中等职业学校高一数学试卷答案

合集下载

中职学校2022-2023学年第二学期 高一月考数学试题+答案解析

中职学校2022-2023学年第二学期 高一月考数学试题+答案解析

绝密★启用前2022-2023学年第二学期 高一月考数学试题考试范围:第六章 直线与圆;考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题,共60分)一、单选题(本大题共20小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求。

) 1.已知()3,2A ,()4,1B −,则直线AB 的斜率为( ) A .17−B .17C .7−D .72.已知点(M ,点(1,N ,则直线MN 的倾斜角为( ) A .30°B .60°C .120°D .135°3.已知直线1310l y −+=与直线2l 平行,则2l 的斜率为( )AB .CD .4.以下四个命题,正确的是( )A .若直线l 的斜率为1,则其倾斜角为45°或135°B .经过()()101,3A B −,,两点的直线的倾斜角为锐角 C .若直线的倾斜角存在,则必有斜率与之对应 D .若直线的斜率存在,则必有倾斜角与之对应5.经过点()3,2P ,且与直线4370x y −−=平行的直线方程为( ) A .43180x y +−=B .4360x y −−=C .3410x y −−=D .34170x y +−=6.已知直线:0l Ax By C ++=(A ,B 不同时为0),则下列说法中错误的是( )A .当0B =时,直线l 总与x 轴相交 B .当0C =时,直线l 经过坐标原点O C .当0A C ==时,直线l 是x 轴所在直线D .当0AB ≠时,直线l 不可能与两坐标轴同时相交7.到x 轴距离与到y 轴距离之比等于2的点的轨迹方程为( ) A .()20y x x =≠B .()20y x x =±≠ C .()20xy x ≠ D .()20x y x =±≠ 8.过两点()3,5A −,()5,5B −的直线在y 轴上的截距为( ) A .54−B .54C .25−D .259.已知点()()0,3,3,1A B −,则AB 为( )A .5B .C .D .410.直线0ax by c ++=关于直线0x y −=对称的直线为( ) A .0ax by c −+= B .0bx ay c −+= C .0bx ay c ++= D .0bx ay c +−=11.已知两条直线1:10l ax y +−=和2:10(R)l x ay a ++=∈,下列不正确的是( ) A .“a =1”是“12l l ∥”的充要条件B .当12l l ∥C .当2l 斜率存在时,两条直线不可能垂直D .直线2l 横截距为112.已知点(8,10),(4,4)A B −,则线段AB 的中点坐标为( ) A .(2,7)B .(4,14)C .(2,14)D .(4,7)13.已知圆22:2460C x y x y +−+−=,则圆心C 及半径r 分别为( )A .()1,2−B .()1,2−C .()1,2,−D .()1,2,−14.已知圆心为(2,3)−的圆与直线10x y −+=相切,则该圆的标准方程是( ) A .22(2)(3)8x y ++−= B .22(2)(3)8x y −++= C .22(2)(3)18x y ++−=D .22(2)3)1(8x y ++=−15.圆22(1)(2)4x y ++−=的圆心、半径是( ) A .()1,2−,4B .()1,2−,2C .()1,2−,4D .()1,2−,216.直线1y x =+与圆221x y +=的位置关系为( ) A .相切B .相交但直线过圆心C .相交但直线不过圆心D .相离17.圆224210x y x y ++−+=与直线=1x −的相交弦的长度等于( )A .B .4C .D .218.直线:3410l x y +−=被圆22:2440C x y x y +−−−=所截得的弦长为( )A .B .4C .D .19.过圆2240x y +−=与圆2244120x y x y +−+−=交点的直线方程为( ).A .30x y +−=B .30x y −+=C .20x y −+=D .40x y +−=20.已知两圆2210x y +=和()()221320x y −+−=相交于A ,B 两点,则AB =( )A .B .CD .第II 卷(非选择题,共60分)二、填空题:本大题共5小题,每小题4分,共20分。

职高数学高一试题及答案

职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A2. 函数f(x)=3x^2-2x+1的图像开口方向是:A. 向上B. 向下C. 不能确定D. 没有开口答案:A3. 计算下列表达式的结果:(2x+3)(3x-2) = ?A. 6x^2-x-6B. 6x^2-x+6C. 6x^2+x-6D. 6x^2+x+6答案:A4. 圆的方程为(x-2)^2+(y+3)^2=9,圆心坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)答案:A5. 已知数列{an}的前n项和为Sn,且满足a1=1,an=2an-1+1,求S5的值。

A. 31B. 63C. 15D. 11答案:A6. 函数y=sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. -1D. π答案:B二、填空题(每题5分,共20分)1. 如果一个等差数列的前三项依次为2,5,8,则该数列的第10项是______。

答案:232. 一个圆的半径为5,那么它的面积是______。

答案:25π3. 函数f(x)=x^3-3x+2在x=1处的导数值是______。

答案:04. 已知等比数列{bn}的前三项依次为2,4,8,则该数列的第5项是______。

答案:16三、解答题(每题10分,共50分)1. 解不等式:3x-2>5x+4。

答案:由3x-2>5x+4,得-2x>6,所以x<-3。

2. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4,令f'(x)=0,得x=2为极值点。

计算f(1)=0,f(2)=-1,f(3)=0,所以最大值为0,最小值为-1。

职高高一期末数学试卷答案

职高高一期末数学试卷答案

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 0答案:D2. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 6C. 7D. 8答案:C3. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A4. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D5. 下列各式中,最简二次根式是()A. √18B. √24C. √36D. √48答案:C二、填空题(每题5分,共20分)6. 二项式定理中,(a + b)^3的展开式中,a^2b的系数是______。

