1.15.1.2.1分式的基本性质
分式的基本性质
分式的概念和性质【要点梳理】要点一:分式的概念★一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母,0≠B ,例如:x a ,x S ,yx b a ++,…都是分式. 要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况. (3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 【例1】下列式子中,哪些是整式?哪些是分式?2a ,3x ,1m m +,23x +,5π,2a a ,23-.【变式1.1】指出下列各式中的整式与分式:x 12,y x +1,2b a +,πx ,132-x ,32-,223y +-,x x 2,42y . 【变式1.2】在-3x ,x y ,23x 2y ,-7xy 2,-32,,855x a b y -+中属于分式的是_______.【变式1.3】下列代数式属于分式的是( )A .2xB .)(31y x +C .12.4x yD π-要点二:求分式的值★将给定字母的值代入分式可求得分式的值,分支的值是由字母的取值确定的,分式的值分式中字母取值的变化二变化.要点三:分式有意义,无意义或等于零的条件★分式有意义的条件:分母不等于零. ★分式无意义的条件:分母等于零.★分式的值为零的条件:分子等于零且分母不等于零. 要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值. 【例2】下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239mm --.【变式2.1】若分式11x x -+有意义,则x 的取值范围是 . 【变式2.2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.【变式2.3】当x 取什么数时,下列分式有意义?当x 取什么数时,下列分式的值为零?(1)12+x x ;(2)25x x -;(3)5102--x x .要点四:分式的基本性质★分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.【例3】写出下列等式中未知的分子或分母 (1)ba ab b a 2)(=+;(2)) (1)(=-y x x x .【变式3.1】不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-. 【变式3.2】如果把分式中的都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式3.3】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----. 要点五:分式的符号法则★分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变.改变其中任何一个或三个,分式的值为原分式值的相反数. ★式子表示B A B A B A B A --=--=--=或BAB A B A B A -=-=---=- 要点诠释:(1)分子、分母是多项式时,分子、分母的符号是整个多项式的符号,应注意加括号,特别注意,不要把多项式中第一项的符号当成整个分子或分母的符号. (2)根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.【例4】不改变分式的值,使下列分式的分子和分母不含“-”号.(1)2a b -;(2)45x y --;(3)3m n -;(4)23b c--.典型例题题型一:分式的定义【练习1.1】在π1、21、πxy 3、y x y x 3232+-、512+x 、abn m 7-中,分式的个数有( )A .2个B .3个C .4个D .5个【练习1.2】代数式x -,y x -4,yx +,π22+x ,y y 372,a b 55,x -89中是分式的有( ) A .1个B .2个C .3个D .4个yx x232-y x ,【练习1.3】式子31,x 1,y x +2,πxy 2,232+x 中,分式的个数为( )A .2B .3C .4D .5【练习1.4】在下列式子:x 5-,b a +1,222121ba -,mb a 10+,22+π中,分式有( ) A .1个B .2个C .3个D .4个【练习1.5】下列各式中,分式的个数有( )83+x ,32+a b ,132++πy x ,21--m ,22)()(y x y x +-x12- A .2个B .3个C .4个D .5个【练习1.6】在代数式22+π,51x +,21x x +-,22-x 中,分式有( ) A .1个B .2个C .3个D .4个【练习1.7】下列各代数式x 2,y x 221,422b a -,51+a ,5am +中,分式有( ) A .1个B .2个C .3个D .4个【练习1.8】在式子a 1,πxy 2,4332c b a ,x +55,87y x +,xx 2中,分式的个数是( ) A .2B .3C .4D .5【练习1.9】下列式子x 1,212+x ,πba +,y x 13+,m m 22中,是分式的有( )A .2个B .3个C .4个D .5个【练习1.10】下列式子:x 5-,b a +1,222121ba -,m 103,π2,其中分式有( ) A .1个B .2个C .3个D .4个【练习1.11】下列式子中:x 3,π23-a ,25320+b ,32y x ,m n-,分式的个数是( )A .1B .2C .3D .4【练习1.12】下列各式n m 2,y x xy +,32y x -,a b a -2,y x x xy ++2,,分式有( )A .1个B .2个C .3个D .4个【练习1.13】在y x 2,π52ab ,103xy ,m n m +,acb +-5中,分式有( )A .2个B .3个C .4个D .5个【练习1.14】在式子a 1,πxyz 2,5423c b a ,x +65,87y x +,xyyx 3中,分式的个数是( ) A .5 B .4C .3D .2【练习1.15】在58,n m 3,3y x +,x 1,ba +3中,分式的个数是( )A .1B .2C .3D .4题型二:分式有意义的条件 【练习2.1】要使分式21+x 有意义,则x 的取值应满足( ) A .2-=xB .2≠xC .2->xD .2-≠x【练习2.2】无论a 取何值时,下列分式一定有意义的是( )A .221a a +B .21aa +C .112+-a aD .112+-a a 【练习2.3】若代数式4+x x有意义,则实数x 的取值范围是( ) A .0=x B.4=xC .0≠xD .4-≠x【练习2.4】若分式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >﹣2 B .x <﹣2C .x =﹣2D .x ≠﹣2【练习2.5】若代数式31-x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3C .x ≠3D .x =3【练习2.6】分式)2)(1(3-+-x x x 有意义,则x 的取值范围是( )A .x ≠2B .x ≠2且x ≠3C .x ≠﹣1或x ≠2D .x ≠﹣1且x ≠2【练习2.7】若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4【练习2.8】使分式23+x x有意义的x 的取值范围为( ) A .x ≠﹣2B .x ≠2C .x ≠0D .x ≠±2【练习2.9】分式)1)(2(42-+-x x x 有意义的条件是( )A .x ≠﹣2或x ≠1B .x ≠﹣2且x ≠1C .x ≠﹣2D .x ≠1【练习2.10】如果分式32+x x有意义,那么x 的取值范围是 . 【练习2.11】要使分式21+x 有意义,则x 的取值范围为 .【练习2.12】若分式121-x 有意义,则x 的取值范围是 .【练习2.13】使分式22-x 有意义的x 的取值范围是 .【练习2.14】若式子0)4(3-+-x x x 有意义,则实数x 的取值范围是 . 【练习2.15】若分式21-+x x 无意义,则x = . 【练习2.16】要使分式x-23有意义,则x 的取值范围是 .题型三:分式的值为0的条件【练习3.1】若分式112--x x 的值为零,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.2】如果分式11+-x x 丨丨的值为0,那么x 的值为( ) A .﹣1B .1C .﹣1或1D .1或0【练习3.3】若分式112+-x x 的值为0,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.4】若分式4242--x x 的值为零,则x 等于( )A .2B .﹣2C .±2D .0【练习3.5】分式33+-x x 丨丨的值为零,则x 的值为( )A .3B .﹣3C .±3D .任意实数【练习3.6】若分式3312+-x x 的值为0,则x 应满足的条件是( )A .x =﹣1B .x ≠﹣1C .x =±1D .x =1【练习3.7】如果分式xx x 222+-丨丨的值等于0,则x 的值是( )A .2B .﹣2C .﹣2或2D .2或0【练习3.8】已知分式3312+-x x 的值等于零,则x 的值为( )A .1B .±1C .﹣1D .12【练习3.9】分式24+-x x 的值为0,则( ) A .x =﹣2B .x =±2C .x =2D .x =0【练习3.10】能使分式122--x xx 的值为0的所有x 的值是( )A .x =0B .x =1C .x =0或x =1D .x =0或x =±1【练习3.11】若分式)1)(2(1+--x x x 丨丨的值为0,则x 等于( )A .﹣1B .﹣1或2C .﹣1或1D .1【练习3.12】要使分式9392+-x x 的值为0,你认为x 可取得数是( )A .9B .±3C .﹣3D .3【练习3.13】使分式112+-x x 的值为0,这时x 应为( )A .x =±1B .x =1C .x =1 且 x ≠﹣1D .x 的值不确定【练习3.14】若分式xx 42-的值为0,则x 的值是( )A .2或﹣2B .2C .