高三上学期期中考试数学模拟试题
2025届南京协同体七校高三上学期期中联考数学试题
南京市协同体七校2024-2025学年第一学期期中联合考试高三数学试题考试时间:120分钟 满分:150分注意事项:1.本试卷所有试题必须作答在答题卡上规定的位置,否则不给分.2.答题务必将自己妵名,准考证信息用0.5毫米黑色墨水签字笔填写在试卷答题卡上,第I 卷(选择题共58分)一、选择题:本题共8小輀,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2log 2,2A x x B x x =<=>∣∣,则A B ∪=( )A.()0,2B.()0,∞+C.()2,∞+D.(),2∞−2.若21i z −=,则z =( ) B.1 C.22D.12 3.已知向量()()()0,4,3,6,1,6a b c ===− ,若c a b λµ=+ ,则λµ+=( ) A.73 B.53C.13−D.23− 4.已知0,0m n >>,且1m n +=,则14m n +的最小值为( ) A.12 B.9 C.6 D.35.已知直径为12的球内有一内接圆柱(圆柱上下底面圆在球面上),则圆柱体积的最大值为( )A. B.96π C. D.192π6.已知函数()224,,1,x x a f x x x a+ = +> 在R 上单调递增,则实数a 的取值范围是( ) A.(]1,3− B.(],3∞− C.[)3,∞+ D.][(),13,∞∞−−∪+7.将一枚均匀的骰子掷两次,记事件A 为“第一次出现偶数点”,事件B 为“两次出现的点数和为9”,则下列结论中正确的是( ) A.()19P AB =B.()()()P A B P A P B ∪=+C.()13P A B =∣D.A 与B 相互独立8.已知()f x 是定义在R 上的周期函数,周期1T =,且当[)0,1x ∈时()2f x x =,若()g x kx b =+,则下列结论中一定正确的是( )A.1k =时,()()f x g x =可以有三个解B.12k =时,()()f x g x =可以有三个解 C.1k =−时,()()f x g x =可以有一个解 D.12k =−时,()()f x g x =可以有四个解 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:4C y x =,直线:l y kx k =−与抛物线C 交于,P Q 两点,分别过,P Q 两点作抛物线准线的垂线,PM QN ,垂足分别是,M N ,下列说法正确的是( )A.直线l 过抛物线C 的焦点B.当1k =时,,P Q 两点横坐标的和为5C.当1k =时,直线l 截抛物线所得的弦长为8D.以MN 为直径的圆与直线l 相切10.已知正方体1111ABCD A B C D −,点P 满足][1,0,1,0,1BP BC BB λµλµ =+∈∈ ,则下列说法正确的是( )A.存在唯一一点P ,使得过1,,D B P 的平面与正方体的截面是菱形B.存在唯一一点P ,使得AP ⊥平面11B D CC.存在无穷多个点P ,使得AP ∥平面1A CDD.存在唯一一点P ,使得11D P BC ⊥11.如果X 服从二项分布(),B n p ,当10np >且()110n p −>时,可以近似的认为X 服从正态分布()2,N µσ,据统计高中学生的近视率0.6P =,某校有600名高中学生.设X 为该校高中学生近视人数,且X 服从正态分布()2,N µσ,下列说法正确的是( )(参考数据:()0.682,(22)0.9545P X P X µσµσµσµσ−<<+≈−<<+≈)A.变量X 服从正态分布()360,144NB.()3720.159P X ≈C.()(384)348P X P X <=>D.(384)0.9773P X <≈第II 卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.在等差数列{}n a 中,()*21n a n n =−∈N ,则20S =__________.13.已知函数()π2sin 06yx ωω =−> 在区间π0,2上有且仅有2个零点,则实数ω的取值范围是__________.__________. 14.已知e 为自然对数的底数,若函数ln y x ax =+的最大值与函数e x y x =−的最小值相等,则实数a 的值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分13分)在ABC 中,角,,A B C 所对的边长分别为,,a b c ,已知5,3,cos 2c b c b a C ===−. (1)求A ∠;(2)若D 是BC 中点,求AD 的长度.16.(本题满分15分)已知公差不为0的等差数列{}n a 的前n 项和为51413,35,,,n S S a a a =成等比数列.(1)求{}n a 的通项公式;(2)若m n <,且1111,,m na a a 成等差数列,求出所有的正整数,m n . 17.(本题满分15分)如图,在四棱锥P ABCD −中,PA ⊥面ABCD ,四边形ABCD 是梯形,AB ∥,DC AC BD ⊥,3,24PA AC DC AB ====.(1)求证:平面PAC ⊥平面PBD ;(2)求二面角D PC B −−的正弦值.18.(本题满分17分)已知函数()()211ln ,2f x x a x a x a =−++∈R . (1)若1a =−,求函数()f x 在1x =处的切线方程;(2)讨论函数()f x 的单调性;(3)若函数()()1y f x a x =++的最小值为0,求a 的值.19.(本题满分17分) 已知椭圆()2222:10x y C a b a b +=>>的短轴长为2,离心率为22,,3A B 分别是椭圆C 的上下顶点,过A 作两条互相垂直的直线,AP AQ ,分别交椭圆C 于,P Q 两点.(1)求椭圆C 的标准方程;(2)求证:直线PQ 恒过定点;(3)求APQ 面积的最大值.南京市协同体七校2024—2025学年第一学期期中联合考试高三数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.C3.B4.B5.A6.C7.D8.B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.ACD 10.BD 11.ABD三、填空题:本题共3小题,每小题5分,共15分. 12.400 13.713,33 14.21e − 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分13分)解:(1)方法一: 因为cosC 2c b a =−, 由正弦定理得:1sin sin cos sin 2B A C C =−, 又sin sin cos cos sin B A C A C =+, 所以1cos 2A =−,又因为在ABC 中,所以2π3A =. 方法二:因为cosC ,5,32c b a b c =−==, 由余弦定理得:225935252a a a +−=−×, 解得249a =,所以259491cos 2532A +−==−××, 又因为在ABC 中,所以2π3A =. (2)方法一:在ABC 中,D 是BC 中点,所以1122AD AB AC =+ ,222111111119||9352542442244AD AB AB AC AC =++=×+×××−+×= ,AD = ,即AD. 方法二:由(1)方法二,知7a =,又D 是BC 中点,72BD CD ==, 在ABD 中由余弦定理有:22792cos 722AD ADB AD ∠ +−=×, 在ABD 中由余弦定理有:227252cos 722AD ADC AD ∠ +− =×, 因为πADB ADC ∠∠+=,所以cos cos ADB ADC ∠∠=−, 即22227792522772222AD AD AD AD +−+−=−××, 解得AD =,即AD . 16.(本题满分15分)解:(1)51545352S a d ×=+=,所以127a d +=… 又因为1413,,a a a 成等比数列,所以24113a a a =×,()()221111312,96a d a a d d a d +=×+=又因为0d ≠,所以132d a =所以13,2a d == 所以21na n =+ (2)由题意:1211m na a a =+ 所以21121321m n =+++ 方法一:2242163n m n +=++ 所以63921622n m n n ++==−++, 因为m n <且*,m n ∈N ,所以2,7m n == 方法二:2111213213m n =+>++, 所以,52m <, 又*m ∈N ,所以1m =或2m =,当1m =时,1n =,与m n <矛盾,当2m =时,7n =,符合条件,所以2,7m n == 17.(本题满分15分)(1)证明:因为PA ⊥面,ABCD BD ABCD ⊂,所以PA BD ⊥又因为,,,AC BD PA AC A PA PAC AC PAC ⊥∩=⊂⊂,所以BD PAC ⊥又因为BD PBD ⊂,所以平面PAC ⊥平面PBD(2)法一:作AE DC ⊥交DC 于E ,以点A 为坐标原点AE 为x 轴,AB 为y 轴如图建立 空间直角坐标系,设AC BD M ∩=,因为AB ∥DC ,所以ABM CDM ∽,又2,4,3AB DC AC ===, 所以1,2AM MC ==, 又因为AC BD ⊥, 所以3,23BM DM == 所以ππ,36BAC EAC ∠∠==, 故()3330,0,3,,,022P C,()35,,0,0,2,022D B −.所以()333331,,3,0,4,0,,,02222PC DC BC =−==−设面PDC 一个法向量为()1111,,n x y z =所以1111330240x y z y +−= = ,所以(1n =设面PBC 一个法向量为()2222,,n x y z =所以222223302102x y z x y +−=−=, 所以(2n =所以sin θ=法二:设AC BD O ∩=,又因为AC BD ⊥,以点O 为坐标原点,OD 为x 轴,OC 为 y 轴如图建立空间直角坐标系,因为AB ∥DC ,所以ABO CDO ∼ ,又因为2,4,3AB DC AC ===, 所以1,2AO OC ==, 又因为AC BD ⊥, 所以3,23BO DO ==故()()0,1,3,0,2,0P C −,()()3,0,0,3,0,0D B −所以()0,3,3PC =− ,()23,2,0CD =− ,)2,0BC =设面PDC 一个法向量为()1111,,n x y z =所以111133020y z y −= −+= ,所以(1n = 设面PBC 一个法向量为()2222,,n x y z =所以222233020y z y −= +=,所以(22,n =所以sin θ=18.(本题满分17分)解:(1)当1a =−时,()()()2111ln ,1,22f x x x f f x x x =−′==−,所以()10f ′=, 所以切线方程为12y = (2)()()()()()()2111,0x a x a x x a a f x x a x x x x−+′+−−=−++==> 若0a ,则()0,1x ∈时()()0,f x f x ′<单调递减,()1,x ∞∈+时()()0,f x f x ′>单调递增; 若01a <<,则()0,x a ∈时()()0,f x f x ′>单调递增,(),1x a ∈时()()0,f x f x ′<单调递减,()1,x ∞∈+时()()0,f x f x ′>单调递增若1a =,则()0,x ∞∈+时()()0,f x f x ′>单调递增若1a >,则()0,1x ∈时()()0,f x f x ′>单调递增,()1,x a ∈时()()0,f x f x ′<单调递减,(),x a ∞∈+时()()0,f x f x ′>单调递增(3)令()()()211ln 2h x f x a x x a x =++=+, ()()2,0,a x a h x x x x x′+=+=> 当0a 时,()0h x ′ ,故无最小值所以0a <,由()0h x ′=得x =所以(x ∈时()()0,h x h x ′<单调递减,)x ∞∈+时()()0,h x h x ′>单调递增单增,所以min 1()02h x h a a ==−+=,所以()ln 1,e a a −==−. 19.(本题满分17分)(1)解:因为22,cb a ==,又222a bc =+解得:3,,a b c === 故椭圆的标准方程为:2219x y += (2)证明:方法一:当PQ x ⊥轴时,,AP AQ 不可能垂直,故可设直线PQ 方程为:y kx n =+ 由2219y kx n x y =+ += ,得()2221918990k x knx n +++−=, 设()()1122,,,P x y Q x y 则:21212221899,1919kn n x x x x k k−−+==++, 所以,()()1122,1,,1PA x y PQ x y =−=− ,又因为PA PB ⊥,所以0PA PQ ⋅=即()()1212110x x y y +−−=即:()()1212110x x kx n kx n ++−+−=, 所以,()()221212121(1)0x x k x x k n x x n ++−++−= 代入可得:222222222222229999818(1)9(1)019191919n n k k n k k n n k n k k k k−−−+−+−+++=++++, 整理:210280n n −−=,所以:1n =(舍)或45n =−, 所以直线PQ 的方程为:45y kx =−,令0x =,得45y =−, 所以直线PQ 过定点40,5 −, 方法二: 显然,AP AQ 均不可能与坐标轴垂直,故可设():10AP y kx k =+≠ 由22119y kx x y =+ += ,得()2219180k x kx ++= 设()()1122,,,P x y Q x y所以:211221819,1919k k x y k k −−==++, 因为,AP AQ 互相垂直,同理得22222189,99k k x y k k−==++ 所以直线PQ 的斜率为:2110PQ k k k−=, 直线PQ 的方程为:222219118191019k k k y x k k k −− −=+ ++, 令0x =得()()222291194195519k k y k k −−=+=−++,即直线PQ 过定点40,5 − . (3)方法一:由(2)知:()227281190525k x kx +−−= ()()1212227281,5192519k x x x x k k +==−++, 所以APQ 面积121925S x x =×− ()()22121228125142519k x x x x k +=+−=+ 1t = ,所以22125t k −=代入可得: 281818127169162489t S t t t===++此时4,3t k ==,所以APQ 面积的最大值是278 方法二:由(2)知()2219180k x kx ++=,所以AP =因为,AP AQ互相垂直,同理得AQ = 所以APQ 面积12S AP AQ ==()242221162116299829982k k k k k k k k + + =++++ 令21116227,162162649644889t k t S k t t t+==×=×=++ , 此时83t =,解得3k =±或13k =±, 所以APQ 面积的最大值是278.。
河南省南阳市2024届高三上学期期中考试数学
2023年秋期高中三年级期中质量评估数学试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效。
2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损。
第I 卷 选择题(共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列集合中,表示空集的是A.{}0 B.{}2,2x x x <->且C.{}210x x ∈-=N D.{}4x x >2.命题“0x ∃∈R ,20010x x ++…”的否定为A.x ∀∈R ,210x x ++> B.x ∃∈R ,210x x ++>C.x ∀∈R ,210x x ++… D.x ∃∈R ,210x x ++<3.若复数z 满足()12z i +=,则z z -=A.2- B.2C.4i- D.4i4.公比不为1的等比数列{}n a 满足574816a a a a +=,若23964m a a a a =,则m 的值为A.8B.9C.10D.115.若函数()()24125xxf x a a =--+-有两个零点,则实数a 的取值范围为A.71,3⎛⎫- ⎪⎝⎭ B.(- C.73⎫⎪⎭D.53⎫⎪⎪⎭6.已知0,4πα⎛⎫∈ ⎪⎝⎭,()sin sin x αα=,()sin cos y αα=,()cos sin z αα=,则A.x y z<< B.x z y << C.y x z << D.z x y<<7.已知a ,b ,c 分别为ABC △的三个内角A ,B ,C 的对边,若点P 在ABC △的内部,且满足PAB PBC PCA ∠∠∠θ===,则称P 为ABC △的布洛卡(Brocard )点,θ称为布洛卡角.布洛卡角满足:cot cot cot cot A B C θ=++(注:tan cot 1x x =).则PA PB PC c a b++=A.2sin θB.2cos θC.2tan θD.2cot θ8.已知()212xf x ae x ax =+-在()0,+∞上单调递减,则实数a 的取值范围为A.(],1-∞- B.(),1-∞- C.()0,+∞ D.[)0,+∞二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.如图是函数()()sin f x x ωϕ=+的部分图象,则函数()f x =A.sin 3x π⎛⎫+⎪⎝⎭B.sin 23x π⎛⎫-⎪⎝⎭C.cos 26x π⎛⎫+⎪⎝⎭D.5cos 26x π⎛⎫-⎪⎝⎭10.已知n S 是数列{}n a 的前n 32n n S a =+,则A.{}n a 是等比数列 B.9100a a +>C.910110a a a > D.0n S >11.设,x y ∈R ,若2241x y xy ++=,则x y +的值可能为A.2- B.1- C.1D.212.设0a ≠,若x a =为函数()()()2f x a x a x b =--的极小值点,则下列关系可能成立的是A.0a >且a b >B.0a >且a b <C.0a <且a b< D.0a <且a b>第II 卷 非选择题(共90分)三、填空题(本题共4小题,每小题5分,共20分)13.一个正实数的小数部分的2倍,整数部分和自身成等差数列,则这个正实数是______.14.四边形ABCD 中,2AD =,3CD =,BD 是四边形ABCD 的外接圆的直径,则AC BD ⋅=______.15.奇函数()f x 满足()()21f x f x +=-,()12023f -=,则()2023f =______.16.互不相等且均不为1的正数a ,b ,c 满足b 是a ,c 的等比中项,则函数()2xxx f x a bc -=++的最小值为______.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)设数列{}n a 为等差数列,其前n 项和为()*n S n ∈N,数列{}nb 为等比数列.已知111ab ==,523a b =,424S S =.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n n a b ⋅的前n 项和n T .18.(本小题满分12分)已知函数()21cos sin 2f x x x x ωωω=-+,其中0ω>,若实数1x ,2x 满足()()122f x f x -=时,12x x -的最小值为2π.(1)求ω的值及()f x 的单调递减区间;(2)若不等式()22cos 22206f x a x a π⎛⎫⎡⎤++--< ⎪⎣⎦⎝⎭对任意,126x ππ⎛⎫∈- ⎪⎝⎭时恒成立,求实数a 的取值范围.19.(本小题满分12分)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若1a ,3a ,7a 成等比数列,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前2024项的和.20.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且满足_____.(从以下两个条件中任选一个补充在上面横线上作为已知,将其序号写在答题卡的横线上并作答.)条件①:()()sin sin sin 3sin b c B C a A b C ++=+条件②:25cos cos 24A A π⎛⎫++=⎪⎝⎭(1)求角A ;(2)若ABC △为锐角三角形,1c =,求ABC △面积的取值范围.21.(本小题满分12分)已知函数()3f x x x =-,()2g x x a =+,a ∈R ,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =,求a ;(2)求a 的取值范围.22.(本小题满分12分)(1)已知函数()ln f x x x =,判断函数()()()11g x f x f x =++-的单调性并证明;(2)设n 为大于1的整数,证明:()()1111211nnn n n +-+->.2023年秋期高中三年级期中质量评估数学参考答案一.选择题:1-8.BADCCDBA 二.选择题:9.BC10.ABD11.BC12.AC三.填空题:13.43或8314.5-15.2023-16.4四.解答题:17.解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由424S S =可得()114642a d a d +=+,即()6442d d +=+,解得2d =,所以,()()1112121n a a n d n n =+-=+-=-,25339b q a ===,∴3q =则1113n n n b b q--==;(2)()1213n n n a b n -=-⋅,则()0121133353213n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅①,可得()()12131333233213n n n T n n -=⋅+⋅+⋅⋅⋅+-⋅+-⋅②,①-②得:()()()()1121613212333213121313n n n nn T n n ----=+++⋅⋅⋅+--⋅=+--⋅-()2232n n =-⋅-,因此,()131nn T n =-⋅+18.解:(1)()21cos sin 2f x x x x ωωω=-+1cos2122x x ωω-=-+1cos22x x ωω=+sin 26x πω⎛⎫=+ ⎪⎝⎭因为实数1x ,2x 满足()()122f x f x -=时,12x x -的最小值为2π.所以()f x 的最小正周期22T ππω==,解得1ω=,所以()sin 26f x x π⎛⎫=+⎪⎝⎭,由()3222262k x k k Z πππππ+≤+≤+∈,得()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)不等式()22cos 22206f x a x a π⎛⎫⎡⎤++--< ⎪⎣⎦⎝⎭对任意,126x ππ⎛⎫∈- ⎪⎝⎭时恒成立,()22cos 2226f x a x a π⎛⎫⎡⎤++-- ⎪⎣⎦⎝⎭2sin 22cos 22266x a x a ππ⎛⎫⎛⎫=+++-- ⎪ ⎪⎝⎭⎝⎭2cos 22cos 22166x a x a ππ⎛⎫⎛⎫=-+++-- ⎪ ⎪⎝⎭⎝⎭,令cos 26t x π⎛⎫=+⎪⎝⎭,20,62x ππ⎛⎫+∈ ⎪⎝⎭,∴()cos 20,16x π⎛⎫+∈ ⎪⎝⎭22210t at a -+--<,()0,1t ∈()2211a t t -<+,2121t a t +>-恒成立令()11,0m t =-∈-,221222211t m m m t m m+++==++<--∴21a -…,解得:12a ≥-,故实数a 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭19.解:(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且*N n ∈,所以{}n a 是以1为公差的等差数列.(2)由(1)可得312a a =+,16a a =+又1a ,3a ,7a 成等比数列,所以()()211126a a a +=⋅+,解得12a =,所以1n a n =+∴()()111111212n n a a n n n n +==-++++.∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前2024项和为:111111111150623344520252026220261013⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭20.解:解析:(1)选择条件①:由题意及正弦定理知()223b c a bc +=+,∴222a b c bc =+-,∴2221cos 22b c a A bc +-==∵0A π<<,∴3A π=.选择条件②:因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=(2)由sin sin b cB C=可得sin sin 3sin sin C B b C Cπ⎛⎫+ ⎪⎝⎭==112tan C==+因为ABC △是锐角三角形,由(1)知3A π=,A B C π++=得到23B C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以122b <<.1sin 2ABC S bc A ==△,ABC S ∈△21.解:(1)由题意知,()10f =,()231f x x =-',()1312f =-=',则()y f x =在点()1,0处的切线方程为()21y x =-,22y x =-设该切线与()g x 切于点()()22,x g x ,()2g x x '=,则()2222g x x ==',解得21x =,则()11220g a =+=-=,解得1a =-;(2)因为()231f x x =-',则()y f x =在点()()11,x f x 处的切线方程为()()()32111131y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()()22,x g x ,()2g x x '=,则()222g x x '=,则切线方程为()()22222y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令()4329312424h x x x x =--+,则()()()329633311h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,()h x ',()h x 的变化情况如下表:则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞22.解:(1)函数()f x 的定义域为()0,+∞,函数()g x 的定义域为()1,1-函数()()()()()1ln 11ln 1g x x x x x =+++--在()1,0-上单调递减,在()0,1上单调递增证明:()()()()()1ln 11ln 1g x x x x x -=--+++,∴()()g x g x -=所以()g x 为()1,1-上的偶函数.()()()12ln 1ln 1lnln 1011x g x x x x x '+⎛⎫=+--==--> ⎪--⎝⎭对()0,1x ∀∈恒成立.所以函数()g x 在()1,0-上单调递减,在()0,1上单调递增(2)(证法一)要证明()()1111211nnn n n +-+->,需证明()()11111111111n nnnn n nn+-+-+⋅->⋅即证明()()1111111111ln 0n n n n n n n n +-+-⎡⎤+-⎢⎥⋅>⎢⎥⎢⎥⎣⎦,即11111ln 11ln 10n n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++--> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由(1)可知即证10g n ⎛⎫>⎪⎝⎭.∵()10,1n ∈且()g x 在()0,1单调递增,∴()100g g n ⎛⎫>= ⎪⎝⎭所以()()1111211nnn n n +-+->对*n N ∈,1n >成立.(证法二)要证明()()1111211nnn n n +-+->即证明()()111ln 11ln 12ln n n n n n ⎛⎫⎛⎫+++--> ⎪ ⎪⎝⎭⎝⎭,即证()()()()1ln 11ln 12ln n n n n n n +++-->,即证()()()()1ln 1ln ln 1ln 1n n n n n n n n ++->---设函数()()()1ln 1ln g x x x x x=++-()()ln 1ln 0g x x x =+->',故函数()g x 在()0,+∞上单调递增又1n n >-,∴()()1g n g n >-,故原不等式成立.。
吉林省2024-2025学年高三上学期10月期中考试(第78届联考)数学试题含答案