答案:37. 若sin∠A = 0.6,则∠A的余弦值cos∠A = ______。

答案:0.88. 一次函数y = 2x - 3的图像与x轴的交点坐标是______。

答案:(3/2, 0)9. 在等差数列中,若首项a1 = 2,公差d = 3,则第10项a10 = ______。

答案:2910. 若三角形的三边长分别为3、4、5,则该三角形的面积是______。

答案:6三、解答题(每题10分,共30分)11. (10分)解下列方程:3x^2 - 5x - 2 = 0。

解:首先,我们尝试因式分解方程。

观察方程3x^2 - 5x - 2,我们需要找到两个数,它们的乘积等于 3 (-2) = -6,而它们的和等于-5。

这两个数是-6和1。

因此,我们可以将方程重写为:3x^2 - 6x + x - 2 = 0接下来,我们将方程分组:3x(x - 2) + 1(x - 2) = 0提取公因式:(3x + 1)(x - 2) = 0根据零因子定理,我们得到两个解:3x + 1 = 0 或 x - 2 = 0解这两个方程,我们得到:x = -1/3 或 x = 2所以,方程3x^2 - 5x - 2 = 0的解是x = -1/3和x = 2。

中职高中试题数学及答案

中职高中试题数学及答案

中职高中试题数学及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. -3B. πC. √2D. i2. 已知f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. -5D. 53. 一个圆的半径为5,其面积是多少?A. 25πB. 50πC. 100πD. 200π4. 一个等差数列的首项为3,公差为2,第10项是多少?A. 23B. 21C. 19D. 175. 函数y = x^2 - 4x + 4的顶点坐标是?A. (2, -4)B. (2, 0)C. (-2, 0)D. (-2, -4)6. 一个直角三角形的两直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 87. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}8. 一个正六边形的内角是多少度?A. 60B. 90C. 120D. 1809. 已知等比数列的首项为2,公比为3,求第5项。

A. 486B. 243C. 81D. 2710. 一个长方体的长、宽、高分别为2、3、4,其体积是多少?A. 24B. 12C. 36D. 48二、填空题(每题2分,共20分)11. 一个圆的周长是12π,其半径是________。

12. 函数y = |x - 1|的图像关于________对称。

13. 一个数的平方根等于它本身,这个数是________。

14. 已知等差数列的前三项分别为5,7,9,求第4项。

15. 一个三角形的内角和为________。

16. 一个正方体的体积是27,其边长是________。

17. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)。

18. 一个圆的面积是π,其半径是________。

19. 一个数的绝对值是5,这个数可以是________或________。

职业高中高一下学期期末数学试题卷1(含答案)

职业高中高一下学期期末数学试题卷1(含答案)

职业高中下学期期末考试高一《数学》试题一、选择题.(每小题3分,共30分)1.若a 3log <1,则a 的取值范围为( )A .a >3B . a <3C . 1<a <3D . 0<a <32.函数x x a a y --=且(0>a 且R a a ∈≠,1) 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数3.”y x lg lg =”是“y x =”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分条件又不是必要条件4.化简式子cos()sin(2)tan(2)sin()απαππαπα-⋅-⋅--得 ( )A .sin αB .cos αC .sin α-D .cos α-5.函数sin y x =与cos y x = 都是单调递增的区间是( )A . ⎥⎦⎤⎢⎣⎡+22,2πππk kB . ⎪⎭⎫⎝⎛++ππππk k 2,22C . ⎪⎭⎫ ⎝⎛++232,2ππππk kD . ⎪⎭⎫⎝⎛++ππππ22,232k k 6.函数()()1ln 2-=x x f 的定义域是( )A .()1,1-B .()()+∞-∞-,11,C .()+∞-,1D .R7.若4.06.0a a <,则a 的取值范围是( )A .1>aB .10<<aC .0>aD .无法确定 8.在等比数列{}n a 中,若9,473-=-=a a ,则=5a ( ) A .6±B . 6-C . 213-D .69. 函数x y 28-=的定义域是( ) A . (]3,∞-B .[]3,0C .[]3,3-D .(]0,∞-10. 若54cos ,53sin -==αα且,则角α终边在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.已知等差数列{}n a 中,53=a ,则=+412a a .12. 已知等比数列{}n a 中,若120,304321=+=+a a a a ,则=+65a a .13. 已知()ππαα,,21cos -∈-=,则=α_________.14. ()()=---+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-02322381π .15. 若a =2log 3,则=-6log 28log 33 .16. c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的_____________. 17.已知α为第二象限角,则=-•αα2cos 1sin 1_____ . 18. 若αtan 与cos α同号,则α属于第_______象限角。

职高高中试题数学及答案

职高高中试题数学及答案

职高高中试题数学及答案试题:职高高中数学试题一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个角的余角是20°,那么这个角的度数是多少?A. 70°B. 90°C. 110°D. 160°3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 函数f(x) = 3x^2 - 2x + 1的最大值是多少?A. -1B. 0C. 1D. 无法确定5. 如果一个数列的前三项是1,2,3,那么它的第四项是多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共20分)6. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是_________。

7. 一个二次方程的解是x = 1和x = -2,那么这个二次方程可以表示为x^2 - ________ + 1 = 0。

8. 如果sin(θ) = 0.6,那么cos(θ)的值是_________(保留一位小数)。

9. 一个数的平方根是4,那么这个数是_________。

10. 一个函数的图象关于y轴对称,如果它在x=1处的值为3,那么在x=-1处的值是_________。

三、计算题(每题10分,共30分)11. 计算下列表达式的值:(2x^3 - 3x^2 + 4x - 5) / (x - 2),当x = 3。

12. 解下列不等式:2x + 5 > 3x - 4。

13. 证明:对于任意正整数n,(1^2 + 2^2 + 3^2 + ... + n^2) =n(n + 1)(2n + 1) / 6。

四、解答题(每题15分,共30分)14. 一个工厂生产的产品,如果每件产品的成本是50元,销售价格是100元,求工厂的利润率。

15. 一个班级有30名学生,其中15名男生和15名女生。

职高数学 高一第一学期期末考试试卷(含答案)

职高数学  高一第一学期期末考试试卷(含答案)

