数学八年级下6.1-6.2矩形与菱形同步练习
八年级数学(下)第十八章《菱形》同步练习(含答案)
八年级数学(下)第十八章《菱形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.菱形的两条对角线的分别为60 cm和80 cm,那么边长是A.60 cm B.50 cm C.40 cm D.80 cm【答案】B【解析】如图,∵菱形的两条对角线的长是60 cm和80 cm,∴OA=12×80=40 cm,OB=12×60=30 cm,又∵菱形的对角线AC⊥BD,∴AB=223040=50 cm,∴这个菱形的边长是50 cm.故选B.2.已知四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,这个条件是A.AB=CD B.AB=BC C.AD=BC D.AC=BD【答案】B3.菱形具有而矩形不具有的性质是A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等【答案】C【解析】A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH 的长等于A.3.5 B.4 C.7 D.14【答案】A5.如图,四边形ABCD加上以下条件中的哪个,我们可认为它是菱形A.AC⊥BD B.∠1=∠2,∠3=∠4C.AO=CO,BO=DO D.AB=BC=CD=DA【答案】D【解析】若AB=BC=CD=AD,则四边形ABCD是菱形.故选D.6.如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD的面积是A.13B.36 C.13D.60【答案】A【解析】∵四边形ABCD是平行四边形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD,∴OB=222276AB OA-=-=13,∴BD=213,∴菱形ABCD的面积=12AC×BD=12×12×213=1213.故选A.7.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于A.60°B.55°C.45°D.30°【答案】A【解析】如图,连接AC,∵AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC.又∵在菱形ABCD中,AB=BC=CD=AD,∴AB=BC=CD=AD=AC.∴△ABC和△ADC都是等边三角形,∴∠BAC=∠DAC=60°,∴∠EAC=12∠BAC=30°,∠FAC=12∠DAC=30°,∴∠EAF=∠EAC+∠FAC=60°.故选A.8.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF ≌△EFA.其中正确结论的序号是A.②④B.①③C.②③④D.①③④【答案】D【解析】∵△ACE是等边三角形,∴∠EAC=60°,AE=AC.∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC.∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴∠AEF=∠BAC=30°,∴EF⊥AC.故①正确;(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的).∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°.∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF.∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.故选D.二、填空题:请将答案填在题中横线上.9.如图,已知平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为__________.(只写出符合要求的一个即可)【答案】AB=BC10.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是__________.【答案】(-5,4)【解析】由题知A(3,0),B(-2,0),D在y轴上,∴AB=3-(-2)=5,OA=3,BO=2,由菱形邻边相等可得AD=AB=5,在Rt△AOD中,由勾股定理得:OD=2222-=-=4,53AD OA 由菱形对边相等且平行得CD=BA=5,所以C(-5,4).故答案为:(-5,4).11.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=__________.【答案】20°12.如图,ABCD 是菱形,AC 是对角线,点E 是AB 的中点,过点E 作对角线AC 的垂线,垂足为点M ,交AD 边于点F ,连接DM .若∠BAD =120°,AE =2,则DM =__________.【答案】13【解析】如图,过M 作MN ⊥AD 于N ,∵四边形ABCD 是菱形,∴111206022DAC BAC BAD ∠=∠=∠=⨯︒=︒, ∵EF ⊥AC ,∴AE =AF =2,∠AFM =30°,∴AM =1,Rt △AMN 中,∠AMN =30°,∴132AN MN ==,, ∵AD =AB =2AE =4,∴17422DN =-=,由勾股定理得: 222273()()1322DM DN MN =+=+=13三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,在四边形ABCD 中,AD =BC ,AC 平分∠DAB ,作CE 垂直AC 交AB 的延长线于点E ,若AB =BE ,求证:四边形ABCD 是菱形.∴∠DAC=∠CAB=∠ACB,∴AD∥BC.∵AD=BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形.14.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.【解析】(1)在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是菱形.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于E,点F在AD上,且AF=AB,连接EF.(1)判断四边形ABEF的形状并证明;(2)若AE、BF相交于点O,且四边形ABEF的周长为20,BF=6,求AE的长度及四边形ABEF的面积.∴BE=AB,又∵AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.(2)∵四边形ABEF为菱形,∴AE⊥BF,BO=12FB=3,AE=2AO,在Rt△AOB中,22534AO=-=,∴AE=2AO=8.∴四边形ABEF的面积为:116824 22BF AE⋅=⨯⨯=.综上所述,AE=8,四边形ABEF的面积是24.16.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23时,求EA的长.(2)∵Rt△AOD中,∠ADO=60°,∴∠OAD=30°,∴OD=12AD3∴AO22AD OD-,∴AC=6,∵四边形ODEC是矩形,∴EC=OD3ACE=90°,∴AE22AC CE+39。
湘教版八年级数学下册 菱形同步练习题(Word版含答案)
湘教版八年级数学下册《2-6菱形》同步练习题(附答案)一.选择题1.如图,在菱形ABCD中,∠BAD=60°,对角线BD=6,则菱形的边AB的长为()A.4B.6C.3D.82.如图,在菱形ABCD中,∠DAB=45°,DE⊥BC于点E,交对角线AC于点P,过点P作PF⊥CD于点F.若△PDF的周长为8.则菱形ABCD的面积为()A.16B.16C.32D.323.如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.4.如图,菱形OABC的边OA在平面直角坐标系中的x轴上,∠AOC=60°,OA=4,则点C的坐标为()A.B.C.D.(2,2)5.如图,菱形ABCD的边长为3,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=4,则四边形AECF的周长为()A.22B.20C.18D.166.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG ⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.5B.6.5C.10D.127.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为24,面积为24,则PE+PF的值为()A.4B.C.6D.8.如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD 满足什么条件时,四边形EGFH是菱形()A.AB=CD B.AB∥CD C.AC=BD D.AD=BC9.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤10.如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,∠BAD的角平分线交BD,BC 分别于点O、E,若EC=3,CD=4,则BO的长为()A.4B.3C.D.211.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD =DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是()①OG=AB;②与△DEG全等的三角形共有5个;③四边形ODEG与四边形OBAG面积相等;④由点A、B、D、E构成的四边形是菱形.A.①③④B.①④C.①②③D.②③④12.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC =2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题13.菱形ABCD的面积为24,对角线AC的长为6,则对角线BD的长为.14.如图,在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5cm,AO=4cm,则BD的长为cm.15.菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD 的面积为.16.如图,在四边形ABCD中,AD∥BC,AB=AD,下列条件①AC⊥BD;②OA=OC;③AC平分∠BCD;④∠ABC=∠ADC,能判定四边形ABCD是菱形的有.(填写序号)17.如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,作∠BAD角平分线AE交BD、BC于点F、E.若EC=3,CD=4,那么AE长为.18.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线交AC于D.过点A作AE⊥BC于E,交BD于G,过点D作DF⊥BC于F,过点G作GH∥BC,交AC于点H,则下列结论:①∠BAE=∠C;②S△ABG:S△EBG=AB:BE;③∠ADF=2∠CDF;④四边形AGFD是菱形;⑤CH=DF.其中正确的结论是.三.解答题19.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.20.如图,已知菱形ABCD中,AB=6,∠B=60°,E是BC边上一动点,F是CD边上一动点,且BE=CF,连接AE、AF.(1)∠EAF的度数是;(2)求证:AE=AF;(3)延长AF交BC的延长线于点G,当∠BAE=30°时,求点F到BG的距离21.如图,正方形ABCD边长为3,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠AEH=∠CGF;(2)当AH=DG=1时,求证:菱形EFGH为正方形;(3)设AH=1,DG=x,△FCG的面积为S,求S与x之间的函数解析式,并直接写出S的最小值.22.已知:如图,在四边形ABCD中,AB∥DC,对角线AC、BD交于点O,过点C作CE⊥CD 交AB的延长线于点E,联结OE,OC=OE.(1)求证:OE=AC;(2)如果DB平分∠ADC,求证:四边形ABCD是菱形.23.在▱ABCD中,对角线AC、BD交于点O,E是边BC延长线上的动点,过点E作EF⊥BD于F,且与CD、AD分别交于点G、H,连接OH.(1)如图,若AC⊥AB,OF=OC,求证:FG=CG;(2)若在点E运动的过程中,存在四边形OCGH是菱形的情形,试探究▱ABCD的边和角需要满足的条件.24.如图,在四边形ABCD中,AB∥CD,∠A=60°,AD=CD=AE=6.(1)求证:四边形AECD是菱形;(2)若AB=18,F为AB的中点,点M以每秒3个单位长度的速度从点A出发,在直线AB 上向右运动,点N以每秒1个单位长度的速度从点C出发,在直线CD上向左运动,设运动时间为t秒.当M,N运动时,是否存在以点M,F,N,D为顶点的四边形是平行四边形?若存在,请求出t的值和平行四边形的面积,若不存在,请说明理由.参考答案一.选择题1.解:∵四边形ABCD为菱形,∴AB=BC=CD=AD,∵∠BAD=60°,∴△ABD为等边三角形,∴AB=BD=6,故选:B.2.