﹣2D .0【练习3.18】若分式33+-x x 丨丨的值为零,则x 的值为 . 【练习3.25】若式子)2)(1(12+--x x x 的值为零,则x 的值为 .【练习3.26】当x = 时,分式325+-x x 的值为零. 【练习3.29】若a ,b 为实数,且0416)2(22=+-+-b b a 丨丨,求3a ﹣b 的值. 题型四:分式的值 【练习4.1】若分式211=-y x ,则分式yxy x y xy x ---+3454的值等于( ) A .−35B .35C .−45D .45【练习4.2】已知0432=--x x ,则代数式42--x x x的值是( ) A .3 B .2 C .13D .12【练习4.3】已知211=+y x ,则xyy x xy 32-+的值为( ) A .12B .2C .−12D .﹣2【练习4.4】若411=-y x ,则分式yxy x y xy x ---+2232的值是( ) A .112B .56C .32D .2【练习4.5】已知ab b a 622=+,,且ab ≠0,则abb a 2)(+的值为( )A .2B .4C .6D .8【练习4.6】若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个B .4个C .6个D .8个【练习4.7】横坐标和纵坐标都是整数的点叫作整点,函数1236-+=x x y 的图象上的整点的个数是( ) A .3个B .4个C .6个D .8个【练习4.8】若分式5122+-x x 的值为正数,则x 的取值范围是( ) A .x >12B .x <12C .x ≥12D .x 取任意实数【练习4.9】如果m 为整数,那么使分式12+m 的值为整数的m 的值有( ) A .2个B .3个C .4个D .5个【练习4.10】若x 是整数,则使分式1228-+x x 的值为整数的x 值有( )个. A .2B .3C .4D .5【练习4.11】若31=+x x,则=++1242x x x . 【练习4.12】若x 31=+x x ,则12++x x x的值是 . 【练习4.13】若211=+n m ,则分式nm mnn m ---+255的值为 .【练习4.14】若c b a 432==,且0≠abc ,则bc ba 2-+的值是 .【练习4.15】已知:0142=-+x x ,则1242++x x x 的值为 .【练习4.16】已知572z y x ==,则代数式zx zy x +-+32的值是 . 【练习4.17】若代数式112++x x 的值为整数,则满足条件的整数x 为 .【练习4.18】分式3322-++x x x 的值为负数,则x 的取值范围是 .【练习4.19】已知x 为整数,且分式1)1(22-+x x 的值为整数,则x 可取的所有值为 .【练习4.20】已知072=++z y x ,032=--z y x (0≠xyz ),则=+-++zy x zy x .【练习4.21】若分式326+-x 的值为负数,则x 的取值范围是 .【练习4.22】若分式2)5(4-+x x 的值为负数,则x 的取值范围是 . 【练习4.23】若分式1222--x x 的值为整数,则整数x = .【练习4.25】已知32=-yxx y ,则=---22222623x y y xy x . 【练习4.26】已知2=ba,则ab a b a --222的值 .【练习4.27】已知023=--z y x ,082=-+z y x ,则=+-+yzxy z y x 222 . 【练习4.28】阅读下面的解题过程:已知3112=+x x ,求142+x x 的值. 解:由3112=+x x ,知0≠x ,所以312=+x x ,即31=+x x 所以72312)1(11222224=-=•-+=+=+x x x x x x x x 所以142+x x 的值为71说明:该题的解法叫做“倒数法” 请你利用“倒数法”解下面题目:已知:4222=--x x x.求(1)xx 2-的值;(2)46242+-x x x 的值.【练习4.29】我们知道,假分数可以化为整数与真分数的和的形式,例如:21123+=. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像21-+x x ,22+x x ,…,这样的分式是假分式;像21-x ,12-x x,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式. 例如:23123)2(21-+=-+-=-+x x x x x ;24224)2)(2(22++-=++-+=+x x x x x x x . 解决下列问题: (1)将分式32+-x x 化为整式与真分式的和的形式为: .(直接写出结果即可) (2)如果分式322++x xx 的值为整数,求x 的整数值.【练习4.30】已知:代数式14-m . (1)当m 为何值时,式子有意义? (2)当m 为何值时,该式的值大于零? (3)当m 为何整数时,该式的值为正整数? 题型五:分式的基本性质 【练习5.1】若分式yx yx 232-的x 和y 均扩大为原来各自的10倍,则分式的值( ) A .不变B .缩小到原分式值的101 C .缩小到原分式值的1001D .