一次函数的应用教学反思

合集下载

一次函数的图像和性质教学反思1

一次函数的图像和性质教学反思1

一次函数的图像和性质教学反思一次函数的图像和性质教学反思(精选16篇)一次函数的图像和性质教学反思篇1我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:1、理解正比例函数和一次函数的意义。

2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。

3、能根据已知条件确定一次函数的表达式。

下面对这节课反思如下:1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。

2、学生展示的少,老师没有放手给学生,没有让学生去经历知识的获取过程。

3、起点过高,把学生的基础估量过高,不能面对的多数学生。

没有本着低起点,小步伐,慢节奏的方式方法进行教学。

4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的过程,并且根据图像去解决一些问题。

5、用展台展示不太清晰,没有让学生画在黑板上效果好。

6、老师应该把课堂还给学生,让学生多做多讲。

不可以有老师太多的讲解。

7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。

8、要仔细钻研教材和课标,以及考试说明,备好课。

这是上好课的前提。

9、没有注重方法的总结。

总之,还有诸多地方需要改进,我会在今后的教学中加以注意。

一次函数的图像和性质教学反思篇2根据教学目标,结合学生心理特点,以及本人的教学阅历,这节课主要采纳在老师引导下,学生自主发现为主的教学方法。

即老师创设问题情景,激发学生思维,引导学生观察、比较、思考并分组展开讨论,使学生作为认知主体参加知识发生的全过程,体验揭示规律,发现真理的乐趣,,提高课堂教学效率,充分发挥老师主导作用和学生的主体作用。

在整个探索新知的过程中主要培育学生的合作精神。

本节课老师要向学生说明讨论函数的基本方法是由函数表达式画图象,再由图象得出性质,最后反过来由函数性质讨论其图象的其他特征。

为此,这节课首先从学生已经认知的正比例函数和一次函数的概念出发,得出其定义式,以及两者特殊与一般的关系。

一次函数的应用教学反思

一次函数的应用教学反思

一次函数的应用教学反思
一次函数的应用教学反思
一、教学的成功体验
本节课的教学方法主要有启发引导、自主探究、小组讨论及分层教学等,教学中让学生积极参与知识的形成过程,体验到新知识与旧知识之间的联系,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,培养了他们探索问题的能力。

二、存在的问题与不足
1、由于所班级中数学基础大多较差,缺乏学习积极性,行为习惯、学习习惯等方面存在许多不足之处。

课堂教学还有诸多不满意,如后进面较大、小组讨论还流于形式、运算能力较低等。

2、由于学校没有信息技术教学设备,课堂教学手段还处于传统方式阶段,未能将信息技术与课程结合起来,使得教学内容与过程显得枯燥、抽象,不利于学生理解掌握本节课的所学知识。

一次函数教学反思

一次函数教学反思

一次函数教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、规章制度、应急预案、条据书信、合同协议、评语大全、演讲致辞、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, rules and regulations, emergency plans, policy letters, contract agreements, comprehensive reviews, speeches, insights, teaching materials, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!一次函数教学反思一次函数教学反思(通用10篇)通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

一次函数的应用教学反思

一次函数的应用教学反思

一次函数的应用教学反思函数是描述现实世界中变化规律的数学模型。

而二次函数在初中数学中占有重要的地位,同时也是高中数学学习的基础,作为初、高中数学衔接的内容,二次函数在中考命题中一直是“重头戏”,二次函数和一次函数的综合应用就成了中考的热点。