解:∵四边形ABCD是菱形,∴BC=CD,∠BCD=∠BAD,∠ACB=∠ACD,AD∥BC,∴∠BAD+∠B=180°,∵∠DAB=45°,∴∠BCD=∠BAD=45°,∵DE⊥BC,∴△CDE是等腰直角三角形,∴∠CDE=45°,CD=DE,∵PF⊥CD,∴△DPF是等腰直角三角形,∴PF=DF,PD=PF,设PF=DF=x,则PD=x,∵△PDF的周长为8,∴x+x+x=8,解得:x=8﹣4,∵∠ACB=∠ACD,DE⊥BC,PF⊥CD,∴PE=PF=x,∴DE=x+x=(1+)×(8﹣4)=4,∴BC=CD=DE=8,∴菱形ABCD的面积=BC×DE=8×4=32,故选:D.3.解:∵四边形ABCD是菱形,∴BD⊥AC,OC=OA,OB=OD,∵AC=6,DB=8,∴OC=3,OB=4,∴BC=,∵AC=6,DB=8,∴菱形ABCD的面积=,∵BC=5,∴AE==,故选:C.4.解:过C作CD⊥OA于D,如图:则∠ODC=90°,∵四边形OABC是菱形,∴OC=OA=4,∵∠AOC=60°,∴∠CDO=90°﹣∠AOC=30°,∴DD=OC=2,∴CD===2,∴点C的坐标为(2,2),故选:A.5.解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=3,∴EC=BE+BC=3+3=6,同理可得AF=6,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(4+6)=20.故选:B.6.解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD=,又∵E是边AD的中点,∴,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:B.7.解:连接BP,如图,∵四边形ABCD为菱形,菱形ABCD的周长为24,面积为24,∴BA=BC=6,S△ABC=S菱形ABCD=12,∵S△ABC=S△P AB+S△PBC,∴×6×PE+×6×PF=12,∴PE+PF=4,故选:A.8.解:当AB=CD时,四边形EGFH是菱形.理由如下:∵点E,G分别是AD,BD的中点,∴EG是△ABD的中位线,∴EG∥AB,EG=AB,同理HF∥AB,HF=AB,EH∥CD,EH=CD,∴EG∥HF,EG=HF,∴四边形EGFH是平行四边形,又∵AB=CD,∴EG=EH,∴平行四边形EGFH是菱形.故选:A.9.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误故选:B.10.解:连接DE.在直角三角形CDE中,EC=3,CD=4,根据勾股定理,得DE=5.∵AB=AD,BO=OD,∴AE⊥BD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5.∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=BE+EC=8,由勾股定理得出BD=,∴BO=BD=2,故选:D.11.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,∴S△BOG=S△DOG,∴S△ABG=S△DGE,∴四边形ODEG与四边形OBAG面积相等,故③正确;故选:A.12.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.二.填空题13.解:菱形ABCD的面积S=AC•BD=24,∵AC=6,∴BD==8,故答案为8.14.解:∵四边形ABCD是菱形,∴AC⊥BD,BO=DO,∵BO===3(cm),∴DO=BO=3(cm),∴BD=6(cm),故答案为:6.15.解:∵四边形ABCD是菱形,周长为,∴AC⊥BD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,∵AO:BO=1:2,设AO=x,则BO=2x,在Rt△AOB中,由勾股定理得:x2+(2x)2=()2,解得:x=1(负数舍去),即AO=1,BO=2,∴AC=2,BD=4,∴菱形ABCD的面积是S=×AC×BD=×2×4=4,故答案为:4.16.解:①∵AB=AD,AC⊥BD,∴OB=OD,∵AD∥BC,∴∠ADO=∠CBO,又∵∠AOD=∠COB,∴△AOD≌△COB(ASA),∴AD=CB,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故①能判定四边形ABCD是菱形;②∵AB=AD,AC⊥BD,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故②能判定四边形ABCD是菱形;③∵AD∥BC,∴∠DAC=∠BCA,∵AC平分∠BCD,∴∠DCA=∠BCA,∴∠DAC=∠DCA,∴AD=CD,∴AB=AD=CD,不能判定四边形ABCD是菱形;④∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=∠ADC,∴∠BAD+∠ADC=180°,∴AB∥CD,∴四边形ABCD是平行四边形,又∵AB=AD,∴平行四边形ABCD是菱形,故④能判定四边形ABCD是菱形;故答案为:①②④.17.解:连接DE.在直角三角形CDE中,EC=3,CD=4,根据勾股定理,得DE=5.∵AB=AD,AE⊥BD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5.∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=BE+EC=8,∴四边形ABED是菱形,由勾股定理得出BD=,∴OE=,∴AE=2OE=2,故答案为:2.18.解:①∵∠BAC=90°,∴∠BAE+∠CAE=90°,∵AE⊥BC,∴∠C+∠CAE=90°,∴∠BAE=∠C,①正确;②作AM∥BD交CB的延长线于M,如图所示:则∠M=∠CBD,∠BAM=∠ABD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠M=∠BAM,∴AB=BM,∵AM∥BD,∴AG:GE=BM:BE,∴AG:GE=AB:BE,∵S△ABG:S△EBG=AG:GE,∴S△ABG:S△EBG=AB:BE;②正确;④∵∠AGD=∠ABD+∠BAE,∠ADG=∠CBD+∠C,∠BAE=∠C,∠CBD=∠ABD,∴∠AGD=∠ADG,∴AG=AD,∵∠BAC=90°,BD平分∠ABC.DF⊥BC,∴AD=DF,∴AG=DF,∵AE⊥BC,∴AG∥DF,∴四边形AGFD是平行四边形,又∵AG=AD,∴四边形AGFD是菱形;④正确;⑤∵四边形AGFD是菱形;∴∠AGD=∠FGD,GF=DF,∠ADB=∠FDB,∴∠AGB=∠FGB,在△ABG和△FBG中,,∴△ABG≌△FBG(AAS),∴∠BAE=∠BFG,∵∠BAE=∠C,∴∠BFG=∠C,∴GF∥CH,∵GH∥BC,∴四边形GFCH是平行四边形,∴GF=CH,∴CH=DF,⑤正确;③∵∠ADF=2∠ADB,当∠C=30°,∠CDF=60°,则∠ADF=120°,∴∠ADF=2∠CDF;③不正确;故答案为:①②④⑤.三.解答题19.(1)证明:如图,连接BD,∵四边形ABCD是菱形,∴AC⊥DB,AD=AB,∵EM⊥AC,∴ME∥BD,∵点E是AB的中点,∴点M是AD的中点,AE=AB,∴AM=AD,∴AM=AE.(2)解:①由(1)得,点M是AD的中点,∴AM=MD,∵四边形ABCD是菱形,∴AB∥CD,∴∠F=∠AEM,∠EAM=∠FDM,∴△MDF≌△MAE(AAS),∴AE=DF,∵AB=2AE,DF=2,∴AB=4,∴菱形ABCD的周长为4AB=4×4=16.②如图,连接CM,记EF与AC交点为点G,∵AM=AE,△MAE≌△MDF,∴DF=DM,MF=ME,∴∠DMF=∠DFM,∴∠ADC=2∠DFM,∵∠ADC=2∠MCD,∴∠MCD=∠DFM,∴MF=MC=ME,∠EMC=2∠FDM=∠MDC,∵ME⊥AC,AM=AE,∴∠MGC=90°,ME=2MG,∴MC=2MG,∴∠GMC=60°,∴∠ADC=60°,∴∠MCD=30°,∴∠DMC=90°,∴△DMC为直角三角形,∵DF=2,∴DM=2,CD=4,∴CM==2,∴ME=2.20.解:(1)连接AC,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是正三角形,∴AB=AC,∠ACB=60°,∴∠ACF=∠ACB=60°,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS),∴∠BAE=∠CAF,∴∠EAF=∠EAC+∠CAF=∠EAC+∠BAE=60°,故答案为60°;(2)由(1)可知,△ABE≌△ACF,∴AE=AF,(3)当∠BAE=30°时,∵∠B=60°,∴∠AEB=90°,∵∴△ABC是正三角形,∴E为BC中点,∴F为CD中点,在Rt△ABE中,AB=6,BE=3,∴AE==3,过点F作FH⊥CG于点H,∵F为CD中点,FH∥AE,∴FH为△AEG中位线,∴FH==,∴点F到BG的距离.21.证明:(1)连接EG,∵AB∥CD,∴∠AEG=∠CGE,∵EH∥FG,∴∠HEG=∠FGE,∴∠AEG﹣∠HEG=∠CGE﹣∠FGE,即∠AEH=∠CGF,(2)∵四边形ABCD是正方形,∴∠A=∠D=90°,∵四边形EFGH是菱形,∴EH=GH,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH是正方形;(3)过点F作FM⊥CD,交CD的延长线于点M,则∠A=∠M=90°,在△AHE和△GFM中,,∴△AHE≌△GFM(AAS),∴AH=MF=1,∵CD=3,DG=x,∴CG=3﹣x,∵12+AE2=22+DG2,当AE最大为AB=3时,DG最大为,∴S==(3﹣x)×1=,∴S=,∴x=时,S最小为.22.证明:(1)过O作OF⊥CE于F,如图所示:∵OC=OE,∴CF=EF,∵OF⊥CE,CE⊥CD,∴OF∥CD,∵AB∥DC,∴OF∥AB,∴OF是△ACE的中位线,∴OA=OC,∴OE=AC;(2)∵AB∥DC,∴∠OAB=∠OCD,在△AOB和△OCD中,,∴△AOB≌△OCD(ASA),∴OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC,∴平行四边形ABCD是菱形.23.(1)证明:连接OG,如图1所示:∵四边形ABCD是平行四边形,∴AB∥CD,∵AC⊥AB,∴AC⊥CD,∴∠OCG=90°,∵EF⊥BD,∴∠OFG=90°,在Rt△OFG和Rt△OCG中,,∴Rt△OFG≌Rt△OCG(HL),∴FG=CG;(2)解:如图2所示:若四边形OCGH是菱形,则OH=OC,OH∥CG,OC∥GH,∵EF⊥BD,∴AC⊥BD,∴▱ABCD是菱形,∴CD=AD,OA=OC,∴OA=OH,∴∠OAH=∠OHA,∵OH∥CG,∴∠OHA=∠ADC,∵CD=AD,∴∠CAD=∠DCA,∴∠CAD=∠ADC=∠DCA,∴△ACD是等边三角形,∴∠ADC=60°,即要使四边形OCGH是菱形,▱ABCD的边和角需要满足的条件是:CD=AD,∠ADC=60°.24.(1)证明:∵AB∥CD,∴AE∥CD,∵CD=AE,∴四边形AECD是平行四边形,∵AD=CD,∴平行四边形AECD是菱形,(2)存在,由题意知AF=AB=9,过点D作AB的垂线,垂足为H,∵AB∥CD,∠A=60°,∴在Rt△AHD中,∠ADH=30°,∴AH=AD=3,∴DH===3,∵运动时间为t秒,①如图,AM=3t,CN=t,MF=AF﹣AM=9﹣3t,ND=CD﹣CN=6﹣t,若MF=ND,则四边形MFND为平行四边形,即9﹣3t=6﹣t,解得t=,此时S▱MFND=MF×DH=(9﹣3×)×3=;②如图,AM=3t,CN=t,MF=AM﹣AF=3t﹣9,ND=CD﹣CN=6﹣t,若MF=ND,则四边形FMND为平行四边形,即3t﹣9=6﹣t,解得t=,此时S▱FMND=MF×DH=(3×﹣9)×3=;综上:当t=时,四边形MFND为平行四边形,面积为;当t=时,四边形FMND 为平行四边形,面积为.。
菱形的性质(分层作业)- 八年级数学下册(人教版)(解析版)