缩小到原分式值的10001【练习5.2】如果分式ba a +2中的a ,b 都同时扩大2倍,那么该分式的值( )A .不变B .缩小2倍C .扩大2倍D .扩大4倍【练习5.3】下列各式从左到右的变形正确的是( )A .322322323.02.0a a aa a a a a --=--B .yx x y x x --=-+-11C .263631211+-=+-a a a aD .b a ba ab -=+-22 【练习5.4】根据分式的基本性质,分式ba a--可变形为( ) A .ba a--B .ba a + C .ba a--D .ba a +-【练习5.5】分式x-22可变形为( ) A .x +22 B .x +-22 C .22-x D .22--x【练习5.6】如果把分式abba 623-中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( )A .不变B .缩小到原来的21C .扩大为原来的2倍D .扩大为原来的4倍【练习5.7】如果把分式xyyx +中的x ,y 同时扩大为原来的4倍,那么该分式的值( ) A .不变 B .扩大为原来的4倍C .缩小为原来的21 D .缩小为原来的41 【练习5.8】如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .不变D .缩小2倍【练习5.9】下列变形从左到右一定正确的是( )A .22--=b a b aB .bcac b a =C .22ba b a =D .ba bx ax = 【练习5.10】如果把分式nm n-3中的m 和n 都扩大3倍,那么分式的值( ) A .不变B .扩大3倍C .缩小3倍D .扩大9倍【练习5.11】化简3422222++••-n nn ,得( )A .8121-+n B .12+-nC .87D .47 【练习5.12】若分式ba a+2中的a 、b 的值同时扩大到原来的10倍,则分式的值( ) A .是原来的20倍B .是原来的10倍C .是原来的101 D .不变【练习5.13】如果把分式yx x232-中的x ,y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .扩大2倍【练习5.15】下列各式中,正确的是( ) A .212+=+a b a b B .22++=a b a b C .cb ac b a +-=+- D .22)2(422--=-+a a a a 【练习5.16】把分式xyyx 33-中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的一半【练习5.17】若c b a 543==,则分式=+++-222c b a ac bc ab . 【练习5.18】已知432zy x ==,则=+--+z y x z y x 232 . 【练习5.19】如果分式22532y x x+的值为9,把式中的x ,y 同时扩大为原来的3倍,则分式的值是 .【练习5.22】我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:121121112111-+=-+--=-+-=-+x x x x x x x x . (1)请写出分式的基本性质 ; (2)下列分式中,属于真分式的是 ;A .12-x xB .11+-x xC .123--x D .1122-+x x (3)将假分式132++m m ,化成整式和真分式的形式.【练习5.23】(1)yxy x 3532=() (2)()x x x -=--121。
分式的概念及基本性质分式的运算
分式的概念及基本性质分式的运算1. 知识精讲及例题分析(一)知识梳理1.分式的概念形如一(A、B是整式,且B中含有字母,B 0 )的式子叫做分式。
其中A叫分式的分子,B叫分式的B分母。
注:(1)分式的分母中必须含有字母(2)分式的分母的值不能为零,否则分式无意义2. 有理式的分类单项式有理式整式多项式分式3. 分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
A A M A A M,(M为整式,且M 0)B B M B B M4. 分式的约分与通分(1)约分:把一个分式的分子与分母的公因式约去,叫分式的约分。
步骤:①分式的分子、分母都是单项式时②分子、分母是多项式时(2)通分:把n个异分母的分式分别化为与原来的分式相等的同分母的分式,为进行分式加减奠定基础。
通分的关键是准确求出各个分式中分母的最简公分母,即各分母所有因式的最高次幕的积。
求最简公分母的步骤:①各分母是单项式时②各分母是多项式时5. 分式的运算(1)乘除运算(2)分式的乘方(3)分式的加减运算(4)分式的混合运算【典型例题】例1.下列有理式中,哪些是整式,哪些是分式。
例2.下列分式何时有意义(1)1|x| 1 (3)4xx2 1x~2 ~x 2xab21 a a ,x,3x x 1 1 ,厂y,,;(x1y),(ayb),例3.下列分式何时值为零F列各式中x为何值时,分式的值为零?(1) 4x 33x(2)x22 |x|1)(x 2)1. 填空。
(1)x xy /(y0) x1( )(3) x y(2 2) (x y 0) x y x y2.3xy-2 ~x 2xa2ab(4)h( )x 2a b( ) 不改变分式的值,将下列分式的分子、分母中的系数化为整数。