这节课的教学重点是二次函数的性质和一次函数的性质的灵活运用;难点是怎样建立二次函数和一次函数的关系。

教学目的及过程:首先复习了二次函数和一次函数的有关基础知识,二次函数的定义、开口方向、对称轴、顶点坐标及函数的增减性。

一次函数的定义、图像及函数的增减性。

采用特值法的形式检验学生的基础知识掌握情况,采取这样的方法学生易懂。

由于本节课是二次函数与一次函数的综合应用问题,重在通过学习总结解决问题的方法,以“启发探究式”为主线开展教学活动。

以小组合作探究为主体,使每个学生都能够动手动脑参与到课堂活动中,充分调动学生学习的积极性和主动性,促使学生能够理解和建构二次函数与一次函数的关系,在建构关系的过程中让学生体验从问题出发到列二元一次方程组的过程,体验用函数思想去描述、研究量与量之间的关系,达到不但使学生学会,而且使学生会学的目的例题设计:在平面直角坐标系x中,过点(0,2)且平行于x轴的直线,与直线=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:=x2+bx+c经过点A,B (1)求点A,B的坐标(2)求抛物线C1:的表达式即顶点坐标(3)若抛物线C2:=ax2(a≠0)与线段AB恰有一个公共点,结合函数图像,求a取值范围。

存在的问题:一、复习过程中才发现有极少部分中等偏下的学生记不住抛物线的顶点坐标公式,还有的学生把抛物线的顶点坐标和所学过的一元二次方程求根公式相混淆,发现有的学生没有真正的理解抛物线的顶点坐标是怎么推导得来的。

二、在课堂教学实践中发现,学生的认知和老师的想象是不一样的,如,在求a取值范围的时候,百分之九十五的学生都沉默不语,为什么?反思:一、教师既要站在学生的角度思考问题,也要从教师的角度考虑安排每堂课的整体设计。

一次函数的教学反思

一次函数的教学反思

一次函数的教学反思这次作者给大家整理了一次函数的教学反思(共含13篇),供大家阅读参考。

篇1:一次函数教学反思教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。

在得出结论之后,让学生能运用“ 两点确定一条直线” ,很快做出一次函数的图像。

在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。

本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。

本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识。

在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。

但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“ 随着 x 值的增大, y 的值分别如何化?” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。

一次函数的应用反思

一次函数的应用反思

一次函数的应用(3)教学反思
函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,进一步体现了“问题情境——建立数学模型——应用与拓展”的模式.让学生从实际问题中抽象出函数及一次函数的概念、图象、性质,进而利用一次函数及其图象解决有关现实问题.
本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.。

一次函数教学反思通用[15篇]

一次函数教学反思通用[15篇]

一次函数教学反思通用[15篇]一次函数教学反思1一、结合实际,引入概念正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。

本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数叫做正比例函数。

在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。

然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。

这里大部分学生能够从形式上正确判断,即达到了“了解”目的。

二、直观教学,激发主体探索。

(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。

(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。

当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。

学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。

(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的.k值,随着b值的不同,函数图象上移或下移。

学生在观看动画的过程中理解函数图象平移的规律。

三、修正教学设计,改善教学。

环节一、正比例函数、一次函数的概念教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。

需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。

环节二、一次函数的图象原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。

这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。

一次函数的应用教学反思.doc

一次函数的应用教学反思.doc

一次函数的应用教学反思反思一:一次函数的应用本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性。

在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择解决问题的办法。

本节课也存在一些应该深刻的反思和改进的地方。

例如在探究活动中有些问题处理的有些仓促,有些问题的指向性有些太明确,需要今后加强。

另外,今后教学中还应该更多地关注学生的发展和提升。

多用幽默和鼓励性的语言激励学生。

总之,本节课着力做到课堂是数学活动的场所,是师生共同成长的基地,是学生张扬自我舞台。

反思二:一次函数的应用教学反思本节课通过提出问题,创设情境来提高学生的学习兴趣,然后通过教师和学生的双边活动让学生掌握一次函数的应用,并拓展到决策性问题的探究,以锻炼学生的探究归纳能力。

教师帮助学生建立近似人口增长的一次函数,并说明这种模糊方法在数学中的应用,让其逐步领略数学应用的奥妙所在.学生经过建立坐标系、描点、连线,熟悉函数作图的一般过程,并在教师指导下确立近似一次函数的解析式,提高预估能力.这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。