2024-2025学年度友好学校高三期中考试数学试题(答案在最后)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B = ()A.{}0,2 B.{}0,1,2 C.{}1,0,1,2- D.{}1,0,1,2,3-【答案】A 【解析】【分析】根据交集定义求解.【详解】因为{}{}1,0,1,2,0,2,3A B =-=,所以A B = {}0,2,故选:A.2.已知命题p :x R ∃∈,2e 1x x <-,那么命题p ⌝为()A.x R ∃∈,2e 1x x ≥-B.x R ∀∈,2e 1x x <-C.x R ∀∈,2e 1x x ≥-D.x R ∀∈,2e 1x x >-【答案】C 【解析】【分析】利用特称命题的否定变换形式即可求解.【详解】p :x R ∃∈,2e 1x x <-,则p ⌝:x R ∀∈,2e 1x x ≥-.故选:C3.函数()2ln 6f x x x =+-的零点所在区间为()A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫ ⎪⎝⎭C.()1,2 D.()2,3【答案】D 【解析】【分析】利用零点存在定理可判断出函数()y f x =的零点所在的区间.【详解】易知函数()y f x =在 ꌸध 上单调递增,又()150f =-<,()2ln 220f =-<,()3ln 330f =+>,故函数()y f x =的零点所在区间为()2,3.故选:D.【点睛】本题考查函数零点所在区间的判断,一般利用零点存在定理来判断,考查计算能力与推理能力,属于基础题.4.圣·索菲亚教堂(英语:SAINTSOPHIACATHEDRAL )坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,为哈尔滨的标志性建筑,被列为第四批全国重点文物保护单位.其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美,小明同学为了估算索菲亚教堂的高度,在索非亚教堂的正东方向找到一座建筑物AB ,高为()30330m,-在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A 教堂顶C 的仰角分别是15°和60°,在楼顶A 处测得塔顶C 的仰角为30°,则小明估算索菲亚教堂的高度为()62.(sin15)4-︒=A.30mB.60mC.303mD.603m【答案】D 【解析】【分析】在ACM △中,利用正弦定理,得sin15sin 30AM CM ︒=︒,再结合锐角三角函数的定义,求得AM ,CD ,得解.【详解】由题意知,45CAM ∠=︒,1801560105AMC ∠=︒-︒-︒=︒,所以1801054530ACM ∠=︒-︒-︒=︒,在Rt ABM 中,sin sin15AB ABAM AMB ==∠︒,在ACM △中,由正弦定理得,sin 30sin 45AM CM=︒︒,所以sin 45sin 45sin 30sin15sin 30AM AB CM ︒︒==︒︒⋅︒,在Rt DCM中,()30sin 45sin 60sin 6060sin15sin 30AB CD CM -⋅︒⋅︒=⋅︒==︒⋅︒所以小明估算索菲亚教堂的高度为米.故选:D .5.设π02θ<<,若()2sin cos 3θθθ++=,则sin2θ=()A.32B.12C.2D.34【答案】B 【解析】【分析】利用二倍角公式以及辅助角公式可推出πsin(2)13θ+=,结合角的范围求得θ,即可求得答案.【详解】由题意()2sin cos 3θθθ++=,则12sin cos 3θθθ++=,即sin22θθ+=,故π2sin(2)23θ+=,即πsin(2)13θ+=,由于π02θ<<,所以ππ4π2(,333θ+∈,则ππ232θ+=,即π12θ=,故π1sin2sin 62θ==,故选:B6.曲线2e x y x =在点()1,e 处的切线方程为()A.e 2e 0x y +-=B.3e 4e 0x y +-= C.3e 2e 0x y --= D.e 32e 0x y -+=【答案】C 【解析】【分析】用导数几何意义去求切线方程即可.【详解】由2e x y x =,得22e e e (2)x x x y x x x x '=+=+,所以该曲线在点(1,e)处的切线斜率为3e k =,故所求切线方程为e 3e(1)y x -=-,即3e 2e 0x y --=.故选:C.7.已知4log 2a =,8log 3b =,1215c ⎛⎫= ⎪⎝⎭,则()A.a b c << B.c a b<< C.a c b<< D.c b a<<【答案】B 【解析】【分析】由题意可得12a =,再由对数函数性质和根式与指数式的互化分别得出12b >和12c <即可得解.【详解】由题41log 22a ==,又由3log y x =是增函数可知881log 3log 2b =>=,121152c ⎛⎫==< ⎪⎝⎭,∴c a b <<,故选:B.8.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是()A.a<0B.0<a<C.<a<1D.a≤0或a>1【答案】A 【解析】【分析】函数y=f (x )只有一个零点,分段函数在 时,2log y x =存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件.【详解】当 时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集,【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.“a b >”是“22a b >”的既不充分也不必要条件B.221log 4y x ⎛⎫=-+⎪⎝⎭的最大值为2-C.若22cos sin 1αβ+=,则αβ=D.命题“()0,x ∀∈+∞,11x x +>”的否定是“()0,x ∀∈+∞,11x x+≤”【答案】AB 【解析】【分析】利用特殊值判断A ,根据对数函数的性质判断B ,利用平方关系及诱导公式判断C ,根据含有一个量词命题的否定判断D.【详解】对于A :若0a =,1b =-,满足a b >,但是22a b <,故充分性不成立,若1a =-,0b =,满足22a b >,但是a b <,故必要性不成立,即“a b >”是“22a b >”的既不充分也不必要条件,故A 正确;对于B :由2104x -+>,解得1122x -<<,所以函数221log 4y x ⎛⎫=-+ ⎪⎝⎭的定义域为11,22⎛⎫- ⎪⎝⎭,又211044x <-+≤,所以当0x =时函数221log 4y x ⎛⎫=-+ ⎪⎝⎭取得最大值,且max 21log 24y ==-,故B 正确;对于C :因为22cos sin 1αβ+=,又22cos sin 1ββ+=,所以22cos cos αβ=,所以πk βα=+,Z k ∈,故C 错误;对于D :命题“()0,x ∀∈+∞,11x x +>”的否定是“()0,x ∃∈+∞,11x x+≤”,故D 错误;10.下列说法正确的是()A.函数()f x =()g x =是相同的函数B.函数()f x =的最小值为6C.若函数()313xxk f x k -=+⋅在定义域上为奇函数,则1k =D.已知函数()21f x +的定义域为[]1,1-,则函数()f x 的定义域为[]1,3-【答案】AD 【解析】【分析】根据定义域以及对应关系即可判断A ,由基本不等式即可求解B ,根据奇函数的性质即可求解C ,由抽象函数定义域的性质即可求解D.【详解】对于A ,由题意可得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以()f x =[1-,1].由210x -≥得11x -≤≤,所以()g x =[1-,1].又因为()()f x g x =,故函数()f x 与()g x 是相同的函数,故A 正确.对于B,()6f x ==2169x +=方程无解,故等号不成立,故B 错误.对于C,若()313xxk f x k -=+⋅在定义域上为奇函数,当0k <时,x 需要满足01313xxkk +≠≠-⋅⇒,则由奇函数定义域关于原点对称,可得0131k k-=⇒=-,此时()()133031131x x x x f x x --==≠-+-,()()13313131x x x xf x f x ---===--++-,为奇函数,所以1k =-满足题意;若0k ≥,可得函数的定义域为R ,故()1001k f k-==+,解得1k =,经检验符合题意,所以1k =±,故C 错误,对于D ,对于已知函数()21f x +的定义域为[]1,1-,则11x -≤≤,故1213x -≤+≤,则函数()f x 的定义域为[]1,3-,D 正确,故选:AD .11.已知函数()21sin sin cos 2f x x x x =++的图象为C ,以下说法中正确的是()A.函数()f x 的最大值为12+B.图象C 关于π8,0⎛⎫⎪⎝⎭中心对称C.函数()f x 在区间π3π,88⎛⎫- ⎪⎝⎭内是增函数D.函数()f x 图象上,横坐标伸长到原来的2倍,向左平移π4可得到2sin 12y x =+【答案】CD 【解析】【分析】根据降幂公式、二倍角正弦公式,结合正弦型函数的最值、对称性、单调性、图象变换性质逐一判断即可.【详解】()211cos 2112πsin sin cos sin 2sin 21222224x f x x x x x x -⎛⎫=++=++=-+ ⎪⎝⎭.A :函数()f x 的最大值为12+,因此本选项不正确;B :因为π2ππsin 2118284f ⎛⎫⎛⎫=⨯-+=⎪ ⎪⎝⎭⎝⎭,所以图象C 不关于π8,0⎛⎫ ⎪⎝⎭中心对称,因此本选项不正确;C :当π3π,88x ⎛⎫∈- ⎪⎝⎭时,πππ2,422x ⎛⎫-∈- ⎪⎝⎭,所以函数()f x 在区间π3π,88⎛⎫- ⎪⎝⎭内是增函数,因此本选项正确;D :函数()f x 图象上,横坐标伸长到原来的2倍,得到2πsin 124y x ⎛⎫=-+ ⎪⎝⎭,再向左平移π4可得到2sin 12y x =+,所以本选项正确,故选:CD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分12.设1x >-,则函数461y x x =+++的最小值是__________.【答案】9【解析】【分析】根据题意,化简4461511y x x x x =++=+++++,结合基本不等式,即可求解.【详解】由1x >-,可得10x +>,则446155911y x x x x =++=+++≥+=++,当且仅当411x x +=+时,即1x =时,等号成立,所以函数461y x x =+++的最小值是最小值为9.故答案为:9.13.已知集合2}71|0{2A x x x =++≤,集合{}|122B x m x m =-<<其中x A ∈是x B ∈的充分不必要条件,则m 的取值范围是________________.【答案】5,2∞⎛⎫+ ⎪⎝⎭【解析】【分析】由条件可得AB ,化简集合A ,根据集合的包含关系列不等式可求m 的取值范围.【详解】因为x A ∈是x B ∈的充分不必要条件,所以AB ,因为不等式27120x x ++≤的解集为{}43x x -≤≤-,所以{}43A x x =-≤≤-,所以23124m m >-⎧⎨-<-⎩,所以52m >,所以m 的取值范围是5,2⎛⎫+∞⎪⎝⎭.故答案为:5,2⎛⎫+∞⎪⎝⎭.14.关于函数()22sin cos f x x x x =-,有如下命题:(1)3x π=是()f x 图象的一条对称轴;(2),06π()是()f x 图象的一个对称中心;(3)将()f x 的图象向左平移6π,可得到一个奇函数的图象.其中真命题的序号为______________.【答案】(2)(3)【解析】【分析】将函数的解析式化为()2cos 26f x x π⎛⎫=+ ⎪⎝⎭,然后对给出的三个命题分别进行验证后可得正确的命题.【详解】由题意得()sin22cos 26f x x x x π⎛⎫=-=+ ⎪⎝⎭,对于(1),当3x π=时,22cos 2336f πππ⎛⎫⎛⎫=+≠± ⎪⎪⎝⎭⎝⎭,所以3x π=不是函数图象的对称轴,所以(1)不正确.对于(2),6x π=时,2cos 0636f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以π,06()是()f x 图象的一个对称中心,所以(2)正确.对于(3),将()f x 的图象向左平移6π后所得图象对应的解析式为()2cos 266f x x ππ⎡⎤⎛⎫=++ ⎪⎢⎝⎭⎣⎦2cos 2222x sin x π⎛⎫=+=- ⎪⎝⎭,为奇函数,所以(3)正确.综上可得(2)(3)为真命题.故答案为(2)(3).【点睛】本题考查三角函数的性质和图象变换,解题的关键是将函数的解析式化为()2cos 26f x x π⎛⎫=+ ⎪⎝⎭的形式后,将26x π+作为一个整体,并结合余弦函数的性质求解,属于基础题.四.解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知全集U R =,集合{}2|340A x x x =+-≤,{}|11B x m x m =-≤≤+.(1)若1m =,求()U A B ð;(2)若B A ⊆,求m 的取值范围.【答案】(1)(){}|40U B A x x =-≤<I ð;(2)[]3,0-【解析】【分析】(1)分别求出U B ð和A ,再取交集,即可.(2)因为B A ⊆且11m m -<+恒成立,所以1411m m -≥-⎧⎨+≤⎩,解出即可.【详解】解:(1)若1m =,则{}|02B x x =≤≤,所以{|0U B x x =<ð或 h ,又因为{}|41A x x =-≤≤,所以(){}|40U B A x x =-≤<I ð.(2)由(1)得,{}|41A x x =-≤≤,又因为B A ⊆,所以1411m m -≥-⎧⎨+≤⎩,解得[]3,0m ∈-.【点睛】本题考查了交、补集的混合运算,考查了利用集合间的关系求参数的取值问题,解答此题的关键是对集合端点值的取舍,是基础题.16.已知函数()ln sin f x x x =+.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()f x 在区间[]1,e 上的最小值.【答案】(1)()1cos1sin1cos11y x =++--(2)sin1【解析】【分析】(1)利用导数的几何意义结合给定条件求解切线方程即可.(2)利用导数结合零点存在性定理求出函数单调性,再求解最值即可.【小问1详解】由题意得,()1cos f x x x+'=,所以()11cos1f =+',又()1sin1f =,所以曲线 y m 在点 ꌸm 处的切线方程为()()sin11cos11y x -=+-,即()1cos1sin1cos11y x =++--;【小问2详解】由上问得()1cos f x x x +'=,因为1y x =和cos y x =均在区间[]1,e 上单调递减,所以m 在区间[]1,e 上单调递减,因为()11cos10f +'=>,()112π11e cose cos 0e e 3e 2f =+<+=-<',所以()0f x '=在()1,e 上有且只有一个零点,记为0x ,所以[)01,x x ∈时,m ;(]0,e x x ∈时,m ,所以()f x 在[)01,x 上单调递增,在(]0,e x 上单调递减,因为()()1sin1,e 1sine f f ==+,所以()f x 在区间[]1,e 上的最小值为sin1.17.已知函数()22sin .f x x x =+(1)求()f x 的最小正周期及单调递增区间;(2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)最小正周期T π=,单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈;(2)[]0,3.【解析】【分析】(1)利用二倍角的余弦公式、辅助角公式化简()2216f x sin x π⎛⎫=-+ ⎪⎝⎭,由周期公式计算得()f x 的最小正周期,由222262k x k πππππ-≤-≤+,Z k ∈可解得函数()f x 的单调增区间;(2)由x 的范围求出26x π-的范围,进一步求出sin 26x π⎛⎫- ⎪⎝⎭的范围,从而可得结果.【详解】(1)()22sin 1cos2f x x x x x=+=+-12sin2cos212sin 21226x x x π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭.()f x \的最小正周期22T ππ==,令222262k x k πππππ-≤-≤+,Z k ∈,得63k x k ππππ-#+,Z k ∈,()f x \的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈;(2)0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 26x π⎛⎫- ⎪⎝⎭的最大值为2,最小值为1-()2216f x sin x π⎛⎫∴=-+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[]0,3.【点睛】方法点睛:函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos b A B =.(1)求A ;(2)求2b c a +的最大值.【答案】(1)π3A =(2)2213.【解析】【分析】(1)方法1,利用正弦定理边化角,进而可得tan A =,结合角的范围即可求解;方法2,利用余弦定理进行边角的互化,进而可得tan A =,结合角的范围即可求解;(2)利用正弦定理边化角,结合辅助角公式进而可得()23b c B a ϕ+=+,结合正弦函数的性质即可求解.【小问1详解】方法1:由sin cos b A B +=及正弦定理可得:()sin sin cos B A A B C A B +==+,所以sin sin cos cos sin B A A B A B A B +=+,故sin sin sin B A A B =,因为0πB <<,即sin 0B >,故sin 0A A =>,所以tan A =,又0πA <<,所以π3A =.方法2:由sin cos b A B +=及余弦定理可得:()222sin2a c b b A ac +-+=,所以)222sin 02b c a A A bc +-==>,所以tan A =,又0πA <<,所以π3A =.【小问2详解】由正弦定理可知22sin sin sin b c B C a A++=,即()2232π23532212sin sin sin cos sin 333223b c B B B B B a ϕ⎛⎫+⎡⎤⎛⎫=+-=+=+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭,其中πtan 52ϕϕ⎛⎫=< ⎪⎝⎭,2π7π0,036B B ϕ<<∴<+< ,故当π2B ϕ+=时,2b c a +19.设函数()2ln 25f x x x x =+-.(1)求函数()f x 的极小值;(2)若关于x 的方程()()226f x x m x =+-在区间2[1,e ]上有唯一实数解,求实数m 的取值范围.【答案】(1)极小值为()13f =-;(2)222{|11,=1}m m m e e≤<++或.【解析】【分析】(1)根据导函数的符号判断出单调性,然后可求出函数的极小值;(2)由题意并结合分离参数法得到方程2ln 11,e x m x ⎡⎤=+⎣⎦在区间上有唯一解,设()ln 1x g x x=+,然后得到函数()g x 的单调性和最值,进而得到其图象,最后根据y m =和函数()g x 的图象可得到所求的范围.【详解】(1)依题意知()f x 的定义域为()0,+∞,∵()2ln 25f x x x x =+-,∴()()()2411145145x x x x f x x x x x---+='=+-=,令()0,f x '=解得1,x =或14x =则()()1010,4x x f x f x '当或时,单调递增,()1104x f x <<<'当时,,()f x 单调递减.∴所以当 y 时函数()f x 取得极小值,且极小值为()13f =-.(2)()()()226ln 1f x x m x x m x =+-=-由得,0x >又,所以ln 1x m x=-,()()22261,e ,f x x m x ⎡⎤=+-⎣⎦要使方程在区间上有唯一解只需2ln 11,e x m x ⎡⎤=+⎣⎦在区间上有唯一解.令()ln 1(0)x g x x x =+>,则()21ln x g x x -'=,由()0g x '≥,得1x e ≤≤;由()0g x '≤,得2e x e ≤≤∴()g x 在区间[]1,e 上是增函数,在区间2,e e ⎡⎤⎣⎦上是减函数.∴当x e =时函数()g x 有最大值,且最大值为()11g e e =+,又()()2222ln 211,11e g g ee e ==+=+,∴当11m e =+或2211m e ≤<+时,ln 1x m x =+在区间21,e ⎡⎤⎣⎦上有唯一解,∴实数m 的取值范围为222{|11,=1}m m m e e≤<++或.【点睛】研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数的大致图象,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的展现.。
山东省名校考试联盟2024-2025学年高三上学期期中检测数学试题
山东省名校考试联盟2024-2025学年高三上学期期中检测数学试题一、单选题1.已知集合{}2|log 2A x x =<,{}2|230B x x x =--<,则A B = ()A .{|4}x x <B .{|13}x x -<<C .{|03}x x <<D .{|34}x x <<2.若1i +(i 为虚数单位)是关于x 的方程20(,)x ax b a b ++=∈R 的一个根,则b =()A .0B .2C .3D .43.已知向量a ,b不共线,2AB a b λ=+ ,AC a b μ=+ ,若A ,B ,C 三点共线,则λμ=()A .2-B .1-.C .1D .24.设a ,b ∈R ,则使a b >成立的一个充分不必要条件是()A .33a b >B .n 0()l a b ->C .22a b >D .||a b>5.已知数列{}n a 满足11a =,112n n n n a a a a ++-=,则数列{}1n n a a +的前8项和为()A .817B .1225C .78D .896.若sin 25α=,sin()10βα-=,且,42ππα⎡⎤∈⎢⎥⎣⎦,3,2βππ⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .43πB .53πC .74πD .116π7.用min{,,}a b c 表示a ,b ,c 中的最小数,若函数()f x 为偶函数,且当0x ≥时,{}2()min 1,1,6f x x x x x =+-+-+,则()f x 的极值点的个数为()A .2B .3C .4D .58.若定义在R 上的函数()f x 满足(2)()(4)f x f x f ++=,(21)f x +是奇函数,112f ⎛⎫= ⎪⎝⎭,则5112k k f k =⎛⎫-= ⎪⎝⎭∑()A .2B .3C .4D .5二、多选题9.已知函数()sin(2)1(0,||π)f x x ωθωθ=++><,两条相邻对称轴之间的距离为π2,且π()6f x f ⎛⎫≤ ⎪⎝⎭,则()A .1ω=B .π6θ=C .()f x 关于π,012⎛⎫- ⎪⎝⎭对称D .()f x 在π0,6⎛⎫⎪⎝⎭上单调递增10.记ABC V 内角A ,B ,C 的对边分别为a ,b ,c ,已知4c =,2b =,若O 为ABC V 的外心,则()A .||||||OA OB OC == B .60OA BC ⋅+=C .()0OA OB AB +⋅= D .0aOA bOB cOC ++= 11.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为CD ,11A B 的中点,点P 为MN 上一动点,则()A .存在点P 使得AP BP ⊥B .1PA PD +的最小值为C .以MN 为直径的球面与正方体每条棱的交点总数为12D .已知球O 为正方体1111ABCD A B C D -的内切球,若在正方体内部与球O 外部之间的空隙处放入一个小球,则放入的小球体积最大值为(1043π-三、填空题12.已知函数23,()1e ,02,xf x x x x ⎧≤<⎪=⎨+≤<⎪⎩则1(e)e f f ⎛⎫+= ⎪⎝⎭.13.数列{}n a 的前n 项和为n S ,且满足2(1)2nn n a a n ++-=+,49S =,则1a =.14.已知函数3()e 3xx f x m =+,曲线()y f x =在不同的三点处的切线斜率均为3,则实数m 的取值范围是.四、解答题15.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,AD AB ⊥,//AB CD ,1AB AD ==,2CD =,PD PC ==E 在棱PA 上,且2PE EA =.(1)求证:平面PAD ⊥平面DBE ;(2)求平面PAB 与平面ABCD 所成角的大小.16.已知锐角ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos sin 0a C C b c --=,角A 的平分线交BC 于D ,2AD =.(1)求A ;(2)求BD CD ⋅的取值范围.17.将2n 个实数排成n 行n 列的数阵形式如下;11121312122232123n n n n n nna a a a a a a a a a a a(1)当7n =时,若每一行每一列均构成等差数列,且445a =,求该数阵中所有数的和M ;(2)若0(,1,2,,)ij a i j n >= ,且每一行均为公差相同的等差数列,每一列均为公比为q 的等比数列.已知2310a =,2518a =,4688a =,设1122nn S a a a =+++ ,求S 的值.18.已知函数3()2sin f x ax x x =+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当1a =时,讨论()f x 的单调性;(3)当0x ≥时,()0f x ≥,求a 的取值范围.19.已知集合{}()*0,1,2,,5nS n =∈N ,集合T S ⊆,记T 的元素个数为T .若集合T 中存在三个元素a ,b ,()c a b c <<,使得23c a b +>,则称T 为“理想集”.(1)若1n =,分别判断集合1{0,2,3,5}T =,2{0,1,2,5}T =是否为“理想集”(不需要说明理由);(2)若1n =,写出所有的“理想集”T 的个数并列举;(3)若||42T n =+,证明:集合T 必为“理想集”.。
数学丨黑龙江省哈尔滨市师范大学附属中学2025届高三上学期11月期中考试数学试卷及答案