第1页 共6页 ◎ 第2页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________绝密★启用前高一第一学期数学期末试卷一、选择题(每小题3分,共45分)1. 设集合A ={b ,c ,d },则集合A 的子集共有( ) A .5个B .6个C .7个D .8个2.若集合A ={x |x 是等腰三角形},B ={x |x 是等边三角形},则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若a ,b ,c 为实数,且a >b ,则( )A .a -c >b -cB .a 2>b 2C .ac >bcD .ac 2>bc 2 4x 的取值范围是( )A .[-1,6]B .(-∞,-1]∪[6,+∞]C .[-2,3]D .(-∞,-2]∪[3,+∞)5.设函数 f (x )=x 2+ax -a ,且f (-1)=5,则常数a =( ) A .-2 B .-3 C .2 D .36.二次函数y =x 2+ax +b 的顶点坐标为(-3,1),则a ,b 的值为( ) A .a =-6,b =10 B .a =-6,b =-10 C .a =6,b =10 D .a =6,b =-10 7.下面指数式可以写成对数式的有( )①(-2)3=-8;② 213-⎛⎫⎪⎝⎭=9;③10=1;④6a =13A .1个B .2个C .3个D .4个8.已知函数f (x )在(0,π)上是增函数,那么f (2) 2f π⎛⎫⎪⎝⎭,f (e )之间的大小关系是( )A .f (e )>f (2)> 2f π⎛⎫⎪⎝⎭ B .2f π⎛⎫⎪⎝⎭>f (2)>f (e ) C .f (e )> 2f π⎛⎫⎪⎝⎭>f (2) D .f (2)>f (e )>2f π⎛⎫ ⎪⎝⎭9.已知奇函数f (x )在[1,4]上是增函数,且有最大值6,那么f (x )在[]4,1--上为( )A .增函数,且有最小值-6B .增函数,且有最大值6C .减函数,且有最小值-6D .减函数,且有最大值6 10.下列函数中,既是奇函数又是减函数的是( ) A .13y x =B .y =2x 2C .y =-x 3D .1y x= 11. 二次函数y =x 2-2x +4,x ∈[2,4]的最大值为( ) A .4 B .6 C .8 D .12 12.函数0(3)y x =-的定义域为( ) A .[2,+∞) B .(2,+∞) C .[2,3)∪(3,+∞) D .[3,+∞) 13.下列各组函数中,表示同一个函数的是( ) A .y =x与y = B .y =|x |与y = C .y =|x |与y = D.y =与y 14.下列关系式中,正确的是( )A .log 35<log 34B .lg π>lg3.14C .log 0.35>1D .log 32>log 94 15.设函数f (x )=(n +4)x 在R 上单调递增,则实数n 的取值范围是( ) A .n >-3 B .-4<n <-3 C .n ≥-3 D .-4≤n ≤-3 二、填空题(每空3分,共30分)第3页 共6页 ◎ 第4页 共6页※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※16.已知函数20,()=2,0,1,0,x f x x x x ⎧⎪-=⎨⎪+⎩>0,<则f {f [f (4)]}=________.17.lg4+2lg5-ln 1+3log 53=________.18. 若函数y =3x 2+2(a -1)x +6在(-∞,1)上是减函数,在(1,+∞)上是增函数,则a =_______.19.函数f (x )=x 2-2x -3的单调增区间是________.20.设全集U =R ,集合P ={x |x ≥1},Q ={x |0≤x <3},则∁U (P ∩Q )=_______. 21.设函数f (x )=2ax 2+(a -1)x +3是偶函数,则g (x )=ax +a -1是________函数(填“奇”或“偶”).22.已知函数f (x )=kx +b ,若f (2)=3且f (-1)=6,则k =______,b =_____.23.如果函数y =-a x(a >0,a ≠1)的图像过点12,4⎛⎫- ⎪⎝⎭,则a 的值是________.24.已知a =log 327,b =3log 23 ,c =log 216,则a ,b ,c 由大到小排列的顺序为________.25. 13log 1x >,则x 的取值范围是________.三、解答题(共45分)26.(10分)解下列方程与不等式(1)解方程:2(lg x )2-3lg x -2=0. (2)不等式21139xx +⎛⎫⎪⎝⎭>27. (8分)已知全集U ={2,3,a 2+2a -3},集合A ={2,|a |},∁U A ={0}.a 的值.28. (9分)已知集合A ={x |ax 2-3x +2=0,a ∈R }.若集合A 素,求实数a 的集合;29.(9分)白洋淀旅游景区出售门票,每张门票售价为60门票数量的函数.当购买5张以内(含5张)的门票时,请用三种方法表示这个函数.30. (9分)用定义证明函数y =ln-x )(x ∈R )是奇函数.第5页 共6页 ◎ 第6页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________高一第一学期数学期末试卷答案一、选择题 1-5 D B A D A 6-10 C B A B C 11-15 DC C B A二、填空题(每空3分,共30分) 16. 5 17. 718. -2 19. (1,+∞) 20. {x |x <1或x ≥3} 21. 奇 22. k =-1,b =5 23. 1224. c >a > b 25. 103x <<三、解答题(共45分)26.(1)解:由2(lg x )2-3lg x -2=0 得(2lg x +1)(lg x -2)=0, 解得lg x =-12或lg x =2, ∴x或x =100.(2)∵ 21139xx +⎛⎫ ⎪⎝⎭>,∴不等式可变形为21233x x +->, 又∵函数y =3x 在R 上单调递增,∴x 2+1>-2x ,即x 2+2x +1>0,解得x ≠-1.27. 解:由题意得223=0,=3,a a a ⎧+-⎪⎨⎪⎩解得a =-3.28. 解:当a =0时,方程为-3x +2=0, 方程有唯一解x =23,符合题意. 当a ≠0时,根据题意有Δ=(-3)2-4a ·2=9-8a =0,解得a =98.综上所述,实数a 的集合是9=0=8a a a ⎧⎫⎨⎬⎩⎭或.29. 解:设购买门票数量为x 张,应付款为y 元,得 ①解析法:y =60x ,x ∈{1,2,3,4,5}. ②列表法:③ 图像法:30. 证明:函数的定义域为R ,对于任意的x ∈R ,都有-x∈R , ∵f (x )=ln-x ),∴f (-x )=ln +x ),f (x )+f (-x )=ln-x )+ln+x ) =ln -x +x )] =ln 1 =0,即f (x )=-f (-x ),∴y =ln -x )(x ∈R )是奇函数.。