通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。

花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。

要想让学生真正理解和掌握一次函数的性质就必须放手让学生进行探究,让学生在探究中获得感性认识,同时只有放手让学生自我探究,潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

要实现此目的:首先,要设计适合学生探究的素材。

《一次函数》教学反思(通用5篇)

《一次函数》教学反思(通用5篇)

《一次函数》教学反思《一次函数》教学反思(通用5篇)身为一名优秀的人民教师,我们的工作之一就是教学,通过教学反思可以很好地改正讲课缺点,那么应当如何写教学反思呢?以下是小编整理的《一次函数》教学反思(通用5篇),希望能够帮助到大家。

《一次函数》教学反思1《一次函数》内容安排基本合理,通过生活中两个实例,学生在探究性的活动后,引入一次函数的概念,接着通过练习,辨别一次函数,再通过练习写解析式,最后是关于一个结合生活实例的例题和相关的两个练习,总结结束。

由于这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。

在教学过程中,我采用让学生亲自动手、动脑画图的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。

值得反思的地方有:1、最后的一个练习没有时间,总结的时间没有了。

2、要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言。

3、怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!由学生掌控,浪费时间。

在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向!4、在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!5、真正的要形成自己的教学风格,熟悉教材,熟悉学生。

6、课的内容容量较大,对于有些知识点,如“随着X值的增大,Y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解并消化该知识点,但由于时间紧,学生的这一活动开展的不充分,课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。

《一次函数》教学反思2这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。

通过充分的过程探究,学生得出了图象的性质,借助直观图象的性质而得到一次函数的性质。

真正的形成往往来源于真实的自主探究。

只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

八年级数学一次函数图象的应用课后教学反思

八年级数学一次函数图象的应用课后教学反思

八年级数学一次函数图象的应用课后教学反思教学反思是教学论和教师教育研究等教育学领域重点研究的课题。

八年级数学一次函数图象的应用的课后教学反思有哪些呢?接下来是店铺为大家带来的关于八年级数学一次函数图象的应用课后教学反思,希望会给大家带来帮助。

八年级数学一次函数图象的应用课后教学反思(一)一、本节课的几点成功之处:1、成功地完成了课堂教学的任务。

在知识与技能、过程与方法、情感态度与价值观三维目标的实现上效果良好。

在新课改形势下,在数学学科的教学中,教给学生学习的方法和分析解决问题的策略更为重要,自己在本节课的教学中重点考虑到了这一点,并在课堂教学中进行体现,收到了良好的效果。

2、兴趣是最好的老师。

学生对数学的兴趣究竟来源于何处?本节课充分联系学生的生活经验、社会事件和家乡景物,创设现实情境,引出新课,充分调动并引发了学生学习新课的积极性和主动性。

同时,在新课引入中还广泛地对学生进行了环保教育和热爱家乡、热爱大自然的思想教育。

可以看出,学生对本节课的浓厚兴趣不仅来源于极具现实意义的学习素材,更在于片段1中开放性的问题所给的暇想空间、处理引例时步步追问能紧扣思维脉博。

3、学生是学习的主人。

新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。

本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。

学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

4、教师是课堂的主导。

教师是学生数学学习的组织者、引导者和合作者。

然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。

教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。

这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。

试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在相当长的时间准确选点进行个别指导,更不能在最后引伸出几个高难题而剥夺部分学生的作业时间。

一次函数的应用教学反思篇

一次函数的应用教学反思篇

教学方法:选择合适的教学方 法,提高教学效果
教学效果:关注学生的学习反 馈,及时调整教学方法
教学反思:定期进行教学反思, 总结经验教训,提高教学水平
评价机制的完善与创新
评价方式:多元化,包括课 堂表现、作业完成情况、考 试成绩等
评价标准:明确、具体、可 操作性强
评价反馈:及时、准确、有 针对性,帮助学生改进学习
案例分析方法与思路
选取典型案例:选择具有代表性的案例进行分析 分析案例背景:了解案例发生的背景和条件 确定教学目标:明确案例教学的目标和要求 设计教学过程:设计符合教学目标和要求的教学过程 分析教学效果:分析案例教学对学生学习效果的影响 总结反思:总结案例教学的经验和教训,提出改进建议
05