哈师大附中2024—2025学年度高三上学期期中考试数学试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =-+≤,(){}2ln 2B x y x==-,则A B = ()A .()13,B.3⎡-⎣C.⎡⎤⎣⎦D.(⎤⎦2.复数2025z=2025i -在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.函数()2cos f x x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为()A.2πB .2C.6π+ D.13π+4.已知a 是单位向量,则“||||1a b b +-= 是“a b∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数()()e 1x a xf x -⎛⎫= ⎪⎝⎭在区间()1,0-上单调递增,则a 的取值范围是()A .[)0,+∞B .[)2,-+∞C .(],0-∞D .(],2-∞-6.已知等比数列{}n a 的前n 项和为n S ,若3614S S =,则1236SS S =+()A.43B.8C.9D.167.菱形ABCD 边长为2,P 为平面ABCD 内一动点,则()()PA PB PC PD +⋅+的最小值为()A.0B.2- C.2D.4-8.已知函数()f x 为偶函数,且满足(13)(13)f x f x -=+,当(0,1)x ∈,()31xf x =-,则323(log )f 的值为()A.31B.5932C.4932D.21132二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数()2sin(1)3f x x πωω=+≤的图象如图所示,则下列说法中正确的是()A .1ω=B .函数的图象关于点,03π⎛⎫⎪⎝⎭对称C .将()y f x =向左平移3π个单位长度,得到函数()2cos(6g x x π=+D .若方程(2)f x m =在0,2π⎡⎤⎢⎥⎣⎦上有2个不相等的实数根,则m的取值范围是2⎤⎦10.设正实数,m n 满足1m n +=,则()A .1m nm+的最小值为3B+C的最小值为12D .33m n +的最小值为1411.已知函数1()(0)xf x x x =>,则下列说法中正确的是()A.方程1()(f x f x=有一个解B.若()()g x f x m =-有两个零点,则10em e<<C.若21()(log ())2a h x x f x =-存在极小值和极大值,则(1,e)a ∈D.若()0f xb -=有两个不同零点,2(())()0f x b x cx d --+≤恒成立,则2ln b c <<第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.中国冶炼块铁的起始年代虽然迟至公元前6世纪,约比西方晚900年,但是冶炼铸铁的技术却比欧洲早2000年.现将一个轴截面为正方形且侧面积为π36的实心圆柱铁锭冶炼熔化后,浇铸成一个底面积为π81的圆锥,则该圆锥的高度为.13.已知某种科技产品的利润率为P ,预计5年内与时间(t 月)满足函数关系式(t P ab =其中a b 、为非零常数).若经过12个月,利润率为10%,经过24个月,利润率为20%,那么当利润率达到50%以上,至少需要经过________________个月(用整数作答,参考数据:lg 20.3010)≈14.已知b 为单位向量,,a c 满足42a b c b ⋅=-= ,则12a c -的最小值为四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题13分)在△ABC 中,a b c 、、分别为角A B C 、、所对的边,且22()b a a c c -=-(1)求角B .(2)若b =△ABC 周长的最大值.16.(本小题15分)已知数列{}n a 满足*3212122,N 22n n a a a n a n -++++=∈ (1)求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使得这2n +个数依次构成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .17.(本小题15分)行列式在数学中是一个函数,无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用.将形如11122122a a a a 的符号称二阶行列式,并规定二阶的行列式计算如下:1112112212212122a a a a a a a a =-,设函数22sin sin ()()π26cos()x xf x x x =∈+R .(1)求()f x 的对称轴方程及在[0,]π上的单调递增区间;(2)在锐角ABC ∆中,已知()32f A =-,2133AD AB AC =+,cos B =,求tan BAD ∠18.(本小题17分)已知数列}{n a 满足111,,333,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数(*∈N n ).(1)记232-=n n a b (*∈N n ),证明:数列}{n b 为等比数列,并求}{n b 的通项公式;(2)求数列}{n a 的前n 2项和n S 2;(3)设12121--=+n n n b b c (*∈N n ),且数列}{n c 的前n 项和为n T ,求证:1133ln --<-n n n n T (*∈N n ).19.(本小题17分)已知函数ln ()sin ,(0,)x a f x e x x -=-∈+∞.(1)当a e =时,求()y f x =在(0,(0))f 处的切线方程;(2)若32(())(())ln(1())0f x f x f x -++≥恒成立,求a 的范围;(3)若()f x 在(0,)π内有两个不同零点12,x x ,求证:122x x ππ<+<2024—2025学年度上学期高三学年期中考试数学答案一、单选题1.D 2.D 3.A 4.A 5.D 6.B7.D8.C二、多选题9.AC 10.ABD 11.ACD 三、填空题12.213.4014.1四、解答题15.(1)22()b a a c c -=-即222b a c ac =+-∵2222cos b a c ac B =+-∴1cos 2B =,又(0,)B π∈∴3B π=(2)由sin sin a c AC =可得,2sin a A =,2sin c C=2sin 2sin l a b c A C =++=+∵2+3A C π=∴23C Ap =-∴22sin 2sin()3l a b c A A π=++=+-3sin A A =)6A π=+∵203A π<<∴l的最大值为16.(1)321212222nn na a a a -++++= 当2n ≥时,312122)2222(1n n a a a n a --++++=- 两式相减,得122nn a -=,即2n n a =.又当1n =时,12a =符合题意,所以2n n a =.(2)由(1)得2n n a =,所以11222111n n nn n n b b d n n n ++--===+++,则112nn n d +=,所以()123111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()12341111112341222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()()112111111111113342211112222222212n n n nn n n T n n ++++⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅++⋅⋅⋅+-+=+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以332n nn T +=-.17.(1)221()2sin cos()2sin 2sin (cos sin )2sin 226f x x x x x x x xπ=+-=--23323sin sin 2(1cos 2)sin(2)22232x x x x x π=---+-,由22,32x k k πππ+=+∈Z ,得,12x k k ππ=+∈Z ,所以()f x 的对称轴为ππ()122kx k =+∈Z .由222,232k x k k πππππ-+<+<+∈Z ,[]0,x π∈,所以单调递增区间为701212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦,,,(2)由(1)知,33())322f A A π=+-=-,则πsin(2)03A +=,由02A π<<,得ππ4π2333A <+<,则π23A π+=,解得π3A =,因为ABC V中,cos B =,则B 为锐角,所以sin 3B ===,因为π3A =,πA B C ++=,所以2π3C B =-,所以2π2π2π11sin sin sin cos cos sin 333232326C B B B ⎛⎫=-=-=⨯+⨯=+⎪⎝⎭,设BADθ∠=,则π3 CADθ∠=-,在ABD△和ACD中,由正弦定理得sin sinBD ADBθ==πsinsin3CD ADCθ=⎛⎫-⎪⎝⎭因为2CD BD=(π3sin3θθ⎛⎫-=+⎪⎝⎭,(1cos sin3sin22θθθ⎫-=+⎪⎪⎭(2sinθθ=+,所以tan tanBADθ∠==18.(1)证明:2123123)1231(231212221-+=-++=-=++++nanaabnnnnnnnnbaanna31)23(312131212)6(31222=-=-=-+-=,又212313123121=-+=-=aab,所以,数列}{nb为以21为首项,31为公比的等比数列.(2)由(1)可知13121-⎪⎭⎫⎝⎛=nnb,又232-=nnab,23312112+⎪⎭⎫⎝⎛=∴-nna.设nnaaaP242++=,则nnPnnn233143432331131121+⎪⎭⎫⎝⎛-=+-⎪⎭⎫⎝⎛-⋅=,设1231-++=nnaaaQ ,1231122-+=-naann,2312)121(31nQnnQPnnn+=-+⋅+=∴,233nPQnn-=∴,故21223631334nnnPQPSnnnnn-+⎪⎭⎫⎝⎛-=-=+=-.(3)nnnnnnnc321132113331311311-<--=--=-⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=-,n n n n n n n T 311311()313131(22+-=--=+++-<∴ ,所以欲证1133ln --<-n n n n T ,只需证)311ln(313ln 133ln 31n n n n n n --=--=-<,即证n n 31311ln(-<-.设)0,1(),1ln()(-∈+-=x x x x f ,01)(<+='∴x xx f ,故)(x f 在)0,1(-上单调递减,0)0()(=>f x f ,)0,1(-∈∴x 时,)1ln(x x +>.)0,31[31-∈-n ,n n 31311ln(-<-∴得证.19.1) =s =K1−sins 0=−1,n =K1−coss n 0=−1−1∴−−1=−1−12)3−2+ln 1+≥0.令=s 3−2+ln 1+≥0(1)t >-令=3−2+ln 1+,n =32−2+1r1=33+2−2r1r1,当≥0,'≥0∴在0,+∞单调递增,当()32322(0,1),ln 1(1)0t t t t t t t t t t ∈+++<++=++<∴≥0解集为≥0∴≥0>0,sins1≥sin=ℎ. ℎ' = cosKsin =, ∴ 在 单调递增, (4,54)单调递减,当>54时,ℎ<154∴ℎ=224∴1≥224,0<≤243)ℎ=sin ∴sin=1有两个根1,2。
2023-2024学年北京西城区八中高三(上)期中数学试题及答案
2023-2024学年度第一学期期中练习题年级:高三科目:数学考试时间120分钟,满分150分一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合{|5}A x N x =∈≤与集合{|(2)0}B x x x =->,则A B =()A .{2,3,4}B .{3,4,5}C .[2,5)D .(2,5]2.复数2i12iz -=+的虚部为()A .1B .1-C .iD .i-3.下列函数中最小值为4的是()A.224y x x =++ B.4|sin ||sin |y x x =+C.222xxy -=+ D.4ln ln y x x=+4.在空间中,若,,a b c 是三条直线,,αβ是两个平面,下列判断正确的是()A .若a 的方向向量与α的法向量垂直,则//a α;B .若//a α,βα⊥,则a β⊥;C .若αβ⊥,c αβ= ,a c ⊥,则a α⊥;D .若,αβ相交但不垂直,c α⊂,则在β内一定存在直线l ,满足l c ⊥.5.“0x >”是“+sin 0x x >”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知向量a,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,a a b <+> =()A .3135-B .1935-C .1735D .19357.如图,点O 为坐标原点,点(1,1)A .若函数x y a =(0a >且1a ≠)及log b y x =(0b >且1b ≠)的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则,a b 满足()A.1a b << B.1b a << C.1b a >> D.1a b >>8.在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =()A .31010B.1010C.1010-D .31010-9.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.则哪种方案能通过考试的概率更大()A .方案一B .方案二C .相等D .无法比较10.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是()A.[0,1]B.13[,]22C.[1,2]D.3[,2]2二、填空题(本大题共5小题,每小题5分,共25分)11.已知直线1:(2)10l ax a y +++=,2:20l x ay ++=.若12l l ⊥,则实数a =.12.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________.13.函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移________个单位长度得到.14.已知直线:330l mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若||23AB =,则||CD =______.ABCD1D 1A 1B 1C E F15.对于函数()y f x =,若在其定义域内存在0x ,使得00()1x f x =成立,则称函数()f x 具有性质P.(1)下列函数中具有性质P 的有.①()2f x x =-+②()sin f x x =([0,2])x π∈③1()f x x x=+,((0,))x ∈+∞④()ln(1)f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是.三、解答题(本大题共6小题,共85分)16.(本小题满分13分)已知函数21()sin cos sin 2f x x x x =-+.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)在△ABC 中,,,a b c 为角,,A B C 的对边,且满足cos 2cos sin b A b A a B =-,且02A π<<,求角A 的值,进而再求()f B 的取值范围.17.(本小题满分14分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,按照[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]分组,并整理得到如下频率分布直方图:图1:甲大学图2:乙大学根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级:学习时间t (分钟/天)20t <2050t ≤<50t ≥等级一般爱好痴迷(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从这两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值X 甲与X 乙的大小,及方差2S 甲与2S 乙的大小.(只需写出结论)18.(本小题满分14分)羡除是《九章算术》中记载的一种五面体.如图五面体ABCDEF ,四边形ABCD 与四边形ADEF 均为等腰梯形,其中EF ∥AD ∥BC ,4AD =,2EF BC AB ===,ED =M为AD 中点,平面BCEF 与平面ADEF 交于EF .再从条件①,条件②,条件③中选择一个作为已知,使得羡除ABCDEF 能够确定,然后解答下列各题:(Ⅰ)求证:BM ∥平面CDE ;(Ⅱ)求二面角B AE F --的余弦值.(Ⅲ)在线段AE 上是否存在点Q ,使得MQ 与平面ABE 所成的角的正弦值为77,若存在,求出AQ AE 的值,若不存在,请说明理由.条件①:平面CDE ⊥平面ABCD ;条件②:平面ADEF ⊥平面ABCD ;条件③:EC =.19.(本小题满分15分)已知椭圆22220:1()x y W a ba b +=>>的焦距为4,短轴长为2,O 为坐标原点.(Ⅰ)求椭圆W 的方程;(Ⅱ)设,,A B C 是椭圆W 上的三个点,判断四边形OABC 能否为矩形?并说明理由.20.(本小题满分15分)已知函数212)(1()e 2x f x ax x -=-+.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线的方程;(Ⅱ)若函数()f x 在0x =处取得极大值,求a 的取值范围;(Ⅲ)若函数()f x 存在最小值,直接写出a 的取值范围.21.(本小题满分14分)设数阵111202122,a a A a a ⎛⎫= ⎪⎝⎭其中11122122,,,{1,2,,6}a a a a ∈⋅⋅⋅,设12{,,,}{1,2,,6},l S e e e =⋅⋅⋅⊆⋅⋅⋅其中*12, 6.l e e e l N l <<⋅⋅⋅<∈≤且定义变换k ϕ为“对于数列的每一行,若其中有k 或k -,则将这一行中每个数都乘以-1,若其中没有k 且没有k -,则这一行中所有数均保持不变”12(,,,).l k e e e =⋅⋅⋅0()s A ϕ表示“将0A 经过1e ϕ变换得到1A ,再将1A 经过2e ϕ变换得到2A ,⋅⋅⋅,以此类推,最后将1l A -经过le ϕ变换得到l A ”,记数阵l A 中四个数的和为0()s T A .(Ⅰ)若011A ⎛= ⎝25⎫⎪⎭,写出0A 经过2ϕ变换后得到的数阵1A ;(Ⅱ)若013A ⎛=⎝36⎫⎪⎭,{1,3},S =求0()s T A 的值;(Ⅲ)对任意确定的一个矩阵0A ,证明:0()s T A 的所有可能取值的和不超过4-.2023-2024学年度第一学期期中练习题答案年级:高三科目:数学考试时间120分钟,满分150分一、选择题(本大题共10小题,每小题4分,共40分)BBCDCDACAC二、填空题(本大题共5小题,每小题5分,共25分)11.-3或012.21n n +13.23π14.415.①②④;(,](0,)e -∞-+∞ 三、解答题(本大题共6小题,共85分)16.(本小题共13分)解:(Ⅰ)由题知111()sin 2(1cos 2)222f x x x =--+11=sin 2cos 222x x +2=sin(2)24x π+.由222242k x k ππππ-≤+≤π+(k ∈Z ),解得88k x k 3πππ-≤≤π+.所以()f x 单调递增区间为3[,]88k k πππ-π+(k ∈Z ).……………6分(Ⅱ)依题意,由正弦定理,sin cos 2sin cos sin sin B A B A A B =-.因为在三角形中sin 0B ≠,所以cos 2cos sin A A A =-.即(cos sin )(cos sin 1)0A A A A -+-=当cos sin A A =时,4A π=;当cos sin 1A A +=时,2A π=.由于02A π<<,所以4A π=.则3+4B C =π.则304B <<π.又2444B ππ7π<+<,所以1sin(214B π-≤+≤.由2())24f B B π=+,则()f B 的取值范围是2222⎡-⎢⎥⎣⎦,.………………13分17.(本小题满分14分)解:(Ⅰ)由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.0300.0200.015)100.65++⨯=,所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为0.65.………3分(Ⅱ)甲大学随机选取的40名学生中“痴迷”的学生有400.005102⨯⨯=人,乙大学随机选取的40名学生中“痴迷”的学生有400.015106⨯⨯=人,所以,随机变量ξ的取值为0,1,2=ξ.所以,(0)==P ξ022628C C 1528C =,(1)==P ξ112628C C 123287C==,(2)==P ξ202628C C 128C =.所以ξ的分布列为ξ012P152837128ξ的数学期望为15311()012287282=⨯+⨯+⨯=E ξ.……………11分(Ⅲ)X <甲X 乙;22ss >甲乙……………13分(Ⅰ) 等腰梯形ABCD M 是AD 中点MD BC ∴=MD BC∴∥∴平行四边形BCDM BM CD ∴∥BM ∉ 平面CDE CD ∈平面CDE BM ∴∥平面CDE .(Ⅱ)选②和选③,过程仅在建系之前有区别.选②:取BC 中点为N ,EF 中点为P ,连接MP 和MN平面ADEF ⊥平面ABCD 平面ADEF 平面ABCD AD = PM AD ⊥PM ∈ 平面ADEF PM ∴⊥平面ABCD MN AD ⊥ ,如图建系选③:取MD 中点Q ,连接CQ 和EQ EC = 3EQ=CQ =∴EQ CQ⊥∴二面角2E AD C π--=∴平面ADEF ⊥平面ABCD 取BC 中点为N ,EF 中点为P ,连接MP 和MN平面ADEF ⊥平面ABCD 平面ADEF 平面ABCD AD = PM AD ⊥PM ∈ 平面ADEF PM ∴⊥平面ABCD MN AD ⊥ ,如图建系(0,2,0)A-1,0)B-C (0,2,0)D (0,1,3)E (0,1,3)F -(0,0,0)M (1,0)BA =- (0,3,3)AE = 设平面BAE 的一个法向量(,,)n x y z =00n BA n AE ⎧⋅=⎪⎨⋅=⎪⎩0330y y z ⎧-=⎪⎨+=⎪⎩令x =,则3y =-,3z =,则3,3)n =- 易知(1,0,0)m =-是平面AEF的一个法向量cos ,||||7m n m n m n ⋅<>==-经检验,B AE F --为钝角,所以二面角B AE F --的余弦值为77-(Ⅲ)设,[0,1]AQAEλλ=∈,(0,3,3)AQ AE λλλ== ,(0,32,3)MQ MA AQ λλ=+=- ||7|cos ,|7||||MQ n MQ n MQ n ⋅<>==⋅解得153λ±=,均不满足题意,故不存在点Q .解:(Ⅰ)由题意,椭圆W 的方程为2215x y +=.(Ⅱ)设:AC y kx m =+,1122(,),,(),C x A x y y AC 中点00(,)M x y ,33(,)B x y ,2222255(15)10550x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩,222(10)4(15)(55)0km k m ∆=-+->,1221015km x x k +=-+,21225515m x x k-=+.(1)由条件OA OC ⊥,得12120x x y y +=,即1212()()0x x kx m kx m +++=,整理得221212(1)()0k x x km x x m ++++=,将(1)式代入得2222(1)(55)(10)(15)0k m km km m k +-+-++=即22655m k =+(2)又20125215x x km x k +==-+,00215m y kx m k =+=+且M 同时也是OB 的中点,所以30302,2x x y y ==因为B 在椭圆上,所以223355x y +=,即02024205x y +=,222254()20(51515km m k k -+=++,所以22451m k =+(3)由(2)(3)解得2272,5k m ==,验证知222(10)4(15)(55)1200km k m ∆=-+-=>,所以四边形OABC 可以为矩形.20.(本小题满分15分)解:(Ⅰ)111(0)e 22f e-=⋅=,∴切点为1(0,2e ,又21221()e ]2(1)[22(e 1)x x f x ax x x ax a a --+-'==+-,∴(0)0f '=,∴切线方程为102y e-=.(Ⅱ)定义域为R ,21()2(1)e x f x x ax a -'=+-1当0a =时,21()2e x f x x -'=-,令0()f x '>得0x <,∴()f x 增区间为(,0)-∞;令0()f x '<得0x >,∴()f x 增区间为(0,)+∞;∴()f x 在0x =取极大值,合题意.2当0a <时,由21()2(1)e 0x f x x ax a -'=-=+可得1210,0ax x a-==<,x 1(,)aa --∞1a a-1(,0)a a -0(0,)+∞()f x '-0+0-()f x 减极小值增极大值减∴()f x 在0x =处取得极大值,∴0a <合题意.3当0a >时,由21()2(1)e 0x f x x ax a -'=-=+可得1210,a x x a-==(i)当10aa-<即1a >时,()f x ',()f x 变化情况如下表:x 1(,)aa --∞1a a-1(,0)a a -0(0,)+∞()f x '+0-0+()f x 增极大值减极小值增∴()f x 在0x =处取得极小值,不合题意.(ii)当10aa-=即1a =时,()0f x '≥在R 上恒成立,∴()f x 在R 上增,无极大值点.北京八中2023-2024学年度第一学期期中练习题答案第6页,共6页(iii)当10a a->即01a <<时,()f x ',()f x 变化情况如下表:x(,0)-∞01(0,)a a -1a a -1(,)a a -+∞()f x '+0-0+()f x 增极大值减极小值增∴()f x 在0x =处取得极大值,∴01a <<合题意.综上可得:a 的取值范围是(,1)-∞(Ⅲ)1(0,]221.(本小题满分14分)解:(Ⅰ)经过2f 变换111A æ-ç=ççè25ö-÷÷÷÷ø(Ⅱ)013A æç=ççè36ö÷÷÷÷ø经过1j 变换得到113A æ-ç=ççè36ö-÷÷÷÷ø经过3j 变换得到313A æç=ççè36ö÷÷÷÷-ø,所以0()13(3+S T A =++-)(-6)= -5(Ⅲ)因为集合S 共有含空集在内的子集64个,令00()A A f j =,对于第一行11a 和12a ①若1112a a =,则含11a 的子集有32个,这32个l A 中第一行为11a -,12a -;不含有11a 的子集有32个,这32个l A 中第一行为11a ,12a ,所有l A 中第一行的和为0。
泉州市安溪一中,惠安一中,养正中学,实验中学2024-2025学年高三上学期11月期中联考数学试题
