C R pd n o-et t e 2 a u v
a a y i fv g u fPi u a u a s e s u i g sn l n l ss o i o r o n s p t l e d sn i g e s e e r i fa e r n m it n e s c r n u — e d n a n r r d t a s t a c pe t a a d m l
2021 年度诺贝尔化学奖:大道至简
大 学 化 学Univ. Chem. 2022, 37 (1), 2112014 (1 of 5)收稿:2021-12-07;录用:2021-12-17;网络发表:2021-12-22*通讯作者,Email:******************.cn基金资助:国家自然科学基金(21825108)•今日化学• doi: 10.3866/PKU.DXHX202112014 2021年度诺贝尔化学奖:大道至简冯向青1,2,杜海峰1,2,*1中国科学院化学研究所分子识别与功能院重点实验室,北京 1001902中国科学院大学,北京 100049摘要:有机小分子成为继酶和金属催化剂之后发展的一类新型催化剂,被称为第三类催化。
有机小分子催化作为一种精确的分子构建新工具,对手性新药研发产生了巨大影响,在药物、农药、化工、材料等领域都得到了广泛的应用。
2021年的诺贝尔化学奖授予了德国化学家本杰明·利斯特和美国化学家大卫·迈克米伦,以表彰他们在这一领域做出的开创性重要贡献。
本文简述了手性现象和不对称催化,有机小分子催化的发展历程及其催化优势和未来前景。
关键词:手性;不对称催化;有机小分子催化;诺贝尔化学奖中图分类号:G64;O6The 2021 Nobel Prize in Chemistry: The Simpler the BetterXiangqing Feng 1,2, Haifeng Du 1,2,*1 CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.2 University of Chinese Academy of Sciences, Beijing 100049, China.Abstract: Organic molecules have become one novel type of catalysts developed after enzymes and metal catalysts, which are named as organocalysis, the third type of catalysis. As a new tool toward the precise construction of molecules, organocatalysis has a huge impact on the development of chiral new drugs, which has been used in the fields of pharmacy, pesticides, chemicals, materials, and so on. The 2021 Nobel Prize in Chemistry was awarded to German chemist Benjamin List and American chemist David W. C. MacMillan for their pioneering and important contributions to this field. This article will briefly describe chirality and asymmetric catalysis, especially, the history of organocatalysis development, its advantages and future prospects.Key Words: Chirality; Asymmetric catalysis; Organic small molecule catalysis; Nobel prize in chemistry1 2021年诺贝尔化学奖获得者简介2021年10月6日,长期被戏称为“理综奖”的诺贝尔化学奖被授予“对于有机小分子不对称催化[1]的重要贡献”的两位化学家,分别是德国化学家本杰明∙利斯特(Benjamin List)和美国化学家戴维∙麦克米伦(David W. C. MacMillan)。
变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性
第50卷第6期2023年北京化工大学学报(自然科学版)Journal of Beijing University of Chemical Technology (Natural Science)Vol.50,No.62023引用格式:刘琪,兰光强.变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性[J].北京化工大学学报(自然科学版),2023,50(6):105-111.LIU Qi,LAN GuangQiang.Exponential stability of hybrid neutral stochastic differential delay equations with time⁃depend⁃ent delay feedback control[J].Journal of Beijing University of Chemical Technology (Natural Science),2023,50(6):105-111.变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性刘 琪 兰光强*(北京化工大学数理学院,北京 100029)摘 要:研究了变时滞反馈控制的混合中立型随机延迟微分方程(HNSDDEs)的指数稳定性㊂采用函数方法设置合适的变时滞反馈控制函数,得到了该系统的指数稳定性㊂对比已有的研究成果,本文的主要贡献是在变时滞反馈控制下对HNSDDEs 的指数稳定性作了进一步研究㊂最后,给出一个例子证明了结论的有效性㊂关键词:变时滞;混合中立型随机延迟微分方程(HNSDDEs);反馈控制;指数稳定性中图分类号:O211.6 DOI :10.13543/j.bhxbzr.2023.06.013收稿日期:2022-09-05基金项目:北京市自然科学基金(1192013)第一作者:女,1998年生,硕士生*通信联系人E⁃mail:langq@引 言带有变时滞反馈控制的混合中立型随机延迟微分方程(HNSDDEs)常被用于系统未来的建模,目前已经被广泛应用于种群生态㊁神经网络以及激光器动力学等领域㊂对于随机系统突然性的结构变化,常采用连续时间马氏链来描述,带有马氏链的随机延迟微分方程即为混合随机延迟微分方程㊂文献[1]具体研究了混合随机延迟微分方程,文献[2-4]则进一步考虑了其稳定性及有界性,文献[5-7]又扩展到了带中立项的混合随机延迟微分方程的稳定性研究㊂然而并非所有系统都是稳定的,因此设计一个合适的反馈控制使不稳定的系统变得稳定很有意义㊂相应地,文献[8-11]研究了系统稳定化问题㊂其中文献[8]研究了常时滞反馈控制的高阶非线性混合随机时滞微分方程的指数稳定性,文献[9]是在文献[10]的基础上进一步研究了变时滞反馈控制的HNSDDEs 的L p 渐进稳定性和H ∞稳定性㊂本文采用Lyapunov 函数方法,进一步研究了变时滞反馈控制下的HNSDDEs 的指数稳定性㊂文献[8]研究了常时滞反馈控制下的混合随机微分延迟方程的指数稳定性,其所涉及的时滞均为常量,本文进一步将常时滞推广到了函数时滞,并且将受控方程推广到了带有中立项的混合随机延迟微分方程,其难点在于找到时滞δ(t )的上界和利用引理2处理中立项㊂文献[9]研究了变时滞反馈控制的具有时变延迟的高度非线性HNSDDEs 的L p 渐近稳定性和H ∞稳定性,但缺少指数稳定性,本文则是通过进一步找到更合适的反馈函数确定了方程的收敛速度,即指数稳定性㊂1 基本假设与模型描述设(Ω,F ,{F t }t ≥0,P )是一个带有σ流(满足通常条件)的完备概率空间,{B (t )}t ≥0是定义在其上的m 维布朗运动,{r (t )}t ≥0是右连马氏链且独立于{B (t )}t ≥0,S ={1,2, ,N }是其状态空间,Γ=(γij )N ×N 是其生成算子㊂考虑变时滞反馈控制HNSDDEd ^x(t )=f (x (t ),x (t -τ(t )),t ,r (t ))d t +g (x (t ),x (t -τ(t )),t ,r (t ))d B (t ),t ≥0(1)其中^x(t )=x (t )-N (x (t -τ(t )),t ,r (t )),且初值满足{x(θ):-τ≤θ≤0}=φ∈C([-τ,0];n)r(0)=r0∈S(2)其中f,g,N均为Borel可测函数,并且满足f:n×n×+×S→ng:n×n×+×S→n×mN:n×+×S→n加上反馈控制函数u之后系统变为d^x(t)=[f(x(t),x(t-τ(t)),t,r(t))+u(x(t-δ(t)),t,r(t))]d t+g(x(t),x(t-τ(t)),t,r(t))㊃d B(t),t≥0(3)其中0≤δ(t)≤δ≤τ,0≤τ(t)≤τ㊂假设f(0,0,t,i)=N(0,t,i)≡0,g(0,0,t,i)≡0V(x,t,i)∈C2,1(n×+×S;+)为方便起见,简记^x=x-N(y,t,i)㊂对V(x,t,i)∈C2,1(n×+×S;+)定义如下算子LL V(x,y,t,i)=V t(^x,t,i)+V T x(^x,t,i)f(x,y,t, i)+12trace[g T(x,y,t,i)V xx(^x,t,i)g(x,y,t,i)]+∑j∈sγij V(^x,t,j)(4)为得到本文主要结论,提出以下假设㊂假设1 对任意l>0,存在K l>0,使得对任意i∈S,t∈+,且|x|∨|x|∨|y|∨|y|≤l,满足|f(x,y,t,i)-f(x,y,t,i)|∨|g(x,y,t,i)-g(x,y,t,i)|≤Kl(|x-x|+|y-y|)(5)假设2 存在K>0,m1>1,m2≥1,使得对∀x, y∈n,i∈S,t∈+,有|f(x,y,t,i)|≤K(|x|m1+|y|m1+1)|g(x,y,t,i)|≤K(|x|m2+|y|m2+1)(6)假设3 系统(3)中的时滞函数τ:+→[0,τ]满足τ′(t)=dτ(t)d t≤τ<1,t≥0(7)系统(3)反馈控制函数中的δ:+→[0,δ]满足δ′(t)=dδ(t)d t≤δ<1,t≥0(8)假设4 存在κ∈(0,1)使得对∀x,y∈n,i∈S,t∈+,有|N(x,t,i)-N(y,t,i)|≤κ(1-τ)|x-y|(9)并且N(0,t,i)≡0㊂假设5 存在常数c1,c2,c3,c4>0,c2>c3+c4和函数V∈C2,1(n×+×S;+),U1,U2∈C(×[-τ,+∞];+),使得对∀x,y∈n,i∈S,t∈+,有U1(x,t)≤V(x,t,i)≤U2(x,t)L V(x,y,t,i)+V x(x-N(y),t,i)u(z,t,i)≤c1-c2U2(x,t)+c3(1-τ)U2(y,t-τ(t))+c4(1-δ)U2(z,t-δ(t))(10)由文献[7]可得如下引理㊂引理1 设假设1~4成立,且假设5对于U1(x,t)=|x|w成立,那么系统(3)有唯一的全局解,并且满足sup-τ≤t<∞E|x(t)|w<∞,w≥2(m1∨m2)由文献[5]中引理2.2以及式(9)可得引理2 若p≥1,则[1-κ(1-τ)]p-1[|x|p-κ(1-τ)|y|p]≤|x-N(y,t,i)|p≤[1+κ(1-τ)]p-1[|x|p+κ(1-τ)|y|p](11) 2 主要结论与证明定义片段过程x(t)={x(t+s):-2τ≤s≤0,0≤t≤2τ}同理定义r(t),且令r(s)=r(0),s∈[-2τ,0)x(s)=φ(-τ),s∈[-2τ,-τ{)令U∈C2,1(n×+×S;+)且满足lim|x|→∞inf(t,i)∈+×SU(x,t,i[])=∞对于t∈+,定义V(x(t),t,r(t))=U(^x(t),t,r(t))+ρ∫0-δ∫t t+s J(v)㊃d v d s(12)其中ρ>0,且J(t):=δ|u(x(t-δ(t)),t,r(t))+f(x(t),x(t-τ(t)),t,r(t))|2+|g(x(t),x(t-τ(t)),t,r(t))|2对于x,y∈n,i∈S,s∈[-2τ,0),设f(x,y,s,i)≡f(x,y,0,i)g(x,y,s,i)≡g(x,y,0,i)u(z,s,i)≡u(z,0,i)由伊藤公式可得d U(^x(t),t,r(t))=[U t(^x(t),t,r(t))+ U T x(^x(t),t,r(t))(f(x(t),x(t-τ(t)),t,r(t))+ u(x(t-δ(t)),t,r(t)))+∑j∈Sγj,r(t)U(^x(t),t,j)+ 12trace[g