人教版初中数学八年级下册18.2.3菱形的性质同步练习夯实基础篇一、单选题:1.矩形具有而菱形不一定具有的性质是()A .对边分别相等B .对角分别相等C .对角线互相平分D .对角线相等【答案】D【分析】根据矩形和菱形的性质进行判断即可得出答案.【详解】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:D .【点睛】本题考查了矩形的性质和菱形的性质,能熟记矩形的性质和菱形的性质的内容是解此题的关键.2.菱形的两条对角线的长分别是2cm 和6cm ,则菱形的面积是()A .26cm B .212cm C .28cm D .224cm3.已知菱形ABCD ,2cm AB ,60A ,则菱形ABCD 的面积为()A .23cm B .24cm C 2D .2【答案】DAE ∵四边形ABCD 是菱形,∴2AD AB ,∵60A ,∴30ADE ,则12AE AD ,∴2222213DE AD AE ,4.菱形的周长为24cm ,两个相邻的内角度数之比为1:2,则较短的对角线长度是()A .6cmB .C D .12cm【答案】A【分析】根据菱形的对角线互相垂直且平分各角,可设较小角为x ,因为邻角之和为180°,所以x +2x =180°,所以x =60°,画出其图形,根据含30度角的直角三角形的性质,可以得到其中较短的对角线的长.5.如图,菱形的边长为2,=45ABC ,则点A 的坐标为()A .2,2B . C . D .【答案】D 【分析】根据坐标意义,点A 坐标与垂线段有关,过点A 向x 轴垂线段AE ,求得OE 、AE 的长即可知点A 坐标.【详解】过点A 作AE ⊥x 轴,垂足为E ,则∠AEO =90°,∵=45ABC ,∠AEO =90°∴45AOE OAE ,OE ∴OE AE6.如图,菱形ABCD 的对角线AC BD ,相交于点O ,过点A 作AE BC 于点E ,连接OE .若6OB ,菱形ABCD 的面积为54,则OE 的长为()A .4B .4.5C .5D .5.5【答案】B 【分析】由菱形的性质可得12BD ,由菱形的面积得可得9AC ,然后根据直角三角形斜边上的中线性质即可解答.7.如图,在菱形ABCD中,对角线AC与BD.相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.21B.65C.42D.56∴∠AOE =90°﹣∠BAO =90°﹣25°=65°.故选:B .【点睛】此题考查求角的度数,解题的关键是熟记菱形的性质并能应用.8.如图,菱形ABCD 的周长为40cm ,对角线AC 、BD 相交于点O ,DE AB ,垂足为E ,8cm DE ,则AC 为()A .8cmB .C .D .4cm9.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBA=50°,则∠ACB=_____.于点E,则DE ______.10.如图,在荾形ABCD中,对角线AC,BD分别为16和12,DE AB11.如图,菱形ABCD 的对角线AC BD 、相交于点O ,过点D 作DH AB 于点H ,连接OH ,若64OA OH ,,则菱形ABCD 的面积为_______.【答案】48【分析】由菱形的性质得6OA OC ,OB OD ,AC BD ,则12AC ,再由直角三角形斜边上的中线性质求出BD 的长度,然后由菱形的面积公式求解即可.【详解】解:∵四边形ABCD 是菱形,12.如图,在菱形ABCD 中,E 是CD 上一点,连接AE 交对角线BD 于点F ,连接CF ,若40AED ,则BCF ______°.【答案】40【分析】由“SAS”可证△ABF ≌△CBF ,可得∠BAF =∠BCF ,由平行线的性质可求解.【详解】解:∵四边形ABCD 是菱形,∴AB =CB ,AB ∥DC ,∠ABF =∠CBF ,∵AB =CB ,∠ABF =∠CBF ,BF =BF ,∴△ABF ≌△CBF (SAS ),∴∠BAF =∠BCF ,∵∠AED =40°,AD ∥BC ,∴∠AED =∠BAF ,∴∠BCF =40°,故答案为:40.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.13.如图,在菱形ABCD 中,AE BC ,垂足为点E .AE 与BD 交于点F ,连接CF .若32CBF ,则ECF 的大小为______.【答案】26【分析】根据菱形的性质,得出AB CB ,32ABF CBF ,再根据SAS ,得出ABF CBF ≌,再根据全等三角形的性质,得出BAF BCF ,再根据菱形的性质,得出64ABC ,再根据垂线的定义,得出90AEB ,再根据三角形的内角和定理,得出26BAF ,进而即可得出结果.【详解】解:∵四边形ABCD 是菱形,∴AB CB ,32ABF CBF ,在ABF △和CBF V 中,AB CB ABF CBF BF BF,∴ ABF CBF SAS ≌,∴BAF BCF ,∵323264ABC ABF CBF ,∵AE BC ,∴90AEB ,∴180180906426BAF AEB ABE ,∴26BCF BAF ,即26ECF .故答案为:26【点睛】本题考查了菱形的性质、全等三角形的判定与性质、三角形的内角和定理,解本题的关键在熟练掌握相关的性质、定理.三、解答题:14.已知:如图,菱形花坛ABCD 的边长为10m ,∠BCD =120°,沿对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.∴AO =5m ,15.如图,菱形ABCD 的对角线AC BD 、相交于点O ,DE 垂直平分BC ,垂足为点E ,求ABC 的大小.【答案】120°【分析】根据DE 垂直平分BC ,可得BD DC ,根据菱形的性质可得BD BC DC ,即BDC 为等边三角形,则60DCB o ,则问题得解.【详解】解:在菱形ABCD 中,有AB BC CD AD ,且DC AB ∥,∵DE 垂直平分BC ,∴BD DC ,∴BD BC DC ,∴BDC 为等边三角形,∴60DCB o ,∵DC AB ∥,∴180ABC BCD ,∴180********ABC BCD o o o o ,即∠ABC 的度数为120°.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行的性质等知识,证明BDC 是等边三角形是解答本题的关键.16.如图,菱形ABCD ,E 、F 分别是BC ,CD 上的点,60B EAF ,18BAE ,求CEF 的度数.【答案】18【分析】连接AC ,根据菱形的性质,可知ABC 为等边三角形,60B EAF ,18BAE ,从而可得60AEF ,进而可得18CEF【详解】连接AC ,∵四边形ABCD 是菱形,∴ABC 为等边三角形,∴60BAC ACB ,AB AC ,∴60ACF B ,∵60EAF BAC ,∴BAE CAF ,∴ABE ACF V V ≌,∴AE AF ,∴AEF △为等边三角形,∴60AEF ,∵AEF CEF B BAE ,且18BAE ,∴18CEF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质及等边三角形的判定与性质,掌握菱形的性质是解题的关键17.如图,在菱形ABCD 中,AB =BD =5,求:(1)∠BAC 的度数;(2)AC 的长.18.如图,四边形ABCD 是菱形,对角线AC BD 、相交于点O ,DH AB 于H ,连接OH .(1)求证:OHD ODH .(2)若4OC ,6BD ,求DH 的长.【点睛】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角),解决(1)小题的关键是判断OH 为直角三角形斜边上的中线.能力提升篇一、单选题:1.如图,菱形ABCD 的边AB 的垂直平分线交AB 于点E ,交AC 于点F ,连接DF .当100BAD 时,CDF ()A .15°B .30°C .40°D .50°【答案】B 【分析】连接BF ,利用SAS 判定BCF DCF ≌,从而得到CBF CDF ,根据已知可得出CBF 的度数,从而得CDF 的度数.【详解】如图,连接BF ,∵四边形ABCD 是菱形,∴CD BC ,DCF BCF ,在BCF △和DCF 中,2.如图,在菱形ABCD 中,对角线68AC BD ,,点E 、F 分别是边AB 、BC 的中点,点P 在AC 上运动和过程中,PE PF 的最小值是()A .3B .4C .5D .6【答案】C 【分析】设AC 交BD 于O ,作E 关于AC 的对称点N ,连接NF ,交AC 于P ,可得此时EP +FP 的值最小,最小值为NF ,再由菱形的性质证得四边形ANFB 是平行四边形,然后根据勾股定理求出AB ,即可求解.【详解】解:设AC 交BD 于O ,作E 关于AC 的对称点N ,连接NF ,交AC 于P ,∴PN =PE ,∴PE +PF =PN +PF ,∴此时EP +FP 的值最小,最小值为NF ,∵四边形ABCD 是菱形,∴∠DAB =∠BCD ,AD =AB =BC =CD ,OA =OC ,OB =OD ,AD BC ∥,∵E 为AB 的中点,∴N 在AD 上,且N 为AD 的中点,∵AD BC ∥,∴∠ANP =∠CFP ,∠NAP =∠FCP ,∵AD =BC ,N 为AD 中点,F 为BC 中点,∴AN =CF ,∴()ANP CFP ASA @V V ,∴AP =CP ,即P 为AC 中点,∵O 为AC 中点,∴P 、O 重合,即NF 过O 点,二、填空题:3.已知,在菱形ABCD 中,=100ABC ,对角线AC 和BD 相交于点O ,在AC 上取点P ,连接PB PD 、,若=20PBD ,则PDC 的度数为______.∴==20PBD PDB ,∴=5020=30PDC ;当点P 如下图P 点所在位置时:∵P B P D ,∴==20P BD P DB ,∴=+=70P DC P DB CDO ;综上:PDC 的度数为30 或70 ,故答案为:30 或70 .【点睛】本题考查了菱形的性质以及线段垂直平分线的性质,熟练掌握菱形的性质是解本题的关键,注意分类讨论.4.如图,菱形ABCD 的周长为20,面积为24,P 是对角线BD 上一点,分别作P 点到直线AB 、AD 的垂线段PE 、PF ,则PE PF 等于______5.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是对角线AC上一个动点,点F是边AB上一个动点,连接EF,EB,则EB EF的最小值为______.三、解答题:,点D在y轴上.6.如图1,已知菱形ABCD的顶点A,B的坐标分别为 3,0, 2,0(1)求点C 的坐标;(2)如图2,对角线AC ,BD 相交于点G ,求AC ,BD 的长及点G 的坐标.7.在菱形ABCD 中,60ABC ,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF AE ,连接BE 、EF .(1)如图1,当E是线段AC的中点时,BE和EF的数量关系是__________.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】(1)BE=EF(2)成立,证明见解析【分析】(1)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠BCA=60°,由等边三角形的性质和已知条件得出CE=CF,由等腰三角形的性质和三角形的外角性质得出∠CBE=∠F,即可得出结论;(2)过点E作EG∥BC交AB延长线于点G,先证明△ABC是等边三角形,得出AB=AC,∠ACB=60°,再证明△AGE是等边三角形,得出AG=AE=GE,∠AGE=60°,然后证明△BGE≌△ECF,即可得出结论;(1)∵四边形ABCD是菱形,∴AB=BC.∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°.∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE.∵CF=AE,∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,∴∠ACD=60°,∠DCF=∠∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF.又∵CF=AE,∴GE=CF.即在△BGE和△CEF中,BG CE BGE ECFGE CF,∴△BGE≌△ECF(SAS),∴BE=EF.【点睛】本题考查菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰三角形的判定与性质以及三角形外角的性质等知识,综合性强,较难.熟练掌握上述知识并正确的作出辅助线是解题关键.。
【同步练习】湘教版 2019年 八年级数学下册 菱形 同步练习(含答案)
湘教版 2019年八年级数学下册菱形同步练习一、选择题1.下列命题中错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等2.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.33.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5B.10C.15D.204.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的一半长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF,则可以得到四边形AEDF的形状( )A.仅仅只是平行四边形B.是矩形C.是菱形D.无法判断5.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC6.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.57.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m9.如图,菱形ABCD中,AB=5,BD=6,则菱形的高为()A.2.4B.4.8C.12D.2410.如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P到E、C两点的距离之和的最小值为()二、填空题11.在图中所示的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长均为1,则该菱形的面积为________.12.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是________cm2.13.如图,在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.14.如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=错误!未找到引用源。