安溪一中、养正中学、惠安一中、泉州实验中学2024年秋季高三年期中联考考试科目:数学 满分:150分 考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.已知复数z 满足,则( )A. B. C. D.3.已知向量,满足,,且,则( )C.1D.24.甲、乙两校各有3名教师报名支教,现从这6名教师中随机派2名教师,则被派出的2名教师来自间一所学校的概率为( )A.B.C.D.5.已知,且,则( )A. B. C.D.6.已知函数是定义在上偶函数,当时,,若函数仅有4个零点,则实数的取值范围是( )A. B. C. D.7.已知函数,则满足的实数的取值范围是( ).A. B. C. D.8.双曲线的左、右焦点分别为,,右支上一点满足{}29200A x x x =-+≤{}2log (3)1B x x =-<A B = (,5)-∞[4,5)(,5]-∞(3,5]2(1i)1i z -=+z =1i-1i --1i +1i-+a b ||2a =|2|2a b -= ()a b a -⊥ ||b = 15251235()sin 404cos50cos 40cos θθ︒-=︒⋅︒⋅ππ,22θ⎛⎫∈- ⎪⎝⎭θ=π3-π6-π6π3()f x R 0x ≥25,0216()11,22xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩()y f x m =-m 51,4⎛⎫⎪⎝⎭50,4⎛⎫ ⎪⎝⎭50,4⎛⎫ ⎪⎝⎭5,4⎛⎫-∞ ⎪⎝⎭33()e e x x f x x --=-+(22)(1)6f m f m -+->m 1,3⎛⎫+∞ ⎪⎝⎭3,2⎛⎫+∞⎪⎝⎭7,3⎛⎫+∞⎪⎝⎭(3,)+∞222:1(0)5x y C a a-=>1F 2F P,直线平分,过点,作直线的垂线,垂足分别为A ,B ,设O 为坐标原点,则的面积为( ).A. B. C.10D.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设,且,则下列关系式中一定成立的题( )A.B.C. D.10.已知函数的图象经过点,则下列说法正确的是( )A.若,则对任意的都有B.若的图象关于直线对称,则C.若在上单调递增,则的取值范围是D.若方程在上恰有两个不同的实数解,则的取值范围是11.已知函数,,则下列说法正确的是( )A.若,则的图象在处的切线方程为B.若在上单调递増,则的取值范围是C.若当时,,则的取值范围是D.若,有唯一管点,且满足,则三、填空题:本大题共3小题,每小题5分,共15分.12.的展开式中的常数项为_________.13.在中,角A ,B ,C 所对的边分别为a ,b ,c ,且,,当取得最小值时,则最大内角的余弦值是_________.12PF PF ⊥l 12F PF ∠1F 2F l OAB △11122ab⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭R c ∈11a b>33a b >()()22ln 1ln 1a b +>+22c a c b<π()2sin()0,||2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭2ω=()f x x (π)()f x f x +=()f x π6x =13(N)k k ω=+∈()f x π0,2⎡⎤⎢⎥⎣⎦ω10,3⎛⎤ ⎥⎝⎦()1f x =[0,π]ω115,62⎡⎫⎪⎢⎣⎭()ln 1f x ax x x =++R a ∈1a =()f x 1x =2y x =()f x (1,)+∞a [1,)-+∞1x >()2()e xf x x-≤a (,2]-∞-0a >()f x 1x 2x 222sin e x x a -=+210x x >>733(1)x x-ABC △2b =cos 2cos 1cos()B B A C +=--2a c +ABC △14.已知函数,若曲线上存在点,使得,则实数的取值范围是_________.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,在直三棱柱中,,,是棱的中点,是的延长线与CB 的延长线的交点.(1)求证:平面;(2)若点在线段AP 上,且点E 为靠近点A 的三等分点,求直线与平面所成的角的正弦值.16.(15分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:在中,内角A ,B ,C 所对的边分别为a ,b ,c ,且_________.(1)求角C ;(2)若AB 边上的高为1,,求的周长.(注:如果选择多个条件分别解答,按第一个解答计分.)17.(15分)已知函数,.(1)当时,讨论的单调性;(2)当时,设,若既有极大值又有极小值,求的取值范围.18.(17分)已知椭圆,A ,F 分别为椭圆C 的左顶点和右焦点,过F 作斜率不为0的直线l 交椭圆C 于点P ,Q 两点,且,当直线轴时,.()f x =||1xy x =+()00,x y ()()00f f y y =a 111ABC A B C -90ACB ∠=︒13CA CB CC ===D 1BB P 1C D //AP 1A CD E 1A E 1A CD 22cos a b B -=2222sin sin a A B a b c =+-cos cos a B b Ac +=ABC △ABC △ABC △21()ln (1)2f x ax x a x =+-+R a ∈0a >()f x 0a >()()f x g x x=()g x a 2222:1(0)x y C a b a b+=>>||3AF =l x ⊥||3PQ =(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 的斜率分别为,,且,求直线l 的方程;(3)设直线AP 交y 轴于点E ,若过O 点作直线AP 的平行线OM 交椭圆C 于点M,求的最小值.19.(17分)若存在常数,使得数列满足,则称数列为“数列”.(1)判断数列:1,3,5,10,152是否为“数列”,并说明理由;(2)若数列是首项为2的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,,证明:.1k 2k 121k k +=||||||AP AE OM +t {}n a 1123(1,N)n n a a a a a t n n +-=≥∈ {}n a ()H t (2)H {}n a ()H t {}n b {}n a {}n b 212321log nin n i aa a a ab ==+∑ t {}n b {}n a ()H t n S {}n a n 11a >0t >1e n S n n n t S S -+>--安溪一中、养正中学、惠安一中、泉州实验中学2024年秋季高三年期中联考参考答案一、单选题BCDBAADC 二、多选题(9)AC(10)ACD(11)ACD三、填空题(12)105(13)(14)8.【详解】由双曲线,解得,令直线交的延长线交于,直线交于,则,,由PA 平分,且,得,则,,,显然A ,B 分别为线段,的中点,而O是的中点,于是,,,即,,所以的面积.故选:C 11.【详解】对于A 选项,,,,切线方程为,即,A 选项正确.对于B 选项,若在上单调递增,则对一切都有.[1,e)222:1(0)5x y C a a -=>=220a =1F A 2PF 2PF Q 2F B 1PF N 1PA FQ ⊥2PB F N ⊥12F PF ∠1290F PF ∠=︒112245PFQ PQF PF N PNF ∠=∠=∠=∠=︒1PA PF =2PB PF =2AB PA PB a =-==1FQ 2F N 12F F //OA PQ 1//OB PF 145OAB APQ APF OBA ︒∠=∠==∠=∠90AOB ∠=︒||||||OA OB AB a ===OAB △2211||1022S OA a ===()ln 2f x x ='+(1)2f '=(1)2f =22(1)y x -=-2y x =()f x (1,)+∞(1,)x ∈+∞()(ln 1)10f x a x '=++≥当时,由知满足条件:当时,,,不满足条件.因此的取值范围是,B 选项错误.对于C 选项,当时,等价于.而(用到不等式()).证明如下:记,则,时,,时,,故在上单调递减,在上单调递增,因此对一切有,即,等号成立当且仅当,结合知因此的取值范围是,C 选项正确.对于D 选项,由知在上单调递增,令得,且在上单调递减,在上单调递增,结合条件知,是的唯一零点,故,则.于是,由在上单调递增,结合,知.这样,由结合在上单调递增(因为,等号成立当且仅当)及知.由在上单调递增,结合知,,即,又在R 上单调递增,故,D 选项正确.14.【详解】由题意可知:,0a ≥ln 0x >0a <11ae >10af e a ⎛⎫'=< ⎪⎝⎭a [0,)+∞1x >()2()e xf x x -≤()2e 1ln xx x a x x---≤()22ln e 101(2ln 1)12ln ln ln xx x x x x x x x x x x xx x x x-------+--=≥=-e 1x x ≥+x ∈R ()e 1xh x x =--()e 1xh x '=-0x <()0h x '<0x >()0h x '>()h x (,0)-∞(0,)+∞x ∈R ()(0)0h x h ≥=e 1xx ≥+2ln 0x x x -=1x >x =a (,2]-∞-0a >()(ln 1)1f x a x '=++(0,)+∞()10f x ''=11ln 1x a -'=--()f x ()10,x '()1,x '+∞()min 1()0f x f x '==1x '()f x 11x x '=()()11111110111f x ax a x ax a x --==--++=-+⇒=11ln 10x x ++=()ln 1m x x x =++(0,)+∞()22e e 10m --=-<()11e e 0m --=>()211e ,e x --∈222sin e 0x x a --=>()sin x x x ϕ=-R ()1cos 0x x ϕ'=-≥2π()x k k =∈Z (0)0ϕ=20x >()()()12e x x xφϕ-=-(0,)+∞()211e ,e x --∈()()()()()1121111211121e e sine e sin 0e x x x x x φϕϕ------=-<--=<=-()()12x x ϕϕ<()x ϕ210x x >>000(1,1)1x y x =∈-+因为曲线上存在点,使得,所以存在,使得成立,且下面证明:成立,假设,则,所以不满足,假设不成立,假设,则,所以不满足,假设不成立,由上可知,;则原问题等价于“在上有解”,即“在上有解”,设,,所以,令,则,令,解得,当时,,单调递减,当时,,单调递增,所以,所以在上单调递增,所以的值域为,即为,所以,四、解答题15.(1)连接交于点,连接MD ,如下所示:因为是直三棱柱,故可得是矩形,故为的中点,又是的中点,所以,又,,,||1xy x =+()00,x y ()()00f f y y =0[0,1)y ∈()00f y y =()f x =()00f y y =()00f y c y =>()()()0()f f y f c f y c y =>=>()()0f f y y =()00f y c y =<()()()0()f f y f c f y c y=<=<()()0ff y y =()00f y y =()f x x =[0,1]2x a e x x =+-[0,1)2()e xg x x x =+-[0,1)x ∈()e 12x g x x '=+-()()s x g x '=()e 2xs x '=-()0s x '=ln 2x =[0,ln 2)x ∈()0s x '<()g x '(ln 2,1)x ∈()0s x '>()g x 'm 2()(ln 2)12ln 232ln 20g x g e ''≥=+-=->()g x [0,1)()g x ()())0,1g g ⎡⎣[1,)e [1,)a e ∈1AC 1AC M 111ABC A B C -11AC CA M 1AC D 1B B 1B D BD =11B DC BDP ∠=∠ 1190C B D PBD ∠=∠=︒11B P DC D B ∴≌△△,即是的中点,故在中,M ,D 分别为,的中点,故可得,又平面,平面,故面.(2)因为是直三棱柱,故可得平面,又,平面,则,,又,故,综上可得,,两两垂直,故以为坐标原点,建立如图所示空间直角坐标系;则,,,,,,,由(1)知,故,则;则,,,.设平面的一个法向量为,故可得,即,不妨取,则.又,则点的坐标为,则,又设直线与平面所成的角为,故可得,所以直线与平面.1C D PD ∴=D 1C P 1C AP △1C A 1C P //MD AP MD ⊂1ACD AP ⊂1ACD //AP 1ACD 111ABC A B C -1C C ⊥ABC CA CB ⊂ABC 1CC CA ⊥1CC CB ⊥90ACB ∠=︒CA CB ⊥1CC CA CB C (0,0,0)C 1(0,0,3)C (3,0,0)A 1(3,0,3)A (0,3,0)B 1(0,3,3)B 30,3,2D ⎛⎫ ⎪⎝⎭11BP C B =6CP =(0,6,0)P 1(3,0,3)CA = 30,3,2CD ⎛⎫= ⎪⎝⎭ 11(3,0,0)AC =- 130,3,2C D ⎛⎫=- ⎪⎝⎭1ACD (,,)m x y z =100m CA m CD ⎧⋅=⎪⎨⋅=⎪⎩ 0102x z y z +=⎧⎪⎨+=⎪⎩2z =-(2,1,2)m =- 1(1,2,0)3AE AP ==- E (2,2,0)1(1,2,3)A E =--1A E 1ACD θ111sin cos ,A E m A E m A E mθ⋅====1A E 1ACD(公式没加绝对值扣1分,结论没写不扣分)16.【详解】(1)选①,因为,由正弦定理可得,且,即,整理可得,且,则,可得,即,且,所以.选②,在中,由正弦定理得.因为,所以,化简得.在中,由余弦定理得.又因为,所以.选③由及,有,又由正弦定理,有,有,有,又由,可得.22cos a b c B -=22cos a b c B -=2sin sin 2sin cos A B C B -=sin sin()sin cos cos sin A B C B C B C =+=+2sin cos 2cos sin sin 2sin cos B C B C B C B +-=2cos sin sin 0C B B -=(0,π)B ∈sin 0B ≠2cos 10C -=1cos 2C =(0,π)C ∈3C π=2222sin sin a Aa b c B=+-ABC △sin sin A aB b=2222sin sin a A a b c B =+-2222a a abc b =+-222a b c ab +-=ABC △2221cos 22a b c C ab +-==0πC <<π3C =222cos 2a b cC ab+-=cos cos a B b A c +=cos cos a B b A c +=sin cos sin cos sin A B B A C +=sin()sin A B C +=sin sin C C =tan C =(0,π)C ∈π3C =(2)因为AB 边上的高为1,,得由(1)知,所以,得,由余弦定理得,即,得,所以,即,所以,所以,即的周长为17.【详解】(1)当时,的定义域为,,当时,恒成立,在上为增函数;当时,,,当或时,,当时,,所以的单调递增区间为,,单调递减区间为,当时,,当或时,,当时,,所以的单调递增区间为,,单调递堿区间为.综上所述,当时,在上为增函数;当时,的单调递增区间为,,单调递减区间为,ABC △112c ⨯=c =π3C =11sin 22ab C ab ==43ab =2222cos c a b ab C =+-22241232a b =+-⨯⨯2283a b +=2288162333a b ab ++=+=216()3a b +=a b +=a b c ++==ABC △0a >()f x (0,)+∞()1(1)(1)(1)ax x f x ax a x x--'=+-+=1a =()2(1)0x f x x-'=≥()f x (0,)+∞1a >101a <<()1(1)a x x a f x x⎛⎫-- ⎪⎝⎭'=10x a <<1x >()0f x '>11x a<<()0f x '<()f x 10,a ⎛⎫ ⎪⎝⎭(1,)+∞1,1a ⎛⎫⎪⎝⎭01a <<11a >01x <<1x a >()0f x '>11x a<<()0f x '<()f x (0,1)1,a ⎛⎫+∞⎪⎝⎭11,a ⎛⎫⎪⎝⎭1a =()f x (0,)+∞1a >()f x 10,a ⎛⎫ ⎪⎝⎭(1,)+∞1,1a ⎛⎫⎪⎝⎭当时,的单调递增区间为,,单调递减区间为,(2)因为,所以,若既有极大值又有极小值,则至少存在两个变号零点,即至少有两个不同实数根,记,则,当时,,当时,,所以在时,取得极大值,又趋近于0时,趋近于,当趋近于时,趋近于0,所以,的图象如图所示,由图可知,当,即时,有两个变号零点,且分别为极大值点和极小值点,所以的取值范围为.18.【详解】(1)设椭圆右焦点,,则①,由,得②,直线轴时,P ,Q 两点横坐标为,将代入椭圆方程中,解得,所以③, 联立①②③解得,,,椭圆的标准方程为.01a <<()f x (0,1)1,a ⎛⎫+∞⎪⎝⎭11,a ⎛⎫ ⎪⎝⎭()1ln ()(1)2f x x g x ax a x x ==+-+()211ln 2xg x a x-'=+()g x ()g x '2ln 112x a x -=2ln 1()x h x x-=332ln ()xh x x -'=320e x <<()0h x '>32e x >()0h x '<()h x 32e x =333i12(e)e 2eh -==x ()h x -∞x +∞()h x ()h x 31022ea <<30e a -<<()g x '()g x a ()30,e -(,0)F c 0c >222a b c =+||3AF =3a c +=l x ⊥c x c =22221x y a b +=2b y a =±22||3b PQ a ==24a =23b =21c =C 22143x y +=(2)①,显然,直线PQ不与轴垂直,可设PQ的方程为,联立椭圆方程,消去并整理得,又设,,显然,所以由韦达定理得,所以,即,所以直线方程为.(3)依题意直线AP的斜率存在且不为0,设直线AP的方程为:,则直线OM的方程为.联立直线AP与椭圆C的方程可得:,由,可得,联立直线OM与椭圆C的方程可得:,即,即即的最小值为.19.【详解】(1)根据“数列”的定义,则,故,因为成立,成立,不成立,(1,0)F y1x my=+22143x y+=x()2234690m y my++-=()11,P x y()22,Q x y0∆>122122634934my ymy ym⎧+=-⎪⎪+⎨-⎪=⎪+⎩()()1212121212212121212231223339my y y yy y y yk kx x my my m y y m y y+++=+=+==+++++++1m=-l1y x=-+(2)y k x=+y kx=()2222341616120k x k x k+++-=2Ax=-226834Pkxk-=+()2234120k x+-=221234Mxk=+202P A E A PM MAP AE x x x x xOM x x+-+-+++====+≥==k=||||||AP AEOM+()H t2t=11232n na a a a a+-=212a a-=3212a a a-=43211013552a a a a-=-⨯⨯=-≠所以1,3,5,10,152不是“数列”.(2)由是首项为2的“数列”,则,,由是等比数列,设公比为,由,则,两式作差可得,即,由是“数列”,则,对于,恒成立,所以,即对于,恒成立,则,即,解得,,,又由,,则,即,故所求的,数列的通项公式.(3)设函数,则,令,解得,当时,,则在区间单调递减,且,又由是“数列”,即,对于,恒成立,因为,,则,再结合,,,反复利用,可得对于任意的,,, 则,即,则,即,,…,,(2)H {}n a ()H t 22a t =+334a t =+{}n b q 212321log nl n ni a a a a a b ==+∑ 121231211log n i n n n i a a a a a a b +++==+∑ ()2112312121log log n n n n n a a a a a a b b +++=-+- ()21123121log n n n a a a a a a q ++=-+ {}n a ()H t 1123n n a a a a a t +-= 1n ≥n ∈N ()()211121log n n n a a t a q +++=--+1212(1)log log n n n t a t b b +++=+-1n ≥n ∈N 2232(1)log (1)log t a t q t a t q +-=⎧⎨+-=⎩22(1)(2)log (1)(34)log t t t q t t t q ++-=⎧⎨++-=⎩1t =-2q =12a =21121log a a b =+14b =12n n b +=1t =-{}n b 12n n b +=()ln 1f x x x =-+()11f x x'=-()0f x '=1x =1x >()0f x '<()ln 1f x x x =-+(1,)+∞(1)ln1110f =-+={}n a ()H t 1123n n a a a a a t +-= 1n ≥n ∈N 11a >0t >211a a t =+>11a >0t >21a >1123n n a a a a a t +=+ 1n ≥N n ∈1n a >()(1)0n f a f <=ln 10n n a a -+<ln 1n n a a <-11ln 1a a <-22ln 1a a <-ln 1n n a a <-相加可得,则,又因为在上单调递增,所以,又,所以,即,故.1212ln ln ln n n a a a a a a n +++<+++- ()12ln n n a a a S n <- ln y x =(0,)x ∈+∞12e n S nn a a a -< 1123n n a a a a a t +-= 1e n S nn a t -+-<1en S nn n S S t -+--<1en S nn n t S S -+>--。
安徽省黄山市屯溪2024-2025学年高三上学期11月期中数学试题含答案
屯溪2024-2025学年度第一学期期中质量检测高三数学试题(答案在最后)命题人:(考试时间:120分钟满分:150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集{}{}{}0,1,2,3,4,0,1,4,1,3U A B ===,则()U A B =ð()A.{}2,3 B.{}1,3,4 C.{}1,2,3 D.{}0,1【答案】C 【解析】【分析】根据给定条件,利用补集、并集的定义直接求解即可.【详解】由{}{}0,1,2,3,4,0,1,4U A ==,得{2,3}U A =ð,而{}1,3B =,所以{}3()1,2,U B A = ð.故选:C2.已知命题2:1,1p x x ∀<->,则p ⌝是()A.21,1x x ∃<-≤B.21,1x x ∀≥->C.21,1x x ∀<->D.21,1x x ∃≤-≤【答案】A 【解析】【分析】运用全称命题的否定,否定结论,全称量词换成存在量词即可解题.【详解】全称命题的否定,否定结论,全称量词换成存在量词.则G ∀<−1,2>1,则p ⌝是21,1x x ∃<-≤.故选:A.3.设各项均为正数的等比数列{}n a 满足41082a a a ⋅=,则()2121011log a a a a 等于()A.102B.112 C.11D.10【答案】C 【解析】【分析】等比数列中若+,,,N m n p q ∈,m n p q +=+,则m n p q a a a a ⨯=⨯.我们先根据此条性质和已知条件求出6a 的值,最后运用对数性质计算即可.【详解】在等比数列{}n a 中,8462108a a a a a ==⋅,得62a =.根据等比数列性质,2211121039485762a a a a a a a a a a a ======.所以1210111112103948576()()()()()a a a a a a a a a a a a a a a = 5116262()a a ==⨯,1121210112log ()log (2)11a a a a == .故选:C.4.若()()220,cos 2,cos 2m n m n αβαβ-≠-=+=,则tan tan αβ=()A.2m nm n +- B.m n m n +-C.2m n m n-+ D.m n m n-+【答案】D 【解析】【分析】由两角和差的余弦展开式求出cos cos ,sin sin m n m n αβαβ=+=-,再由同角的三角函数关系求解即可;【详解】因为()()cos cos cos sin sin 2,cos cos cos sin sin 2m n αβαβαβαβαβαβ-=+=+=-=,所以cos cos ,sin sin m n m n αβαβ=+=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.故选:D.5.已知函数()f x 与其导函数()f x '的图象的一部分如图所示,则关于函数()()e xf xg x =的单调性说法正确的是()A.在(1,1)-单调递减B.在(0,2单调递减C.在[2单调递减 D.在[1,2]单调递减【答案】B 【解析】【分析】根据图象判断出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,求导得到()()()exf x f xg x '-'=,()g x在(1,2x ∈-上单调递减,在2x ⎡⎤∈⎣⎦上单调递增,得到答案.【详解】从图象可以看出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,()()()e xf x f xg x '-'=,当(1,2x ∈-时,()()0f x f x '-<,故()0g x '<,()()ex f x g x =在(1,2x ∈-上单调递减,当2x ⎡⎤∈-⎣⎦时,()()0f x f x '-≥,故()0g x '≥,()()ex f x g x =在2x ⎡⎤∈⎣⎦上单调递增,ACD 错误,B 正确,故选:B6.若对任意实数b ,关于x 的方程()212ax b x x ++-=有两个实根,则实数a 的取值范围是()A.02a <≤B.01a <≤ C.10a -≤< D.11a -≤≤且0a ≠【答案】B 【解析】【分析】根据方程有两个根,利用判别式可转化为关于实数b 的不等式恒成立,即可求解.【详解】关于x 的方程()212ax b x x ++-=有两个实根,即方程()2120ax b x b +-+-=有两个实根,所以()()210Δ1420a b a b ≠⎧⎪⎨=---≥⎪⎩,即()20212810a b a b a ≠⎧⎨-+++≥⎩对任意实数b 恒成立,所以()()220Δ4124810a a a ≠⎧⎪⎨=+-+≤⎪⎩,即200a a a ≠⎧⎨-≤⎩,得01a <≤.故选:B.7.直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,则ω=()A.13B.23C.32D.3【答案】B 【解析】【分析】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,再结合条件,即可求解.【详解】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到π1sin 62x ω⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,又直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,显然最小值在一个周期内取到,不妨取0k =,得到0x =或2π3x ω=,所以2ππ3ω=,解得23ω=,故选:B.8.已知定义在(0,)+∞上的函数()f x 满足(()()xf yf x xf y y=-,且当1x >时,()0f x >,则()A.2()2()f x f x ≥B.322()()()f x f x f x ≥C.2()2()f x f x ≤D.322()()()f x f x f x ≤【答案】D 【解析】【分析】应用赋值法构造出23(),(),()f x f x f x 的等量关系,再结合不等式性质判断即可.【详解】由题意,0,0x y >>,()()()x f yf x xf y y=-.赋值1x y ==,得1(1)(1(1)1(1)01f f f f ==⋅-⋅=;赋值1x =,得1(1)1()()f yf f y f y y ⎛⎫=-⋅=- ⎪⎝⎭,即1()f f x x ⎛⎫=- ⎪⎝⎭,当1x >时,()0f x >,当01x <<时,则11x >,所以1()0f f x x ⎛⎫=-> ⎪⎝⎭,即()0f x <;赋值2x y =,得()222()()y f f y yf y y f y y ⎛⎫==- ⎪⎝⎭,解得21()()f y y f y y ⎛⎫=+ ⎪⎝⎭,即21()()f x x f x x ⎛⎫=+⎪⎝⎭;AC 项,由21()()f x x f x x ⎛⎫=+⎪⎝⎭,0x >,得()212()2()f xf x x f x x ⎛⎫-=+- ⎪⎝⎭,其中由0x >,可知1220x x +-≥=,当1x >时,1()0,2()0f x x f x x ⎛⎫>+-≥ ⎪⎝⎭,即()22()f x f x ≥;当01x <<时,1()0,2()0f x x f x x ⎛⎫<+-≤ ⎪⎝⎭,即()22()f x f x ≤;故AC 错误;BD 项,21,x x y x ==,得232222111()()()()1x f f x f x x f f x x f x x x x x ⎛⎫ ⎪⎛⎫==-=+ ⎪ ⎪⎝⎭ ⎪⎝⎭;又21()()f x x f x x ⎛⎫=+ ⎪⎝⎭,所以3222211()()()1()f x f x x f x x f x x x ⎛⎫=+=++ ⎪⎝⎭,则322222222211()()()1()2()()0f x f x f x x f x x f x f x x x ⎛⎫⎛⎫-=++-++=-≤ ⎪ ⎪⎝⎭⎝⎭,故322()()()f x f x f x ≤,且()f x 不恒为0,故B 错误,D 正确.故选:D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错或不选的得0分)9.给出下列四个关系式,其中正确的是()A.2024∈RB.0∈∅C.∈Z QD.∅{}【答案】AD 【解析】【分析】根据R,Z,Q 表示的数集,结合空集的性质、真子集的定义逐一判断即可.【详解】因为2024是实数,因此选项A 正确;因为空间集中没有元素,显然0∈∅不正确,因此选项B 不正确;因为所有的整数都是有理数,因此整数集是有理数集的子集,所以选项C 不正确;因为空集是任何非空集合的真子集,所以选项D 正确,故选:AD10.(多选)下列说法不正确的是()A.已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎩⎭B.不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C.()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D.不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>【答案】ACD 【解析】【分析】A 选项,考虑B =∅时,0m =,满足要求,可判断A ;B 选项,考虑0k =时,0k ≠两种情况讨论可得充要条件为30k -<≤,可判断B ;C 选项,由1212x -<-<,可求定义域判断C ;D 选项,根据不等式的解集得到0a >且2,3-为方程20ax bx c ++=的两个根,由韦达定理得到的关系,,a b c ,计算可判断D.【详解】A 选项,{}2,3A =-,又{}10B xmx =-=∣,当0m =时,B =∅,满足B A ⊆,当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,当12m =时,{}2B =,满足B A ⊆,当13m =-时,{}3B =-,满足B A ⊆,综上,m 组成集合为110,,23⎧⎫-⎨⎬⎩⎭,A 说法不正确;B 选项,当0k =时,不等式为308-<恒成立,可得23208kx kx +-<对一切实数x 恒成立,当0k ≠时,由23208kx kx +-<对一切实数x 恒成立,可得20342()08k k k <⎧⎪⎨-⨯⨯-<⎪⎩,解得30k -<<,综上所述:不等式23208kx kx +-<对一切实数x 恒成立的充要条件是30k -<≤,所以不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<,故B 正确;C 选项,因为()f x 的定义域为()1,2-,所以1212x -<-<,解得302x <<,故()21f x -的定义域为30,2⎛⎫⎪⎝⎭,C 说法不正确;D 选项,不等式20ax bx c ++>解集为−∞,−2∪3,+∞,则0a >且2,3-为方程20ax bx c ++=的两个根,故23,23b c a a-+=--⨯=,则,6b a c a =-=-,故60a b c c a ++==-<,D 说法不正确.故选:ACD.11.如图,心形曲线22:()1L x y x +-=与y 轴交于,A B 两点,点P 是L上的一个动点,则()A.点,02⎛⎫⎪ ⎪⎝⎭和−1,1均在L 上B.点PC.O 的最大值与最小值之和为3D.PA PB +≤【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D.