T(x(t),x(t-τ(t)),t,r(t))U xx(^x(t),t,㊃601㊃北京化工大学学报(自然科学版) 2023年r(t))g(x(t),x(t-τ(t)),t,r(t))]d t+d B(t)(13)其中,B(t)是局部鞅,并且B(0)=0㊂整理式(13)得d U(^x(t),t,r(t))=l U(x(t),x(t-τ(t)),t, r(t))d t+U T x(^x(t),t,r(t))[u(x(t-δ(t)),t, r(t))-u(x(t),t,r(t))]d t+d B(t)其中,l U(x(t),x(t-τ(t)),t,r(t))=Ut(^x(t),t, r(t))+U T x(^x(t),t,r(t))[f(x(t),x(t-τ(t)),t, r(t))+u(x(t),t,r(t))]+∑j∈Sγj,r(t)U(^x(t),t,j)+ 12trace[g T(x(t),x(t-τ(t)),t,r(t))U xx(^x(t),t, r(t))g(x(t),x(t-τ(t)),t,r(t))]进而易得以下结论㊂引理3 V(x(t),t,r(t)),t≥0是伊藤过程,且有d V(x(t),t,r(t))=d B(t)+L V(x(t),t,r(t))㊃d t其中,L V(x(t),t,r(t))=l U(x(t),x(t-τ(t)),t, r(t))+ρδJ(t)-ρ∫t t-δJ(v)d v+U T x(^x(t),t,r(t))㊃[u(x(t-δ(t)),t,r(t))-u(x(t),t,r(t))](14)假设6 对于函数u:n×S×+→n,存在实数a i,a i,正数d i,d i和非负数b i,b i,e i,e i(i∈S),对于任意q1>1,p>2有x T[f(x,y,t,i)+u(x,t,i)]+12|g(x,y,t,i)|2≤a i|x|2+b i|y|2-d i|x|p+e i|y|px T[f(x,y,t,i)+u(x,t,i)]+q12|g(x,y,t,i)|2≤a i|x|2+b i|y|2-d i|x|p+e i|y|p且A1:=-2diag(a1,a2, ,a N)-ΓA2:=-(q1+1)diag(a1,a2, ,a N)-Γ是非奇异M矩阵(具体定义可参考文献[1]中的2.6部分),并有1>γ1,γ2>γ3,1>γ4,γ5>γ6(θ1,θ2, ,θN)T=A-11(1, ,1)T(θ1,θ2, ,θN)T=A-12(1, ,1)Tγ1=max i∈S2θi b i,γ2=min i∈S2θi d iγ3=max i∈S2θi e i,γ4=max i∈S(q1+1)θi b iγ5=min i∈S(q1+1)θi d i,γ6=max i∈S(q1+1)θi e i其中θi和θi是正数㊂需要注意的是,关于控制函数u的选取,考虑如下特殊情况x T f(x,y,t,i)+q-12|g(x,y,t,i)|2≤a(|x|2+ |y|2)-b|x|p+c|y|p其中a>0,b>c>0㊂由于|x|2,|y|2的系数均为正数,因此只能得到原方程的矩有界性,而得不到稳定性㊂此时可选取u(x,t,i)=Ax,其中矩阵A为实对称正定矩阵,且满足λmax(A)<-2a,从而x T[f(x,y,t,i)+u(x,t,i)]+q-12㊃|g(x,y,t,i)|2≤(λmax(A)+a)|x|2+a|y|2-b|x|p+c|y|p故加上控制项之后的系统指数稳定㊂假设7 存在U∈C2,1(n×+×S;+),H∈C(n;+),及常数0<α<1,0<β<λ,0<λ1,λ2,λ3,ρ1,ρ2,使得对任意的x,y∈n,i∈S,t∈+有l U(x,y,t,i)+λ1|U x(^x,t,i)|2+λ2㊃|f(x,y,t,i)|2+λ3|g(x,y,t,i)|2≤-λ|x|2+(1-τ)β|y|2-H(x)+(1-τ)αH(y)(15)其中,ρ1|x|p+q1-1≤H(x)≤ρ2(1+|x|p+q1-1)㊂假设8 存在λ4>0满足|u(x,t,i)-u(y,t,i)|≤λ4|x-y|(16)并且有u(0,t,i)=0㊂故有∀x∈n,u(x,t,i)≤λ4㊃|x|㊂定理1 令q∈[2,w),w≥2(m1∨m2)㊂若假设1~8成立,且常数满足κ(1-τ)<12δ≤λ1λ2(1-κ)(1-κ(1-τ))λ4∧2λ1λ3(1-κ)(1-κ(1-τ))λ24∧(λ-β)(1-δ)λ1(1-κ)(1-κ(1-τ))λ24则对任意初值,存在ε>0使得系统(3)的解满足lim t→∞sup1t ln(E|x(t)|q)≤-εw-q w-2(17)其中ε=ε1∧ε2∧ε3∧ε4,ε1,ε2,ε3,ε4分别是以下4个方程的根㊃701㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性εδ+2(1-κ)(1-κ(1-τ))=1[εh 3ρ-11(1+κ(1-τ))p +q 1-2](κe ετ+1)+e ετα=1ε(h 2+h 3)(1+κ(1-τ))(1+e ετκ)+βe ετ+2ρδ2λ24eεδ1-δ+λ4κ2(1-τ)e ετ(1-τ-δ+e εδ(1-τ ))λ1(1-δ-τ)=λ2e ετκ2(1-τ)2=1特别地,当q =2时有lim t →∞sup 1tln (E |x (t )|2)≤-ε(18)即满足均方指数稳定㊂证明:证明分为两步㊂1)第一步取k 0>0足够大使得‖φ‖:=sup -τ≤s ≤0φ(s )<k 0㊂定义σk =inf {t ≥0:|x (t )≥k |}(k ≥k 0),且inf ϕ=∞㊂由引理1和文献[7],当k →∞,则σk →∞,a.s.根据假设6再定义U (^x,i )=θi |^x |2+θi |^x |q 1+1(19)由伊藤公式有e εtEV (x (t ),t ,r (t ))=V (x (0),0,r (0))+∫te εs (εV (x (s ),s ,r (s ))+L V (x (s ),s ,r (s )))d s取h 1=min i ∈Sθi ,h 2=max i ∈S θi ,h 3=max i ∈Sθi ,结合式(12)可得h 1eε(t ∧σk )E |^x(t ∧σk )|2≤V (x (0),0,r (0))+∫t ∧σk0e εs E (L V (x (s ),s ,r (s )))d s +ερJ 1(t ∧σk )+∫t ∧σke εs (εh 2E |^x(s )|2+εh 3E |^x (s )|q 1+1)d s (20)其中,J 1(t ∧σk )=E ∫t ∧σke ε(s∫0-δ∫ss +uJ (v )d v d )u ㊃d s ㊂对于式(20)中的E |^x(t ∧σk )|2结合基本不等式可得到E |x (t ∧σk )|2≤2E |^x(t ∧σk )|2+2κ2(1-τ)2E |x (t ∧σk -τ(t ∧σk ))|2(21)对于式(20)中的L V (x (t ),t ,r (t ))结合式(14)和假设7有L V (x (t ),t ,r (t ))≤-λ|x (t )|2+(1-τ)β㊃|x (t -τ(t ))|2-H (x (t ))+(1-τ)αH (x (t -τ(t )))-λ1|U x (^x(t ),t ,r (t ))|2-λ2|f (x (t ),x (t -τ(t )),t ,r (t ))|2-λ3|g (x (t ),x (t -τ(t )),t ,r (t ))|2+ρδJ (t )-ρ∫tt-δJ (v )d v +U T x (^x (t ),t ,r (t ))㊃[u (x (t -δ(t )),t ,r (t ))-u (x (t ),t ,r (t ))]由假设8运用均值不等式可以得到U T x (^x (t ),t ,r (t ))[u (x (t -δ(t )),t ,r (t ))-u (x (t ),t ,r (t ))]≤λ1|U x (^x(t ),t ,r (t ))|2+λ244λ1㊃|x (t -δ(t ))-x (t )|2定义ρ=λ242λ1(1-κ)(1-κ(1-τ)),由定理1中δ满足的不等式知2ρδ2≤λ2,ρδ≤λ3㊂再由Hölder 不等式有E |x (t -δ(t ))-x (t )|2≤2E |^x(t )-^x (t -δ(t ))|2+2E |N (x (t -τ(t )),t ,r (t ))-N (x (t -τ(t )-δ(t ),t ,r (t ))|2≤4E∫tt-δ[δ|u (x (v -δ(v )),v ,r (v ))+f (x (v ),x (v -τ(v )),v ,r (v ))|2+|g (x (v ),x (v -τ(v )),v ,r (v ))|2]d v +2κ2(1-τ)2E |x (t -τ(t ))-x (t -τ(t )-δ(t ))|2所以有E L V (x (t ),t ,r (t ))≤-λE |x (t )|2+(1-τ)㊃βE |x (t -τ(t ))|2-EH (x (t ))+(1-τ)αEH (x (t -τ(t )))+2ρδ2λ24E |x (t -δ(t ))|2(+λ24λ1-)ρ㊃E∫t t -δJ (v )d v +λ4κ2(1-τ)22λ1E |x (t -τ(t ))-x (t -τ(t )-δ(t ))|2(22)对于式(20)中的E |^x(t )|q 1+1有以下关系式E |^x(t )|q 1+1≤E |^x (t )|2+E |^x (t )|p +q 1-1(23)又由假设7有|x (t )|p +q 1-1≤ρ-11H (x (t ))(24)所以结合式(20)~(23)有12h 1e ε(t ∧σk )E |x (t ∧σk )|2≤Π1+Π2+Π3+∫t ∧σke εs (εh 2E |^x(s )|2+εh 3E |^x (s )|2+εh 3㊃E |^x(s )|p +q 1-1)d s +∫t ∧σke εs E [-λ|x (s )|2+(1-τ)㊃β|x (s -τ(s ))|2-H (x (s ))+(1-τ)αH (x (s -τ(s )))+2ρδ2λ24|x (s -δ(s ))|2+λ4κ2(1-τ)22λ1㊃|x (s -τ(s ))-x (s -τ(s )-δ(s ))|2]d s(25)其中,Π1=h 1e ε(t ∧σk )κ2(1-τ)2E |x (t ∧σk -τ(t ∧σk ))|2Π2=V (x (0),0,r (0))㊃801㊃北京化工大学学报(自然科学版) 2023年Π3=ερJ 1(t ∧σk )(+λ24λ1-)ρJ 2(t ∧σk )J 2(t ∧σk )=E∫t ∧σke ε[s∫ss -δJ (v )d ]v d s易得J 1(t ∧σk )≤δJ 2(t ∧σk )㊂取ε1为ε1ρδ+λ24λ1-ρ=0的唯一解,则由ρ的定义知,对任意0<ε≤ε1,有Π3≤0㊂结合式(11),令k →∞,结合式(24),式(25)化为12h 1e εt E |x (t )|2≤Π1+Π2+Π4+Π5(26)其中,Π1=h 1e εt κ2(1-τ)2E |x (t -τ(t ))|2Π4=∫teεs{εh 3ρ-11[1+κ(1-τ)]p +q 1-2㊃[EH (x (s ))+κ(1-τ)EH (x (s -τ(s )))]-EH (x (s ))+(1-τ)αEH (x (s -τ(s )))}d sΠ5=∫te εs {ε(h 2+h 3)[1+κ(1-τ)]㊃[E |x (s )|2+κ(1-τ)E |x (s -τ(s ))|2]}d s +∫teε[s-λE |x (s )|2+(1-τ)βE |x (s -τ(s ))|2+2ρδ2λ24E |x (s -δ(s ))|2+λ4κ2(1-τ)22λ1E |x (s -τ(s ))-x (s -τ(s )-δ(s ))|]2d s对于Π2,由初值条件㊁假设2㊁假设8㊁引理2和式(12)得V (x (0),0,r (0))<∞,并且记为C 0,C 0为常数㊂对于Π4,根据假设3化简有Π4≤{[εh 3(1+κ(1-τ))p +q 1-2ρ-11](κe ετ+1)+e ετα-1}∫te εs E [H (x (s ))]d s +e ετ[εh 3(1+κ(1-τ))p +q 1-2ρ-11κ+α]∫-τe εs E [H (x (s ))]d s取ε2为[ε2h 3(1+κ(1-τ))p +q 1-2ρ-11](κe ε2τ+1)+e ε2τα-1=0的唯一解,则对任意0<ε≤ε2以及0<α<1即可满足Π4≤e ετ[εh 3(1+κ(1-τ))p +q 1-2ρ-11κ+α]㊃∫0-τe εs E [H (x (s ))]d s <∞(27)对于Π5,令ε3为ε3(h 2+h 3)(1+κ(1-τ))(1+e ε3τκ)+βe ε3τ+2ρδ2λ24eε3 δ1-δ+λ4κ2(1-τ)e ε3τ(1-τ-δ+e ε3δ(1-τ ))λ1(1-δ-τ)=λ的唯一解,对任意0<ε≤ε3,有Π5≤e [ετε(h 2+h 3)(1+κ(1-τ))κ+β+λ4κ2(1-τ)λ]1∫0-τe εs E |x (s )|2d s +2ρδ2λ24eεδ1-δ∫0-δe