八年级数学下册菱形同步练习、含答案2(含答案)
菱形班级:___________________________姓名:___________________________作业导航理解并掌握菱形的性质及判别方法,会利用菱形的性质和判别方法进行推理说明和有关计算.一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE 是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C2.D3.B4.B5.D二、6.2 cm7.44厘米8.176 cm29.8 cm 5 cm10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm。
浙教版八年级数学下《5.2菱形》同步练习题含答案
5.2菱形同步练习题一.选择题1. .菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.已知四边形ABCD是平行四边形,下列结论不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是菱形3. 下列条件中,不能判定四边形ABCD为菱形的是()A.AC⊥BD ,AC与BD互相平分 B.AB=BC=CD=DAC.AB=BC,AD=CD,且AC⊥BD D.AB=C D,AD=BC,AC⊥BD4..菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm25..如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm6.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形二.填空题7.菱形的两条对角线的长分别是6cm和8cm,则菱形的周长是__________cm.8.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是_____________9.顺次连接矩形四边中点所形成的四边形是.学校的一块菱形花园两对角线的长分别是6m 和8m,则这个花园的面积为.10.如图1,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为__________.11.如图2,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=D F.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).12.如图3,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD 的边长为2cm,∠A=120°,则EF= cm .三.解答题13.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶3,若AB=2.求菱形ABCD的面积.14.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:⊥DHO=⊥DCO.15.(2015安顺)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.AB CEDF 图1图2图316.(2014•四川遂宁)已知:如图,在矩形ABCD 中,对角线AC .BD 相交于点O ,E 是CD 中点,连结OE .过点C 作CF∥BD 交线段OE 的延长线于点F ,连结DF .求证:(1)△ODE≌△FCE ;(2)四边形ODFC 是菱形.17.(2014•山东临沂)对一张矩形纸片ABCD 进行折叠,具体操作如下:第一步:先对折,使AD 与BC 重合,得到折痕MN ,展开;第二步:再一次折叠,使点A 落在MN 上的点A′处,并使折痕经过点B ,得到折痕BE ,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B 落在AD 上的点B′处,得到折痕EF ,同时得到线段B′F ,展开,如图2.(1)证明:∠ABE=30°;(2)证明:四边形BFB′E 为菱形.5.2菱形答案1.B2.D3.C4.B5.C6. C7. 208. 409. 菱形 24 10.11. ③12.313、菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD 为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC⊥BD=1⊥3,所以AO⊥BO=1⊥3,BO=x 3.在Rt⊥ABO 中,因为AB 2=BO 2+AO 2,所以AB 2=(x 3)2+x 2=22.所以x=1.所以AO=1,BO=3.所以AC=2,BD=32. 所以菱形的面积为21×2×32=32. 14、证明:⊥四边形ABCD 是菱形,⊥OD=OB,⊥COD=90°,⊥DH⊥AB,⊥OH=OB,⊥⊥OHB=⊥OBH,又⊥AB⊥CD,⊥⊥OBH=⊥ODC,在Rt⊥COD中,⊥ODC+⊥DCO=90°,在Rt⊥GHB中,⊥DHO+⊥OHB=90°,⊥⊥DHO=⊥DCO15略16.略17、(1)证明:⊥四边形ABCD是菱形,⊥AO=CO,AD⊥BC,⊥⊥OAE=⊥OCF,在⊥AOE和⊥COF中,,⊥⊥AOE⊥⊥COF(ASA);(2)解:⊥⊥BAD=60°,⊥⊥DAO=⊥BAD=×60°=30°,⊥⊥EOD=30°,⊥⊥AOE=90°﹣30°=60°,⊥⊥AEF=180°﹣⊥BOD﹣⊥AOE=180°﹣30°﹣60°=90°,⊥菱形的边长为2,⊥DAO=30°,⊥OD=AD=×2=1,⊥AO===,⊥AE=CF=×=,⊥菱形的边长为2,⊥BAD=60°,⊥高EF=2×=,在Rt⊥CEF中,CE===.。
人教版八年级数学下册《18.2.2菱形》同步提升训练(带答案)
人教版八年级数学下册《18.2.2菱形》同步提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.矩形和菱形都具有的性质是( )A .邻边相等B .对边相等C .对角线互相垂直D .对角线相等 2.在菱形ABCD 中140ADC ∠=︒,连接BD ,则BDA ∠的度数为( )A .80︒B .70︒C .40︒D .20︒3.若四边形ABCD 是菱形,且4cm AB =,则四边形ABCD 的周长是( )A .8cmB .12cmC .16cmD .不确定 4.如图,在菱形ABCD 中5,8AB BD ==,则菱形ABCD 的面积是( )A .24B .25C .40D .48 5.如图,在ABCD 中,AC 平分DAB ∠,60DAB ∠=︒,4=AD ,则AC 的长为( )A .5B .23C .2D .436.如图,四边形ABCD 中AB BC CD DA ===,80B ∠=︒连接AC ,那么ACD ∠的度数为( )A .45︒B .50︒C .55︒D .60︒7.如图,将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,观察所得四边形的变化,下面判断正确的是( )A .四边形ABCD 由矩形变为菱形B .对角线AC 的长度不变 C .四边形ABCD 的面积不变 D .四边形ABCD 的周长不变8.如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =4,AD =6,则图中阴影部分的面积为( )A .12B .6C .24D .39.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH AB ⊥于点H ,连接OH ,若6OA =,48ABCD S =菱形则OH 的长为( )10.如图,在平行四边形ABCD 中(AD AB >),以点A 为圆心,AB 为半径画弧交AD 于点F ,连结BF ,分别以点B 和点F 为圆心、以适当长为半径作圆弧交于点G ,连接AG 并延长交BC 于点E . 若12BF =,10AB =则AE 的长为( )A .18B .16C .12D .20二、填空题 11.已知在菱形ABCD 中20B ∠=︒,则D ∠的大小是 °. 12.如图,菱形ABCD 的周长是8cm ,AB 的长是 cm .13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,若6AC =,24ABCD S =菱形则AB 的长为 .14.如图,将两条宽度均为2的纸条相交成30︒的角叠放,则重合部分构成的四边形ABCD 的面积为15.如图,在菱形ABCD 中60ABC ∠=︒,83AB =点E 为AD 边上一点,且AE 23=,在BC 边上存在一点F ,CD 边上存在一点G ,线段EF 平分菱形ABCD 的周长.则EFG 周长的最小值为 .三、解答题16.如图,C 是直线l 上的点,AC l ⊥,点B 是直线l 上的一个动点,且在C 点右侧,以AB的上方作ABDE,若参考答案:1.B2.B3.C4.A5.D6.B7.D8.A9.A10.B11.2012.213.514.815.6712+16.(1)4CB=;(2)315CB=.17.AG的长为53.3 18.(1)四边形ABCD是菱形(2)2(3)3或1。
八年级数学(下)第十八章《矩形》同步练习(含答案)
八年级数学(下)第十八章《矩形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.矩形具有而平行四边形不一定具有的性质是A.对角相等B.对边相等C.对角线相等D.对角线互相平分【答案】C【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.2.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是A.∠BAC=∠ACB B.∠BAC=∠ACDC.∠BAC=∠DAC D.∠BAC=∠ABD【答案】D3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是A.2 B.4 C.3D.3【答案】B【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD.∴△OAB是等腰三角形.∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OA.∵AB=2,∴OA=2.∵OA=OC,∴AC=4.故选B.4.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是A.3B.2 C.5D.6【答案】C【解析】∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=22125+=,∴CE=5,故选C.5.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是A.24°B.33°C.42°D.43°【答案】B6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10 C.8 D.6【答案】B【解析】四边形ABCD是矩形,∴DC=AB=8,AD=BC=4,∠D=90°,AB∥DC,∴∠FAC=∠DCA,由折叠的性质得∠FCA=∠DCA,∴∠FCA =∠FAC,∴AF=CF,设AF=CF =x,D′F=8-x,在Rt △AD ′F 中,根据勾股定理得AD ′2+D ′F 2=AF 2,即2224(8)x x +-=,解得5x =, ∴11541022AFC S AF AD =⋅=⨯⨯=△.故选B . 7.下列条件中,能判定四边形ABCD 是矩形的是 A .四边形ABCD 中,AC BD = B .四边形ABCD 中,AC BD ⊥C .四边形ABCD 中,90A ∠=︒,90C ∠=︒,90D ∠=︒ D .四边形ABCD 中,90ABC ∠=︒ 【答案】C8.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是A .②③B .③④C .①②④D .②③④【答案】D【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,90BAD ABC ∠=∠=︒,AO =OC ,OD =OB ,AC =BD ,∴AO =OB =OD ,∵AB =1,AD 3BD =2,∴∠ABD =60°,∴△ABO 是等边三角形, ∴AB =OA =OB ,∠BAO =∠AOB =60°,∵AF 平分∠BAD ,∴∠BAF =∠DAF =45°,∵∠DAF =∠AFB , ∴∠BAF =∠BFA ,∴BF AB OB ==,∴②正确;∵CE ⊥BD ,∴60DOC AOB ∠=∠=︒,∴∠ECO =30°,∵604515FAC ∠=︒-︒=︒ , ∴15H ACE CAF CAF ∠=∠-∠=︒=∠,∴AC =CH ,∴③正确; ∵CF 和AH 不垂直,∴AF ≠FH ,∴①错误;∵∠CEO=90°,∠ECA=30°,∴1122OE OC OD DE===,BE=3DE,∴④正确,正确的有②③④,故选D.二、填空题:请将答案填在题中横线上.9.