【详解】令0x =,得出1y =±,则()()1,0,1,0,A B -对于A :2x =时,21122y ⎛⎫+-= ⎪ ⎪⎝⎭得0y =或y =,=1x -时,()2111y +-=得1y =,所以,02⎛⎫ ⎪ ⎪⎝⎭和()1,1-均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+-=,所以y x =+()()222221112y y x x x x =+=+-+≤++-=,所以2x =时,y 最大,最大值为22+=B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=-=,所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos231351sin2cos2sin2sin 222222θθθθθϕ+=++=++=+,因为θ可取任意角,所以OP 12=,OP 512+=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确.故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题(本题共3小题,每小题5分,共15分.)12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.【答案】2-【解析】【分析】根据函数为奇函数,利用()()f x f x -=-求解.【详解】由题意得,(2)2222f =-=+.∵()f x 是定义在R 上的奇函数,∴(2)(2)2f f -=-=-.故答案为:2-.13.函数()sin cos f x x x =+在()0,2π上的极小值点为:__________.【答案】5π4【解析】【分析】法一,由辅助角公式得π()4f x x ⎛⎫=+ ⎪⎝⎭,利用函数()f x 与π4f x ⎛⎫- ⎪⎝⎭图象的平移关系可得所求;法二,利用导函数,求出导函数的零点按零点分区间,分析导函数符号与原函数单调性即可求解极值点.【详解】法一:()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭,()0,2πx ∈,由()f x 的图象向右平移π4个单位可得到函数π4f x x ⎛⎫-= ⎪⎝⎭,π9π,44x ⎛⎫∈ ⎪⎝⎭的图象.而函数y x =在π9π,44⎛⎫⎪⎝⎭的极小值点为3π2,故函数()f x 的极小值点即为3ππ5π244-=.法二:()sin cos f x x x =+,()0,2πx ∈,则π()cos sin 4f x x x x ⎛⎫'=-=+ ⎪⎝⎭,由()0,2πx ∈,则ππ9π,444x ⎛⎫+∈ ⎪⎝⎭,令()0f x '=,得ππ42x +=或3π2,解得π4x =或5π4x =.则(),()f x f x '的变化情况如下表:xπ0,4⎛⎫ ⎪⎝⎭π4π5π,44⎛⎫ ⎪⎝⎭5π45π,2π4⎛⎫ ⎪⎝⎭()f x '+0-0+()f x极大值极小值()f x 在()0,2π上的极小值点为5π4.故答案为:5π4.14.函数,0ky k x=>与ln yx =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,设ln y x =在A 处的切线1l 的倾斜角为α,e x y =在B 处的切线2l 的倾斜角为β,若2βα=,则k =________.【答案】【解析】【分析】由对称性可得21ex x =,利用导数求切线1l 和2l 的斜率,得tan β和tan α,由2βα=解出1x ,再由11ln kx x =求出k 的值.【详解】函数,0ky k x=>与ln y x =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,则111ln k y x x ==,222e x ky x ==,函数,0ky k x=>的图象关于直线y x =对称,函数ln y x =和e x y =的图象也关于直线y x =对称,所以11(,)A x y ,22(,)B x y 两点关于直线y x =对称,有221e xy x ==,函数ln y x =的导数为1y x'=,函数e x y =的导数为e x y '=,则11tan x α=,2tan e x β=,由2βα=,有22tan tan tan 21tan αβαα==-,即211212e 1x x x x ==-,由1>0x ,解得1x =所以11l n k x x ==.【点睛】关键点点睛:本题除了导数和倍角公式的运用,关键点在于运用函数的对称性或对数式的运算,得到21e x x =.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【解析】【分析】(1)根据()*12n n a a n +=+∈N 得到{}na 为公差为2的等差数列,利用等差数列求通项公式求出21n a n =-,再设{}nb 的公比为q ,列出方程,求出2q =,得到通项公式;(2)化简得到32n c n =-,故{}n c 为公差为3的等差数列,利用等差数列求和公式得到答案.【小问1详解】因为()()**1122n n n n a a n a a n ++=+∈⇒-=∈N N ,故{}n a 为公差为2的等差数列,所以()()12112121n a a n n n =+-=+-=-,又1b ,2b ,31b -成等差数列,故21321b b b =+-,设{}n b 的公比为q ,其中22b =,则2421q q =+-,解得2q =或12,当2q =时,11b =,此时1112n n n b b q --==,为递增数列,满足要求,当12q =时,14b =,此时31112n n n b b q --⎛⎫== ⎪⎝⎭,为递减数列,舍去,综上,21n a n =-,12n n b -=;【小问2详解】212log 1322n n c n n -=+--=,则13n n c c +-=,故{}n c 为公差为3的等差数列,故()2121323143222n n n n n n T c c c n +--=+++=+++-== .16.记ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 1.a C b =+(1)求证:2;C B =(2)若3cos 4B =,6c =,求ABC 的面积.【答案】(1)证明见解析(2)4【解析】【分析】(1)利用正弦定理以及两角和与差的正弦公式可证2C B =;(2)由正弦定理及三角形面积公式可得答案.【小问1详解】由正弦定理sin sin a b A B =,知sin sin a A b B =,所以2cos 1a C b =+,即为sin 2cos 1sin A C B =+,所以sin 2sin cos sin A B C B =+,即()sin 2sin cos sin B C B C B +=+,所以()sin sin cos cos sin sin .B BC B C C B =-+=-因为0πB <<,ππC B -<-<,所以B C B =-或()πB C B +-=,即2C B =或πC =(舍去);【小问2详解】由2C B =,得21cos cos22cos 18C B B ==-=,所以52cos 14a C b =+=,即5.4a b =由余弦定理,得2222cos c a b ab C =+-,即22225513621648b b b =+-⨯⨯,解得=4,所以 5.a =又由1cos 8C =,可得π0<2<C ,得37sin 8C ==,所以ABC V 的面积1137157sin 54.2284S ab C ==⨯⨯⨯=17.如图,在四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,224,AD AB BC AB ===⊥,,AD AB BC E ⊥是AD 的中点,PC BE ⊥.(1)证明:BE ⊥平面PAC .(2)若PA PC ==B PA D --的正弦值.【答案】(1)证明见解析(2).7【解析】【分析】(1)连接CE ,通过四边形ABCE 是正方形,得到BE AC ⊥,进而可求证;(2)作BH PA ⊥,垂足为H ,连接,EH PE .先证明PA ⊥平面BEH ,得到BHE ∠是二面角B PA D --的平面角,在判断四棱锥P ABCE -为正四棱锥,求得2EH BH ==,再由余弦定理即可求解.【小问1详解】证明:连接CE .因为E 是AD 的中点,所以2AD AE =.分因为224AD AB BC ===,且,AB AD AB BC ⊥⊥,所以四边形ABCE 是正方形,则BE AC ⊥.因为,,PC BE PC AC ⊥⊂平面PAC ,且PC AC C ⋂=,所以BE ⊥平面PAC .【小问2详解】解:作BH PA ⊥,垂足为H ,连接,EH PE .由(1)可知BE ⊥平面PAC .又PA ⊂平面PAC ,所以PA BE ⊥.因为,BH BE ⊂平面BEH ,且BH BE B = ,所以PA ⊥平面BEH .因为EH ⊂平面BEH ,所以PA EH ⊥,则BHE ∠是二面角B PA D --的平面角.记AC BE O =I ,连接OP ,则O 是AC 的中点.因为PA PC =,且O 是AC 的中点,所以OP AC ⊥.因为BE ⊥平面PAC ,且OP ⊂平面PAC ,所以BE OP ⊥.连接PE .因为,AC BE ⊂平面ABCE ,且AC BE O =I ,所以OP ⊥平面ABCE ,则四棱锥P ABCE -为正四棱锥,故PA PB PE ===.因为PAB 的面积1122S AB PA BH ==⋅,即11222BH ⨯=⨯,所以2BH =.同理可得2EH BH ==.在BEH △中,由余弦定理可得2221cos 27BH EH BE BHE BH EH +-∠==-⋅,则sin 7BHE ∠=,即二面角B PA D --的正弦值为718.已知函数()e xx f x =.(1)求()f x 在区间[]22-,上的最大值和最小值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.【答案】(1)最大值为1e -,最小值为22e -;(2)(ⅰ)证明见解析;(ⅱ)2【解析】【分析】(1)求导得到导函数,根据导函数的正负确定在[]22-,上的性,再计算最值得到答案;(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,∈0,π三种情况,构造()e sin xF x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【小问1详解】()e x x f x =,1()e xx f x -'=,令1()0e x x f x -'==得到1x =,当()2,1x ∈-时,′>0,函数单调递增,当()1,2x ∈时,′<0,函数单调递减,又()22222e e f ---==-,()1111e e f -==,()22222e ef -==,故()f x 在区间[]22-,上的最大值为1e -,最小值为22e -;【小问2详解】(ⅰ)()()()sin sin e e a xa x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<;(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g <=-+'=',故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当∈0,π时,()1()sin e sin e e x x x x g x x x x =-+=-,设()e sin x F x x x =-,()()esin cos 1x F x x x =+-',设()()esin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当∈0,0时,()0k x >,单调递增;当()0,πx x ∈时,()0k x <,单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2.【点睛】关键点点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N 阶“曼德拉数列”是等比数列,求该数列的通项n a(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N 阶“曼德拉数列”是等差数列,求该数列的通项n a (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k -=--(2)()()*1,211n n a n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k =-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101k k a q a a a q -++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。
2024-2025学年重庆市高三上学期11月期中数学调研检测试题
2024-2025学年重庆市高三上学期11月期中数学调研检测试题注意事项:1.答题前,考生务必将自己的准考证号、姓名、班级填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,,则( )i 112i z =+z =A. B.15132.已知集合,,则(){}0,1,2,3,4,5M =()(){}130N x x x =+-≤M N = A.B.C.D.{}3{}2,3{}1,2,3{}0,1,2,33. 已知,,则( )a b >0c d <<A. B. C. D. a c b d+>+22a cb d+>+ac bd >22ac bd>4. 已知数列满足:,,则( ){}n a 13a =1111n n a a ++=6a =A. B. C. 2 D. 332235. 已知平面上的两个非零向量,满足,则( )a b ()()22a b a b a b b -⋅+=⋅= ,a b = A. B. C. D. π6π4π3π26. 已知实数,且,若函数在上存在零点,则()0a >1a ≠()log x a f x a x=+()1,2A. B. C.D.2log 20a a +<22log 0a a -<4log 20a a +>log 20a a -<7.设的三个内角A ,B ,C 的对边分别为a ,b ,c ,若,且ABC V sin2B =,则( )2222690a ac c c -+-+=b =A. B. 4C. 8.已知实数a ,b ,c 满足:,,,则2229a b +=223448b c +=225651c a +=的最大值为( )32a b c -+A. 6B. 9C. 10D. 15二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9. 已知p :“,是奇数”,q :“,是偶数”,则( )x ∀∈N 21x +x ∃∈N 31x +A. :,是偶数” B. :“,是偶数”p ⌝x ∀∈N 21x +p ⌝x ∃∈N 21x +C. :“,是奇数”D. :“,是奇数”q ⌝x ∃∈N 31x +q ⌝x ∀∈N 31x +10. 已知等比数列的公比,其前n 项和记为,且,则( ){}n a 12q =-n S 621S =A.B.C.D.481a a =2n a a ≥21n S ≤16n S ≥11.设,函数,则( )a ∈R ()32f x x x a =-+-A. 当时,函数为单调递增函数0a <()f x B. 点为函数图象的对称中心()0,2-()y f x =C. 存在,使得函数图象关于直线对称,a b ()y f x =x b =D. 函数有三个零点的充要条件是()f x 3a >三、填空题:本题共3小题,每小题5分,共15分.12. 已知平面直角坐标系中,向量,单位向量满足,则x()1,2a =-(),b x y =a b a b+=- 的值可以是__________.(写出一个正确结果即可)13. 已知为定义在上的奇函数,且当时,,则()f x R 0x <()1e2x f x x+=+__________.()1f =14. 已知函数,.若的零点恰为的零点,则a 的()sin f x a x=a ∈Z ()()y f f x =()y f x =最大值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 已知非零等差数列满足:,.{}n a 10982a a a =-1670a a a +=(1)求数列的通项公式;{}n a (2)记的前n 项和为,求的最小值.{}n a n S n S 16. 已知函数.()22f x x x a=++(1)讨论的奇偶性;()f x (2)若在上具有单调性,求实数的取值范围.()f x ()1,1-a 17. 在中,已知,.ABC V π3A B +>2sin 2cos cos tan 2sin 2cos sin A B AB B A A -+=-+(1)证明:;1sin 1cos 2C C=+(2)若,求面积的最大值.2AB =ABC V 18. 已知函数().()()ln f x x a x x=+-a ∈R (1)当时,求曲线在点处的切线方程;1a =()y f x =()()1,1f (2)若函数有两个极值点,求a 的取值范围;()f x (3)在(2)的条件下,确定函数零点的个数.()f x 19. 已知,表示不超过x 的最大整数,如,,.x ∈R []x []33=1=[]1.52-=-(1)若,,,且是无穷数列,求的取值范围;10a >[]11n n a a +=n +∈N {}n a 1a (2)记.[]x x x =-①若,,,求;11a =22a =21n n n a a a ++=+505014422log log k k k a a a a +=⎡⎤+⎢⎥⎣⎦∑②设,,,证明:,使得时,.1a =m +∈N []1n n n a a a +=⋅k +∃∈N n k ≥0n a =。
2024-2025学年山东省菏泽市高三上学期期中数学试题及答案
菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ( )A. {}0,1 B. {}1 C. {}1,1- D. ∅2. 已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为( )A. []1,2 B. []4,6 C. []5,9 D. []3,73. 已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+( )A. 12-B.12C. 0D. 14. “函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分又不必要条件5. 过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为( )A. 1B.3log 22C.ln33D.2log 36.6. 函数()11ln sin 21x f x x x+=--的零点个数为( )A. 1B. 0C. 3D. 27. 自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是( )A. ①和④B. ③和④C. ③和②D. ①和②8. 已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -( )A. 有最大值为1e -,最小值为1 B. 有最大值为0,最小值为1e-C. 有最大值为0,无最小值D. 无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 已知0c b a <<<,则( )A. ac bc <B. 333b c a +< C.a c ab c b+>+D.<10. 已知函数()21,2,5,2xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则( )A. 1a ≤- B. []1,4c ∈ C. ()20,5ad ∈ D. 222a b +=.11. 把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则( )A. π6f ⎛⎫=⎪⎝⎭B. ()f x 的图象关于直线π3x =对称C. S 呈周期变化D. 6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12. 命题:“所有能被4整除的正整数能被2整除”的否定是______.13. 已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14. 已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15. 记ABC V 内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为(1)求C ;(2)求ABC V 的周长.16. 已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎥⎣⎦,求()()23-=+f x y f x 的最大值.17. 记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;的(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18. 已知函数()()2e xf x x a =-.(1)求()f x 单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19. 已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 否有最小值,如果有,请求出来;如果没有,请说明理由.的是菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】【14题答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a - (2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
潍坊市2023届高三上学期期中考试模拟数学试题试题(含答案)
数 学 试 题 2022.10一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|24}A x x ,集合2|320B x x x ,则R A C B A.{|14}x xB.{|12}x xC.{|24}x xD.2.设x R ,则“sin 0x ”是“cos 1x ”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知随机变量 服从正态分布22,N ,且(4)0.7P ,则(02)P A.0.1B.0.2C.0.3D.0.44.函数321)(xxe x x f x的图像大致为( )5.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A.540种B.180种C.360种D.630种6.若关于x 的不等式22(4)(2)10a x a x 的解集不为空集,则实数a 的取值范围为( )7.设函数)('x f 是奇函数)()(R x x f 的导函数,0)1( f ,当0 x 时,0)()(' x f x xf ,则使得0)( x f 成立的x 的取值范围是( )A .),1()1,(B .)1,0()0,1(C .)1,0()1,(D .),1()0,1(高三上学期期中考试模拟考试8.已知数列{}n a 和{}n b 首项均为1,且11(2),n n n n a a n a a ,数列{}n b 的前n 项和为S n ,且满足1120n n n n S S a b ,则S 2019=( )二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若121()(),()933P AB P A P B ,,则事件A 与B 的关系错误是( ) A.事件A 与B 相互独立 B.事件A 与B 对立C.事件A 与B 互斥D.事件A 与B 既互斥又独立10.已知2112n x x的展开式中第二项与第三项的系数的绝对值之比为1:8,则A.4nB.展开式中所有项的系数和为1C.展开式中二项式系数和为42 D.展开式中不含常数项 11.函数())0,||2f x x的部分图像如图所示,则下列说法中正确的有 A.()f x 的最小正周期T 为B.()f x 向右平移38个单位后得到的新函数是偶函数 C.若方程()1f x 在(0,)m 上共有4个根,则这4个根的和为72D.5()0,4f x x图像上的动点M 到直线240x y 的距离最小时,M 的横坐标为4.12.若过点(1,)P 最多可作出*n n N 条直线与函数()(1)e xf x x 的图象相切,则 A.n 可以取到3B.4nC.当1n 时, 的取值范围是4,eD.当2n 时,存在唯一的 值三、填空题:本题共4小题,每小题5分,共20分。
无锡市2024-2025学年高三上学期期中教学质量调研测试数学试题
无锡市2024-2025学年高三上学期期中数学试题2024.11命题单位:无锡市教育科学研究院制卷单位:无锡市教育科学研究院注意事项及说明:本卷考试时间为120分钟,全卷满分为150分一、单项选择题:本题共8小题,每小题5分,共40分.1.若集合{}2{11},20A x xB x x x =-<<=-+≤∣∣,则A B = ()A.[0,1)B.(1,1)- C.(1,2]- D.(1,0]-2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数1sin 25y x ⎛⎫=+ ⎪⎝⎭的图象为C ,为了得到函数1sin 25y x ⎛⎫=- ⎪⎝⎭的图象,只要把C 上所有的点()A.向右平行移动15个单位长度 B.向左平行移动15个单位长度C.向右平行移动25个单位长度 D.向左平行移动25个单位长度4.一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:元)与x 成正比;若在距离车站6km 处建仓库,则214y y =.要使这家公司的两项费用之和最小,则应该把仓库建在距离车站()A.2kmB.3kmC.4kmD.5km5.若等差数列{}n a 的前n 项和为n S ,则“20240S >且20250S <”是“101210130a a <”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知函数2()ln 1x xf x xx -=+-,则下列函数是奇函数的是()A.(1)1f x ++B.(1)1f x -+C.(1)1f x -- D.(1)1f x +-7.若πππsin 24322θθ⎛⎫⎛⎫+=-<<⎪ ⎪⎝⎭⎝⎭,则tan 2θ的值为()A. B.5C.7-D.78.在ABC V 中,已知3,1,60BC AC ACB ︒==∠=,点D 是BC 的中点,点E 是线段AD 上一点,且13AE AD =,连接CE 并延长交边AB 于点P ,则线段CP 的长度为()A.75B.5C.65D.5二、多项选择题:本题共3小题,每小题6分,共18分.9.下列函数中,在区间π3π,24⎛⎫⎪⎝⎭上单调递增的函数是()A.πsin 24y x ⎛⎫=- ⎪⎝⎭B.2πcos 3y x ⎛⎫=+ ⎪⎝⎭C.|sin 2|y x = D.2sin y x=10.下列说法中正确的有()A.若0a b >>,0c d <<,则ac bd <B.若0a b >>,0c <,则c c a b>C.若13a <<,10b -<<,则23a b <-<D.若0a <,2ab a >,则22b a >11.函数32()1f x x ax bx =++-.下列说法中正确的有()A.当3,1a b ==时,有(2)()0f x f x --+=恒成立B.,a b ∃∈R ,使()f x 在(,1)-∞上单调递减C.当0b =时,存在唯一的实数a ,使()f x 恰有两个零点D.当0,[2,0]b x =∈-时,6()x f x x -≤≤恒成立,则1,14a ⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.已知(0,2),a b == ,则向量a 在向量b上的投影向量的坐标为______.13.已知实数,,a b c 满足924a b c ==且113a b+=,则c =__________.14.任何有理数m n 都可以化为有限小数或无限循环小数;反之,任一有限小数或无限循环小数也可以化为mn的形式,从而是有理数.则1.4=__________(写成m n的形式,m 与n 为互质的具体正整数);若1.4,1.44,1.444, 构成了数列{}n a ,设数列()()111011n n n b a +=-⋅-,求数列{}n b 的前n项和n S =__________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.15.已知向量a 与b的夹角为135︒,且||1,||a b == (1),c a b λλλ=+-∈R .(1)当b c ⊥时,求实数λ的值;(2)当||c 取最小值时,求向量b 与c夹角的余弦值.16.已知函数2()ln(1),f x x a x a =++∈R .(1)若函数()f x 有两个不同的极值点,求a 的取值范围;(2)求函数()()22a g x f x x ⎛⎫=-+⎪⎝⎭的单调递减区间.17.在ABC V 中,已知)tan 114A B --=.