εs㊃E |x (s )|2d s +λ4κ2(1-τ)2e ε(τ+δ)λ1(1-δ-τ)∫-δ-τe εs E |x (s )|2d s [+ε(h 2+h 3)(1+κ-κτ)(1+e ετκ)+βe ετ+2ρδ2λ24eεδ1-δ+λ4κ2(1-τ)e ετ(1-τ-δ+e εδ(1-τ ))λ1(1-δ-τ)-]λ∫te εs E |x (s )|2d s ≤e [ετε(h 2+h 3)(1+κ(1-τ))κ+β+λ4κ2(1-τ)λ]1∫0-τe εs E |x (s )|2d s +2ρδ2λ24e εδ1-δ∫-δe εsE |x (s )|2d s +λ4κ2(1-τ)2e ε(τ+δ)λ1(1-δ-τ)㊃∫-δ-τe εs E |x (s )|2d s <∞(28)综上对任意0<ε≤ε1∧ε2∧ε3,可得12h 1e εt E |x (t )|2≤h 1e εt κ2(1-τ)2E |x (t -τ(t ))|2+C 1(29)其中C 1是一个常数㊂2)第二步式(29)经过整理可以得到e εt E |x (t )|2≤2e ετe ε(t -τ(t ))κ2(1-τ)2E |x (t -τ(t ))|2+2C 1h 1,故有sup 0≤s ≤t e εs E |x (s )|2≤2C 1h 1+2e ετκ2(1-τ)2sup 0≤s ≤t e εs ㊃E |x (s )|2+2κ2(1-τ)2e ετsup -τ≤s ≤0‖ϕ‖2由κ(1-τ)<12,令ε4为1-2e ε4τκ2(1-τ)2=0的唯一解,则对任意0<ε≤ε1∧ε2∧ε3∧ε4,有sup 0≤s ≤t e εs E |x (s )|2≤2C 1h 1+2κ2(1-τ)2e ετsup -τ≤s ≤0‖φ‖21-2κ2(1-τ)2e ετ:=C 2即当t ∈[0,∞)时,e εt E |x (t )|2≤C 2,即E |x (t )|2≤C 2e -εt ㊂对于任意的q ∈[2,w ),由Hölder 不等式得到㊃901㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性E |x (t )|q≤(E |x (t )|2)w - qw -2(E |x (t )|w)q -2w -2㊂由引理1知C 3:=E |x (t )|w <∞,故E |x (t )|q ≤C q -2w -23(C 2e -εt )w - qw -2≤C 4e -εt w - qw -2所以式(17)成立㊂特别地,当q =2时,有式(18)成立㊂3 例子考虑一维HNSDDEd[x (t )-N (x (t -τ(t )),t ,r (t ))]=f (x (t ),x (t -τ(t )),t ,r (t ))d t +g (x (t ),x (t -τ(t )),t ,r (t ))d B (t ),t ≥0(30)其中f (x ,y ,t ,1)=0.5x +y 3-6x 3f (x ,y ,t ,2)=x +y 3-4x3g (x ,y ,t ,1)=g (x ,y ,t ,2)=0.5y 2τ(t )=0.1(1-cos t ),N (y )=0.1y显然f ,g 不满足线性增长条件㊂令r (t )为一个连续的马氏链,状态空间S ={1,2},算子Γ=-22æèçöø÷1-1,B (t )为标准布朗运动且独立于r (t )㊂定义初值x (u )=0.2+cos u ,u ∈[-0.2,0],r (0)=2㊂由文献[10]可知系统(30)不稳定,以下将通过引入一个反馈控制函数使系统稳定㊂增加控制函数u (x ,t ,1)=-x ,u (x ,t ,2)=-2x ,增加控制函数后系统(3)的具体形式为 d[x (t )-0.1x (t -τ(t ))](=12x (t )+(x (t -τ(t )))3-6x (t )3-x (t - δ(t )))d t +12(x (t -τ(t )))2d B (t ),i (=1x (t )+(x (t -τ(t )))3-4x (t )3-2x (t - δ(t )))d t +12(x (t -τ(t )))2d B (t ),i ìîíïïïïïïïïïüþýïïïïïïïïï=2其中δ(t )=τ(t )㊂以下验证假设1~8㊂假设1显然成立㊂令m 1=3,m 2=2,可知假设2成立㊂令λ4=2,可知假设8成立㊂假设3对如下常数成立:δ=τ=0.2,δ=τ=0.1,且假设4对κ=19成立㊂取U 1(x ,t )=V (x ,i ,t )=|x |6,U 2(x ,t )=2.2x 6+x 8,由Young 不等式可得L V (x ,y ,t ,i )+V x (x -N (y ),t ,i )u (z ,t ,i )≤sup x ∈(43x 6-0.229x 8)-8×U 2(x ,t )+589×(1-τ)×U 2(y ,t -τ(t ))+109×(1-δ)×U 2(z ,t -δ(t ))故假设5对c 1=sup x ∈(43x 6-0.229x 8)<∞,c 2=8,c 3=589,c 4=109成立㊂取p =4,q 1=3,可知假设6成立㊂取U (x ,t ,i )=2x 2+x 4,i =1x 2+x 4,i ={2,再由Young 不等式,令λ1=0.05,λ2=0.1,λ3=4可得l U (x ,y ,t ,i )+λ1|U x (^x(t ),t ,i )|2+λ2㊃|f (x ,y ,t ,i )|2+λ3|g (x ,y ,t ,i )|2≤-1.845|x |2+0.369(1-τ)|y |2-6(x 4+x 6)+0.955×(1-τ)×6(y 4+y 6)若令H (x )=6(x 4+x 6),λ=1.845,β=0.369,α=0.955,则假设7成立㊂根据定理1条件发现κ,τ取值合理,进而可以得到δ≤0.0576时,定理1所有条件成立,故对∀w ≥6,∀q ∈[2,w ),存在ε>0使得lim t →∞sup1t ln (E |x (t )|q )≤-εw -qw -2特别地,q =2时有lim t →∞sup1tln (E |x (t )|2)≤-ε㊂4 结论本文采用函数方法,受文献[5]的启发在多项式增长的条件下讨论了变时滞反馈控制下的HNS⁃DDEs 的指数稳定性㊂最后,用一个例子证明了结论的有效性㊂参考文献:[1] MAO X R,YUAN C G.Stochastic differential equations with Markovian switching[M].London:Imperial CollegePress,2006.[2] FEI W Y,HU L J,MAO X R,et al.Delay dependentstability of highly nonlinear hybrid stochastic systems[J].Automatica,2017,82:165-170.[3] FEI C,SHEN M X,FEI W Y,et al.Stability of highlynonlinear hybrid stochastic integro⁃differential delay equa⁃tions[J].Nonlinear Analysis:Hybrid Systems,2019,31:180-199.㊃011㊃北京化工大学学报(自然科学版) 2023年[4] HU L J,MAO X R,SHEN Y.Stability and boundednessof nonlinear hybrid stochastic differential delay equations [J].Systems &Control Letters,2013,62:178-187.[5] WU A Q,YOU S R,MAO W,et al.On exponential sta⁃bility of hybrid neutral stochastic differential delay equa⁃tions with different structures [J].Nonlinear Analysis:Hybrid Systems,2021,39:100971.[6] SHEN M X,FEI W Y,MAO X R,et al.Stability ofhighly nonlinear neutral stochastic differential delay equa⁃tions[J].Systems &Control Letters,2018,115:1-8.[7] SHEN M X,FEI C,FEI W Y,et al.Boundedness andstability of highly nonlinear hybrid neutral stochastic sys⁃tems with multiple delays[J].Science China Information Sciences,2019,62:202205.[8] LI X Y,MAO X R.Stabilisation of highly nonlinear hy⁃brid stochastic differential delay equations by delay feed⁃back control[J].Automatica,2020,112:108657.[9] 周之薇,宋瑞丽.变时滞反馈控制的混合中立型随机延迟微分方程的稳定性[J].井冈山大学学报(自然科学版),2022,43(3):6-14.ZHOU Z W,SONG R L.Stabilization of the hybrid neu⁃tral stochastic differential equations controlled by thetime⁃varying delay feedback [J].Journal of Jinggangshan University (Natural Science),2022,43(3):6-14.(in Chinese)[10]SHEN M X,FEI C,FEI W Y,et al.Stabilisation by de⁃lay feedback control for highly nonlinear neutral stochasticdifferential equations [J ].Systems &Control Letters,2020,137:104645.[11]CHEN W M,XU S Y,ZOU Y.Stabilization of hybridneutral stochastic differential delay equations by delayfeedback control[J].Systems &Control Letters,2016,88:1-13.Exponential stability of hybrid neutral stochastic differential delay equations with time⁃dependent delay feedback controlLIU Qi LAN GuangQiang *(College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China)Abstract :The exponential stability of hybrid neutral stochastic differential delay equations (HNSDDEs)with time⁃dependent delay feedback control has been ing the Lyapunov function method,the exponential sta⁃bility of the system can be obtained by setting an appropriate feedback control function with a variable ⁃pared with the existing research results,the results of this work increase our understanding of the exponential stabil⁃ity of HNSDDEs under the influence of variable delay feedback.Finally,an example is given to prove the validity of the conclusions.Key words :time⁃dependent delay;hybrid neutral stochastic differential delay equations (HNSDDEs);feedbackcontrol;exponential stability(责任编辑:吴万玲)㊃111㊃第6期 刘 琪等:变时滞反馈控制的混合中立型随机延迟微分方程的指数稳定性。
如何根据外观辨识单一手性晶体?