(1)0.3x y0.02x 0.5y11x—y(2)3412—x—y23例5.约分(1) 21a3b5c56a2b10d(2)3ab(a b)612a(b a)(3) x2 4x 4 2 2(3a 2a )(3 2a a )2 2(a a)(2a 5a 3)(1)3512 ,2 4a b6b2c2ac(2)x 2x32x x2x 2 2 8 4x例6.通分:1 1例7.分式运算 1. 计算:⑴羊(診a 2 43a 242. 3. 5. 6. (3)计算: x 2 2xy y 2(1)(计算:计算:计算:xy2xy y x 22xy(4) (abb 2)b 2a 8)(弓ab)7 aU )6 ;(2)x )2 (y 22~~2-x4.a 22a 3计算:1x 2 4x 4(x1)2 2x 3x 2 x 17.计算: 22x y2例8.能力提高题2 211.已知X 2 3x 1 0,求X 2牙的值。
分式的基本性质-初中数学知识点
分式的基本性质
1.分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
1 / 1。
初二数学分式的性质重要知识点总结
初二数学分式的性质重要知识点总结
初二数学分式的性质重要知识点总结
在代数式的计算中,分式的性质知识要领运用还是很广泛的。
分式的性质
1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=(A*C)/(B*C),A/B=(A÷C)/(B÷C)(A,B,C为整式,且B、C≠0)。
2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
3.分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的'提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
5.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。
6.分式的通分步骤:
先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。
同时各分式按照分母所扩大的倍数,相应扩大各自的分子。
注:最简公分母的确定方法:
系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。
分式的约分和通分是一组相反的运算过程,但其的最终目的都是一致的。
分式的基本性质是什么
分式的基本性质是什么
分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
一、分式的基本性质
1、分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
2、分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用。
3、分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
4、在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
这里,分母是指除式而言。
而不是只就分母中某一个字母来说的。
二、分式条件
1、分式有意义条件:分母不为0。
2、分式值为0条件:分子为0且分母不为0。
3、分式值为正(负)数条件:分子分母同号得正,异号得负。
4、分式值为1的条件:分子=分母≠0。
5、分式值为-1的条件:分子分母互为相反数,且都不为0。
三、代数式分类
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
八年级下册数学分式的基本性质的知识点
八年级下册数学分式的基本性质的知识点
八年级下册数学分式的基本性质的知识点
在学习中,很多人都经常追着老师们要知识点吧,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家更高效的学习,下面是店铺整理的八年级下册数学分式的基本性质的知识点,欢迎阅读,希望大家能够喜欢。
1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
单项式整式多项项分式
AAMAM
用式子表示为:B=BM=BM,其中M(M≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的.公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
分式的基本性质
分式的基本性质分式是数学中常见的一种表示形式,它可以表示两个数之间的比例或者部分与整体之间的关系。
在分式中,有一些基本的性质需要我们了解和掌握。
本文将介绍分式的基本性质,并通过具体的例子来加深理解。
1. 分式的定义分式是由分子和分母构成的数字表达形式。
分子表示被分割的部分,分母表示整体的数量或者大小。
分式通常用斜线表示分子和分母的关系,例如a/b。
2. 分式的约束条件分式在表示数值时需要满足一定的约束条件:•分子和分母必须是实数。