(1)若ABC V 为锐角三角形,求角C 的值,并求22sin cos A B -的取值范围;(2)若AB =AB 的中垂线交边AC 于点D ,且1CD =,求A 的值.18.已知函数()e xf x =.(1)若x ∀∈R ,不等式()0mf x x ->恒成立,求实数m 的取值范围;(2)过点(,1)T t 可以作曲线()y f x =的两条切线,切点分别为()(),e ,,e abA aB b .①求实数t 的取值范围;②证明:若a b >,则||||AT BT >.19.在下面n 行、n 列()*Nn ∈的表格内填数:第一列所填各数自上而下构成首项为1,公差为2的等差数列;第一行所填各数自左向右构成首项为1,公比为2的等比数列;其余空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.设第2行的数自左向右依次记为123,,,,n c c c c .第1列第2列第3列…第n 列第1行1222…12n -第2行359第3行510……第n 行21n -(1)求数列{}n c 通项公式;(2)对任意的m *∈N ,将数列中落入区间[],m m b c 内项的个数记为m d ,①求1d 和10d 的值;②设数列{}m m a d ⋅的前m 项和m T ;是否存在*m ∈N ,使得()19253m m T m -+=⋅,若存在,求出所有m 的值,若不存在,请说明理由.江苏省无锡市2024-2025学年高三上学期期中教学质量调研测试数学试题2024.11命题单位:无锡市教育科学研究院制卷单位:无锡市教育科学研究院注意事项及说明:本卷考试时间为120分钟,全卷满分为150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.若集合{}2{11},20A xx B x x x =-<<=-+≤∣∣,则A B = ()A.[0,1)B.(1,1)- C.(1,2]- D.(1,0]-【答案】D 【解析】【分析】解一元二次不等式可得集合B ,根据集合的交集运算,即可求得答案.【详解】由题意知(){}2{11}1,1,20(,0][2,)A x x B x x x =-<<=-=-+≤=-∞+∞ ∣∣,故(1,0]A B =- ,故选:D 2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据复数除法化简12i 55z =-+,进而可得点的坐标,即可求解.【详解】复数2212i (12i)(34i)386i 4i 510i 12i 34i (34i)(34i)342555z +++-++-+=====---++,对应点为12,55⎛⎫- ⎪⎝⎭,位于第二象限,故选:B3.已知函数1sin 25y x ⎛⎫=+ ⎪⎝⎭的图象为C ,为了得到函数1sin 25y x ⎛⎫=- ⎪⎝⎭的图象,只要把C 上所有的点()A.向右平行移动15个单位长度 B.向左平行移动15个单位长度C.向右平行移动25个单位长度 D.向左平行移动25个单位长度【答案】A 【解析】【分析】根据三角函数的图象变换计算即可.【详解】易知1sin 25y x ⎛⎫=+ ⎪⎝⎭向右平行移动15个单位长度可得111sin 2sin 2555y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A4.一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:元)与x 成正比;若在距离车站6km 处建仓库,则214y y =.要使这家公司的两项费用之和最小,则应该把仓库建在距离车站()A.2kmB.3kmC.4kmD.5km 【答案】B 【解析】【分析】设112212,,(0,0)k y y k x k k x==>>,结合题意求出129k k =,从而求出两项费用之和的表达式,利用基本不等式,即可求得答案.【详解】由题意设112212,,(0,0)ky y k x k k x==>>,仓库到车站的距离0x >,由于在距离车站6km 处建仓库,则214y y =,即121246,96k k k k =∴=,两项费用之和为2122296k y y y k x k x=+=+≥=,当且仅当229k k x x=,即3x =时等号成立,即要使这家公司的两项费用之和最小,则应该把仓库建在距离车站3km.故选:B 5.若等差数列{}n a 的前n 项和为n S ,则“20240S >且20250S <”是“101210130a a <”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据等差数列的单调性以及等差数列的性质即可判断101210130,0aa ><,说明充分性,由101210130,0a a <>时,即可说明不必要性.【详解】因为20240S >且20250S <,所以等差数列{}n a 单调递减,且公差小于0,故20230S >,()()120231202520232025202320250,022S a a a S a +⨯+⨯=>=<,则12023101212025101320,20a a a a a a +=>+=<,即101210130,0aa ><,所以101210130a a <,由101210130a a <,当101210130,0a a <>时,等差数列{}n a 单调递增,则不可能满足20240S >且20250S <,因此“20240S >且20250S <”是“101210130a a <”的充分不必要条件.故选:A.6.已知函数2()ln1x xf x xx -=+-,则下列函数是奇函数的是()A.(1)1f x ++ B.(1)1f x -+C.(1)1f x -- D.(1)1f x +-【答案】D 【解析】【分析】利用函数的奇偶性计算即可.【详解】易知()21111(1)lnln111x x xf x x x xx -++-+=+=++++,所以()()()()1111ln1,00,11x f x x x x-+-=+∈-+ ,令()11ln 1x g x x x -=++,则()11ln1x g x x x+-=--,显然()()0g x g x +-=,所以()g x 为奇函数,即D 正确.故选:D 7.若π3ππsin24322θθ⎛⎫⎛⎫+=-<< ⎪ ⎪⎝⎭⎝⎭,则tan 2θ的值为()A.5-B.5C.7-D.7【答案】C 【解析】【分析】利用倍角公式可求πcos 2θ⎛⎫+⎪⎝⎭,根据诱导公式得到sin θ,利用同角三角函数的基本关系求出cos θ和tanθ,进而求出tan 2θ.【详解】∵π3sin 243θ⎛⎫+= ⎪⎝⎭,∴22πππ31cos cos 212sin 122242433θθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-⨯= ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭,∵πcos sin 2θθ⎛⎫+=-⎪⎝⎭,∴1sin3θ=-,∵ππ22θ-<<,∴222cos 1sin 3θθ=-=,∴sin 2tancos 4θθθ==-,∴22tan 42tan 21tan 7θθθ==--.故选:C.8.在ABC V 中,已知3,1,60BC AC ACB ︒==∠=,点D 是BC 的中点,点E 是线段AD 上一点,且13AE AD =,连接CE 并延长交边AB 于点P ,则线段CP 的长度为()A.75B.375C.65D.355【答案】B 【解析】【分析】首先根据平面向量基本定理的推论求得AB与AP 的关系,即可利用基底CA CB ,表示CP ,再两边平方,利用平面向量数量积公式,即可求解.【详解】11111332266AE AD AB AC AP AC λ⎛⎫==+=+ ⎪⎝⎭ ,因为点,,P E C 三点共线,所以1166λ+=,得5λ=,即5AB AP =,4155CP CA CB=+,两边平方2221618252525CP CA CB CA CB =++⋅ ,169817413252525250=++⨯⨯⨯=,所以375CP =.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,在区间π3π,24⎛⎫⎪⎝⎭上单调递增的函数是()A.πsin 24y x ⎛⎫=- ⎪⎝⎭B.2πcos 3y x ⎛⎫=+ ⎪⎝⎭C.|sin 2|y x = D.2sin y x=【答案】BC 【解析】【分析】利用正弦函数和余弦函数的性质判断;【详解】A.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以π3π5π2,444x ⎛⎫-∈ ⎪⎝⎭,sin y t =在3π5π,44⎛⎫⎪⎝⎭上递减,故错误;B.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以2π7π17π,3612x ⎛⎫+∈ ⎪⎝⎭,cos y t =在7π17π,612⎛⎫ ⎪⎝⎭上递增,故正确;C.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,sin y t =在3ππ,2⎛⎫⎪⎝⎭上递增,故正确;D.21cos 2sin 2x y x -==,因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,cos 2y x =在3ππ,2⎛⎫ ⎪⎝⎭上递增,则2sin y x =在3ππ,2⎛⎫⎪⎝⎭上递减,故错误;故选:BC10.下列说法中正确的有()A.若0a b >>,0c d <<,则ac bd <B.若0ab >>,0c <,则c c a b>C.若13a <<,10b -<<,则23a b <-<D.若0a<,2ab a >,则22b a >【答案】ABD 【解析】【分析】利用不等式的基本性质逐项判断,可得出合适的选项.【详解】对于A 选项,因为0ab >>,0cd <<,则0c d ->->,由不等式的基本性质可得acbd ->-,则ac bd <,A 对;对于B 选项,因为0a b >>,不等式的两边同时除以ab 可得11a b<,因为0c <,由不等式的基本性质可得c ca b>,B 对;对于C 选项,因为13a <<,10b -<<,则01b <-<,由不等式的基本性质可得14a b <-<,C 错;对于D 选项,因为0a<,2ab a >,由不等式的基本性质可得0b a <<,则0b a ->->,由不等式的基本性质可得22a b <,D 对.故选:ABD.11.函数32()1f x x ax bx =++-.下列说法中正确的有()A.当3,1ab ==时,有(2)()0f x f x --+=恒成立B.,a b ∃∈R ,使()f x 在(,1)-∞上单调递减C.当0b=时,存在唯一的实数a ,使()f x 恰有两个零点D.当0,[2,0]bx =∈-时,6()x f x x -≤≤恒成立,则1,14a ⎡⎤∈⎢⎥⎣⎦【答案】ACD 解析】【分析】利用函数表达式计算(2)f x --,可得选项A 正确;求()f x ',可知()f x '为开口向上的二次函数,在(,1)-∞上()0f x '≤不可能恒成立,选项B 错误;零点问题转化为函数图象交点个数问题可得选项C 正确;分离参数a ,恒成立问题转化为a 大于等于函数的最大值或小于等于函数的最小值,分析函数即可得到选项D 正确.【详解】A.当3,1ab ==时,32()31f x x x x =++-,32(2)31f x x x x --=---+,∴(2)()0f x f x --+=,选项A 正确.B.由题意得,2()32f x x ax b '=++,为开口向上的二次函数,故0x ∃∈R ,使得0(,)x x ∈-∞时,()0f x '>,此时()f x 为增函数,所以不存在,a b ∈R ,使()f x 在(,1)-∞上单调递减.C.当0b =时,32()1f x x ax =+-,由(0)1f =-得,0不是函数()f x 的零点.当0x ≠时,由3210x ax +-=得,21a x x=-,令21()(0)g x x x x =-≠,则332()x g x x +'=-,由()0g x '=得32x =-,当3(,2)x ∈-∞-时,330,20,()0x x g x '<+<<,()g x 为减函数,当3(2,0)x ∈-时,330,20,()0x x g x '<+>>,()g x 为增函数,当(0,)x ∈+∞时,330,20,()0x x g x '>+><,()g x 为减函数,()g x 图象如图所示:由图象可知,存在唯一的实数a ,使直线y a =与()g x 图象恰有两个交点,即()f x 恰有两个零点,选项C 正确.D.当0b=时,32()1f x x ax =+-,∵[2,0]x ∈-,6()x f x x -≤≤恒成立,∴3250x ax x +-+≥恒成立且3210x ax x +--≤.对于不等式325[2,00,]x a x x x ≥∈-+-+,当0x =时,不等式成立,当[2,0)x ∈-时,215a x x x ≥-+-恒成立,即2max 15ax x x ⎛⎫≥-+- ⎪⎝⎭,令2)15(2,0)[,h x x x x x ∈-=-+-,则3310()x x h x x --+'=,∵[2,0)x ∈-,∴33100,0x x x --+><,∴()0h x '<,∴()h x 在[2,0)-上为减函数,max 1()(2)4h x h =-=,∴1a 4≥.对于不等式321[2,00,]x a x x x ≤∈-+--,当0x =时,不等式成立,当[2,0)x ∈-时,211a x x x ≤-++恒成立,即2min 11ax x x ⎛⎫≤-++ ⎪⎝⎭,令2)11[2(,),0x x x x x ϕ∈-=-++,则332()x x x x ϕ---'=,当(2,1)x ∈--时,3(2,10)x x --∈,3320,0x x x ---><,()0x ϕ'<,当(1,0)x ∈-时,3(0,2)x x --∈,3320,0x x x ---<<,()0x ϕ'>,∴()ϕx 在(2,1)--上为减函数,在(1,0)-上为增函数,∴min ()(1)1x ϕϕ=-=,∴1a ≤.综上得,1,14a ⎡⎤∈⎢⎥⎣⎦,选项D 正确.故选:ACD.【点睛】思路点睛:本题考查函数零点、函数与不等式综合问题,具体思路如下:(1)对于函数零点个数问题,先说明0不是函数()f x 的零点,再根据0x ≠时,由()0f x =分离出参数21a x x=-,问题转化为“存在唯一的实数a ,使得直线y a =与21()g x x x =-恰有两个交点”,通过求导分析单调性画出函数图象,通过图象即可得到结果.(2)对于不等式恒成立问题,分离参数a ,问题转化为max ()ah x ≥且min ()a x ϕ≤,对两个函数分别求导分析单调性,即可得到a 的取值集合.三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.已知(0,2),a b == ,则向量a 在向量b上的投影向量的坐标为______.【答案】1,22⎛⎫⎪ ⎪⎝⎭【解析】【分析】根据投影向量的定义计算即可求解.【详解】向量a 在向量b上的投影向量为)1,22a b b b b⎛⎫⋅⋅== ⎪ ⎪⎝⎭ .故答案为:31,22⎛⎫⎪ ⎪⎝⎭13.已知实数,,a b c 满足924a b c ==且113a b+=,则c =__________.【答案】6【解析】【分析】利用指数与对数的换算结合换底公式计算即可.【详解】由924ab c ==可知9240,log ,log c a c b c >==,所以11log 9log 24log 2163c c c a b+=+==,即332166c ==,所以6c=.故答案为:614.任何有理数m n都可以化为有限小数或无限循环小数;反之,任一有限小数或无限循环小数也可以化为m n的形式,从而是有理数.则1.4=__________(写成m n的形式,m 与n 为互质的具体正整数);若1.4,1.44,1.444, 构成了数列{}n a ,设数列()()111011n n n b a +=-⋅-,求数列{}n b 的前n 项和n S =__________.【答案】①.139②.()111364101n +--【解析】【分析】利用无限循环小数的性质设0.04t = ,然后建立等式求解即可;利用题中给出的规律先求出{}n a 的通项公式,然后得到{}n b 的通项公式,然后列项相消求解即可.【详解】令0.04t = ,则1.4110 1.4t t =+=+,解得245t =,所以131.41109t =+= 易知()()()23410.1410.1410.11 1.4,1 1.44,1 1.444,999---+=+=+=所以()410.11341199910n nn a-=+=-⨯所以()()()111191114101101410111013419910110110n n n n n n n n b +++⨯⎛⎫===- ⎪--⎛⎫--⎝⎭-⋅- ⎪-⎝⎭⨯所以1211231111111110110110110110110110110141nn n n n S -+-+-++-+---------⎛⎫= ⎪⎝⎭()111111101101414601113n n ++⎛⎫==-⎪⎝⎭----所以答案为:139;()114113601n +--【点睛】关键点点睛:若0.04t = ,则0.410t = ,借此建立等式;()()244440.40.910.1;0.440.9910.19999=⨯=⨯-=⨯=⨯- ,借此求得{}n a 的通项公式;同样的道理()()2444449101;44991019999=⨯=⨯-=⨯=⨯- .四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.15.已知向量a 与b的夹角为135︒,且||1,||a b == (1),c a b λλλ=+-∈R.(1)当b c⊥ 时,求实数λ的值;(2)当||c 取最小值时,求向量b 与c 夹角的余弦值.【答案】(1)23(2)10【解析】【分析】(1)由b c ⊥ ,所以0b c ⋅= ,将(1)c a b λλ=+- 代入可得()210a b b λλ⋅+-= ,再由数量积的定义求得1a b ⋅=- ,代回即可求解;(2)根据向量的模和二次函数求最值的方法求出λ的值,再根据向量的夹角公式计算即可.【小问1详解】因为b c ⊥ ,所以0b c ⋅=,即(1)0b a b λλ⎡⎤⋅+-=⎣⎦ ,所以()210a b b λλ⋅+-=,因为向量a 与b 的夹角为135︒,且||1,||a b ==所以2cos135112a b a b ⎛⎫⋅=⋅⋅︒=⨯-=- ⎪ ⎪⎝⎭,所以()210λλ-+-=,所以23λ=.【小问2详解】因为(1)ca b λλ=+-,所以222222(1)2(1)(1)c a b a a b b λλλλλλ=+-=+-⋅+- ,由(1)知1a b ⋅=-,且||1,||a b == 所以222222(1)(1562a a b λλλλλλ+-⋅+-=-+ ,则2231562555λλλ⎛⎫-+=-+ ⎪⎝⎭,故当35λ=时,c最小为5,此时3255c a b =+ ,则232323415555555b cb a b a b b ⎛⎫⋅=⋅+=⋅+=-+= ⎪⎝⎭,又55c b ⋅==,所以1105cos ,105c b c b c b⋅===,所以向量b 与c夹角的余弦值为1010.16.已知函数2()ln(1),f x x a x a =++∈R .(1)若函数()f x 有两个不同的极值点,求a 的取值范围;(2)求函数()()22a g x f x x ⎛⎫=-+ ⎪⎝⎭的单调递减区间.【答案】(1)10,2⎛⎫ ⎪⎝⎭(2)答案见解析【解析】【分析】(1)求导222()1x x a f x x '++=+,可得2220x x a ++=有两个大于1-的不等实根,进而可得222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,求解即可;(2)求导数,对a 分类讨论可求得单减区间.【小问1详解】函数2()ln(1)f x x a x =++的定义域为{|1}x x >-,求导得222()211a x x a f x x x x ++'=+=++,令()0f x '=,可得2220x x a ++=,因为函数()f x 有两个不同的极值点,所以2220x x a ++=有两个大于1-的不等实根,所以222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,解得12a <.所以a 的取值范围为1(0,2;【小问2详解】2()()2ln(1)222a a g x f x x x a x x ⎛⎫⎛⎫=-+=++-+ ⎪ ⎪⎝⎭⎝⎭,求导得2442(1)4(1)()22122(1)a a x x a a x x g x x x x '++-+-+⎛⎫=+-+=⎪++⎝⎭244(44)(1)2(1)2(1)x ax a x a x x x -+-+--==++,令()0g x '=,解得14ax =-或1x =,当8a >时,114a ->,由()0g x '<,可得114ax <<-,函数()g x 在(1,1)4a-上单调递减,当8a =,114a-=,由()0g x '<,可得x ∈∅,函数()g x 无单调递减区间,当08a <<,1114a -<-<,由()0g x '<,可得114ax -<<,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,114a-≤,由()0g x '<,可得11x -<<,函数()g x 在(1,1)-上单调递减,综上所述:当8a >时,函数()g x 在(1,1)4a-上单调递减,当8a =时,函数()g x 无单调递减区间,当08a <<时,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,函数()g x 在(1,1)-上单调递减.17.在ABC V中,已知)114A B --=.(1)若ABC V为锐角三角形,求角C 的值,并求22sin cos A B -的取值范围;(2)若AB =,线段AB 的中垂线交边AC 于点D ,且1CD =,求A 的值.【答案】(1)π3C =;11,42⎛⎤⎥⎝⎦;(2)π18A =【解析】【分析】(1)利用正切的和角公式可得C ,再利用余弦的差角公式,辅助角公式结合三角函数的性质计算范围即可;(2)设AB 中点为E ,由正弦定理解三角形结合诱导公式计算即可.【小问1详解】由题意))tan 113tan tan tan tan 14A B A B A B --=-++=,)tan tan 1tan tan A B A B -=+,所以()()tan tan tantan π1tan tan A BA B C A B++===--,所以tan C =易知()0,πC ∈,所以π3C =,则2π3A B +=,因为ABCV 为锐角三角形,所以π2ππ0,,0,232A B A ⎛⎫⎛⎫∈=-∈ ⎪ ⎪⎝⎭⎝⎭,即ππ,62A ⎛⎫∈ ⎪⎝⎭,所以2222222π1sin cos sin cos sin cos sin 322A B A A A A A ⎛⎫⎛⎫-=--=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭2213113sin sin cos cos cos 2sin 242444A A A A A A =+-=-+1πsin 226A ⎛⎫=- ⎪⎝⎭,由ππ,62A ⎛⎫∈ ⎪⎝⎭知ππ5π2,666A ⎛⎫-∈ ⎪⎝⎭,所以1π11sin 2,2642A ⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,即22sin cos A B -的取值范围为11,42⎛⎤⎥⎝⎦;【小问2详解】设AB 中点为E ,则2π3,2,3cos 2cos AEDBA A CBD A DB AD A A∠=∴∠=-===,在CBD △中,由正弦定理得π2πsin sin 233DBCD A =⎛⎫- ⎪⎝⎭,即112πcos sin 23A A =⎛⎫- ⎪⎝⎭,所以2ππsin 2cos sin 32A A A ⎛⎫⎛⎫-==-⎪ ⎪⎝⎭⎝⎭,因为线段AB 的中垂线交边AC 于点D ,可知A B <,所以π02A <<,则2ππ232A A -=-,解之得π6A =,此时π2B =,正切不存在,舍去;或2ππ2π32A A -+-=,解之得π18A =;综上π18A =.18.已知函数()e x f x =.(1)若x ∀∈R ,不等式()0mf x x ->恒成立,求实数m 的取值范围;(2)过点(,1)T t 可以作曲线()y f x =的两条切线,切点分别为()(),e ,,e a b A a B b .①求实数t 的取值范围;②证明:若ab >,则||||AT BT >.【答案】(1)1,e⎛⎫+∞ ⎪⎝⎭;(2)()0,∞+;证明见解析.【解析】【分析】(1)分离参数结合导数研究函数的单调性与最值计算即可;(2)①利用导数的几何意义,统一设切点(),e x x ,将问题转化为0011ex t x =+-有两个解,构造函数利用导数研究函数的单调性计算即可;②利用①的结论得出e e a b a b --+=+,根据极值点偏移证得0a b >->,再根据弦长公式得))221e 1e 1e e 1a a b bAT BT --⎧=+-⎪⎨=+-⎪⎩,构造函数())()21e 1e 0x x m x x -=+->判定其单调性即可证明.【小问1详解】易知e0e xxx m x m ->⇔>,令()e xx g x =,则()1e xxg x ='-,显然1x <时,()0g x '>,1x >时,()0g x '<,即()e xx g x =在(),1-∞上单调递增,在()1,+∞上单调递减,则()()max 11e g x g m ==<,即1,em ⎛⎫∈+∞ ⎪⎝⎭;【小问2详解】①设切点(),e x x ,易知0x t ≠,()e xf x '=,则有000e 1e x x x t-=-,即0011ex t x =+-,令()e 1x h x x -=+-,则(),y t y h x ==有两个交点,横坐标即分别为,a b ,易知()1e x h x -=-',显然0x >时,()0h x '>,0x <时,()0h x '<,则()hx 在(),0-∞上单调递减,在()0,∞+上单调递增,且x →-∞时有()h x →+∞,x →+∞时也有()h x →+∞,()()00h x h ≥=,则要满足题意需0t >,即()0,t ∈+∞;②由上可知:()e 10e 1a ba tb a b t--⎧+-=<<⎨+-=⎩,作差可得e e 0a b a b ---+-=,即e e a b a b --+=+,由①知:()h x 在(),0-∞上单调递减,在()0,∞+上单调递增,令()()()()()e e 22e e 0x x x x Hx h x h x x H x --'=--=-+⇒=-+≤,则()H x 始终单调递减,所以()()()()00H a h a h a H =--<=,即()()()h a h b h a =<-,所以b a >-,所以0a b >->,不难发现e 11e aaa t a t t --+-=⇒=+->,e eaAT bBT k k ⎧=⎨=⎩,所以由弦长公式可知))AT a t BT t b ⎧=-⎪⎨=-⎪⎩,所以))1e e 1a bAT BT --⎧=-⎪⎨=-⎪⎩,设())()()21e 0ex x xmx x m x --'=->⇒=⋅所以由))01e 1eabab ->->⇒--=)1e e 1ebb b --=+,即AT BT>,证毕.【点睛】思路点睛:对于切线个数问题,可设切点利用导数的几何意义建立方程,将问题转化为解的个数问题;对于最后一问,弦长的大小含有双变量,常有的想法是找到两者的等量关系,抑或是不等关系,结合图形容易想到化为极值点偏移来处理.19.在下面n 行、n 列()*N n ∈的表格内填数:第一列所填各数自上而下构成首项为1,公差为2的等差数列;第一行所填各数自左向右构成首项为1,公比为2的等比数列;其余空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.设第2行的数自左向右依次记为123,,,,n c c c c .(1)求数列{}n c 通项公式;(2)对任意的m *∈N ,将数列中落入区间[],m m b c 内项的个数记为m d ,①求1d 和10d 的值;②设数列{}m m a d ⋅的前m 项和m T ;是否存在*m ∈N ,使得()19253m m T m -+=⋅,若存在,求出所有m 的值,若不存在,请说明理由.【答案】(1)21n n c =+;(2)①12d =,10257d =;②4m =.【解析】【分析】(1)移项得12n n n cc +-=,运用累加法即可得到{}n c 通项公式;(2)①令m n m b a c ≤≤,解得1212222m mn -++≤≤,代入1m =得12d =,当2m ≥时,作差得221m m d -=+,代入即可得到10d ;②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,利用错位相减法得12(23)22m m T m m -=-⋅++,再验证m 值即可.【小问1详解】由题意知112,3n n n c c c +=+=,12n n n c c +∴-=,当2n≥时,()()()1211122112223n n n n n n n c c c c c c c c -----=-+-++-+=++++ ()121232112n n--=+=+-,而13c =也满足上式,21nn c ∴=+.【小问2详解】①111122,12(1)21,2,21n n m m nn m m ba n nbc ---=⋅==+-=-==+,令1121222212122m m m mmn m ba c n n --++≤≤⇒≤-≤+⇒≤≤,当1m =时,12n ≤≤,此时12d =,当2m ≥时,212121m m n --+≤≤+,此时1228102212121257m m m mdd ---=-+=+∴=+=,.②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,记{}12m m -⋅从第2项到第m 项的和为m S ,12321223242(1)22m m m S m m --∴=⋅+⋅+⋅++-⋅+⋅ ,232122232(2)2(1)22m m m m S m m m --=⋅+⋅++-⋅+-⋅+⋅ ,上述两式作差得214222m mmSm --=+++-⋅ ()241242(1)212m mm m m --=+-⋅=-⋅-,(1)2m m S m ∴=-,当1m =时,2m T =;当2m ≥时,()1112(321)(1)2(1)2212m m m m m T m -⋅-+--=+-⋅+--12(23)22m m m -=-⋅++,1m =也满足上式,12(23)22m m T m m -∴=-⋅++,1211239(23)2453(23)2453m m m m m m m m m m ----⎡⎤∴-⋅++=⋅⇒-⋅++=⋅⎣⎦,()3125323240m m m m m --⇒⋅-+⋅--=,当1,2,3m=时,左边0<,舍去,当4m=时,经检验符合;当5m ≥时,左边恒0>,无解,综上:4m=.【点睛】关键点点睛:本题第二问的第二小问关键是利用错位相减法得(1)2m mSm =-,再计算得12(23)22m m T m m -=-⋅++.。