大 学 化 学Univ. Chem. 2024, 39 (3), 78收稿:2023-09-01;录用:2023-10-19;网络发表:2023-11-13*通讯作者,Email:***************.cn•专题• doi: 10.3866/PKU.DXHX202309004 如何根据外观辨识单一手性晶体?王海英1,*,苏纪豪21川北医学院医学影像四川省重点实验室,四川南充 637000 2厦门大学化学化工学院,福建 厦门 361005摘要:有些消旋体结晶过程中的自发拆分会导致对映异构体单晶呈现不同的外观状态。
本文总结并列举了根据外观辨识单一手性晶体的四种方式,包括:半面体面、宏观形态、偏光颜色和表面形貌。
这些“以貌取人”的方法为探究手性化合物的结晶行为提供了重要的工具和见解。
关键词:自发拆分;半面体面;宏观形态;偏光颜色;表面形貌中图分类号:G64;O6How to Visually Identify Homochiral CrystalsHaiying Wang 1,*, Andrew C.-H. Sue 21 Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China.2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.Abstract: During the crystallization process of certain racemic compounds, spontaneous resolution can lead to distinctive external appearances of enantiomeric crystal forms. This article offers a comprehensive overview and delineates four methods for identification, namely, examining hemihedral faces, assessing macromorphology, employing circular polarization, and analyzing surface topography. These identification techniques serve as invaluable tools and viewpoints for studying the crystallization behavior of chiral compounds, holding significant potential across diverse applications in pharmaceutical production, materials science, and chemical synthesis.Key Words: Spontaneous resolution; Hemihedral faces; Macromorphology; Circular polarization;Surface topography手性(Chirality)是指物体与其镜像图形无法完全重合的性质[1]。
光催化二氧化碳还原晶面控制
光催化二氧化碳还原晶面控制英文回答:Catalytic reduction of carbon dioxide (CO2) using photocatalysis is a promising approach to convert CO2 into valuable chemicals or fuels. The control of crystal facesin photocatalysts is crucial for achieving high catalytic activity and selectivity. In this response, I will discuss the importance of crystal face control in photocatalyticCO2 reduction and provide examples to illustrate its impact.Crystal face control refers to the ability toselectively expose specific crystal faces of aphotocatalyst material. Different crystal faces havedistinct surface structures and chemical properties, which can significantly influence the catalytic performance. By controlling the crystal face exposure, we can manipulatethe adsorption and activation of CO2 molecules on the photocatalyst surface, leading to enhanced catalytic efficiency.One example of the importance of crystal face controlin CO2 reduction is the case of titanium dioxide (TiO2) photocatalysts. TiO2 is a widely used photocatalyst material due to its excellent stability and low cost. However, the photocatalytic reduction of CO2 on TiO2 is challenging because of its large bandgap and fast recombination of charge carriers. By selectively exposing the {001} crystal face of TiO2, which has a higher density of oxygen vacancies, the catalytic activity for CO2 reduction can be significantly improved. This is because the oxygen vacancies on the {001} surface can act as active sites for CO2 adsorption and activation, promoting the formation of CO2 reduction products.Another example is the use of copper-based photocatalysts for CO2 reduction. Copper oxide (CuO) is a common photocatalyst for CO2 reduction, but its selectivity towards specific products can vary depending on the crystal face exposure. For instance, by controlling the exposure of the {111} crystal face of CuO, the selectivity towards methane (CH4) formation can be enhanced. The {111} surfaceof CuO has a high density of copper vacancies, which can facilitate the formation of CH4 through the hydrogenation of adsorbed CO2 intermediates.Crystal face control can be achieved through various methods, such as controlling the synthesis conditions, using different crystal growth inhibitors, or modifying the surface with specific functional groups. These approaches allow us to tailor the crystal face exposure and optimize the catalytic performance for CO2 reduction.中文回答:光催化二氧化碳还原是一种将二氧化碳转化为有价值化学品或燃料的有前景的方法。
直链淀粉三(3,_5-二甲基苯基氨基甲酸酯)-聚醚砜手性膜色谱研究
分析测试新成果 (280 ~ 285)直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性膜色谱研究普 娜,赖亚琳,高顺秋,蒋雪菲,袁黎明(云南师范大学 化学化工学院,云南 昆明 650500)摘要:以直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)为材料,利用相转化法制备直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性高分子膜. 使用自制的手性膜色谱装置与高效液相色谱仪结合,对手性物质盐酸普萘洛尔和美托洛尔进行了手性膜色谱分离研究. 研究了进样量、流速、膜尺寸对分离效果的影响. 在优选分离效果的条件下,手性膜色谱以纯水为流动相,测得盐酸普萘洛尔的分离因子(α)和分离度(Rs )分别为3.00和0.95,美托洛尔的α和Rs 分别为1.65和0.46. 为手性化合物的分离分析开拓了新的途径.关键词:手性膜色谱;手性分离;盐酸普萘洛尔;美托洛尔中图分类号:O657. 7 文献标志码:B 文章编号:1006-3757(2023)03-0280-06DOI :10.16495/j.1006-3757.2023.03.005Chiral Membrane Chromatography Study Based on Amylose-tris-(3, 5-dimethylphenylcarbamate)-PolyethersulfonePU Na , LAI Yalin , GAO Shunqiu , JIANG Xuefei , YUAN Liming(Department of Chemistry and Chemical Engineering , Yunnan Normal University , Kunming 650500, China )Abstract :The chiral membrane of amylose-tris-(3, 5-dimethylphenylcarbamate)-polyethersulfone was prepared by phase conversion method using the amylose-tris-(3, 5-dimethylphenylcarbamate) as the material. The chiral membrane chromatographic separation of propranolol hydrochloride and metoprolol were studied by using the self-made chiral membrane chromatographic device combined with a high performance liquid chromatograph. The effects of injection volume, flow rate and membrane size on the separation of membrane were studied. Under the optimal conditions, the separation factors (α) and resolution (Rs ) with water as mobile phase were 3.00 and 0.95 for propranolol hydrochloride,1.65 and 0.46 for metoprolol, respectively. The study opens up a new way for the isolation and analysis of chiral compounds.Key words :chiral membrane chromatography ;chiral separation ;propranolol hydrochloride ;metoprolol手性化合物在手性环境中体现出了理化性质的差异,影响到生活中的方方面面,渐使人们对手性化合物的拆分展开了必要的研究[1]. 到目前为止,手性液相色谱是使用最广泛的分离分析技术[2-5],但其易耗品手性柱价格高、寿命短、分析时间较长,使用的流动相大多对环境和人体有害.膜色谱[6-8]涵盖了高效液相色谱分离速度快、操作压力低和样品容量大的优点,尤其是可以使用收稿日期:2023−06−07; 修订日期:2023−07−13.基金项目:国家自然科学基金项目(22174125) [Thin-slice Gas Chromatography Column Study Based on Two-dimensionalMaterials (22174125)]作者简介:普娜(1998−),女,硕士,主要从事手性分离研究,E-mail :通信作者:袁黎明,男,博士,教授,主要从事手性分离方面的研究,E-mail :.第 29 卷第 3 期分析测试技术与仪器Volume 29 Number 32023年9月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Sep. 2023水为溶剂,消除有机溶剂污染. 另外其所用膜很薄,有利于仪器的小型化. 手性膜色谱是一种能用于手性药物分离分析的膜色谱技术.手性固膜在生命体中已经客观存在,并在生命体系中起着非常重要的作用[9-10]. 手性固膜的研究一直受到膜研究人员的重视[11-12]. 目前,许多基于聚合物、碳纳米材料、金属有机骨架材料和其他一些无机材料的膜已被用于手性分离. 盐酸普萘洛尔和美托洛尔属于非选择性β-肾上腺素受体阻滞药[13-14].聚醚砜(PES)是综合性能优异的膜材料之一[15]. 1987年,Okamoto课题组研制出了直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)(ADMPC,以下简称AD)作手性固定相[16]. 时至今日,AD仍以其分离分析效果显著且手性识别范围广泛而著称. 基于以上,本文利用浸没沉淀相转化的方法制备直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜(AD-PES)手性膜,将AD-PES手性膜根据膜色谱装置的大小裁剪为对应尺寸,裁剪好的AD-PES手性膜放置在膜色谱装置中,然后用其代替高效液相色谱柱连接到高效液相色谱仪上,以纯水为流动相进行手性分离,探究且优化了多种手性分离条件. 试验结果证明:AD-PES手性膜在液相色谱仪上对盐酸普萘洛尔和美托洛尔有较好的分离效果.1 试验部分1.1 仪器与试剂LC-15C高效液相色谱仪(日本岛津);As 3120超声波清洗仪(天津奥特赛恩斯仪器有限公司);DJ-1磁力搅拌器(常州申光仪器有限公司);AL 204电子天平(梅特勒-力拓多仪器有限公司);CLXXXUVM2超纯水机(英国 ELGA Lab Water);Spectrum 100傅立叶变换红外光谱仪(FI-IR,美国PerkinElmer公司);Nova NanoSEM 450扫描电子显微镜(SEM,美国FEI公司).聚醚砜(PES,化学纯,德国巴斯夫)购于成都科隆化学有限公司;N, N-二甲基甲酰胺(DMF,99.5%)、甲醇(99.5%)购于成都科隆化学有限公司;丙酮(99.5%)购于云南省汕滇药业有限公司;苯(98%)、氧化钡(BaO,97%)、高锰酸钾(KMnO4,99%)、碳酸钾(K2CO3,99%)、1, 3, 5-三叔丁基苯(98%)均购于北京伊诺凯科技有限公司;无纺布(100%棉)购于浙江真邦实业有限公司;正己烷(98%)、异丙醇(99.7%)购于天津市风船化学试剂科技有限公司;盐酸普萘洛尔(99%)、美托洛尔(99%)购于美国Sigma-Aldrich公司.1.2 DMF的纯化圆底烧瓶中加入500 mL DMF和50 mL苯,置于70~75 ℃的油浴搅拌器中收集水-苯共沸物. 剩余液体中加入BaO振荡,进行干燥处理后过滤. 在氮气保护下进行减压蒸馏,收集76 ℃下的馏分. 1.3 丙酮的纯化250 mL丙酮中加入2.5 g KMnO4,于蒸馏装置中回流,收集馏分. 再用无水K2CO3进行干燥,静置后过滤,收集滤液. 于蒸馏装置中保持55~58 ℃进行蒸馏,收集馏分备用.1.4 AD-PES手性膜的制备称取1.0 g的PES于50 mL圆形烧瓶中,加入3.5 mL无水DMF搅拌24 h. AD是根据文献[16]合成的,其结构式如图1所示. 称取15 mg的AD 于50 mL圆形烧瓶中,加入1.5 mL无水丙酮搅拌1 h. 将以上两者溶液混合后连续搅拌24 h得到AD-PES铸膜液.OCONH-R R=CH3CH3OOOCONH-RR-HNOCO图1 AD的分子结构式Fig. 