•分母不能为零,否则分式无意义。
3. 分式的简化对于一个分式而言,如果它的分子和分母存在一个公因数,那么我们可以将其约分为一个最简分式。
简化一个分式的好处在于更好地理解和计算分式的值。
例如,对于分式12/18,我们可以将其约分为最简分式2/3。
这是因为12和18都可以被6整除。
4. 分式的乘法和除法运算分式的乘法运算是指将两个分式相乘得到一个新的分式。
乘法运算中需要注意以下几点:•分子与分子相乘,分母与分母相乘。
•若两个分式的分子和分母都可以约分,则先约分再相乘。
例如,计算分式3/5 * 4/7:3/5 * 4/7 = (3*4)/(5*7) = 12/35分式的除法运算是指将一个分式除以另一个分式得到一个新的分式。
除法运算中需要注意以下几点:•分子与除数的分子相乘,分母与除数的分母相乘。
•若除数的分子和分母都可以约分,则先约分再相乘。
例如,计算分式5/8 ÷ 2/3:5/8 ÷ 2/3 = (5/8) * (3/2) = (5/8 * 3/2) = (5*3) / (8*2) = 15/165. 分式的加法和减法运算分式的加法运算是指将两个分式相加得到一个新的分式。
加法运算中需要注意以下几点:•将两个分式的分母取公倍数,然后将各自的分子相加。
•若得到的分子与分母都可以约分,则约分为最简分式。
例如,计算分式1/4 + 1/3:1/4 + 1/3 = (1*3 + 1*4) / (4*3) = 7/12分式的减法运算是指将一个分式减去另一个分式得到一个新的分式。
第一讲 分式的基本性质
第一讲 分式的基本性质学习目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件3. 理解分式的基本性质.4.会用分式的基本性质进行通分、约分、化简一、知识回顾知识点1、与分式有关的条件①分式有意义:分母≠0②分式无意义:分母=0③分式值为0:⎩⎨⎧≠=00分母分子) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点2分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
知识点3、分式的约分◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.知识点5、分式的通分◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2、取各个公因式的最高次幂作为最简公分母的因式课前热身.1.用式子表示分式的基本性质:____________________________.2.对于分式122x x -+(1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立;2)2()(22+=+-a a a4.x x x 3222+= ()3+x5.化简:233812a b c a bc =_______。
分式的基本性质
分式的基本性质关键信息项:1、分式的定义2、分式的基本性质的表述3、分式基本性质的应用范围4、分式变形的原则和限制5、分式约分和通分的规则11 分式的定义分式是指形如 A/B(其中 A、B 是整式,且 B 中含有字母)的式子。
111 分式中,A 称为分子,B 称为分母。
112 分母不能为零,否则分式无意义。
12 分式的基本性质的表述分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
121 用式子表示为:A/B =(A×C)/(B×C) ,A/B =(A÷C)/(B÷C)(其中 C 为不等于零的整式)。
13 分式基本性质的应用范围分式的基本性质在分式的化简、计算、变形等方面有着广泛的应用。
131 在分式的约分中,通过找出分子和分母的公因式,并将其约去,从而将分式化为最简分式。
132 在分式的通分中,根据分式的基本性质,将不同分母的分式化为相同分母的分式,以便进行加减运算。
14 分式变形的原则和限制分式变形必须遵循分式的基本性质,且保证变形前后分式有意义。
141 变形时,所乘(或除以)的整式不能为零。
142 不能随意改变分式的值。
15 分式约分和通分的规则151 约分规则首先找出分子和分母的公因式,然后将分子和分母同时除以公因式。
1511 公因式的确定方法包括系数取最大公约数,字母取相同字母的最低次幂。
1512 约分的结果必须是最简分式,即分子和分母没有公因式。
152 通分规则先求出各个分式分母的最简公分母。
1521 最简公分母的确定方法是取各分母系数的最小公倍数,相同字母取最高次幂,所有不同字母都写在积里。
1522 将每个分式的分子和分母乘以适当的整式,使它们的分母都化为最简公分母。
总之,分式的基本性质是分式运算和变形的重要依据,在学习和运用分式时,必须准确理解和熟练掌握这一性质,以确保分式运算和变形的正确性。
同时,要注意在变形过程中遵循相关的规则和限制,保证分式的有意义和结果的准确性。
分式的基本性质
b
(2ab b2 ) a2b
b
,
x2
x 2x
( 1 )
x2
x
分式性质应用3
不改变分式的值,使下列分子与分母都不 含“-”号
2x , 3a , 10m 5y 7b 3n
2x , 3a , 10m 5y 7b 3n
有什么发现?
变号的规则是怎样 的?