2024届黑龙江哈尔滨九中高三上学期期中数学试题及答案
哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2 B. ()1,2- C. (],4∞- D. (]1,4-2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2iB. 2i- C. 2- D. 23. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 294. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为( )A 27B. 0C. 716-D. 916-8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设的.某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35B. 42C. 49D. 56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列D. {}n a 的前n 项和115344n n S +=⨯-10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根在C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14. 已知ABC的面积S =,3A π∠=,则AB AC ⋅=________;15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.的的哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2B. ()1,2- C. (],4∞- D. (]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2i B. 2i- C. 2- D. 2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln 2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于5sin |||2|sin()333ππππ-=-+==,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6. 设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k abαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC⋅的最小值为( )A. 27 B. 0C. 716-D. 916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示 ,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈- ,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=+=--⎪ ⎪⎝⎭⎝⎭ ,所以当94t = 时,MD MC ⋅ 有最小值916-.故选:D.8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35 B. 42C. 49D. 56【答案】B【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得50分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列 D. {}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+,11322a +=,为∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++= ,则AOC 与AOB 的面积之比为35【答案】BD 【解析】C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅> 即0BC CA ⋅> ,∴0CB CA ⋅< ,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x在π3⎡-⎢⎣上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=cos ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C错误;在对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩ ,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,在故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3) 已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1n n n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14. 已知ABC 的面积S =,3A π∠=,则AB AC ⋅=________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A =3A π∠= ,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,为则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n n n n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2) ()·=f x a b =x ·cos x +sin 2xsin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量1,1)2PB =- 和平面PAD 的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD ⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得11(0,0,0),,0),,0),(0,0,1)22D A B P -,则11,1),,0),(0,0,1)22PB DA DP =-=-=,设平面PAD 的法向量为(,,)n x y z =,则1020n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则sin cos ,n PB n PB n PB θ⋅==== ,所以直线PB 与平面PAD19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =- (2)1133n n n T -+=-【解析】的【分析】(1)利用累加法求出na n,进而得n a ;(2)求得1213n n n b --=,利用错位相减法可求出答案.【小问1详解】因为()1111111n n a a n n n n n n +-==-+++,所以11221111221n n n n n a a a a a a a a n n n n n ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 1111111121212n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+=- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以21n a n =-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为012135333n T =++++ 所以12311352133333n nn T -=++++ ,所以1012111121222212133121333333313n n n nnn n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n nn n --+=+--=-,故1133n n n T -+=-.20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B = (2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】2ABC BC S ⋅=可得:1cos 2sin sin 2B ac B ac B =⋅=,故有sin tan cos BB B ==又∵()0,πB ∈,∴2π3B =;选②,∵()()()sin sin sin sin sin sin sin B A B A C C A +-=+,由正余弦定理得222c ac b a +=-,∴2221cos 22a cb B ac +-==-,又()0,πB ∈,∴2π3B =;选③,∵()2cos cos c a B b C +=-,由正弦定理可得()sin 2sin cos sin cos C A B B C +=-,∴()2sin cos sin cos sin cos sin sin A B B C C B C B A =--=-+=-,∵()0,πA ∈,∴sin 0A ≠,∴1cos 2B =-,又()0,πB ∈,∴2π3B =.【小问2详解】由余弦定理得2222cos 12c a b ac B ac +=+=-∵0ac >,∴2212a c +<.又有222222122c a c a ac c a +=++≤++,当且仅当2a c ==时取等号,可得228c a +≥.即22a c +的取值范围是[)8,12.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .【答案】(1)25n a n =或2n a n =(N n +∈) (2)当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+【解析】【分析】(1)设出公差d ,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b 的通项公式,再对n 进行讨论即可求解.【小问1详解】设等差数列{}n a 的公差为d ,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2na n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S nn +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111nn n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+.22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x<-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x-'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x>->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m=-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈-⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x<-,令*1,n x n n+=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212lnln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+⎪+++⎝⎭,所以()22235212ln 11122n n n n++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。
河北省唐山市玉田县2024-2025学年高三上学期期中考试数学试题
河北省唐山市玉田县2024-2025学年高三上学期期中考试数学试题一、单选题1.若集合{}{}N 10,42,N A x x B x x n n =∈≤==-∈,则A B = ()A .∅B .{}2,6,10C .{}2,2,6,10-D .{}0,2,4,6,8,102.已知向量()0,1a =- ,()2,1b =r,若()a b a λ-⊥ ,则λ=()A .1-B .1C .13D .13-3.若()f x 与()g x 均为定义在上的奇函数,则函数()()()h x f x g x =的部分图象可能为()A .B .C .D .4.当0x >时,函数2221log 2xf x a x x -⎛⎫⎛⎫-=++ ⎪ ⎝⎭⎝⎭,且(1)6f >,则a 的取值范围是()A .(2,2)-B .(,2)(2,)-∞-+∞C .(1,1)-D .(,1)(1,)-∞-+∞ 5.已知cos()2sin(),tan tan m αβαβαβ+=-=,则tan tan αβ-=()A .12m -B .13m -C .12m -D .13m -6.设1z 的实部与虚部相等,且实部不为0,2z 的虚部是实部的2倍,且2z 在复平面内对应的点位于第三象限,则“1z 在复平面内对应的点位于第一象限”是“12z z 在复平面内对应的点位于第二象限”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.函数π3πsin 3cos 4,[,]22y x x x =-∈-的所有零点的和为()A .2πB .3πC .4πD .6π8.已知12,,,log m nn m n a n b m c m <<<===,则,,a b c 的大小关系是()A .a b c >>B .b a c >>C .c a b>>D .c b a>>二、多选题9.若复数1z ,2z 是方程28170x x -+=的两个根,则()A .12z z -为纯虚数B .1217z z =C.1z =D .12z z =10.如图,在ABC V 中,3AB AC ==,2BC =,点,D G 分别边,AC BC 上,点,E F 均在边AB 上,设DG x =,矩形DEFG 的面积为S ,且S 关于x 的函数为()S x ,则()A .ABC V的面积为B .()13S =C .()S x 先增后减D .()S x11.已知0x >,0y >,且不等式()()()2221140x x y y m m xy +++--≥恒成立,则()A .m的最小值为2-B .m的最大值为2+C .m的最小值为2-D .m的最大值为2+三、填空题12.30308log 60log 22log 32-+=.13.将一副三角板按如图所示的位置拼接:含30︒角的三角板()ABC 的长直角边与含45︒角的三角板()ACD 的斜边恰好重合.AC 与BD 相交于点O .若AC =则AO =.14.已知四边形ABCD 是边长为4的正方形,点E 满足1344AE AB AC =+,P 为平面ABCD 内一点,则()PA PD PE +⋅的最小值为.四、解答题15.已知函数()()πsin 302f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭在π0,3⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦.(1)求ϕ;(2)将()f x 的图象上所有点的横坐标变为原来的12,纵坐标变为原来的2倍,得到函数()g x 的图象,求()g x 的解析式与单调递增区间.16.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos cos 2b A ab B AB AC +=-⋅.(1)求A ;(2)若3a =,求ABC 面积的最大值.17.如图,某铁皮制成的无盖容器的上半部分为圆柱,下半部分为圆锥,且圆锥与圆柱同底等高,圆柱与圆锥无铁皮的阻隔,已知圆锥的母线长为12分米.(1)忽略铁皮的厚度,求该容器的容积的最大值;(2)设铁皮的价格为每平方分米10元,当该容器的容积取得最大值(忽略铁皮的厚度)时,求需要的铁皮的总费用.18.已知函数()2e 122x x xf x a x =---.(1)当712a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若曲线()y f x =与23x y =-在()0,∞+上至少有一个交点,求a 的取值范围;(3)若a ∈Z ,1x ∀、()2,0x ∈-∞,且12x x >,()()1221f x f x x x <,求a 的最小值.19.设函数()f x 的定义域为D ,若x D ∀∈,(())f f x x =,则称()f x 为“循环函数”.(1)试问函数()()e 1,0ln 1,0xx f x x x -⎧-≤⎪=⎨-+>⎪⎩是否为“循环函数”?说明你的理由.(2)已知函数3()42f x x =-,证明:存在常数C ,使得()()g x f x C =+为“循环函数”.(3)已知对任意,R x y ∈,函数()f x ,()g x 都满足22()()()3()34f x f y g x g y x y y ++=+--.①证明:()f x 为“循环函数”.②若(3)0f -=,证明:当1x >时,()32()ln g x x x >-.提示:设()32ln y x x =-,当x =时,0.35y ≈.。
天津市部分区2024-2025学年高三上学期期中考试 数学含答案
天津市部分区2024~2025学年度第一学期期中练习高三数学(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,练习用时120分钟。
使用答题卡的地区,将答案写在答题卡上:不使用答题卡的地区,将答案写在练习卷上。
第Ⅰ卷(共45分)注意事项:本卷共9小题,每小题5分,共45分。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3,4,5U =,集合{}0,3M =,{}3,4N =,则()U M N = ð()A .{}0,2,3,5B .{}0,1,3,4C .{}0,1,2,3,5D .{}0,2,3,4,52.已知()1,2a =- ,()1,1b = ,则a b -=()A B .1C .D .53.若x ,y ∈R ,则“22x y =是“33xy=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等差数列{}n a 的前n 项和为n S ,若918S =,则28a a +=()A .4B .3C .2D .15.函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .()()e e sin x xf x x -=-B .()()e e cos x xf x x -=-C .()()e e sin xx f x x--=D .()()e e cos xx f x x--=6.已知cos cos sin ααα=+,则tan 4πα⎛⎫-= ⎪⎝⎭()A .1-B .12-C .1D .1-7.已知0.13a =,b =,3log 1.3c =,则a ,b ,c 的大小关系为()A .a b c<<B .c b a<<C .c a b<<D .a c b<<8.已知函数()()2ln 1f x x a x =+-有极值点,则实数a 的取值范围为()A .(],0-∞B .(),0-∞C .10,2⎛⎫ ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦9.已知函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭在区间,012π⎛⎫- ⎪⎝⎭上单调递增,且在区间()0,π上有且仅有2个零点,则ω的取值范围为()A .47,33⎛⎫⎪⎝⎭B .47,33⎛⎤⎥⎝⎦C .4,23⎛⎫⎪⎝⎭D .4,23⎛⎤⎥⎝⎦第Ⅱ卷注意事项:本卷共11小题,共105分。
福建省莆田锦江中学2023-2024学年高三上学期期中考试数学试题(解析版)
莆田锦江中学2023-2024学年上学期期中考试高三数学一、单选题1. 已知集合{}270A x x x =-<,{}4B x x =>,则A B ⋃=( )A. ∅B. ()4,7 C. ()0,∞+ D. ()0,4【答案】C 【解析】【分析】先将集合A 化简,再根据集合的并集运算得解.【详解】因为{}{}27007A x x x x x =-<=<<,{}4B x x =>,故()0,A B =+∞ .故选:C .2. 已知2:0-<p x x ,那么命题p 的一个必要不充分条件是( )A. 01x << B. 11x -<< C.1223x << D.122x <<【答案】B 【解析】【分析】根据必要条件的定义对每个选择进行分析即可求解.【详解】2001:p x x x -<⇔<<,根据充分条件、必要条件的定义可知:对于A ,01x <<是p 的充要条件,A 错误;对于B ,11x -<<是p 的必要不充分条件,B 正确;对于C ,1223x <<是p 的充分不必要条件,C 错误;对于D ,122x <<是p 的既不充分也不必要条件,D 错误.故选:B .3. 命题“1x ∀≥,2sin 1x x -<”的否定是( )A. 1x ∃<,2sin 1x x -≥ B. 1x ∃≥,2sin 1x x -≥C. 1x ∀<,2sin 1x x -≥D. 1x ∀≥,2sin 1x x -≥【答案】B 【解析】【分析】根据全称量词命题的否定为存在量词命题得出结果.【详解】因为全称量词命题的否定为存在量词命题,故“1x ∀≥,2sin 1x x -<”的否定是“1x ∃≥,2sin 1x x -≥”,故选:B .4. 函数()21x f x x-=的图象大致为( )A. B.C. D.【答案】D 【解析】【分析】根据函数的奇偶性可排除BC,根据单调性可判断A ,即可求解.【详解】()21x f x x -=的定义域是{}0x x ≠,关于原点对称,()22()11()x x x f x f x x----===-,所以()f x 是偶函数,排除B ,C ;当0x >时,211()x f x x x x-==-,易知()f x 在()0,∞+上是增函数,排除A .故选:D5. 已知函数()f x 的导函数为()f x ',若()()21ln f x xf x +'=,则()1f '=( )A. 1- B. 1C. 2- D. 2【答案】A【分析】求得()()121f x f x''=+,令1x =,即可求解.【详解】由函数()()21ln f x xf x +'=,可得()()121f x f x''=+,令1x =,可得()()1211f f ''=+,解得()11f '=-.故选:A.6. 已知π,π2α⎛⎫∈⎪⎝⎭,且3cos 24sin 1αα-=,则tan 2α=( )A.13B.C. 13-D. 【答案】D 【解析】【分析】由倍角余弦公式并整理得23sin 2sin 10αα+-=,结合角的范围得1sin 3α=,进而求tan α,应用倍角正切公式求值即可.【详解】由23cos 24sin 36sin 4sin 1αααα-=--=,即23sin 2sin 1(3sin 1)(sin 1)0αααα+-=-+=,所以1sin 3α=或sin 1α=-,又π,π2α⎛⎫∈ ⎪⎝⎭,则1sin 3α=,所以cos α=,则tan α=,由22tan tan 21tan ααα==-故选:D7. 第19届亚运会将于2023年9月23日至10月8日在杭州举行,甲、乙等4名杭州亚运会志愿者到游泳、射击、体操三个场地进行志愿服务,每名志愿者只去一个场地,每个场地至少一名志愿者,若甲不去游泳场地,则不同的安排方法共有( )A. 12种 B. 18种C. 24种D. 36种【答案】C【分析】本题只需考虑游泳场有2名志愿者和1名志愿者两种情况即可.【详解】①游泳场地安排2人,则不同的安排方法有2232C A 6=种,②游泳场地只安排1人,则不同的安排方法有122332C C A 18=种,所以不同的安排方法有61824+=种.故选:C8. 数学来源于生活,约3000年以前,我国人民就创造出了属于自己的计数方法.十进制的算筹计数法就是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数1~9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有5根算筹,据此表示方法,若算筹不能剩余,则用1~9这9个数字表示的所有两位数中,个位数与十位数之和为5的概率是( )A.13B.512C.12D.712【答案】A 【解析】【分析】根据题意把5根算筹所能表示的两位数列举出来后,求出数字和为5的两位数个数作答.【详解】1根算筹只能表示1,2根算筹可表示2和6,3根算筹可表示3和7,4根算筹可表示4和8,5根算筹可表示5和9,因此5根算筹表示的两位数有14,18,41,81,23,27,32,72,63,67,36,76,共12个,其中个位数与十位数之和为5的有14,41,23,32,共4个,所以所求概率为41123P ==.故选:A二、多选题9. 关于函数()1ln1xf x x-=+,下列选项中正确的有( )A. ()f x 的定义域为()(),11,-∞-+∞U B. ()f x 为奇函数C. ()f x 在定义域上是增函数D. 函数()f x 与()()ln 1ln 1y x x =--+是同一个函数【答案】BD 【解析】【分析】①求函数()f x 的定义域,可令101xx->+,解出此不等式的解集即可得到所求函数的定义域;②判断函数的奇偶性,要用定义法,由函数解析式研究()f x -与()f x 的关系,即可证明出函数的性质;③此函数是一个减函数,由定义法证明要先任取12,x x 且12x x <,再两函数值作差,判断差的符号,再由定义得出结论.④判断函数事都是同一函数,首先看定义域,定义域相同,然后看解析式,解析式也相同,即为同一函数.【详解】①由题意令101xx->+,解得11x -<<,所以数定义域是(1,1)-,A 错误;②由A 知函数的定义域(1,1)-关于原点对称,且()11ln ln ()11x xf x f x x x+--==-=--+函数是奇函数,B 正确;③此函数在定义域上是减函数,证明如下:任取12,x x 属于(1,1)-且12x x <,()()()()()()12121212211111lnln ln 1111x x x x f x f x x x x x -+---=-=++-+,由于12,x x 属于(1,1)-且12x x <,12110x x ∴->->21110x x +>+>,可得()()()()122111111x x x x -+>-+所以()()()()122111ln 011x x x x -+>-+,即有()()120f x f x ->,即()()12f x f x >,故函数在定义域是减函数,C 错误;④函数()()ln 1ln 1y x x =--+定义域:1010x x ->⎧⎨+>⎩,即(1,1)-,()()()1ln 1ln 1ln1xy x x f x x-=--+==+,的,故函数()f x 与()()ln 1ln 1y x x =--+是同一个函数,D 正确.故选BD【点睛】本题考查函数的基本性质:定义域、奇偶性、单调性,只需按照定义判断即可.10. 已知函数()f x 的图象是由函数2sin cos y x x =的图象向右平移π6个单位得到,则( )A. ()f x 的最小正周期为πB. ()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增C. ()f x 的图象关于直线π3x =对称D. ()f x 的图象关于点π,06⎛⎫ ⎪⎝⎭对称【答案】AD 【解析】【分析】用二倍角公式化简2sin cos y x x =,向右平移后得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,分别代入正弦函数的单调区间,对称轴,对称中心分别对四个选项判断即可.