1 Molecular structure of AD制备好的铸膜液脱气泡后静置3~4 h,将无纺布铺平后在其表面缓慢、均匀地浇筑铸膜液,使用特制刮膜刀(制膜厚度0.2 mm)刮出适当大小的AD-PES手性膜,干燥片刻后放入纯水中进行浸没沉淀相转化,12 h后取出,根据需要裁成适当大小备用.PES膜使用未添加AD丙酮溶液的PES-DMF 溶液按照相同方法制备.1.5 膜色谱装置1.5.1 膜色谱装置展示膜色谱涵盖了高效液相色谱分离速度快、操作压力低和样品容量大的优点,尤其是可以使用水为溶剂,消除有机溶剂污染,另外因其所用膜较薄,十分有利于仪器的小型化. 本试验使用3种不同直径的膜色谱装置,示意图如图2所示. 观察图2,在使用膜色谱装置的过程中,首先将制备好的膜放入凹第 3 期普娜,等:直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性膜色谱研究281槽内,然后在膜上放置过滤芯,过滤芯的主要作用是降低并分散流动相对膜单一流径处的冲力,使流动相尽可能均匀地透过膜,提高膜的有效使用面积.将高效液相色谱仪的输液管分别与膜色谱装置上方的输入孔与下方的输出孔相连接. 膜色谱装置具体参数如表1所列.过滤芯输出孔图2 膜色谱装置(左)正面及(右)截面示意图Fig. 2 Schematic views of (left) front and (right) cross-section of membrane chromatography device表 1 三种膜色谱装置具体参数Table 1 Specific parameters of three membranechromatography devices /mm 型号凹槽直径凹槽深度过滤芯厚度过滤芯直径孔道直径整体高度大号331 2.0330.525中号221 1.5220.525小号1311.5130.5271.5.2 膜色谱装置死时间、死体积的测量死体积(V 0)是造成分析物拖尾的原因之一,因此V 0是衡量膜色谱装置的重要参数,根据公式(1)计算:其中,t 0代表死时间,min ;v 代表流速,mL/min. 通过测量死时间来计算死体积. 本试验选用1, 3, 5-三叔丁基苯测试死时间,检测波长设置为254 nm ,流速为0.03 L/min ,流动相为甲醇. 将制备好的PES 膜作为基膜,分别剪成直径为13、22、33 mm 的圆形后,置于膜色谱装置中,连接高效液相色谱. 大、中、小号的膜色谱所测得死时间分别为2.4、1.5、0.9 min ,对应死体积分别为0.24、0.15、0.09 mL.1.6 膜色谱计算公式采用k 1,k 2表示保留因子,α表示分离因子,Rs表示分离度. k 1,k 2,α,Rs 的计算公式如式(2)~(5)所列:其中,t 1、t 2代表两个峰的的保留时间,min ;t 0代表死时间,min ;W 1/2(1)、W 1/2(2)代表第一个峰和第二个峰的半峰宽,min.2 结果与讨论2.1 AD-PES 手性膜的表征对比PES 膜与AD-PES 手性膜的红外光谱图(图3),能看出AD-PES 手性膜(曲线b )不同于PES 膜(曲线a )的红外吸收. 在吸收曲线b 中,3 310cm −1处有明显的N-H 伸缩振动峰,1 650 cm −1处有酰胺的伸缩振动峰. 说明AD 成功固载到PES 中.Wavenumber/cm −14 0003 500ab3 0002 500 2 000 1 500 1 000500图3 (a )PES 膜,(b )AD-PES 手性膜的傅里叶红外光谱图Fig. 3 FT-IR spectra of (a) PES membrane, (b) AD-PESchiral membrane图4为AD-PES 手性膜的扫描电子显微镜(SEM )图. 如图4(a )所示,AD-PES 手性膜的表面呈现出光滑平整的特征. 图4(b )为AD-PES 手性膜揭去无纺布后的截面图,截面呈现出海绵状孔道,孔道内径分布在2~12 µm. 加上支撑层无纺布AD-PES 手性膜的平均厚度约为185 µm.2.2 AD-PES 手性膜对盐酸普萘洛尔分离性能的研究在检测波长为230 nm ,流速为0.03 mL/min ,流动相为纯水,进样量为3 µL 的色谱条件下,使用中282分析测试技术与仪器第 29 卷号膜色谱装置对盐酸普萘洛尔进行分离,其谱图及结构式如图5所示.t /minV o l t a g e /m V010203040HClOOH HNCH 3CH 3100200300400500图5 盐酸普萘洛尔分离色谱图及其结构式Fig. 5 Chromatogram and structural formula ofpropranolol hydrochloride2.2.1 进样量对分离效果的影响使用1.3节中所示的膜色谱装置将制备好的复合膜放入其中,全程保持膜是湿润的,按序连接好装置(注意需在各个螺纹接口处裹紧生胶带以防漏液). 色谱条件:检测波长为230 nm ,流速为0.03mL/min ,流动相为纯水,膜装置为中号. 变量因素为进样量,分别为1、2、3、4、5 µL. 色谱计算公式如式(2)~(5)所列. 分离数据如表2所列.表 2 不同进样量条件下盐酸普萘洛尔的分离结果Table 2 Separation results of propranolol hydrochlorideunder different injection volumes进样量/µLk 1k 2αRs 1 4.2011.53 2.750.682 3.9911.06 2.770.823 3.5010.50 3.000.954 3.2710.06 3.080.8853.5410.162.870.74由表2可看出,在进样量为3 µL 时,AD-PES 手性膜对盐酸普萘洛尔的分离效果最好. 当进样量过多时,膜上的手性位点与样品作用已达到饱和状态,导致部分盐酸普萘洛尔无法被分离.2.2.2 流速对分离效果的影响色谱条件:检测波长为230 nm ,进样量为3 µL ,流动相为纯水,膜装置为中号. 变量因素为流速,分别为0.01、0.02、0.03、0.04、0.05 mL/min. 分离数据如表3所列.表 3 不同流速下盐酸普萘洛尔的分离结果Table 3 Separation results of propranolol hydrochlorideunder different flow rates流速/ (mL/min)k 1k 2αRs 0.0114.4634.25 2.370.780.02 6.7518.00 2.670.800.03 3.5010.50 3.000.950.04 3.408.83 2.600.840.052.466.202.520.77由表3可看出,固定其他色谱条件,只改变流速时,在流速为0.03 mL/min 时分离效果最好. 若流速设置过慢,会导致峰形较差,拖尾严重. 而流速过快会使盐酸普萘洛尔来不及与膜中的手性识别位点作用就被流动相冲走,导致试验结果不准确,分离效果不理想.2.2.3 膜尺寸对分离效果的影响本试验通过使用3种不同直径的膜色谱装置,探究膜的尺寸对分离效果的影响. 将色谱条件设置为:检测波长230 nm ,进样量3 µL ,流速0.03 mL/min ,流动相为纯水. 变量因素为膜的尺寸,分别为33、22、13 mm. 分离数据如表4所列.表 4 不同膜尺寸下盐酸普萘洛尔的分离结果Table 4 Separation results of propranolol hydrochlorideunder different membrane sizes膜尺寸/mmk 1k 2αRs 33 5.1712.83 2.480.8822 3.5010.50 3.000.95133.649.662.650.87由表4可知,在固定其他色谱条件不变的情况下,通过使用不同直径的膜色谱装置来改变膜的尺2 μm 20 μm图4 AD-PES 手性膜的SEM 图(a )AD-PES 手性膜表面,(b )AD-PES 手性膜截面Fig. 4 SEM images of AD-PES chiral membrane (a) surface of AD-PES chiral membrane, (b) cross-section ofAD-PES chiral membrane第 3 期普娜,等:直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性膜色谱研究283寸,在膜尺寸为22 mm 时盐酸普萘洛尔的分离效果最佳. 膜尺寸增大时,虽然手性识别位点在增多,但是死体积也在增加. 所以,选用合适尺寸的手性膜也是衡量分离效果的重要因素之一.2.3 AD-PES 手性膜对美托洛尔分离性能的研究在检测波长为230 nm ,流速为0.03 mL /min ,流动相为纯水,进样量为3 µL 的色谱条件下,使用中号膜色谱装置对美托洛尔进行分离,其谱图及结构式如图6所示.t /minV o l t a g e /m V051015OOOH HN 50100150200250图6 美托洛尔分离色谱图及其结构式Fig. 6 Chromatogram and structural formula ofmetoprolol2.3.1 进样量对分离效果的影响色谱条件:检测波长230 nm ,流速0.03 mL/min ,流动相为纯水,膜装置使用中号,膜直径为22 mm.变量因素为进样量,分别为1、2、3、4、5 µL. 分离数据如表5所列.表 5 不同进样量条件下美托洛尔的分离结果Table 5 Separation results of metoprolol under differentinjection volumes进样量/µLk 1k 2αRs 1 2.43 3.44 1.420.382 2.39 3.41 1.430.433 1.70 2.80 1.650.464 2.34 3.43 1.460.3752.453.431.400.25由表5可看出,在进样量为3 µL 时,AD-PES 手性膜对美托洛尔的分离效果最好. 当进样量过多时,膜上的手性位点与美托洛尔作用已达到饱和状态,导致部分样品无法被分离.2.3.2 流速对分离效果的影响色谱条件:检测波长230 nm ,进样量为3 µL ,流动相为纯水,膜装置使用中号,膜直径为22 mm. 变量因素为流速,分别为0.01、0.02、0.03、0.04、0.05mL/min. 分离数据如表6所列.表 6 不同流速下美托洛尔的分离结果Table 6 Separation results of metoprolol under differentflow rates流速/ (mL/min)k 1k 2αRs 0.01 6.558.69 1.330.380.02 4.84 6.59 1.360.400.031.702.80 1.650.460.04 1.61 2.41 1.490.430.050.500.941.880.33由表6可看出,固定其他色谱条件,只改变流速时,在流速为0.03 mL/min 时对美托洛尔的分离效果最好. 若流速设置过慢,会导致峰形较差,而流速过快手性药品被流动相冲走,导致试验结果不准确,分离效果不理想.2.3.3 膜尺寸对分离效果的影响本试验通过使用3种不同直径的膜色谱装置,从而探究膜的尺寸对分离效果的影响. 将色谱条件设置为:检测波长230 nm ,进样量为3 µL ,流速0.03mL/min ,流动相为纯水. 变量因素为膜的尺寸,分别为33、22和13 mm. 分离数据如表7所列.表 7 不同膜尺寸下美托洛尔的分离结果Table 7 Separation results of metoprolol under differentmembrane sizes膜尺寸/mmk 1k 2αRs 33————22 1.70 2.80 1.650.46131.482.131.440.41由表7可知,在固定其他色谱条件不变,通过使用不同直径的膜色谱装置来改变膜的尺寸时,在膜尺寸为33 mm 下无法分离美托洛尔,在膜尺寸为22 mm 时美托洛尔的分离效果最佳. 理论上膜尺寸越大,手性识别位点越多,与手性物质作用的有效位点也越多,分离效果越好,而事实并不是膜尺寸越大越好. 膜尺寸增大,死体积及压力也在增大,使得理论塔板数降低,分离效果变差. 所以,选用合适尺寸的手性膜也是衡量分离效果的重要因素之一.284分析测试技术与仪器第 29 卷3 结论本文使用AD 与PES 制备铸膜液,经过浸没沉淀相转化后,得到AD-PES 手性膜. 通过特制的膜色谱装置结合高效液相色谱对盐酸普萘洛尔和美托洛尔进行了分离. 对AD-PES 手性膜进行了一系列评价,同时探讨了进样量、流速、膜尺寸对分离效果的影响. 当流速为0.03 mL/min 、进样量为3 µL 、膜直径为22 mm 时,对盐酸普萘洛尔和美托洛尔的分离效果最佳. 目前,膜分离技术应用在手性分离领域的研究才刚刚起步,具有巨大的发展空间,相信在不久的未来能取得长足进步.参考文献:Wu S K, Snajdrova R, Moore J C, et al. Biocatalysis:enzymatic synthesis for industrial applications [J ]. An-gewandte Chemie (International Ed in English),2021,60 (1):88-119.[ 1 ]Choi Y, Park J Y, Chang P S. Integral stereoselecti-vity of lipase based on the chromatographic resolution ofenantiomeric/regioisomericdiacylglycerols [J ].Journal of Agricultural and Food Chemistry ,2021,69(1):325-331.[ 2 ]袁黎明. 手性识别材料[M ]. 北京: 科学出版社,2010. [YUAN Liming. Chiral recognition materials [M ]. Beijing: Science Press, 2010.][ 3 ]李克丽, 袁黎明, 章俊辉, 等. 色谱手性分离研究[J ].分析测试技术与仪器,2017,23(3):159-164. [LI Keli, YUAN Liming, ZHANG Junhui, et al. Study on chiral separation of chromatography [J ]. Analysis and Testing Technology and Instruments ,2017,23 (3):159-164.][ 4 ]刘家玮, 刘湘唯, Habib Ur Rehman, 等. 金属有机框架色谱固定相的研究进展[J ]. 分析测试技术与仪器,2021,27(2):65-76. [LIU Jiawei, LIU Xiangwei,Habib Ur Rehman, et al. Progress in metal-organic frameworks as stationary phase for chromatographic separation [J ]. Analysis and Testing Technology and Instruments ,2021,27 (2):65-76.][ 5 ]Chen J, Yu B, Cong H L, et al. Recent developmentand application of membrane chromatography [J ].[ 6 ]Analytical and Bioanalytical Chemistry ,2023,415(1):45-65.Ghosh R. Ultrahigh-speed, ultrahigh-resolution prepar-ative separation of protein biopharmaceuticals using membrane chromatography [J ]. Journal of Separation Science ,2022,45 (12):2024-2033.[ 7 ]Orr V, Zhong L Y, Moo-Young M, et al. Recent ad-vances in bioprocessing application of membrane chromatography [J ]. Biotechnology Advances ,2013,31 (4):450-465.[ 8 ]Zhang S Y, Chen X, Sun L D, et al. β-cyclodextrin-self-assembled nanochannel membrane for the separation of chiral drugs [J ]. ACS Applied Nano Materials ,2020,3 (5):4351-4356.[ 9 ]蔡志威, 梁键谋, 陈超. 扫描电子显微镜-能谱联用在鉴别药包材上的应用[J ]. 分析测试技术与仪器,2022,28(3):260-266. [CAI Zhiwei, LIANG Jian-mou, CHEN Chao. Application of scanning electron microscopy-energy dispersive spectroscopy in identi-fication of pharmaceutical packaging materials [J ].Analysis and Testing Technology and Instruments ,2022,28 (3):260-266.][ 10 ]Han H D, Liu W, Xiao Y, et al. Advances of enanti-oselective solid membranes [J ]. New Journal of Chem-istry ,2021,45 (15):6586-6599.[ 11 ]Liu T Q, Li Z, Wang J J, et al. Solid membranes forchiral separation: a review [J ]. Chemical Engineering Journal ,2021,410 :128247.[ 12 ]Kalam M N, Rasool M F, Rehman A U, et al. Clinicalpharmacokinetics of propranolol hydrochloride: a review [J ]. Current Drug Metabolism ,2020,21 (2):89-105.[ 13 ]Zamir A, Hussain I, Rehman A U, et al. Clinical phar-macokinetics of metoprolol: a systematic review [J ].Clinical Pharmacokinetics ,2022,61 (8):1095-1114.[ 14 ]Sahebi S, Phuntsho S, Woo Y C, et al. Effect of sulph-onated polyethersulfone substrate for thin film com-posite forward osmosis membrane [J ]. Desalination ,2016,389 :129-136.[ 15 ]Okamoto Y, Aburatani R, Fukumoto T, et al. Usefulchiral stationary phases for HPLC Amylose tris(3, 5-dimethylphenylcarbamate)andtris(3, 5-dichloro-phenylcarbamate) supported on silica gel [J ]. Chem-istry Letters ,1987,16 (9):1857-1860.[ 16 ]第 3 期普娜,等:直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性膜色谱研究285。