职高高一数学试题及答案

职高高一数学试题及答案

职高高一数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()。

A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = 2x + 1在x=2处的导数是()。

A. 3B. 4C. 5D. 63. 等差数列{an}中,若a3 + a7 = 20,则a5的值为()。

A. 5B. 10C. 15D. 204. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,该圆的半径是()。

A. 1B. 3C. 5D. 75. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B的元素个数是()。

A. 1B. 2C. 3D. 46. 若函数f(x) = x^2 - 4x + 3的图象与x轴相交,则交点的个数是()。

A. 0B. 1C. 2D. 37. 一个等边三角形的边长为a,则其面积为()。

A. √3a^2/4B. a^2√3/4C. a√3/2D. √3a/28. 函数y = 1/x的图象在第一象限的斜率是()。

A. 正B. 负C. 零D. 不存在9. 已知等比数列{bn}的首项为2,公比为3,则b5的值为()。

A. 96B. 48C. 24D. 1210. 函数y = ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)二、填空题(每题4分,共20分)1. 若f(x) = x^2 - 6x + 9,则f(3) = _______。

2. 一个圆的直径为10cm,那么它的周长为 _______ cm。

3. 函数y = 2x - 1与y = x + 2的交点坐标为 _______。

4. 集合{1, 2, 3, 4, 5}的所有子集个数为 _______。

5. 等差数列的前n项和为S_n,若S_5 = 75,则a1 + a5 = _______。

三、解答题(每题10分,共50分)1. 已知函数f(x) = x^2 - 4x + 3,求其在区间[1, 3]上的最大值和最小值。

最新中等职业学校高一数学试卷答案

最新中等职业学校高一数学试卷答案

2013-2014学年xxx中等职业学校第一学期高一《数学》试题答案1.选用适当的符号填空:(6分)(1)0 ∈{0}; (2){0,1} = {x︱x2-1=0};(3)a Φ2.{a}、{b}、{c}、{a, b}、{a, c}、{b, c}(2分)3. 解方程(6分)(1)x1 =- 3, x2= 3; (2)b≤0 ; (3) (-∞,4):4.函数(8分)(1)2, x2= 3; (2) f(x)=x2-4 ; (3) (-2,-1):5.指数函数与对数函数(8分)(1) log125 15=-13(2) >; (3)43;(4) 1;三、解答题:(共40分)1. 知集合A={等腰三角形},集合B ={等边三角形},求A∩B,AUB.(4分) 答案:B, A.2.(1) p=2, q=-15;(2) {-5, -1, 3}.(6分)3.(-1,6],数轴表示略(6分)4.x1 =x2=1(4分)5.{-1,0,1,2,3,4,5}:(4分)6.107.{ m∣m>3或,m<-1}.8.解:据题意得:y=2 000×(1+2.52%)x当y=3000时,有3000=2000×(1+2.52%)x整理得 1.5=1.0252 x所以x=log l.02521.5=lg1.51.0252=16.29答:约经过17年后本利和可达到3 000元.《三国演义》阅读资料一、填空。

1、《三国演义》是元末明初代作者罗贯中。

这是我国第一部章回小说。

是我国古代四大名著之一。

另外三部名著分别是水浒传、红楼梦、西游记。

《三国演义》又叫《三国志演义》、《三国志通俗演义》。

2、“天下三分”是指天下分裂为_魏_、_蜀_、_吴_,各自的首领是曹操、刘备、孙权。

3、《三国演义》中桃园三结义的三弟兄分别是使双股锏的刘备,使丈八蛇矛枪的张飞和使青龙偃月刀的关羽。

4、《三国演义》中忠义的化身是关羽,我们所熟知的他忠、义、勇、谋、傲的事情分别有:千里走单骑、华容道义释曹操、过五关斩六将、水淹七军、败走麦城。

高一职高数学试题及答案

高一职高数学试题及答案

高一职高数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是不等式2x - 5 > 0的解集?A. x > 5B. x > 2.5C. x < 2.5D. x < 52. 函数f(x) = 3x^2 - 2x + 1的最小值出现在x = ________。

3. 已知等差数列{an}的首项a1=3,公差d=2,求第5项a5的值。

4. 圆的半径为5,求圆的面积。

5. 已知sinθ = 1/3,求cosθ的值(结果保留根号形式)。

6. 以下哪个是二次方程x^2 + 4x + 4 = 0的根?7. 函数y = |x|的图像是一条折线,其折点的坐标是?8. 根据题目所给的统计数据,计算平均数。

9. 已知三角形ABC,∠A = 60°,AB = 5,AC = 3,求BC的长度。

10. 已知向量a = (2, 3),向量b = (1, k),若向量a与向量b垂直,则k的值为?二、填空题(每题3分,共15分)11. 计算(3x - 2)(2x + 1)的展开式中x^2的系数。

12. 已知等比数列{bn}的首项b1=2,公比q=3,求第4项b4的值。

13. 圆心在原点,半径为7的圆的标准方程是__________。

14. 已知三角形ABC中,AB=5,AC=7,BC=8,求∠A的余弦值。

15. 计算向量a = (1, -1)和向量b = (4, 2)的点积。

三、解答题(每题5分,共20分)16. 解不等式组:\[\begin{cases}x + 2y \geq 4 \\2x + y \leq 8\end{cases}\]17. 证明:若a,b,c是三角形ABC的三边长,则有a^2 + b^2 = c^2当且仅当∠C = 90°。

18. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数f'(x)。

19. 已知点A(-1, 2)和点B(4, -1),求直线AB的方程。

职业高中高一下学期期末数学试题卷2(含答案)

职业高中高一下学期期末数学试题卷2(含答案)

职业高中下学期期末考试高一《数学》试题一、选择填空(每小题3分共30分)1、如果角αZ k k k ∈-∈),2,22(πππ,那么角α的终边在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、(21x +21y )(21x -21y )=( )A. x 2+y 2B. x-yC. x+yD. x 2+y 2 3、若sin 与cos 同号,则属于A 、第一象限B 、 第一、二象限C 、第三象限D 、第一、三象限4、各项均为正数的等比数列}{n a 中, 983=a a 则13log a +23log a +…+103log a 的值是 ( )A.-10B.10C.9D.-95、α,β都是锐角,且αsin >βsin ,则有 ( )A 、α+β=900B 、α+β>900C 、α>βD 、α<β 6、已知)(x f =-x a -,x x g a log )(=在同一坐标系中,图象正确的是()Aoyx 11B-11oyxC11oyx-11DOyx7、如果三个连续偶数的和为336,那么它们后面三个连续偶数的和为。

( ) A 、342 B 、348 C 、354 D 、3608、已知等差数列}{n a 中,若2021=+a a ,4065=+a a ,则6S =( ) A 、55 B 、630 C 、180 D 、909、已知12-=x y ,若y ≥1,则x 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1) D.(-∞,1)10、如果方程03lg 2lg lg )3lg 2(lg lg 2=+++x x 的两根为lgx 1,lgx 2那么 x 1x 2的值为( )A.2lg lg3B.lg2+lg3C.61D.-6 二、填空题(每个3分共24分)11、6cos6tan2cos.4tan3tan.3sinππππππ+-的值是.12、1590sin 0的值是. 13、2log =x a 化为指数式是. 14、64log .9log 274=. 15、4131-->a a,则∈a .16、函数3)1()(--=m x m x f 是幂函数,则m=. 17、在等比数列中.若1a =1,n a =256,q=2,则项数n=. 18、在等差数列中,2443=+a a ,2465=+a a ,则87a a +的值是. 三、.计算题(每小题8分,共32分). 19、已知α是锐角,αsin +αcos =25.求 (1)αsin αcos(2)αsin -αcos专业 班级 姓名 学籍号 考场 座号20、(log 43+log 83)(log 32+log 92)的值.21、已知322=+-a a ,求a a -+88的值.22、等差数列}{n a 的公差d=2,第m 项m a =1,前m 项和m S =-8,求m 的值.四、证明题(6分) 23.证明:=1五.综合应题(10分)在2,9之间插入两个整数,使前三个成等差数列,后三个成等比数列,求插入的两个数.高一《数学》试题参考答案一、选择填空(每小题3分共30分) 1、D2、B 3、D 4、B5、C (0,1) 6、B7、C 8、D 9、B10、C 二、11、212、0.513、a 2=x14、2 15、(0.1 )16、217、9 18、8 三、.计算题(每小题8分,共32分). 19、(1)1/8 (2)±3/220、解:原式=)2log 212)(log 3log 313log 21(3322++=4521、解: 原式=2233)2(22)2)[(22()2()2(a a a a a a a a ----+-+=+=3]232)22[(2a a a a ---+ =3(9-3)=1822、由题意得:1=1a +(m-1)2 (1)m a 2181+=-….(2) 化简得:0822=--m m 解得m=4或-2(舍去)∴m=4四、证明题(6分)略 五.综合应用题(10分)有题意可设插入的两个数为2+d,a+2d由题意得:)2(9)22(2d d +=+ ∴01442=--d d∴d=2或47-解得插入的两个数为4,6或41,-23 ∴插入的两个数为4,6。

职业高中 高一第一学期数学期末试卷(含答案)

职业高中 高一第一学期数学期末试卷(含答案)

第1页 共8页 ◎ 第2页 共8页学校:___________班级:___________姓名:___________考场号:________考号:________绝密★启用前高一第一学期数学期末试卷一、 选择题(共15题,每题3分,共计45分) 1.如果M ={x x ≤1},则( ).A .0⊆MB .{0}⊆MC .{0}∈MD .φ∈ M 2.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则C U (A ∩B )= ( ). A .{2,3} B .{1,4,5} C .{4,5} D .{1,5} 3.命题p :a =0,命题q :ab =0的( )条件. A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知a >b ,则下列不等式中一定成立的是( ).A .a -1<b -1B . 2a <2bC . -2a <-2bD . 2a ->2b - 5.若a >1在同一坐标系中,函数y =a x 和y =log a x 的图像可能是( )A B C D 6.下列函数中关于y 轴对称的是( ).A .5x y =B .22-=x yC .xy 1= D .x y 5=7.下列函数中既是奇函数又是增函数的是( ) A .x y 3= B .22x y = C .xy 1=D .x y 31-=8.函数522-+-=x x y 的最大值是( ) A .5 B .-4 C .8 D .-3 9.函数342+-=x x y ( )A .在(-∞,2)内是减函数B .在(-∞,4)内是减函数C .在(-∞,0)内是减函数D .在(-∞,+∞)内是减函数 10.下列函数中,定义域为[0,+∞)的是( ) A .3x y = B .2x y = C .21x y = D .2-=x y11.设指数函数x a y =是减函数,则( )A .a <1B .a >0C .a >1D .0<a <1 12.函数y =x 216—定义域为( )A . (_∞,_4]B . [_4, +∞)C . (_∞, 4]D . [4, +∞) 13.下列各式中正确的是( )A . 0.30.3log 5log 7<B .39log 2log 4>C .ln 2<0D .lg 31< 14.下列计算正确的是( )A .(x +y )-1=x -1+y -1B . (xy )-1= x -1y -1C .2x +y =2x +2yD .(a 3)2=a 5 15.设sin α>0且cos α>0,则角α为( )A . 第一象限角B . 第二象限角C . 第三象限角D .第3页 共8页 ◎ 第4页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第四象限角二.填空题(每空3分,共30分)1.点P (3,5)关于原点对称点的坐标为2.计算:()5= ___; 213-⎛⎫⎪⎝⎭= ____;151362a a a ⋅÷=____ .3.幂函数在第一象限的图像都经过点 ,指数函数图像一定过的点的坐标为4.设函数221,20()1,03x x f x x x +-<⎧⎪=⎨-<<⎪⎩≤,则()f x 的定义域为 _______;(2)f =__________.5.比较大小:0.2π 0.3π6.若函数22()(1)(2)(712)f x m x m x m m =-+-+-+为偶函数,则m的值是_________.三.解答题:(共5题,每题9分,共计45分) 1.设A ={x -2,2x 2+5x ,12},已知-3A ,求x 的值.2.已知集合U ={x |-5≤x ≤3},A ={x |-3≤x ≤-1},B ={x |-1≤x <1},求U A , U B, ()U AB , ()U AB .3.已知函数是偶函数,且在上是增函数,证明它在上的单调性.4.求函数的定义域.5.我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x ()之间的函数关系(设0<x ≤60),并作出函数图像.第5页 共8页 ◎ 第6页 共8页学校:___________班级:___________姓名:___________考场号:________考号:________高一第一学期数学期末试卷答案一、选择题。