如图,直角三角形ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,AC=CE=10 cm,则BD=__________.【答案】15 cm10.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为__________.【答案】2.5【解析】∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.故答案为:2.5.11.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC为__________度.【答案】56【解析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=34°,∴∠DBC=56°.故答案为:56.12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,CB/的长为__________.【答案】2或10【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图所示,连接AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如图所示,此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,CB2210.综上所述,13B'C的长为210.故答案为:210.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,四边形ABCD为矩形,PB=PC,求证:PA=PD.14.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【解析】(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)如图,作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12EC·OF=1.15.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接BE,DF.判断四边形EBFD的形状,并说明理由.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.16.如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.(2)如图,连接AC,∵AD=4,CD=2,四边形ABCD是平行四边形,四边形BECD是矩形,∴AB=BE=CD=2,BC=AD=4,∠AEC=90°,∴AE=AB+BE=4,在Rt△BCE中,CE22-=4223∴在Rt△ACE中,AC22+=4(23)27。
八年级数学下册菱形知识点及同步练习(含答案)
学科:数学 教学内容:菱形学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题. 学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质 (2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △.设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算. 重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用. 难点:运用菱形的性质及识别方法,灵活地解答一些问题. 易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件.例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( ) (2)两边相等的平行四边形为菱形.( ) 错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×) 正解:(2)(×) (2)(×) 运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格 错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D 又∵E ,F 分别为BC ,CD 的中点,∴BE =DF ∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF , ∴△ABE ≌△ADF ∴AE =AF 典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180° 所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180° 所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形, ∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60° ∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF 又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60° ∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法. 例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C 因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形. 从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
华东师大版八年级数学下册 同步练习菱形
《菱形》同步练习1.(2015•潍坊模拟)下列说法中,错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D. 对角线互相垂直的四边形是菱形2.顺次连结对角线相等的四边形各边中点,所得四边形是( )A.矩形B.平行四边形C.菱形 D.任意四边形3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40°B.50°C.80°D.100°6.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A.1B. 2C.D.7.已知菱形的周长为40,两个相邻角度数之比为1∶2,则较长对角线的长为______。
8.(2015•南充)如图,菱形ABCD 的周长为8cm ,高AE 长为cm ,则对角线AC 长和BD长之比为。
答案和解析一.基础训练 1.【答案】D ; 2.【答案】C ; 3.【答案】D ;【解析】BC =2EF =4,周长等于4BC =16。
4.【答案】B ;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,故可得△ABC 的周长=3AB=15。
23cm cm二.拓展提升 5.【答案】C ;【解析】∵四边形ABCD 是菱形,∴∠BAC =∠BAD ,CB ∥AD ,∵∠BAC =50°,∴∠BAD =100°,∵CB ∥AD ,∴∠ABC +∠BAD =180°,∴∠ABC =180°-100°=80°。
16.2 矩形-菱形与正方形的性质同步练习
16.2矩形、菱形与正方形的性质一、课内训练:1.如图,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求对角线AC的长.(1) (2)4.如图,以正方形ABCD的边CD为一边在正方形外作等边△CDE,连接BE,交正方形的对角线AC于点F,连接DF,求∠AFD的度数.5.(1)如图,把一矩形ABCD的纸片,沿EF折叠后,点D、C分别落在D′、C′的位置上,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(2)如图,把一矩形纸片ABCD,沿EF折叠后,点D和点B重合,点C落在C•′位置,若AB=4cm,AD=12cm,求BE的长度.6.已知△ABC,∠A:∠B:∠C=1:2:3,AB=6cm,D为AB边上的中点,求CD的长.7.•已知菱形的边长为10cm,•则菱形对角线的交点到四条边中点的距离之和为_____cm.8.如图所示,在矩形ABCD中,对角线AC分∠BAD为∠1,∠2,且∠1:∠2=1:2,AB=3cm,求AC的长.9.菱形ABCD的两条对角线分别为5cm,12cm,则菱形ABCD的面积为多少?10.对于左栏的案例4,采用“补短法”还可以怎样作辅助线,证明出BE=BG+FC?11.如图,E、F分别在正方形ABCD的边AD、CD上,且∠FBC=∠EBF,• 求证:BE=AE+CF.二、课外演练1.正方形具有而菱形不一定具有的特征是()A.四条边都相等 B.对角线互相垂直平分C.对角线平分一组对角 D.对角线相等2.一个菱形的两条对角线长分别为7cm和8cm,则这个菱形的面积为()A.56cm2 B.28cm2 C.14cm2 D.36cm23.如图,EF为矩形ABCD对角线的交点O,•且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.310(第3题)(第6题)(第8题)4.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20° B.40° C.80° D.100°5.菱形的一条对角线与一条边长相等,则这菱形锐角的度数为_______.6.如图,已知矩形ABCD的对角线相交于点O,△AOD的周长比△AOB的周长大8cm,矩形周长是80cm,求矩形ABCD的面积.7.如果矩形的两条对角线所成的角中有一个角为60°,那么()A.它的对角线长是长边长度的2倍 B.它的对角线长是短边长度的2倍C.它的长边是短边长度的2倍 D.上述关系无法确定8.如图,矩形ABCD中,AD=30,AB=20,E、F三等分对角线AC,则S△ABE=()A.60 B.100 C.150 D.2009.能够在图形内找到一点,使该点到四边形的各边距离都相等,则该四边形一定是() A.平行四边形、菱形; B.矩形、正方形; C.矩形、菱形; D.菱形、正方形10.如图16-2-21,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE,则∠EAC为()A.30° B.45° C.60° D.75°(第10题)(第14题)(第15题)11.矩形的一个角的平分线把矩形的一边分成5cm或8cm,此矩形周长为_____cm.12.菱形的面积为24cm2,一条对角线的长为8cm,则另一条对角线的长是_____cm.13.菱形的周长是20cm,那么一边上的中点到两条对角线交点的距离为______cm.14.如图,若点P是正方形ABCD内任意一点,且正方形的边长为1,若S△ABP=0.4,则S△DCP =______.15.如图,正方形ABCD的对角线相交于O点,点O是正方形A′B′C′O的一个顶点,如19.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积和是多少?20.阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,•则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC•是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图②,若△ABC为直角三角形,且∠C=90°,在图16-2-28•②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小.(3)若△ABC是锐角三角形,且BC>AC>AB.在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.答案:一、课内训练:1.解:∵四边形ABCD是矩形,∴AC=BD,AO=CO=12AC,OB=OD=12BD(矩形对角线相等且互相平分).∴AO=CO=OB=OD.又∵∠AOD=120°,∴∠AOB=60°.∴△AOB是等边三角形.即AO=BO=AB=4(cm).∴AC=2×4=8(cm).点拨:根据矩形的对角线相等且互相平分的特征,矩形的两条对角线把矩形分成了四个等腰三角形,若矩形的两条对角线的夹角中,如果有60°或120°的角,则必有等边三角形.2.解:∵四边形ABCD为菱形,∴AB=AD.又∵∠A=60°,∴△ABD为等边三角形.∴AB=AD=BD=5.∴菱形的周长为4AB=5×4=20.点拨:根据菱形的特征,四条边都相等,所以AB=AD,结合∠A=60°,可得△ABD•为等边三角形,从而求得菱形的边长,进而求得菱形的周长.3.解:(1)因为四边形ABCD是正方形.所以∠BOE=∠AOF=90°,OA=OB.又因为AM⊥EB,所以∠MAE+∠MEA=90°=∠OBE+∠MEA.所以∠MAE=∠OBE.所以△AOF绕O点逆时针方向旋转90°可与△BOE重合.所以OE=OF.(2)OE=OF仍成立,说明如下:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,BO=AO.因为AM⊥EB,所以∠OEB+∠OAM=90°=∠OFA+∠OAM.