浅析敦煌壁画中的色彩语义——以飞天为例的设计实践
Fashion Color人文赵子微Zhao Ziwei苏州大学 江苏 苏州 215000Soochow University, Suzhou Jiangsu 215000A Brief Analysis of Color Semantics in Dunhuang Murals—Design Practice with Apsaras as an Example浅析敦煌壁画中的色彩语义——以飞天为例的设计实践摘 要:本文是基于现存敦煌壁画中的艺术表达,结合多学科的色彩语义认知,对敦煌壁画中的色彩语义进行多维度探究。
敦煌壁画中的色彩构成和配色规律产生出极具代表性的色彩语义,对丰满中国艺术设计在国际的传播内容上有着重要意义。
最后文章基于理论研究,提炼出优秀的色彩表达来帮助敦煌壁画在商业模式和媒体系统中更广泛传播和应用。
关键词:敦煌壁画;色彩语义;飞天Abstract: Based on the artistic expression in the existing Dunhuang frescoes, this paper combines the multi-disciplinary color semantic cognition to explore the color semantics in Dunhuang frescoes in multiple dimensions. The color composition and color matching rule in Dunhuang frescoes produce very representative color meaning,which is of great significance to enrich the international communication content of Chinese art design. Finally,based on theoretical research, the paper extracts excellent color expression to help the wider dissemination and application of Dunhuang murals in business models and media systems.Keywords :Dunhuang Mural;color semantics;apsaras 一、绪论(一)研究目的与意义国内外就色彩语义的分析,多是基于西方文化的背景和认知,对于中国本土的色彩语义表达,也大多受写意山水或黑白水墨的刻板印象影响,在风格上略显单薄。
光学纯对映体 英文
光学纯对映体英文## Enantiomers and Optical Purity.In the realm of chemistry, chirality refers to the property of a molecule that lacks mirror symmetry, muchlike our left and right hands. Chiral molecules exist in two distinct forms known as enantiomers, which are mirror images of each other but cannot be superimposed. Enantiomers are like two non-identical twins, sharing the same molecular formula and connectivity but differing in their spatial arrangement.Optical purity, a crucial concept in stereochemistry, quantifies the enantiomeric excess of a chiral compound. It measures the proportion of one enantiomer relative to the other in a mixture. A mixture containing equal amounts of both enantiomers is considered racemic and has an optical purity of 0%. Conversely, a mixture containing only one enantiomer is optically pure and has an optical purity of 100%.### Separation of Enantiomers.The separation of enantiomers is a challenging yet essential task in many fields, including pharmaceuticals, agrochemicals, and fragrances. Various techniques can be employed to achieve this, including:Chiral chromatography: This technique utilizes achiral stationary phase that interacts differently with different enantiomers, allowing for their separation.Chiral resolution: This involves converting a racemic mixture into a pair of diastereomers, which can then be separated by conventional methods.Enzymatic resolution: Enzymes, being chiral themselves, can selectively catalyze reactions with one enantiomer over the other, leading to the formation of optically pure products.### Optical Purity Measurement.Optical purity can be determined using various methods, such as:Polarimetry: This technique measures the rotation of plane-polarized light as it passes through a chiral sample. The magnitude and direction of rotation depend on the enantiomeric composition of the sample.NMR spectroscopy: Chiral solvents or chiral shift reagents can be used in NMR spectroscopy to differentiate between enantiomers based on their different chemical shifts.Chromatographic methods: Chiral chromatography or capillary electrophoresis can be used to separate enantiomers and determine their relative abundance.### Significance of Optical Purity.Optical purity is of paramount importance in several areas:Pharmacology: Many drugs are chiral, and their enantiomers can have different pharmacological properties, including efficacy, toxicity, and metabolism. Enantiopure drugs offer advantages in terms of safety and effectiveness.Agrochemicals: Herbicides and pesticides can be chiral, and their enantiomers may differ in their selectivity and environmental impact. Optical purity ensures the targeted control of pests and weeds.Fragrances and flavors: The fragrance and flavor of chiral compounds can depend on their enantiomeric composition. Optical purity control allows for the creation of specific scents and tastes.### Applications of Chiral Compounds.Chiral compounds find widespread applications invarious industries:Pharmaceuticals: Enantiopure drugs include ibuprofen,naproxen, and thalidomide.Agrochemicals: Herbicides such as glyphosate and pesticides like cypermethrin are chiral.Fragrances and flavors: Enantiopure compounds like menthol, camphor, and limonene contribute to thedistinctive scents and tastes of products.Materials science: Chiral polymers, liquid crystals, and self-assembling systems have unique properties and applications in optics, electronics, and nanotechnology.### Conclusion.The concept of enantiomers and optical purity is crucial for understanding the stereochemistry of chiral compounds. The ability to separate and determine the optical purity of enantiomers is essential in numerous fields, including pharmaceuticals, agrochemicals, and fragrances. The significance of optical purity lies in itsimplications for the safety, efficacy, and properties of chiral compounds in various applications.。
p区金属氧化物Ga_(2)O_(3)和Sb_(2)O_(3)光催化降解盐酸四环素性能差异
收稿日期:2020⁃09⁃29。
收修改稿日期:2020⁃12⁃28。
国家自然科学基金(No.21875037,51502036)和国家重点研发计划(No.2016YFB0302303,2019YFC1908203)资助。
*通信联系人。
E⁃mail :***************.cn ,***************第37卷第3期2021年3月Vol.37No.3509⁃515无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYp 区金属氧化物Ga 2O 3和Sb 2O 3光催化降解盐酸四环素性能差异毛婧芸1黄毅玮2黄祝泉1刘欣萍1薛珲*,1肖荔人*,3(1福建师范大学环境科学与工程学院,福州350007)(2福建师范大学生命科学学院,福州350007)(3福建师范大学化学与材料学院,福州350007)摘要:对沉淀法合成的p 区金属氧化物Ga 2O 3和Sb 2O 3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。
最佳制备条件下得到的Ga 2O 3⁃900和Sb 2O 3⁃500样品光催化性能存在巨大差异,通过X 射线粉末衍射、傅里叶红外光谱、N 2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。
结果表明,Ga 2O 3和Sb 2O 3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。