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案一、选择题(本大题共12小题,每小题5分,共60分)1. 下面哪些是平面三角形中的充要条件?A.两个内角相加等于180° B.三条边的长度均相等C.任意两边之和大于第三边 D.三条边都大于零答案:D2. 已知二次函数y=αx2+βx+γ中,α>0,当x<-2时,y取得最大值。

那么此函数抛物线的顶点是()A.M(2,α+2β+γ) B.M(-2,α+2β+γ) C.M(2,-α+2β+γ) D.M(-2,-α+2β+γ)答案:B3. 将函数y=2x2+2x-2的图象沿x轴的正方向平移1个单位后,其图象上的一点P的坐标是( )A.(0,-1) B.(0,2) C.(1,2) D.(1,-1)答案:C4. 若a,b,c,d是函数f(x)的四个不同零点,根据中心对称原理可知f(a+b+c+d)的值为()A.2(a+b+c+d) B.0 C.-2(a+b+c+d) D.不能确定答案:B5. 用概率统计法求积分∫ 10-x2 dx,积分范围为[0,2]时错误的说法是()A.分组时组数为2 B.随机选取的点的数目为3C.用反几何转换法求积分 D.可以将整个空间划分为n段答案:C二、填空题(本大题共7小题,每小题5分,共35分)6. 若y=3x2+2x的导数dy/dx=3_______2x+2 。

答案:*7. 椭圆C:x2/9+y2/4=1的长轴长等于_______6 。

答案:√8. 设函数f(x)=2x2+3x+1,f(-1)= ______3 _______ 。

答案:59. 下列说法哪一项是错误的?______方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上 _____。

答案:方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上10. 若y=f(x)是函数f(x)的图象,则把y轴向下平移2个单位得到的图象为_______f(x)-2 _________。

职高高一数学试卷及答案

职高高一数学试卷及答案

高一数学试卷 试卷说明:本卷满分100分,考试时间100分钟。

学生答题时可使用专用计算器。

一、选择题。

(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉ BA CA D、 ⊆A 2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5}3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。

3,0。

37,,㏑,的大小顺序是()A、 70。

3,,,㏑,B、70。

3,,㏑,C、, , 70。

3,,㏑,D、㏑, 70。

3,,6、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f=f=f=f=f=那么方程x3+x2-2x-2=0的一个近似根(精确到)为()A、 B、1.3 C、 D、7、函数2,02,0xxxyx-⎧⎪⎨⎪⎩≥=<的图像为()8、设()log a f x x (a>0,a ≠1),对于任意的正实数x ,y ,都有( ) A 、f(xy)=f(x)f(y) B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y) 9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )A 、b>0且a<0B 、b=2a<0C 、b=2a>0D 、a ,b 的符号不定10、某企业近几年的年产值如图,则年增长率最高的是( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年0099989796(年)2004006008001000(万元)二、填空题(共4题,每题4分)11、f(x)的图像如下图,则f(x)的值域为;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{|0}∈≠;x R x③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