所以∠OEB=∠OFA.所以△AOF绕O点逆时针旋转90°后可与△BOE重合.所以OE=OF.点拨:要使OE=OF,只需证明△AOF和△BOE重合,根据已知条件和正方形的特征易得到,“问题”的基本思路是先假设结论成立,然后用分析法探求其成立条件,•若题设所给条件满足要求,则成立,反之则不成立.4.解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFD=60°.点拨:易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.由∠AFB=∠ACB+∠EBC,∠ACB=45°,转化为求∠EBC的度数,在等腰△BCE中可求得.5.(1)解:在矩形ABCD中,AD∥BC,∴∠DEF=∠EFB,∠1+∠2=180°.又∵∠EFG=55°,由对称性可知∠GEF=∠DEF=55°.∴∠1=180°-∠GEF-∠DEF=70°.∴∠2=180°-∠1=110°.10.如图,过点G作BC的平行线交DC的延长线于点H,则得矩形BGHC.∴GH=BC=AB,BG=CH,∵∠HGF+∠AGE=90°,∠BAE+∠AGE=90°,∴∠BAE=∠HGF.解①②得 AD=24,AB=16.∴S矩形ABCD=24×16=384(cm2).点拨:利用矩形的对角线相等且互相平分.7.B 点拨:当矩形两条对角线夹角中有一个为60°时,一定有等边三角形.8.B 点拨:S矩形=20×30=600,S△ABC =12×600=300.9.D 点拨:由于菱形和正方形的对角线平分每一组内角,•而角平分线上的点到角两边的距离相等,因此菱形和正方形对角线的交点即为满足题意的点.10.B 点拨:由∠DAE=3∠BAE,得∠BAE=22.5°,18.如图19.解:由勾股定理得S A+S B+S C+S D=S最大正方形=49.20.解:(1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边(2)题 (3)题)此时共有3个友好矩形,如图的及ABHK,其中的矩形ABHK证明如下:易知,这三个矩形的面积相等,令其为.∴L1-L2>0,即L1>L2,同理可得L2>L3.∴L3最小,即矩形ABHK的周长最小.点拨:根据矩形的特征、三角形面积的有关知识解决.。
浙教版八年级数学初二下册:菱形同步练习、含答案
菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是菱形B .对角线互相垂直的平行四边形是菱形C .对角线互相平分且相等的四边形是菱形D .对角线相等的四边形是菱形2.菱形的周长为12cm ,相邻两角之比为5:1,那么菱形对边间的距离是( ) A .6cm B .1.5cm C .3cm D .0.75cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A .75°B .60°C .45°D .30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A .12 B .8 C .4 D .2 5.菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm二、判断正误:(对的打“√”错的打“×”) 1.两组邻边分别相等的四边形是菱形.…………………………………………………( ) 2.一角为60°的平行四边形是菱形.…………………………………………………( ) 3.对角线互相垂直的四边形是菱形.……………………………………………………( ) 4.菱形的对角线互相垂直平分.…………………………………………………………( )三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于__________cm ,它的面积等于________cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10cm ,则AC =________cm ,BD =________ cm .图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,如图7,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.60°,120°,60°,120° 4.52424 5.10 103 四、证明:∵DE ∥AC ,DF ∥BC∴四边形DECF 为平行四边形 ∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90°∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4。
湘教版八年级数学下册 2.6 菱形 同步练习(含答案)
湘教版 2019年八年级数学下册菱形同步练习一、选择题1.下列命题中错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等2.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.33.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5B.10C.15D.204.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的一半长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF,则可以得到四边形AEDF的形状( )A.仅仅只是平行四边形B.是矩形C.是菱形D.无法判断5.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC6.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.57.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m9.如图,菱形ABCD中,AB=5,BD=6,则菱形的高为()A.2.4B.4.8C.12D.2410.如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P到E、C两点的距离之和的最小值为()二、填空题11.在图中所示的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长均为1,则该菱形的面积为________.12.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是________cm2.13.如图,在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.14.如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出下列结论:三、解答题17.如图,已知在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF。
2021-2022学年鲁教版八年级数学下册《6-2矩形的性质与判定》同步练习题(附答案)
2021-2022学年鲁教版八年级数学下册《6-2矩形的性质与判定》同步练习题(附答案)1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.CE⊥DE C.∠ADB=90°D.BE⊥DC2.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE=DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF3.已知四边形ABCD中AC=BD,再补充一个条件使得四边形ABCD是矩形,这个条件可以是()A.AC⊥BD B.∠ABC=90°C.AC与BD互相平分D.AB=BC4.如图,矩形ABCD中,AB=,四边形ABC1D1是平行四边形,点D1在BC边上且AD1=AD,△ABD1的面积是矩形ABCD面积的,则平行四边形ABC1D1的面积是()A.2B.3C.2D.35.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为.6.如图,在△ABC中,∠ACB=90°,点D在边AB上(不与点A,B重合),DE⊥AC于点E,DF⊥BC于点F,连接EF.若AC=3,BC=2,则EF的最小值为.7.如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则(1)PQ=;(2)第n个矩形的边长分别是.8.矩形ABCD中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为.9.如图,在长方形ABCD中,点E是BC上一点,连结AE,以AE为对称轴作△ABE的轴对称图形△AB′E,延长EB′恰好经过点D,过点E作EF⊥BC,垂足为E,交AB′于点F,已知AB=9,AD=15,则EF=.10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为.11.如图,在矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC交AB于点E,连接OE,若AD=6,AB=8,则OE=.12.已知:如图,在▱ABCD中,延长DC至点E,使得DC=CE,连结AE交BC于点F.连结AC,BE.(1)求证:四边形ABEC是平行四边形.(2)若∠AFC=2∠D,求证:四边形ABEC是矩形.13.如图,在△ABC中,D是BC边上的中点,过A点作AF∥BC,且AF=BD,连接CF 交AD于点E.(1)求证:AE=ED;(2)若AB=AC,试判断四边形AFBD形状,并说明理由.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC 上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x 的值.15.如图,平行四边形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC 于点F,且AE=DF.(1)求证:四边形ABCD是矩形.(2)若∠BAE:∠EAD=2:3,求∠EAO的度数.16.如图,在平行四边形ABCD中,点M,N是AD边上的点,BM,CN交于点O,AN=DM,BM=CN.(1)求证:平行四边形ABCD是矩形.(2)若∠BOC=90°,MN=1,AM•MD=12,求矩形ABCD的面积.17.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.18.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,求矩形ABCD长与宽的比值.19.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.(1)若AB=2,AD=3,求EF的长;(2)若G是EF的中点,连接BG和DG,求证:DG=BG.20.如图,在长方形ABCD中,在边AB,BC上分别取点E,F,使得BE=3AE,CF=2BF,CE与DF交于点O,设AB=a,BC=b,三角形FOC的面积为x(1)请用含a,b,x的代数式表示三角形COD的面积;(2)连接OA,OB,若三角形AOB的面积为10,三角形COD的面积为8时,求长方形ABCD的面积;(3)当AB=4,BC=9时,求x的值.参考答案1.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项不符合题意;B、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项不符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项不符合题意;D、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项符合题意;故选:D.2.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.3.解:四边形ABCD中AC=BD,再补充一个条件使得四边形ABCD是矩形,这个条件可以是AC与BD互相平分,理由如下:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故选:C.4.解:∵点D1在BC边上,且△ABD1的面积是矩形ABCD面积的,∴,∴BD1=AD,又∵AD1=AD,∴BD1=AD1,设BD1=2x,则AD1=3x,在Rt△ABD1中,BD12+AB2=AD12,∴(2x)2+()2=(3x)2,解得:x=±1(负值舍去),∴BD1=2,AD1=3,∵点D1在BC边上,∴平行四边形ABC1D1的面积=2S△ABD1=2×,故选:C.5.解:如图,当AB为对角线时,观察图象可知D(5,3).当AB为矩形的边时,观察图象可知D2(﹣3,2),∴直线AD2的解析式为y=x+,∴C1(0,),∵AC1=BD1,∴D1(3,),综上所述,满足条件的点D的坐标为(5,3)或(﹣3,2)或(3,).故答案为(5,3)或(﹣3,2)或(3,).6.解:连接CD,如图所示:∵∠ACB=90°,AC=3,BC=2,∴AB===,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×2×3=××CD,解得:CD=,∴EF=,故答案为:.7.