关键词:p 区金属;氧化镓;氧化锑;光催化;盐酸四环素中图分类号:O643.36;O614.37+1;O614.53+1文献标识码:A文章编号:1001⁃4861(2021)03⁃0509⁃07DOI :10.11862/CJIC.2021.063Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p ‑Block Metal Oxides Ga 2O 3and Sb 2O 3MAO Jing⁃Yun 1HUANG Yi⁃Wei 2HUANG Zhu⁃Quan 1LIU Xin⁃Ping 1XUE Hun *,1XIAO Li⁃Ren *,3(1College of Environmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China )(2College of Life and Science,Fujian Normal University,Fuzhou 350007,China )(3College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China )Abstract:The UV light photocatalytic performances of p ⁃block metal oxides Ga 2O 3and Sb 2O 3synthesized by a pre⁃cipitation method for the degradation of tetracycline hydrochloride were explored.The effects of synthesis conditions on the photocatalytic activity were discussed.The Ga 2O 3⁃900and Sb 2O 3⁃500samples prepared under optimal condi⁃tions exhibited a remarkable photocatalytic activity difference,which were characterized by X⁃ray diffraction,Fouri⁃er transform infrared spectroscopy,N 2adsorption⁃desorption tests,fluorescence spectrum,Raman spectrum,electro⁃chemical analysis and trapping experiment of active species.The photocatalytic degradation mechanisms of tetracy⁃cline hydrochloride over the photocatalysts were proposed and the essential factors influencing the difference of pho⁃tocatalytic performance were revealed.The results show that the different photocatalytic activities observed for Ga 2O 3and Sb 2O 3can be attributed to their different electronic and crystal structures,the amount of hydroxyl groupin the surface and the photocatalytic degradation mechanisms.Keywords:p ⁃block metal;Ga 2O 3;Sb 2O 3;photocatalysis;tetracycline hydrochloride无机化学学报第37卷0引言盐酸四环素(TC)作为一种四环素类广谱抗生素,被广泛应用于治疗人体疾病及预防畜禽、水产品的细菌性病害,其在世界范围的大量使用致使其在环境中积累[1]。
光敏色素互作因子的英文
光敏色素互作因子的英文The English term for 光敏色素互作因子 is "Photoreceptor Interacting Factor" (PIF). In this article, we will delve into the details of PIF, its function, and mechanisms in more than 1200 words.Introduction to Photoreceptor Interacting Factor (PIF):PIF Family Proteins:Role of PIFs in Photomorphogenesis:Photomorphogenesis refers to the light-induced developmental changes that occur throughout a plant's life cycle. PIFs act as key integrators of light signaling pathways and positively or negatively regulate the morphological changes associated with photomorphogenesis. In the dark, PIFs, especially PIF3 and PIF4, are highly accumulated and inhibit seedling photomorphogenesis by repressing the expression of light-responsive genes. Upon exposure to light, PIFs are rapidly degraded, allowing photomorphogenesis to proceed. This degradation is mediated by the light-activated photoreceptors, resulting in the activation of target genes involved in chlorophyll biosynthesis, leaf expansion, and other light-dependent processes.PIFs and the Phytochrome Signaling Pathway:Phytochromes are a class of photoreceptors that detect red and far-red light. They play a vital role in the regulation ofseed germination, de-etiolation, flowering, and shade avoidance responses. PIFs interact with phytochromes to modulate their activity. Red light activates phytochromes, resulting in their conversion from the inactive Pr form to the active Pfr form. PIFs, specifically PIF3 and PIF4, bind to the Pfr form and prevent its entry into the nucleus. This interaction sequesters phytochromes in the cytoplasm, impeding their ability to regulate gene expression associated with light responses. Consequently, PIF repression is relieved upon degradation or inactivation of PIFs, allowing downstream gene expression and photomorphogenesis to occur.PIFs and the Cryptochrome Signaling Pathway:PIFs, Flowering Time, and The Circadian Clock:Conclusion:。
光合成系 英文
光合成系英文English:The photosynthetic system is a complex process that takes place in plant cells, specifically in the chloroplasts. This system involves the conversion of light energy into chemical energy in the form of glucose. The process begins with the absorption of light by chlorophyll, which is located in the thylakoid membranes of the chloroplasts. The absorbed light energy is then used to drive a series of chemical reactions that ultimately result in the production of ATP and NADPH, which are both energy carriers. These products are then used in the Calvin cycle, a series of reactions that take place in the stroma of the chloroplasts, to convert carbon dioxide into glucose. Ultimately, photosynthesis plays a crucial role in the production of food for plants and the release of oxygen into the atmosphere.中文翻译:光合作用系统是一个在植物细胞中发生的复杂过程,特别是在叶绿体中。
光电催化反应的英文
光电催化反应的英文English:Photocatalytic reactions involve the use of light to activate a substance, typically a semiconductor material, to accelerate a chemical reaction. In these reactions, photons (light particles) are absorbed by the photocatalyst, generating electron-hole pairs which drive redox reactions on the catalyst surface. This process allows for the conversion of sunlight into chemical energy, making photocatalysis a sustainable and environmentally friendly way to drive various chemical processes. Some common applications of photocatalytic reactions include water splitting for hydrogen production, carbon dioxide reduction for fuel synthesis, and pollutant degradation for environmental remediation. Researchers continue to explore and optimize the efficiency of photocatalytic systems by developing novel materials, enhancing light absorption, and improving charge separation mechanisms. Overall, photocatalytic reactions represent a promising technology for green chemistry and renewable energy applications.中文翻译:光催化反应涉及利用光激活物质,通常是半导体材料,加速化学反应。
Phase transitions in liquid crystals
Phase transitions in liquid crystals液晶中的相变液晶是介于液体和晶体之间的一类物质,具有独特的物理性质和结构特征。
由于其具有很强的可控性和可调性,液晶在电子、光电、通信等领域有着广泛的应用。
相变是液晶研究中的重点之一,液晶的相变机制和特性的研究对于推动液晶技术的发展和提高液晶的应用效果具有极其重要的作用。
液晶中的相变指的是其在特定条件下从一种相转变为另一种相的过程。
在常温常压下,液晶形态是等向各向同性的,即液晶分子的方向没有特定的取向,而是随机分布。
当在适当的温度、压力下,或通过其他物理或化学手段引入外界剂量,液晶分子的方向将发生一些变化,这种变化可能是连续的,也可能是突变的。
在这种过程中,液晶的分子结构和物理性质都会发生相应的变化,进而带来不同的应用效果。
液晶相变包括两个重要的概念:热力学相变和液晶本身的相变。
热力学相变指的是物质在外界条件发生改变的情况下,从一种自由能(相)状态转变为另一种自由能(相)状态的过程。
在这个过程中各态可达,相之间是可以通过简单的热力学过程来转变的,因此热力学相变具有明确的相变点和相变弛豫时间特性。
而液晶相变指的是自身相态的改变,无论是外界条件怎样变化,相变之间的转变都不会发生热力学相变。
这种相变的特殊性质连接着液晶的物理特性和其应用领域,对液晶性的理解和技术开发具有极其重要的作用。
液晶相变的分类不同研究者会给出不同的分类依据,但总体上,液晶相变的过程可以分为两种情况:向列相向向列向相和向列相向纤维状相的转变。
具体实现的方式有以下几种:1. 液晶成分改变液晶的相变最常见的方式是改变其成分。
液晶的分子构造、电子与其他化学性质的变化、空气中杂质成分、加入溶剂或添加剂等的改变都会导致液晶分子的相变。
例如,向列相向向列向相的转变可以通过加入草酸钠和生育酚等溶剂实现。
这种方法的好处是操作简单易行,但也存在着一定的限制,因为在这种情况下,液晶成分的变化可能引入了其他的效应,使得相变结果不够明确。
锰铝榴石的颜色三要素特征
2020年8月中国宝玉石16◦期Aug2020CHINA GEMS &JADES41-48页锰铝榴石的颜色三要素特征黎嘉宝中国地质大学(北京)珠宝学院,北京100083摘要:为促进锰铝榴石分级标准的建立和完善,本文从市场中选取38颗颜色由深橙红向浅橙色过渡的锰铝榴石样品,通过紫外一可见光分光光度计测试分析其光谱特征,利用X-Rite SP62积分球式分光光度计测量样品的颜色数据,并基 于CIE 1976 L W均匀色空间对样品颜色进行定量表征,分析其颜色特征,为锰铝榴石的颜色质量评价提供一定的理论 依据。
通过统计学分析,得出样品CT值与b’的相关系数r为0.927,说明锰铝榴石的彩度随黄色饱和度的增大而增大,样品K值与1/值的相关系数I•为0.896,说明锰铝榴石的色调角随黄色饱和度的增大而增大;样品I;值与IV值的相关 系数r为0.949,说明锰铝榴石的明度随色调角的增大而增大。
关键词:锰铝榴石;色度学;定量表征中图分类号:P574.1 + 1文献标识码:A文章编号:1002-1442(2020)04-0041-08The Characteristics of Three Elements of Spessartine ColorLI JiabaoSchool o f Gemmology,China University o f Geosciences(Beijing),Beijing 100083ABSTRACT:In order to promote the establishment and improvement o f the classification standard o f spessartine,this paper selected38 samples o f spessartine from market,whose colors vary from deep orange red to light orange.The experiment used ultraviolet-visible spectroscopy testing to analyze the optical spectra,and used X-Rite SP62 spectrophotometer to measure the color o f the samples.Quantitative characterization of the color of the samples based on the CIE 1976 L*a*b*uniform color space are used to analyze its color characteristics,so as to provide a certain theoretical basis for the color quality evaluation o f spessartine.According to statistical analysis,the Pearson correlation coefficient (r)between C*value and b*value o f samples is0.927, indicating that the chroma of spessartine increases as its yellow saturation increases.The r value between h value and b*value o f samples is 0.896, indicating that the hue angle o f spessartine increases as its yellow saturation increases.The r value between L*value and h value o f samples is0.949, indicating that the lightness o f spessartine increases as its hue angle increases. KEY W ORDS:spessartine;chromaticity;quantitative characterization引言锰铝榴石为石榴石族矿物中的重要品种之一,常见 橙一橙红色,其中具有明艳橙色者由于颜色接近芬达汽水 