【详解】因为2sin cos sin 2y x x x ==,向右平移π6个单位得()ππsin 2sin 263f x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,则最小正周期为2ππ2T ==,故A 选项正确;令πππ2π22π232k x k -+≤-≤+,解得π5πππ1212k x k -+≤≤+,所以单调递增区间为π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦,故B 选项错误;令ππ2π,32x k -=+解得5ππ,Z 122k x k =+∈,故C 选项错误;令π2π,3x k -=解得ππ,Z 6x k k =+∈所以函数()f x 的对称中心为ππ,0,Z 6k k ⎛⎫+∈ ⎪⎝⎭,故D 选项正确.故选:AD11. 如图,在底面为正方形的四棱锥P ABCD -中,PA ⊥平面ABCD ,1AP AB ==,则下列说法正确的是( )A. 异面直线PB 与AC 所成的角为60︒B. 直线PD 与平面PAC 所成的角为30︒C. 平面PBD 与平面PAB 的夹角为30︒D. 点C 到面PBD【答案】ABD 【解析】【分析】A 选项,证明,,AB AD PA 两两垂直,建立空间直角坐标系,利用异面直线夹角余弦公式进行求解;B 选项,证明BD ⊥平面PAC ,故可取()1,1,0BD =-为平面PAC 的法向量,利用线面角的向量求解公式进行求解;C 选项,求出两平面的法向量,利用相关公式求出两平面夹角;D 选项,利用点到平面的距离公式求出答案.【详解】A 选项,因为PA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥,又四边形ABCD 为正方形,故,,AB AD PA 两两垂直,以A 为坐标原点,,,AB AD AP 所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()0,0,1,1,0,0,0,0,0,1,1,0,0,1,0P B A C D ,则()()1,0,1,1,1,0PB AC =-=,设直线PB 与AC 所成的角大小为θ,则1cos cos ,2PB θ= ,故=60θ︒,A 正确;B 选项,因为四边形ABCD 为正方形,所以AC ⊥BD ,又PA ⊥平面ABCD ,BD ⊂平面ABCD ,故PABD ⊥,因为AC PA A ⋂=,,AC PA ⊂平面PAC ,所以BD ⊥平面PAC ,故可取()1,1,0BD =-为平面PAC 的法向量,设直线PD 与平面PAC 所成角大小为α,则1sin cos ,2PD α= ,故直线PD 与平面PAC 所成的角为30︒,B 正确;C 选项,设平面PBD 的法向量为(),,n x y z =,则()()()(),,1,1,00,,0,1,10n BD x y z x y n PD x y z y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=-=⎪⎩ ,令1y =得1x z ==,故()1,1,1n =,平面PAB 的法向量为()0,1,0m =,故cos ,m ,故平面PBD 与平面PAB 的夹角不为30︒,C 错误;D 选项,由C 选项知,平面PBD 的法向量为()1,1,1n =,故点C 到面PBD的距离d D 正确.故选:ABD12. 已知偶函数()f x 对x ∀∈R ,都有()()220f x f x -+++=,且[)0,2x ∈时,()1f x x =+,下列结论正确的是( ).A. 函数()f x 的图象关于点()2,0中心对称B. ()f x 是周期为4的函数的C. ()20f -=D. 21325f ⎛⎫=⎪⎝⎭【答案】ACD 【解析】【分析】由()()220f x f x -+++=可推出函数()f x 的对称中心即可判断A 项,根据()f x 为偶函数及()()20f x f x -++=可推出函数()f x 的周期可判断B 项,采用赋值法、偶函数性质、周期性即可判断C项、D 项.【详解】对于A 项,由()()220f x f x -+++=得()f x 的图象关于()2,0中心对称,故A 正确;对于B 项,因为()f x 为偶函数,所以()()22f x f x -=-+,又因为()()220f x f x -+++=,所以()()22f x f x -=-+,所以()()4f x f x =-+,所以()()()84f x f x f x +=-+=,即()f x 是周期为8的函数,故B 项错误;对于C 项,因为()()22f x f x -+=-+,所以令0x =,则()()22f f =-,即()20f =,又因为()f x 为偶函数,所以()()220f f -==,故C 项正确;对于D 项,因为[)0,2x ∈时,()1f x x =+,()f x 的周期为8,()f x 为偶函数,所以133352222f f f ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 项正确.故选:ACD .三、填空题13. 某工厂月产品的总成本y (单位:万元)与月长量x (单位:万件)有如下一组数据,从散点图分析可知y 与x 线性相关.如果回归方程是 3.5y x =+,那么表格中数据a 的值为______.x /万件1234y /万件3.85.6a8.2【答案】6.4##325【解析】【分析】分别求出工厂总成本和月长量的平均值,代入回归方程,即可求出表格中数据a 的值.【详解】由题意及表知,1234542x +++==,()117.63.8 5.68.244a y a +=+++=,∵回归方程是 3.5y x =+,∴17.6 2.5 3.54a+=+,∴ 6.4a =.故答案为:6.4.14. 101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为__________.【答案】210【解析】【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:21015. 若3ππ2θ<<且3sin 5θ=-,则πtan 4θ⎛⎫-= ⎪⎝⎭______.【答案】17-【解析】【分析】先根据平方关系及商数关系求出cos ,tan θθ,再利用两角差正切公式即可得解.【详解】因为3ππ2θ<<且3sin 5θ=-,所以4cos 5θ==-,所以3tan 4θ=,的则π3tan tan1π144tan π3471tan tan 144θθθ--⎛⎫-===- ⎪⎝⎭++.故答案为:17-.16. 我们将服从二项分布的随机变量称为二项随机变量,服从正态分布的随机变量称为正态随机变量.概率论中有一个重要的结论是棣莫弗—拉普拉斯极限定理,它表明,若随机变量()~,Y B n p ,当n 充分大时,二项随机变量Y 可以由正态随机变量X 来近似,且正态随机变量X 的期望和方差与二项随机变量Y 的期望和方差相同.棣莫弗在1733年证明了12P =的特殊情形.1812年,拉普拉斯对一般的P 进行了证明.现抛掷一枚质地均匀的硬币100次,则利用正态分布近似估算硬币正面向上次数不超过60次的概率为______.(附:若()2,X Nμσ ,则()0.683P X μσμσ-≤≤+≈,()220.954P X μσμσ-≤≤+≈,()330.997P X μσμσ-≤≤+≈)【答案】0.977【解析】【分析】利用二项分布的期望和方差的公式以及正态分布的3σ原则求解即可.100次,设硬币正面朝上次数为X ,则1100,2X B ⎛⎫ ⎪⎝⎭,故()1100502E X =⨯=, ()1110012522D X ⎛⎫=⨯⨯-= ⎪⎝⎭,由已知得()2,X Nμσ ,且()50E X μ==,()225D X σ==,因为()40600.954P X ≤≤≈,所以()()()406014060P X P X P X ≤≤=-<->()1260P X =->解得()600.023P X >=,所以()()6016010.0230.977P X P X ≤=->=-=,故答案为:0.977.四、解答题17. 已知函数()ππsin 2sin 2.33f x x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期;,(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的单调递减区间和值域.【答案】(1)π(2)()f x 的减区间为ππ,122⎡⎤⎢⎥⎣⎦;函数()f x 的值域为2⎡⎤⎣⎦【解析】【分析】(1)化简得π()2sin(2)3f x x =+,从而利用周期公式即可求解;(2)令ππ3π2π22π,Z 232k x k k +≤+≤+∈,求解并结合π0,2x ⎡⎤∈⎢⎥⎣⎦即可求得单调减区间;由于π0,2x ⎡⎤∈⎢⎥⎣⎦,可得ππ4π2333x +∈⎡⎤⎢⎥⎣⎦,,再结合正弦函数的性质即可求解.【小问1详解】因为π1sin(2)sin 2232x x x +=+,π1sin(2)sin 2232x x x -=,所以π()sin 222sin(23f x x x x =+=+,所以()f x 的最小正周期是2π=π2;【小问2详解】令ππ3π2π22π,Z 232k x k k +≤+≤+∈,解得π7πππ,Z 1212k x k k +≤≤+∈,令0k =,则π7π1212x ≤≤由于π0,2x ⎡⎤∈⎢⎥⎣⎦,所以()f x 的减区间为ππ,122⎡⎤⎢⎥⎣⎦.因为π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ4π2333x +∈⎡⎤⎢⎥⎣⎦,,所以πsin 23x ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,所以π2sin 23x ⎛⎫⎡⎤+∈ ⎪⎣⎦⎝⎭,即函数()f x 的值域为2⎡⎤⎣⎦.18. 如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,2PA AB ==,4=AD ,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:⊥AF PE .【答案】(1)83(2)证明见解析【解析】【分析】(1)等体积法解决即可;(2)线面垂直的判定定理,性质定理相结合解决即可.【小问1详解】PA ⊥ 平面ABCD ,四边形ABCD 为矩形,142EAD S AD AB ∴=⋅=△,1833E PADP EAD EAD V V S PA --∴==⋅=△.【小问2详解】证明:PA ⊥ 平面ABCD ,PA BC ∴⊥,又2PA AB == ,且点F 是PB 的中点,AF PB ∴⊥,又PA BC ⊥,BC AB ⊥,PA AB A = ,BC ∴⊥平面PAB ,又AF ⊂平面PAB ,BC AF ∴⊥,由⊥AF PB ,AFBC ⊥,PB BC B ⋂=,AF ∴⊥平面PBC ,PE ⊂Q 平面PBC ,AF PE ∴⊥.19. 某地级市受临近省会城市的影响,近几年高考生人数逐年下降,下面是最近五年该市参加高考人数y与年份代号x 之间的关系统计表.年份代号x12345高考人数y (千人)3533282925(其中2018年代号为1,2019年代号为2,…2022年代号为5)(1)求y 关于x 的线性回归方程;(2)根据(1)的结果预测该市2023年参加高考的人数;(3)试分析该市参加高考人数逐年减少的原因.(参考公式:()()()121,niii nii a y bx x x y y b x x ==--==--∑∑)【答案】(1) 2.437.2y x =-+ (2)22.8千人 (3)答案见解析【解析】【分析】(1)根据题中数据计算得22.4,37.a b =-=即可解决;(2)根据(1)中回归方程计算即可;(3)言之有理,客观分析即可.【小问1详解】设回归方程为y bx a =+,由表中数据知,3x =,30y =.所以25(1)30(2)1(1)2(5)122.441415b -⨯+-⨯+⨯-+⨯-+⨯-==-=-+++,所以()30 2.4337.2a y bx =-=--⨯=,所以y 关于x 的回归方程 2.437.2y x =-+.【小问2详解】由(1)得y 关于x 的回归方程 2.437.2y x =-+.令6x =, 2.4637.222.8y =-⨯+=(千人),所以预测该市2023年参加高考的人数为22.8千人.【小问3详解】①该市经济发展速度慢;②该市人口数量减少;③到省会城市求学人数增多.20. 如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为菱形,,E F 分别为,PA BC 的中点.(1)求证:EF //平面PCD ;(2)若120,4,2ADC PD AD ∠===,求直线AF 与平面DEF 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PD 的中点Q ,连接,QC QE ,证明四边形CFEQ 为平行四边形,可得//CQ EF ,再根据线面平行的判定定理即可得证;(2)先证明DF AD ⊥,以点D .【小问1详解】取PD 的中点Q ,连接,QC QE ,因为E 为PA 的中点,所以//QE AD 且12QE AD =,因为F 为BC 的中点,所以//CF AD 且2CF AD =1,所以//QE CF 且QE CF =,所以四边形CFEQ 为平行四边形,所以//CQ EF ,又CQ ⊂平面PCD ,EF ⊄平面PCD ,所以EF //平面PCD ;【小问2详解】连接BD ,在菱形ABCD 中,120ADC ∠= ,则60ABC ∠=︒,所以ABD △和CBD △都是等边三角形,因为F 为BC的中点,所以,DF BC DF ⊥=因为//AD BC ,所以DF AD ⊥,如图,以点D 为原点建立空间直角坐标系,则()()())0,2,0,0,0,0,0,1,2,A D E F,所以()))0,1,2,,2,0DE DF AF ===-,设平面DEF 的法向量为(),,n x y z =,则有20n DE y z n DF ⎧⋅=+=⎪⎨⋅==⎪⎩ ,可取()0,2,1n =- ,则cos ,n AF n AF n AF⋅===,所以直线AF 与平面DEF.21. 数学奥林匹克竞赛是一项传统的智力竞赛项目,旨在通过竞赛选拔优秀人才,促进青少年智力发展,很多优秀的大学在强基计划中都设置了对中学生奥林匹克竞赛成绩的要求,因此各中学学校对此十分重视.某中学通过考试一共选拔出15名学生组成数学奥赛集训队,其中高一学生有7名、高二学生有6名、高三学生有2名.(1)若学校随机从数学奥赛集训队抽取3人参加一项数学奥赛,求抽取的3名同学中恰有2名同学来自高一的概率;(2)现学校欲通过考试对数学奥赛集训队成员进行考核,考试一共3道题,在测试中.3道题中至少答对2道题记作合格.现已知张同学每道试题答对的概率均为12,王同学每道试题答对的概率均为23,并且每位同学回答每道试题之间互不影响,记X 为两名同学在考试过程中合格的人数,求X的分布列和数学期望.【答案】(1)2465(2)分布列见解析,()6754E X =【解析】【分析】(1)利用组合数及古典概型求解;(2)分别计算两位同学合格的概率,再计算合格人数的概率,列出分布列,计算期望即可.【小问1详解】设事件A 为“抽取的3名同学中恰有2名同学来自高一”,则有()2178315C C 24C 65P A ==.【小问2详解】设张同学、王同学答对的题数分别为Y ,Z ,张同学在考试中合格的概率为:()()()2130233311111223C C 22222P Y P Y P Y ⎛⎫⎛⎫⎛⎫⎛⎫≥==+==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,王同学在考试中合格的概率为:()()(21302333212120223C C 333327P Z P Z P Z ⎛⎫⎛⎫⎛⎫⎛⎫≥==+==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.由题意得X 可取0,1,2,则()120701122754P X ⎛⎫⎛⎫==-⨯-=⎪ ⎪⎝⎭⎝⎭,()12012011112272272P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,()12010222727P X ==⨯=,所以X 的分布列为X12P754121027因此X 的数学期望()7110670125422754E X =⨯+⨯+⨯=.22. 已知函数()()2e,R xf x xm m =+∈.(1)当1m =-时,求()f x 在点()1,e 1A -处的切线方程.(2)若()()ln 1f x g x x x=--的图象恒在x 轴上方,求实数m 的取值范围.【答案】(1)()3e 22e 10x y ---+= (2)1m ≥-【解析】【分析】(1)由题意,将1m =-代入函数()f x 的解析式中,对函数()f x 进行求导,得到()1f '和()1f ,代入切线方程中即可求解;(2)将函数()g x 的图像恒在x 轴上方,转化成ln 1e x x m x +>-恒成立,构造函数()ln 1e xx x xϕ+=-,此时问题转化成函数最值问题,对函数()x ϕ进行求导,利用导数的几何意义以及零点存在性定理进行求解即可.【小问1详解】()()2e 1x f x x =- ()()22e 2x f x x x x ∴=-'+()13e 2f ∴'=-.又()1e 1f =- ()f x \在点()1,e 1A -处的切线方程为()3e 22e 10x y ---+=【小问2详解】()()ln 1f x g x x x=--的图像恒在x 轴上方,等价于()e ln 10xx m x +-->恒成立即ln 1e xx m x+>-恒成立,令()ln 1e x x x x ϕ+=-,则()222ln ln e e xx x x x x x x ϕ+'=--=-令()()2ln e xg x x x=-+,则()21e 2e 0x x g x x x x ⎛⎫=-++<⎪⎝⎭'所以()g x 在()0,∞+上单调递减又()10,102g g ⎛⎫><⎪⎝⎭,所以在()0,∞+上存在唯一的0x 使()00g x =当()00,x x ∈时()()0,x x ϕϕ'>单调递增,当()0,x x ∈+∞时()()0,x x ϕϕ'<单调递减.故()x ϕ的最大值为()0000ln 1e x x x x ϕ+=-又02001e 0xnx x +=,故000ln ex x x x =-,两边取对数得()()0000ln ln ln ln x x x x +=-+-又()ln h x x x =+在定义域内单调递增,所以00ln x x =-,故01e x x =所以()00000000ln 1ln 11e 1x x x x x x x x ϕ+=-=+-=-所以1m ≥-.【点睛】方法点睛:含参不等式恒成立求参数值(取值范围)常用的方法:(1)直接法:直接求导确定函数的单调性得到最值,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
上海市晋元高级中学2024-2025学年高三上学期期中考试数学试卷
上海市晋元高级中学2024-2025学年高三上学期期中考试数
学试卷
学校:___________姓名:___________班级:___________考号:___________
A .仅①②
B .仅①③
C .仅②③
D .①②③都可以
16.已知点()12,,,N,2n A A A n n γL 均在圆O 上,若有120
n OA OA OA +++=uuur uuuu r uuuu r r L ,则必有
12,,,n A A A L 平分圆O .则满足要求的n 的个数为( )
A .0个
B .仅有1个
C .仅有2个
D .3个或以上
(1)求异面直线EF 与BC 所成角的大小;
(2)求作平面CEF 与正方体各面相交所得截面,保留痕迹并简要说明截面特征;
(3)若某正四棱锥的表面积与正方体的表面积相等,求该正四棱锥体积最大时侧棱与底面所成角的大小.
21.已知函数()()()1e e ,R x x f x a b ax a b -=---Î.
(1)当3a =,0b =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当1b =时,()f x 既存在极大值,又存在极小值,求a 的取值范围;
(3)当12a <<,1b =时,1
x ,2x 分别为()f x 的极大值点和极小值点,且()()120f x kf x +>,
求实数k 的取值范围.
=由图象可得函数()
y f x
=与y m 所以实数m的取值范围为(1,2).故答案为:()
1,2。
南通市通州区2022-2023学年高三上学期 期中质量监测数学试题(含答案)
南通市通州区2022-2023学年高三上学期期中测试数学2022.11.14本试卷共6页,22小题,满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
将条形码横贴在答题卡“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数2i2i-+对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}20M x x a =-≤,{}2log 1N x x =≤.若M N =∅,则实数a 的取值集合为( )A.(],0-∞B.(]0,4C.()0,+∞D.[)4,+∞3.已知0a >,0b >,则“1a b +≤≤ )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.“碳达峰”,是指二氧化碳的排放不再增长,达到峰值之后开始下降;而“碳中和”,是指企业、团体或个人通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某地区二氧化碳的排放量达到峰值a (亿吨)后开始下降,其二氧化碳的排放量S (亿吨)与时间t (年)满足函数关系式tS ab =,若经过5年,二氧化碳的排放量为45a(亿吨).已知该地区通过植树造林、节能减排等形式,能抵消自产生的二氧化碳排放量为4a(亿吨),则该地区要能实现“碳中和”,至少需要经过多少年?(参考数据:lg20.3≈)( ) A.28B.29C.30D.315.如图是函数()f x 的大致图象,则函数()f x 的解析式可以为()f x =( )A.21x x - B.2sin 1x x - C.21x x - D.||e 1x x- 6.已知112tan sin αα=-,则tan 4πα⎛⎫-= ⎪⎝⎭( ) A.7-B.17-C.19D.437.已知正六棱锥P ABCDEF -的底面边长为2,侧面与底面所成二面角的大小为60°.圆柱1O O 的上底面圆1O 与正六棱锥P ABCDEF -的侧面均相切,下底面圆O 在该正六棱锥底面内,则圆柱1O O 体积的最大值为( )A.49π B.43π8.若1ln 22x x e y e ⎛⎫+=⋅⎪⎝⎭,其中0x >,2y >,则( )A.xe y >B.2xe y >C.24x e y <D.2xe y >二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年度高三上学期期中模拟考试
数学试题
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则( ) A.{}1x x >
B.{}0x x >
C.{}01x x <<
D.{}0x x <
2.各项均为正数的等比数列{}n a 中,且21431,9a a a a =-=-,则54a a +等于( ) A.16 B.27 C.36 D.-27
3.若31)tan(-=-απ,则α
ααα
2
cos cos sin 22cos +的值为( ) A.38 B.58 C.158 D.7
8
-
4.函数x
x x f 2
)1ln()(-+=的零点所在的大致区间是( )
A .(0,1)
B .(1 ,2)
C .(2,e)
D .(3,4)
5.已知⎩⎨⎧>+-≤=)0(1
)1()0(cos )(x x f x x x f π,则)34
()34(-+f f 的值为( )
A .21
B . 1
C .1-
D .2
1-
6.函数()212sin ,46f x x f
ππ⎛
⎫⎛⎫
=-+= ⎪ ⎪⎝
⎭⎝⎭
则( ) A.3
2
-
B.1
2
-
C.
12
D.
32
7.下列命题:
①若p ,q 为两个命题,则“p 且q 为真”是“p 或q 为真”的必要不充分条件; ②若p 为:2,20x R x x ∃∈+≤,则p ⌝为:2,20x R x x ∀∈+>;
③命题p 为真命题,命题q 为假命题。
则命题()p q ⌝∧,()p q ⌝∨都是真命题; ④命题“若p ⌝,则q ”的逆否命题是“若p ,则q ⌝”. 其中正确结论的个数是( )
A .1 B. 2 C.3 D.4
8. 若△ABC 的内角C B A 、、所对的边分别为c b a 、、满足4)22=-+c b a (,且 60=C ,
则ab 的值为( )
A. 23 B .8-4 3 C .1 D. 43
9.函数)3
2sin(3)(π
-=x x f 的图象为C ,下列结论中正确的是( )
A .图象C 关于直线6
π
=x 对称 B .图象C 关于点(0,6
π
-
)对称
C .函数)12
5,
12()(π
π-
在区间x f 内是增函数
D .由x y 2sin 3=的图象向右平移
3
π
个单位长度可以得到图象C 10. 函数sin()(0,0,||,)2
y A x k A x R π
ωϕωϕ=++>><∈的部分图象如图所示,,则函数表达式为
( )
A.2sin()136y x ππ=-+
B. 2sin()63y x ππ
=-
C.2sin()136y x ππ=++
D. 2sin()163=++y x ππ 11. 已知△ABC 的三个顶点,A (1,5),B (-2,4),C (-6,-4),M 是BC 边上一点,且△ABM 的面积是
△ABC 面积的4
1,则线段AM 的长度是 ( ) A.5 B.85 C.2
5
D.
852
12. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A.3690 B.3660 C.1845 D.1830
二、填空题(本大题共4小题,每小题4分,满分16分.)
13.已知向量a , b ,其中2||,2||==b a ,且a b a
⊥-)(,则向量a 和b 的夹角是_______
14. 已知(),cos sin 1x x x f +=记()()()()()()x f x f x f x f x f x f n n '
=⋅⋅⋅'='=-12312,,,
(*
N
n ∈且)2≥n ,则=⎪⎭
⎫
⎝⎛+⋅⋅⋅⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛222201221πππf f f .
15. 已知函数()f x 满足1
(1)()
f x f x +=
,且()f x 是偶函数,当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是 .
16.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且在[1,0]-上是增函数,给出下面关于()
f x 的判断: (1)()f x 是周期函数; (2)()f x 关于直线1x =对称; (3)()f x 在[0,1]上是增函数;
(4)()f x 在[1,2]上是减函数;
x y O 1321-213
(5)(2)(0)f f =.
其中正确的是_________________(写出所有正确的判断的序号)
三、解答题(本大题共6小题,满分74分.解答须写出文字说明,证明过程和演算步骤.) 17.命题p :“0],2,1[2≥-∈∀a x x ”,命题q :“022,02
00=-++∈∃a ax x R x ”,若“p 且q ”为
假命题,求实数a 的取值范围。
18. (本小题满分12分)在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,
2C A =,3
cos 4A =.
(1)求c
a 的值;(2)求
b 的值.
19. 已知曲线sin()(0,0)y A x A ωϕω=+>>上的一个最高点的坐标为(,2)8
π
,则此点到相邻最低
点间的曲线与x 轴交于点(3,08π),若(,)22
ππ
ϕ∈-.
(1)试求这条曲线的函数表达式;
(2)用”五点法”画出(1)中函数在[0,]π上的图像.
20数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *). (1)求数列{a n }的通项公式;
(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;
(3)设b n =
)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *
均有T n >32
m 成
立?若存在,求出m 的值;若不存在,说明理由.
21.(本小题满分12分)已知函数2()ln .f x x a x =+ (1)当2a e =-时,求函数()f x 的单调区间;
(2)若函数()()2g x f x x =-在[1,4]上是减函数,求实数a 的取值范围。
22.(本小题满分14分)已知函数()()().21
ln 2R a ax x
x a x f ∈++-= (1)当0=a 时,求函数()x f 的极值; (2)讨论()x f 的单调性;
(3)若对任意的()[],3,1,,2,321∈--∈x x a 恒有()()()213ln 23ln x f x f a m ->-+成立,求实数m 的取值范围.。