中职高一数学上期末试卷 第1页 共9页自贡市中等职业学校2023-2024学年高一年级上学期期末考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2.第I 卷共1个大题,15个小题.每个小题4分,共60分.一、选择题(每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 设集合{}1,2,3A =,集合{}3,4,5B =,则AB =( )A. φB. {}3C. {}1,2D. {}1,2,3,4,5 2.函数()f x =)A. {}|2x R x ∈≠B. {}|<2x R x ∈C. {}|2x R x ∈≥D. {}|>2x R x ∈3. 已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中(1, 3)(2, 1)(3, 2)A B C ,,,则()()2f g 的值为( )A. 3B. 2C. 1D. 0中职高一数学上期末试卷 第2页 共9页4. 若>a b ,下列说法正确的是( )A. 1>2a b +-B. >ac bcC. 22>ac bcD. 2>2b a 5. (1)(2)0x x -+≤的解集为( )A. {}|12x x -≤≤B. {}|21x x -≤≤C. {}|21x x x ≤-≥或D. {}|12x x x ≤-≥或 6. 函数1()f x x=的单调递减区间是( ) A . (, 0)(0, +)-∞∞和 B . (, 0)(0, +)-∞∞C . (, 0)-∞D . (0, +)∞7. 已知()y f x =是定义在R 上的奇函数,且(1)3f =,则(1)f -=( ) A. 1- B. 3- C. 3 D. 1 8. 下列所给图象是函数图象的个数为( )A. 1B. 2C. 3D. 4 9. “>0x ”是“>1x ”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件 10. 下列不等式中,解集为{}11x x -<<的是( )A. 210x -≤B. 10x -≤C.()()1011x x ≤+-D. 101x x -≤+中职高一数学上期末试卷 第3页 共9页11. 已知函数1()(>1)x f x a a -=,则该函数图象必经过定点( ) A. (0, 1) B. (0, 2) C. (1, 2) D. (1, 1)12. 若函数2()21f x x mx =+-在区间(3, )-+∞上是增函数,则实数m 的取值范围是( ) A. 3m ≥ B. 3m ≤ C. 3m ≥- D. 3m ≤-13. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则随机调查的100位学生阅读过《西游记》的学生人数为( )A. 50B. 60C. 70D. 8014. 已知函数()f x 是定义在()(),00,∞-+∞上的奇函数,且()10f -=,若对于任意两个实数x 1,()20,x ∈+∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则不等式()0xf x >的解集是( )A. ()(),10,1-∞-B. ()(),11,-∞-+∞C. ()()1,01,-+∞ D. ()()1,00,1-15. 计算0122222()x x N ++++∈,令0122222x S =++++Ⅰ,将Ⅰ两边同时乘以2:123122222x S +=+++Ⅰ,用Ⅰ−Ⅰ得到:2S S -=1231(2222)x ++++_012(2222)x ++++,得到121x S +=-;观察该式子的特点,每一项都是前一项的2倍(除第一项外);运算思路是将代数式每一项乘2后再与原式相减,数学上把这种运算的方法叫做“错位相减”,那么当 0121013333S =++++时候,则1S 的值为( )A. 1131- B. 1031- C. 11312- D. 10312-中职高一数学上期末试卷 第4页 共9页第Ⅱ卷(非选择题 共90分)注意事项:1. 非选择题必须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.2. 本部分共2个大题,12个小题.共90分.二、填空题(本大题共5小题,每小题4分,共20分) 16. 不等式2<1x -的解集为 .(注意:用区间表示)17. 分段函数()22, 11, 2<1x x f x xx x ⎧+≥⎪=⎨⎪+-≤⎩,则分段函数的定义域为________. 18. 若()12f x x =-,则(2)f -= .19. 2023年第31届世界大学生运动会(成都大运会)是中国大陆第三次举办世界大学生夏季运动会,也是中国西部第一次举办的世界性综合运动会,有关吉祥物“蓉宝”的纪念徽章、盲盒等商品成为抢手货,市场供不应求。

中职高一数学第一学期期中考试

中职高一数学第一学期期中考试

高一职高数学试卷(满分100分,考试时间90分钟)班级 姓名 座位一、选择题: 本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .接近于0的数C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,,2244这六个数能组成一个集合2.下列各式中正确的是( )A .φ∈0B .{}φ⊆0C .φ=0D .{}φ⊇03.已知A={1,3,5,7},B={2,3,4,5},则集合A ∪B 为 ( )A .{1,2,3,4,5,7}B .{3,5}C .{1,2,4,7} D.{1,2,4,5,7} 4.设全集U={1,2,3,4,5},M={1,2,4},N={2,3,5} ,则)(N M C U =( ) A.φ B.{2} C.{2,3} D.{1,3,4,5} 5.“1=a 且2=b ”是“3=+b a ”的 ( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件6.设集合A={2>x x },B={51≤≤x x },则B A =( )A. {}1≥x xB.{}52≤<x x C . {}52≤≤x x D .{}2>x x 7、将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( ) A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2-- C.{}0,1,2,3 D.{}1,2,38.若)(21++n m b a ·35212)(b a b a m n =-,则n m +的值为( ) A. 1 B.2 C. 3 D.-39. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}10.“x 是整数”是“x 是自然数”的 ( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题:本题共5小题,每小题4分,共20分. 11、用适当的符号填空(1) 0_______N ; (2) {b a ,} {e c b a ,,,} (3) Z Q ; (4) {(2,4)} {(x ,y )|y =2x}12、知全集U =R ,集合A ={x |1≤2x +1<9},则C U A =13、 已知32172313x y x y +=⎧⎨+=⎩,则________x y -=.14、“0=xy ”是“022=+y x ”的 条件15、集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,则k 的取值范围为三.计算题:本题共4小题,每小题10分,共40分 16、解下列不等式组(1)⎪⎩⎪⎨⎧⋅>-<-322,352x x x x (2).234512x x x -≤-≤-17、已知集合U=R ,}03{≤+=x x A ,}01{>-=x x B ,求B A ,B A ,B A C U )(, )()(B C A C U U18、已知全集{}1,2,3,4,5,6U =,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.19、.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.第一学期期中考答案一、选择题CDADA BCBDB二、填空题11、(1)∈(2)⊆(3)⊆(4)⊆ 12、}{40≥<x x x 或 13、414、必要条件 15、2≥k三、解答题16、(1)6>x(2)4-≤x17、依题意可知}1{},3{>=-≤=x x B x x A}1{,}3{≤=->=x x B C x x A C U U}13{>-≤=∴x x x B A 或 φ=B A}1{)(>=x x B A C U ()()R B C A C U U =18、由0862=+-x x 可得4,221==x x所以{}{}2|6802,4A x x x =-+== (1)}6,5,4,3,2{=B A }4{=B A(2)}6,5,3,1{=A C U , ()}6,5,3{=B A C U()B A C U 的所有子集为{}{}{}{}{}{}{}6,5,3,6,5,6,3,5,3,6,5,3,φ19、{}{}5,2,==A C b A U{}35,,2=∴==∴b b A C A U U{}{}5,2,3==A C A U 又5322=-+∴a a 解得24=-=a a 或3b 4-2==∴,或a.。