解:(1)∵AM⊥MB,且M为CD的中点,AM=MB,∴∠DAM=∠DMA,∴AD=DM=CD,又已知矩形ABCD的周长为30,所以CD=10,所以PQ=故答案为5,(2)由第一问求得:第一个矩形的长为:10,宽为5,又点P、Q是AM、BM的中点,所以之后得到的矩形长宽比例为2:1,在△ABM中,PQ=5,则宽为,则可得出:第n个矩形的边长分别是10×,5×,故答案为10×,5×,8.解:∵矩形ABCD的面积是ab,阴影部分的面积是:ac+bc﹣c2,∴图中空白部分的面积是:ab﹣(ac+bc﹣c2)=ab﹣bc﹣ac+c2.故答案为:ab﹣bc﹣ac+c2.9.解:由轴对称的性质可知:AB′=AB=9,∠AB′E=∠B=90°,B′E=BE,∠B′AE =∠BAE,在Rt△ADB′中,根据勾股定理,得DB===12,∵BC=AD=15,∴EC=BC﹣BE=15﹣BE,在Rt△DEC中,DE=DB′+B′E=12+BE,DC=AB=9,根据勾股定理,得DE2=EC2+DC2,∴(12+BE)2=(15﹣BE)2+92,解得BE=3,∵EF⊥BC,AB⊥BC,∴EF∥AB,∴∠FEA=∠BAE,∵∠B′AE=∠BAE,∴∠FEA=∠B′AE,∴F A=FE,∴FB′=AB′﹣AF=9﹣FE,在Rt△EFB′中,根据勾股定理,得EF2=FB′2+EB′2,∴EF2=(9﹣FE)2+32,解得EF=5.故答案为:5.10.解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故答案为:.11.解:过点O作OM⊥AB于点M,∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,OA=OB=OC=OD,又∵DE平分∠ADC,∴∠ADE=45°,∴△DAE为等腰直角三角形,∴AE=DA,∵AD=6,AB=8,∴AE=6,BE=2,在Rt△DAB中,AC===10,∴OA=OB=5,∵OM⊥AB,∴AM=MB=4,∴OM===3,又∵ME=MB﹣EB=4﹣2=2,在Rt△OME中,OE===,故答案为:.12.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠ABC=∠D,∵CE=CD,∴AB=CE,∴四边形ABEC是平行四边形;(2)由(1)得:四边形ABEC是平行四边形,∴BC=2BF,AE=2AF,∵∠AFC=∠ABC+∠BAE=2∠D,∴∠ABC=∠BAE,∴AF=BF,∴AE=BC,∴平行四边形ABEC是矩形.13.证明:(1)连接DF.∵D是BC边上的中点,∴BD=DC,∵AF∥BC,且AF=BD,∴AF∥DC,且AF=DC,∴四边形ACDF是平行四边形,∴AE=ED;(2)四边形AFBD是矩形,理由如下:由(1)得,四边形ACDF是平行四边形,∵AB=AC,BD=DC.∴AD⊥BC,即∠ADB=90°.∴平行四边形AFBD是矩形.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,解得:x=2±,∵0<x<2,∴x=2﹣.15.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AE⊥BD于点E,DF⊥AC于点F,∴∠AEO=∠DFO=90°,在△AEO和△DFO中,,∴△AEO≌△DFO(AAS),∴OA=OD,∴AC=BD,∴四边形ABCD是矩形.(2)解:由(1)得:四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OA=OB,∴∠OAB=∠OBA,∵∠BAE:∠EAD=2:3,∴∠BAE=36°,∴∠OBA=∠OAB=90°﹣36°=54°,∴∠EAO=∠OAB﹣∠BAE=54°﹣36°=18°.16.(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,AD∥BC,∴∠A+∠D=180°,∵AN=DM,∴AM=DN,在△ABM和△DCN中,,∴△ABM≌△DCN(SSS),∴∠A=∠D,∵∠A+∠D=180°,∴∠A=∠D=90°,∴平行四边形ABCD是矩形.(2)解:∴△ABM≌△DCN,∴∠AMB=∠DNC,∵AD∥BC,∴∠AMB=∠OBC,∠DNC=∠OCB,∴∠OBC=∠OCB,∵∠BOC=90°,∴△OBC是等腰直角三角形,∴AMB=∠OBC=45°,∴△ABM是等腰直角三角形,∴AB=AM,∵AM•MD=12,AN=DM,∴AM(AM﹣1)=12,解得:AM=4,或AM=﹣3(舍去),∴AB=AM=4,MD=3,∴AD=AM+MD=7,∴矩形ABCD的面积=AD×AB=7×4=28.17.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.18.解:连接DE,如图:∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴∠GDE=∠CDE,∵DG为折痕,∴∠DGE=90°=∠C,而DE=DE,∴Rt△DGE≌Rt△DCE(AAS),∴DC=DG,∵∠EAD=45°,∠DGA=90°,∴△AGD为等腰直角三角形,∴AD=DG=CD,∴矩形ABCD长与宽的比值为,故答案为.19.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,BC=AD=3.∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴BE=AB=2.∴CE=BC﹣BE=1.∵∠CEF=∠AEB=45°,∠ECF=90°,∴∠F=∠CEF=45°,∴CE=CF=1.在Rt△CEF中,利用勾股定理可得EF=;(2)连接CG,因为△CEF是等腰直角三角形,G为EF中点,∴CG=FG,∠ECG=45°.∴∠BCG=∠DFG=45°.又DF=BC=3,∴△BCG≌△DFG(SAS).∴BG=DG.20.解:(1)∵AB=a,∴CD=a,∵BC=b,CF=2BF,∴CF=,∴三角形COD的面积=三角形CDF的面积﹣三角形COF的面积=ab﹣x;(2)解:如图,过点O作GH∥AB交AD于G,交BC于H,∵AB∥CD,∴GH∥CD,∴四边形ABHG和四边形HCDG都是长方形,∴长方形ABHG的面积=2×10=20,长方形HCDG的面积=2×8=16,∴长方形ABCD的面积=20+16=36;(3)解:设△AOE的面积为y,则△BOE的面积=3y,△AOB的面积=4y,∴S△BOC=x,S△FCD=××9×4=12,S△CBE=××4×9=,∴S△COD=12﹣x,∵S△BOE=S△CBE﹣S△BOC,∴﹣x=3y①,∵S△AOB+S△COD=S长方形ABCD,∴4y+12﹣x=18②,解①②构成的方程组,得x=4.。
八年级数学下册《菱形》同步练习题及答案解析
八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。
人教版八年级下册数学菱形同步练习题
菱形一、1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm24.如图,在菱形ABCD中,对角线AC、BD相交于点O,则{HYPERLINK "" |(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.二1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.5.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.86.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.参考答案一、课前预习(5分钟训练)1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角答案:B2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形答案:C3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm2解析:S菱形=×6×8=24(cm2).答案:C4.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.答案:(1)BC CD 四条边(2)△ABD、△ABC、△ADC、△BCD △AOB、△BOC、△COD、△DOA △AOB △COB △COD 垂直平分平分一组对角(3)对角线所在的直线二、课中强化(10分钟训练)1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm解析:OE是Rt△BOC的斜边BC上的中线,故OE=BC=AD=3 cm.答案:C2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形解析:连结矩形的两条对角线,则相邻两边中点的连线是三角形的中位线.由三角形的中位线等于第三边的一半及矩形两条对角线相等可得中点四边形的各边都相等,故顺次连结矩形各边中点所得的四边形是菱形.答案:C3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形解析:因为等边三角形的三条边都相等,所以用它拼成的四边形的四条边都相等,而四条边都相等的四边形是菱形,因此选D.答案:D4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.解析:由菱形的邻角互补,可知菱形的另一组内角是60°,60°内角所对的对角线是较短的.根据有一个角是60°的等腰三角形是等边三角形可推出菱形边长是10,因此菱形周长是40.答案:405.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.解:菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC∶BD=1∶,所以AO∶BO=1∶,BO=.在Rt△ABO中,因为AB2=BO2+AO2,所以AB2=()2+x2=22.所以x=1.所以AO=1,BO=.所以AC=2,BD=.所以菱形的面积为×2×=.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.答案:证明:∵∠ACB=90°,DE是BC的中垂线,∴E为AB边的中点.∴CE=AE=BE.∵∠BAC=60°,∴△ACE为正三角形.在△AEF中,∠AEF=∠DEB=∠BAC=60°,而AF=CE,又CE=AE,∴AE=AF.∴△AEF也为正三角形.∴∠CAE=∠AEF=60°.∴AC EF.∴四边形ACEF为平行四边形.又CE=AC,∴平行四边形ACEF为菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?解:(方案一)S菱形=S矩形-4S△AEH=12×5-4××6×=30(cm2).(方案二)设BE=x,则CE=12-x,∴AE=.因为四边形AECF是菱形,则AE2=CE2,∴25+x2=(12-x)2.∴x=.∴S菱形=S矩形-2S△ABE=12×5-2××5×≈35.21(cm2).经比较可知,(方案二)张丰同学所折的菱形面积较大.三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形解析:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形.答案:D2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm解析:因菱形四边相等,所以每边都为8,其对角线平分一组对角,根据一个角是60°,可求得.答案:C3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°解析:由菱形为中心对称图形可知B正确.答案:B4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°解析:因为AE垂直平分BC,所以AB=AC.又因为AB=BC,所以△ABC为等边三角形.∠BAC=60°,∠EAC=30°.同理可证∠FAC=30°,△AEF是等边三角形,所以∠AEF=60°.答案:C5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.8解析:∵ABCD为菱形,∴AB=BC.又∵∠ABC=60°,∴△ABC为等边三角形.∴AB=BC=AC=4,∠ABO=30°,∠AOB=90°.在△AOB中,OB==.∴BD=BO+OD=.答案:B6.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.解:添加条件:对角线相等.理由:连结AC、BD.在△ABC中,∵AE=BE,BF=CF,∴EF为△ABC的中位线.∴EF=.同理可得FG=,GH=,HE=.又∵AC=BD(添加条件),∴EF=FG=GH=HE.故四边形EFGH为菱形.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.答案:证明:在ABCD中,OD=OB,OA=OC,AB∥CD,∴∠OBG=∠ODE.又∵∠BOG=∠DOE,∴△OBG≌△ODE.∴OE=OG.同理OF=OH.∴四边形EFGH是平行四边形.又∵EG⊥FH,∴四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.答案:证明:如图,把菱形花坛分成9个菱形,由此可得至少有一个小菱形里要栽两株花,因为小菱形的对角线长为m,所以至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.答案:证明:∵EF垂直平分AC,∴EF⊥AC,AO=CO.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠AEO=∠CFO.∴△AOE≌△COF.∴OE=OF.∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AFCE是菱形.- 11 -。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)
菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
矩形与菱形同步练习
6.1-6.2 矩形与菱形一、精心选一选(每小题3分,共30分)1.已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是…………( ) A .24cm 2B .32cm 2C .48cm 2D .128cm 22.矩形具有而一般的平行四边形不具有的特征是…………………………………( ) A .对角线相等B .对边相等C .对角相等D .对角线互相平分3.下列图形既是轴对称图形,又是中心对称图形的是……………………………………( ) A .矩形B .直角三角形C .等腰三角形D .平行四边形4.下列条件中,不能判定四边形ABCD 是菱形的是………………………………………( ) A .□ ABCD 中,AB =BC B .□ ABCD 中,AC ⊥BD C .□ ABCD 中,AC =BDD .□ ABCD 中,AC 平分∠BAD5.若直角三角形中两直角边的长分别为12和5,则斜边上的中线是……………………( ) A .13B .6C .6.5D .6.5或66.菱形和矩形都具有的性质是 ……………………………………………………………( ) A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直7.已知:如图,在矩形ABCD 中,DE ⊥AC,∠ADE=21∠CDE,那么∠BDC 等于…………( ) A .60°B .45°C .30°D .22.5°8.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为………………………( )A .23cmB .24cmC2D .29.菱形相邻两角的比为1:2,那么菱形的对角线与边长的比为…………………………( ) A .1:2:3 B .1:2:1C .1:3:2D .1:3:110.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1 处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ) A .3B .2C .3D .32CB AD二、专心填一填(每小题3分,共30分)11.若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为 . 12.如图,四边形ABCD 是平行四边形,使它成为矩形的条件可以是 . 13.若矩形短边长4cm ,两对角线的夹角为60度,则对角线长是 cm .14.如图,在菱形ABCD 中,∠BAD =80度,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 的度数为 .(第12题图) (第14题图) (第16题图) (第17题图)15.顺次连结对角线互相垂直的四边形各边中点所得的四边形是 . 16.如图,一斜坡AB 的中点为D ,BC =1,CD =1.5,则斜坡的坡长 . 17.如图,在扇形中,∠AOB =90度,OA=5,C 是弧AB 上一点,且CD ⊥OB ,CE ⊥OA ,垂足分别为点D 、E ,则DE = .18.菱形OABC在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,B 的坐标为 .19.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==, 则1=∠ 度.(第18题图) (第19题图) (第20题图)20.如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分部分是四边形ABCD,已知∠BAD=30°则重叠部分的面积是 cm 2. 三、耐心做一做(本题有5小题,共40分)21.(本题6分)已知:如图所示,在矩形ABCD 中,AF =BE .求证:DE =CF .1A B CA D CB22.(本题8分)如图 ,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,.(1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).23.(本题8分)如图,在矩形ABCD 中,AC 与BD 相交于一点O ,AE 平分∠BAD,若∠EAO=15°,求∠BOE 的度数.O DCBA。
新人教版八年级下册菱形同步练习、含答案
菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是菱形B .对角线互相垂直的平行四边形是菱形C .对角线互相平分且相等的四边形是菱形D .对角线相等的四边形是菱形2.菱形的周长为12cm ,相邻两角之比为5:1,那么菱形对边间的距离是( ) A .6cm B .1.5cm C .3cm D .0.75cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A .75°B .60°C .45°D .30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A .12 B .8 C .4 D .2 5.菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm二、判断正误:(对的打“√”错的打“×”) 1.两组邻边分别相等的四边形是菱形.…………………………………………………( ) 2.一角为60°的平行四边形是菱形.…………………………………………………( ) 3.对角线互相垂直的四边形是菱形.……………………………………………………( ) 4.菱形的对角线互相垂直平分.…………………………………………………………( )三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于__________cm ,它的面积等于________cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10cm ,则AC =________cm ,BD =________ cm .图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,如图7,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.60°,120°,60°,120° 4.52424 5.10 103 四、证明:∵DE ∥AC ,DF ∥BC∴四边形DECF 为平行四边形∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90°∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形与菱形
1.已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是…………( ) A .24cm 2
B .32cm 2
C .48cm 2
D .128cm 2
2.矩形具有而一般的平行四边形不具有的特征是…………………………………( ) A .对角线相等
B .对边相等
C .对角相等
D .对角线互相平分
3.下列图形既是轴对称图形,又是中心对称图形的是……………………………………( ) A .矩形
B .直角三角形
C .等腰三角形
D .平行四边形
4.下列条件中,不能判定四边形ABCD 是菱形的是………………………………………( ) A .□ ABCD 中,AB =BC B .□ ABCD 中,AC ⊥BD C .□ ABCD 中,AC =BD
D .□ ABCD 中,AC 平分∠BAD
5.若直角三角形中两直角边的长分别为12和5,则斜边上的中线是……………………( ) A .13
B .6
C .6.5
D .6.5或6
6.菱形和矩形都具有的性质是 ……………………………………………………………( ) A .对角线相等
B .对角线互相平分
C .对角线平分一组对角
D .对角线互相垂直
7.已知:如图,在矩形ABCD 中,DE ⊥AC,∠ADE=2
1∠CDE,那么∠BDC 等于…………( ) A .60°
B .45°
C .30°
D .22.5°
8.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为………………………( )
A .23cm
B
.24cm
C
2
D .2
9.菱形相邻两角的比为1:2,那么菱形的对角线与边长的比为…………………………( ) A .1:2:3 B .1:2:1
C .1:3:2
D .1:3:1
10.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,
∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1 处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ) A .3
B .2
C .3
D .32
二、专心填一填(每小题3分,共30分)
11.若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为 .
12.如图,四边形ABCD 是平行四边形,使它成为矩形的条件可以是 .
C
B A
D
13.若矩形短边长4cm ,两对角线的夹角为60度,则对角线长是 cm .
14.如图,在菱形ABCD 中,∠BAD =80度,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,
连接DF ,则∠CDF 的度数为 .
(第12题图) (第14题图) (第16题图) (第17题图)
15.顺次连结对角线互相垂直的四边形各边中点所得的四边形是 . 16.如图,一斜坡AB 的中点为D ,BC =1,CD =1.5,则斜坡的坡长 . 17.如图,在扇形中,∠AOB =90度,OA=5,C 是弧AB 上一点,且CD ⊥OB ,CE ⊥OA ,垂
足分别为点D 、E ,则DE = .
18.菱形OABC
在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,B 的坐
标为 .
19.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==, 则1=∠ 度.
(第18题图) (第19题图) (第20题图)
20.如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分部分是四边形ABCD,已知
∠BAD=30°则重叠部分的面积是 cm 2
. 三、耐心做一做(本题有5小题,共40分)
21.(本题6分)已知:如图所示,在矩形ABCD 中,AF =BE .
求证:DE =CF .
22.(本题8分)如图 ,ABCD 是菱形,对角线AC 与BD 相交于O ,
306ACD BD ∠==°,.
(1)求证:△ABD 是正三角形;
1
A B C
O D
C
B
A
A D C
B
(2)求 AC 的长(结果可保留根号).
23.(本题8分)如图,在矩形ABCD 中,AC 与BD 相交于一点O ,AE 平分∠BAD,
若∠EAO=15°,求∠BOE 的度数.
24.(本题8分)工人师傅做铝合金窗框分下面三个步骤进行:
(1)
先截出两对符合规格
的铝合金窗料
(如图①),使AB =CD ,EF =GH ;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是
.
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是 .
25.(本题10分)已知,一张矩形纸片ABCD 的边长分别为9cm 和3cm ,把顶点A 和C 叠合在一起,得折痕
EF (如图).
(1)猜想四边形AECF 是什么四边形,并证明你的猜想. (2)求折痕EF 的长.
①
一、选择题
二、填空题
11、22cm或26m
12、AC=BD或∠ABC=90度(或其他三个角也可以)
13、8
14、60度
15、矩形
16、1:22
17、5
18、(2+1,1)
19、120度
20、2
三、解答题
21、略
22、(1)略
(2)AC=63
23、75度
24、(2)平行四边形,两组对边分别相等的四边形是平行四边形。
(3)矩形,有一个为直角的平行四边形为矩形。
25、(1)菱形,可证四边形AECF的四边相等。
(2)10。