符号法则:
a a a b b b
) a2b
(2)x
2
x2
xy
( x y ) ,
x2
x 2x
( ) x2
观察
×a
(1)a b ab
(a2 ab ) a2b
分母:ab ×a a2b
填空:
(1)a b ab
(a2 ab ) a2b
x
(2)x
2
x2
xy
x y
( x )
,
2a a2
上述性质可以用式子表示为:
A AC B BC
A AC B BC
(C≠0) 其中A , B , C是整式.
分式性质应用1
例1 下列等式的右边是怎样从左边得到的?
(1) a ac c 0
2b 2bc
x3 x2
(2)
xy y
解: (1) 由 c 0 ,
知
a a c ac 2b 2b c 2bc
6
4
2
分子、分母约去公约数3
那么分式的约分是否也类似呢? 灰太狼a天吃的包子÷喜羊羊a天吃的包子
2m a 2 (ma) 2 3m a 3 (ma) 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课教学
[思考]:下列两式成立吗?为什么?
3 3c (c 0) 4 4c
分数的基本性质:
5c 5 (c 0) 6c 6
分数的分子与分母同时乘以(或除以) 一个不等于0的数,分数的值不变.
a 即;对于任意一个分数 b 有:
× √ × √
填 空: 1 ( ) ( 1) 2 xy 2xy ( ) 3x ( 2) 2 2 xy x y 30m 5m n ( 3) 24n ( ) 2 ab b ab ( 4) 2 ab b ( )
2 2
2a b ( ) b(2a b) 2ab b 2 2 2 2 a ab a b ab
2
2
x xy x y ( x xy) x x y ( ) 2 2 x x x x xx 1 x ( ) 2 2 x 2 x x 2 ( x 2 x) x x 2
15.1 分式
15.1.2 分式的基本性质
第1课时 分式的基本性质
复习回顾
1、分式的概念:
(1) 下列各式中,属于分式的是( B ) A、 x 1 2
2 B、 x 1
a 1 2 C、 x y D、 2 2
2、分式有意义:
2x (1)x取何值时,分式 2 有意义; x 4
3、分式的值为零:
为什么给出 c 0 ?
解: (1) 由 c 0 , a a c ac 知 2b 2b c 2bc .
(2) 由 x 0,
3 3 2 x x x x 知 . xy xy x y
为什么本题未给 x 0 ?
例2 填空 ab (
ab
Байду номын сангаас
)
2
ab
a(a b) a ab 2 aa b ab
a ac a ac (c b bc b bc
0)
a 1 你认为分式“ ”与“ ”;分式 2a 2 2 n n “ ”与“ ”相等吗? m mn (a,m,n 均不为0)
类比分数的基本性质,你能得到分式 的基本性质吗?说说看!
类比分数的基本性质,得到:
分式的基本性质:
分式的分子与分母同时乘以(或除以)同
一个不等于0的整式 ,分式的值不变.
用公式表示为: A AM A A M , . B BM B B M (其中M是不等于零的整式)
例1 下列等式的右边是怎样从左边得到的?
(1)
a ac c 0 2b 2bc
(2)
x3 x 2 xy y
不改变分式的值,使下列分子与分母都不 含“-”号 ⑴
2x 5y
⑵
3a 7b
⑶
10m 3n
[小结]:
分式的符号法则:
( 1)
b b a a
( 2)
b b b a a a
例4:不改变分式的值,把下列各式的分子 与分母的各项系数都化为整数。
0.0 1x 0.5 ( 1 ) 0.3x 0.4 3 2a b 2 ( 2) 2 ab 3
B.不变 D.缩小四倍 和
xy 2.若把分式 中的 x y 的值( A ).
A.扩大3倍 C.扩大4倍
y
都扩大3倍,那么分式
B.扩大9倍 D.不变
c c 1) ab ab 判 c c 2) a b a b 断 xy xy 3) 题: xy xy xy xy 4) xy xy
例5:不改变分式的值,使下列各式的分子 与分母中的多项式按x的降幂排列,且首项的系 数是正数.
3x 2x 1 1 x , 2 , 2 2 1 x x 3x 2 2x x 3
巩固练习
y 的 和 都扩大两倍,则分式的值( 1.若把分式 x y
x y x
B
)
A.扩大两倍 C.缩小两倍