职中高一数学试题及答案

职中高一数学试题及答案

职中高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是方程x^2 - 4x + 3 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 函数y = 2x + 1的斜率是多少?A. 1B. 2C. 3D. 4答案:B3. 如果一个角的余角是20°,那么这个角的度数是多少?A. 70°B. 90°C. 110°D. 160°答案:A4. 以下哪个选项是不等式2x - 5 > 3x - 1的解集?A. x < 4B. x > 4C. x < -4D. x > -4答案:C5. 圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个选项是函数f(x) = x^3 - 3x^2 + 2x的零点?A. x = 0B. x = 1C. x = 2D. x = 3答案:C7. 一组数据的平均数是10,中位数是12,众数是8,那么这组数据的极差是多少?A. 4B. 6C. 8D. 10答案:A8. 以下哪个选项是函数y = 1/x的渐近线?A. y = 1B. x = 1C. y = -1D. x = -1答案:B9. 一个等差数列的前三项分别是2, 5, 8,那么它的公差是多少?A. 2B. 3C. 4D. 5答案:B10. 一个正方体的体积是27立方厘米,那么它的边长是多少?A. 3厘米B. 6厘米C. 9厘米D. 12厘米答案:A二、填空题(每题5分,共30分)1. 如果一个三角形的两边长分别为3和4,第三边长是整数,那么第三边长可能是______。

答案:1, 2, 3, 4, 52. 一个数的平方根是2,那么这个数是______。

答案:43. 一个圆的直径是10厘米,那么它的周长是______厘米。

答案:31.44. 函数f(x) = x^2 - 4x + 3的顶点坐标是______。

(完整版)职高数学试卷及答案

(完整版)职高数学试卷及答案

试卷说明:本卷满分100分,考试时间90分钟。

一、选择题。

(共10小题,每题3分) 1、设{}a M =,则下列写法正确的是( )A .M a = B.M a ∈ C. M a ⊆ D.M a ∉ 2、下列语句为命题的是( )A 、等腰三角形B 、x ≥0C 、对顶角相等D 、0是自然数吗? 3、 a>b 是a ≥b 成立的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件 4、不等式732>-x 的解集为( )。

A .2<x B. 2>x C . 5<x D. 5>x 5、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R 6、下列各点中,在函数13-=x y 的图像上的点是( )。

A .(3,4) B. (1,2) C.(0,1) D.(5,6) 7、点P (-2,1)关于x 轴的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1) 8、下列函数中是奇函数的是( )。

A .3+=x y B.12+=x y C.3x y = D.13+=x y 9、将54a 写成根式的形式可以表示为( )。

A .4a B.5a C.45a D.54a10、下列函数中,在()+∞∞-,内是减函数的是( )。

A .x y 2= B. x y 3= C.xy ⎪⎭⎫ ⎝⎛=21 D. xy 10=二、填空题(共10小题,每题3分)11、用列举法表示小于5 的自然数组成的集合: 。

12、用描述法表示不等式062<-x 的解集 。

13、已知集合{}4,3,21,=A ,集合{},7,5,3,1=B ,则=B A ,=B A 。

14、已知全集{}6,5,4,3,2,1=U ,集合{}5,2,1=A ,则=A C U 。

中职数学高一试题及答案

中职数学高一试题及答案

中职数学高一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 函数f(x)=2x+3的反函数是:A. f^(-1)(x)=x/2-3B. f^(-1)(x)=(x-3)/2C. f^(-1)(x)=2x-3D. f^(-1)(x)=(x+3)/2答案:B3. 集合{1,2,3}与{3,4,5}的交集是:A. {1,2}B. {3}C. {4,5}D. 空集答案:B4. 如果一个角的余角是30°,那么这个角的度数是:A. 60°B. 90°C. 120°D. 150°答案:A5. 已知等差数列的前三项分别为3, 7, 11,则该数列的公差是:A. 2B. 3C. 4D. 5答案:C6. 函数y=x^2-2x+1的最小值是:A. -1B. 0C. 1D. 2答案:B7. 计算(3x-2)(x+4)的结果是:A. 3x^2+10x-8B. 3x^2+10x+8C. 3x^2-10x-8D. 3x^2-10x+8答案:A8. 等比数列的首项是2,公比是3,那么该数列的第五项是:A. 162B. 486C. 729D. 2187答案:A9. 已知圆的半径是5,圆心到直线的距离是4,则该直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内含答案:C10. 计算sin(30°)的值是:A. 1/2B. √3/2C. √2/2D. 1答案:A二、填空题(每题3分,共30分)1. 一个等腰三角形的顶角是100°,那么它的底角是______。

答案:40°2. 已知函数f(x)=x^3-3x^2+2x,求f'(x)=______。

答案:3x^2-6x+23. 计算(2+3i)(1-4i)的结果是______。

答案:-10-10i4. 一个圆的直径是14,那么它的面积是______。

数学卷1答案(同2023)

数学卷1答案(同2023)

江苏省中等职业学校学业水平考试 《数学》试卷 参考答案及评分标准本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)二、填空题(本大题共2小题,每小题4分,共8分) 13.9.425; 14.o60.三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:(1)33334442162(2)--⋅=⋅ ……… 2分3302221-=⋅== ……… 4分 (2)32991lg1000log lg10log 981-+=+ ……… 2分 3(2)1=+-= ……… 4分 16.解:直线BC 的斜率1113(1)2BC k --==--- ...............3分因为AD BC ⊥,所以1==2AD BCk k -...............6分 由点斜式方程,得32(1)y x -=- ................9分 因此所求直线方程为2+10x y -= .................10分 17.解:(1)根据题意,得800.25y x =- ……………2分其中x 的取值范围是 0320x ≤≤. ……………4分 (2)当300x =时,800.253005y =-⨯=(升).即,当汽车行驶300千米时,油箱中还有5升汽油. …………4分 (3)(12010)0.25440-÷=(千米)所以,该汽车在加满油后行驶440千米前必须加油. ……………2分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)二、填空题(本大题共1小题,共4分.) 4—1.计算3-=a b ; 4—2.D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档