而被称为“芬达石”,颇受市场追捧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :n u c l -t h /0612038v 1 9 D e c 2006Chiral phase transition and color superconductivity in an extended NJL model with higher-order multi-quark interactions Kouji Kashiwa,1Hiroaki Kouno,2Tomohiko Sakaguchi,1Masayuki Matsuzaki,3and Masanobu Yahiro 11Department of Physics,Graduate School of Sciences,Kyushu University,Fukuoka 812-8581,Japan 2Department of Physics,Saga University,Saga 840-8502,Japan 3Department of Physics,Fukuoka University of Education,Munakata,Fukuoka 811-4192,Japan Abstract The chiral phase transition and color superconductivity in an extended NJL model with eight-quark interactions are studied.The scalar-type nonlinear term hastens the chiral phase transition,the scalar-vector mixing term suppresses effects of the vector-type linear term and the scalar-diquark mixing term makes the coexisting phase wider.Quantum Chromodynamics (QCD)has non-perturbative properties.First-principle lat-tice QCD simulations are useful to study thermal systems at zero or small density [1,2].At high density,however,lattice QCD is still not feasible due to the sign problem.Therefore,effective models are used in finite density region.One of the models is the Nambu–Jona-Lasinio (NJL)model [3].This model has the mechanism of spontaneous chiral symmetry breaking,but it has not the confinement mechanism.However,this model has been widely used [4,5]with the mean field approximation (MFA),for example,for analyses of the critical endpoint of chiral phase transition [6,7,8,9,10,11].As for the NJL model,only a few studies were done so far on roles of higher-order multi-quark interactions [12,13],except for the case of the six-quark interaction coming from the’t Hooft determinant interaction[14].The NJL model is an effective theory of QCD,so there is no reason,in principle,why higher-order multi-quark interactions are excluded.In this paper,we consider an extended NJL model that newly includes eight-quark in-teractions and analyze roles of such higher-order interactions on the chiral phase transition and color superconductivity.It is well known that the original NJL model predicts a critical endpoint to appear at a lower temperature(T)and a higher chemical potential(µ)than the lattice QCD[2]and the QCD-like theory[15,16]do.As for the repulsive vector-type four-quark interaction(¯qγµq)2,it is well-known that it makes the chiral phase transition weaker in the low T and highµregion and makes it a crossover when the vector type interaction is strong enough[7,11].In this point of view, an absence of the vector-type four-quark interaction may be preferable in the high density region.On the contrary,a strong vector-type interaction is necessary to reproduce the saturation property of nuclear matter in the relativistic meson-nucleon theory[17].Thus, it is expected that the vector-type interaction is sizable in the normal density region but suppressed in the higher density region.In the relativistic meson-nucleon theory,it is known that nonlinear meson terms can suppress the effective coupling between mesons and nucleons in the higher density region.Therefore,we consider higher-order multi-quark interactions in the NJL model.We start with the following chiral-invariant Lagrangian density with twoflavor quarks L=¯q(i∂−m0)q+ g2,0 (¯q q)2+(¯q iγ5 τq)2 +g4,0 (¯q q)2+(¯q iγ5 τq)2 2−g0,2(¯qγµq)2−g2,2 (¯q q)2+(¯q iγ5 τq)2 (¯qγµq)2+d0,2(i¯q cεǫbγ5q)(i¯qεǫbγ5q c)+d2,2(¯q q)2(i¯q cεǫbγ5q)(i¯qεǫbγ5q c)+··· ,where q=q iαis the quarkfield,q c=C¯q T and¯q c=q T C are the charge-conjugation spinor, C=iγ2γ0is the charge-conjugation matrix,g i,j and d n,m are coupling constants,m0is the current quark mass,the Latin and Greek indices mean theflavor and color, τ=(τ1τ2τ3) are Pauli matrices andεandǫb are the antisymmetric in each of theflavor and color space.In this paper,we use the MFA.At the numerical calculation,we ignore higher-order terms represented by dots.Furthermore,we disregard interactions including isovector-vector current not important in symmetric quark matter.We determine the parameters,g2,0,g4,0andΛ,so as to reproduce the pion mass (138MeV),the sigma meson mass(650MeV)and the pion decay constant(93.3MeV).The other parameters g 0,2,g 2,2,d 0,2and d 2,2are free parameters.For the typical case,we as-sume that g 0,2=Ag 2,0,g 2,2=Bg 2,0/σ20,d 0,2=0.6g 2,0,d 2,2=Cd 0,2/σ20,G σ=2g 2,0+12g 4,0σ20,where σ0stands for the scalar density at T =µ=0.We take parameters as (A,B,C )=(1.0,0,0),(A,B,C )=(0.8,0.2,0)and (A,B,C )=(0,0,0.2).The current quark masses of up and down quarks are assumed to be 5.5MeV.Figure 1shows the chiral phase transition line in the µ-T plane [18].0.30.320.340.3600.020.040.06NJL modelNJL + σ4modelNJL + σ4 + ω2 + σ2 ω2 model µ [GeV]T [G e V ]FIG.1:Phase diagram in the µ-T plane.Each curve denotes the location of the first-order phase transition.It is understood that the ω2interaction tends to change the chiral phase transition from a first order to a crossover,but this effect is partially canceled out by the σ4and σ2ω2interaction.Consequently,as shown in Fig.1,there exists a critical endpoint also in the NJL+σ4+ω2+σ2ω2model.Figure 2shows the chiral phase transition line and color superconductivity region in the µ-T pare the left panel with the right one,the σ2∆2interaction makes the coexisting phase wider.In conclusion,we have studied effects of eight-quark interactions on the chiral phase transition and color superconductivity.The scalar-type nonlinear term σ4hastens the chiral phase transition and makes the critical endpoint move to a higher temperature and a lower chemical potential than original NJL model calculations.Both the scalar-type nonlinearT [G e V ]µ [GeV]T [G e V ]µ [GeV]FIG.2:Phase diagram in the µ-T plane.Solid lines represent the first order phase transition and doted lines represent the second order phase transition.The symbol “χSB”stands for the chiral symmetry broken phase,“Wigner”stands for the chiral symmetry restored phase,“CSC”stands for color superconductor phase and “coex.”stands for the coexisting phase in which both the chiral condensation and the diquark condensation have finite vacuum expectation values.term σ4and the scalar-vector mixing term σ2ω2cancel effects of the vector-type linear term ω2.The scalar-diquark mixing term σ2∆2enlarges the coexisting region of the chiral condensate and the diquark condensate.Therefore,higher-order multi-quark interactions are important for both the chiral phase transition and color superconductivity.[1]J.Kogut,M.Stone,H.W.Wyld,W.R.Gibbs,J.Shigemitsu,S.H.Shenker,and D.K.Sinclair,Phys.Rev.Lett.50,393(1983).[2]Z.Fodor and S.D.Katz,J.High Energy Phys.03,014(2002);Prog.Theor.Phys.Suppl.153,86(2004).[3]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122,345(1961);Phys.Rev.124,246(1961).[4]S.P.Klevansky,Rev.Mod.Phys.64,649(1992).[5]T.Hatsuda and T.Kunihiro,Phys.Rep.247,221(1994).[6]M.Asakawa and K.Yazaki,Nucl.Phys.A504,668(1989).[7]M.Buballa,Nucl.Phys.A611,393(1996).[8]J.Berges and K.Rajagopal,Nucl.Phys.B538,215(1999).[9]O.Scavenius,´A.M´o csy,I.N.Mishustin,and D.H.Rischke,Phys.Rev.C64,045202(2001).[10]H.Fujii,Phys.Rev.D67,094018(2003).[11]M.Kitazawa,T.Koide,T.Kunihiro,and Y.Nemoto,Prog.Theor.Phys.108,929(2002).[12] A.A.Osipov,B.Hiller,and J.da Providˆe ncia,Phys.Lett.B634,48(2006).[13] A.A.Osipov,B.Hiller,J.Moreira,and A.H.Blin,Eur.Phys.J.C46,225(2006).[14]G.’t Hooft,Phys.Rev.D14,3432(1976).[15]O.Kiriyama,M.Maruyama,and F.Takagi,Phys.Rev.D63,116009(2001).[16]Y.Hashimoto,Y.Tsue,and H.Fujii,Prog.Theor.Phys.114,595(2005).[17]J.D.Walecka,Ann.Phys.83,491(1974).[18]K.Kashiwa,H.Kouno,T.Sakaguchi,M.Matsuzaki,and M.Yahiro,nucl-th/0608078.。