教学效果评估
学生掌握程度:理解一次函数的概念、性质和图像 教学方式:讲解、练习、讨论相结合 教学难点:理解一次函数的图像和性质 改进建议:增加实例讲解,加强练习,提高学生理解能力
教学方法的优缺点分析
优点:直观易懂,易于学 生理解
缺点:缺乏互动,难以激 发学生兴趣
改进建议:增加互动环节, 提高学生参与度
案例总结与启示
案例背景:一次函数在数学中的应用
教学目标:让学生理解一次函数的概念 和性质 教学过程:通过实例讲解和练习,让学 生掌握一次函数的应用
教学效果:学生能够理解和应用一次函 数,提高了数学思维能力
启示:在教学中,要注重实例讲解和练 习,让学生更好地理解和掌握数学知识。
教学评价与反馈机
07
学生参与度评估
作业完成度:学生完成作业 的质量和数量
课堂参与度:学生回答问题 的积极性和主动性
学习态度:学生对待学习的 态度和热情
学习效果:学生对知识的理 解和掌握程度

一次函数应用评课及反思

一次函数应用评课及反思

《一次函数的应用》,评课及反省整节课陈老师的教课思路有条有理,脉络清楚,一直以“一次函数的分析式与图象”及其应用为主线,贯串于整个教课过程。

陈老师语言精髓,富裕亲和力与感染力;师生关系和睦,氛围和睦;要点突出,难点打破,教课目的基本完成。

陈老师做到了“从一个知识教授者转变为学生发展的促使者;从讲堂时间与空间支配者的威望地位,向数学学习活动的组织者、指引者和合作者的角色变换” 。

在本节课一开始陈老师就抓住了“直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数分析式构成的二元一次方程组解的内在联系” ,勇敢打破了教材知识体现的次序,经过引例与例1 的教课获得“直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数分析式构成的二元一次方程组解的关系” ,并实时的练习稳固。

可见陈老师对教材研究透辟,发掘到位。

这样的教材办理,真实实现了“用教材教”而不是“教教材” ,也凸现了本节的数学实质。

关于本节例 2 的教课,应尽量发掘典范所包含的数学内涵,让学生经历“算术——方程——一次函数”等数学模型的成立过程。

但在讲解例 2 时,学生刚讲到要用“方程”来解决时,可能与课前预设不一致,陈老师就硬把学生的思路拉到用“一次函数”来解决,这样做不单打击了学生的踊跃性,也违反了“学生是数学学习的主人”这一新课程理念。

陈老师讲解例 2 时所采纳的解法是先“图象法” ,后“分析法”,完整把“数”与“形”割裂开了,自然就不利于“数形联合思想”的提炼,学生也就体验不到“数形联合思想”的精髓所在。

事实上,本节教材内容的一大特色就是无处不在的“数形联合” ,我们要擅长发掘这一数学内涵,利用“数”与“形”在解题中的互帮相助,实现“数形联合思想”对学生的熏陶,进而提升学生数学素质。

经过两个典范让学生认识了“一次函数的分析式与图象”的简单应用,并提炼出“数形联合思想”后,陈老师就理所应当给出本节课的“研究活动”题,我认为是特别实时地,特别到位地。

一次函数实践教学反思(3篇)

一次函数实践教学反思(3篇)

第1篇摘要:一次函数是中学数学教学中的重要内容,它不仅有助于学生掌握基础的数学知识,还能培养学生的逻辑思维能力和解决问题的能力。

本文通过对一次函数实践教学的反思,总结了教学过程中的成功经验和不足之处,并提出了相应的改进措施,以期为今后的教学提供借鉴。

一、引言一次函数是中学数学教学中的基础内容,它涵盖了函数的定义、性质、图像等内容。

在实践教学过程中,教师需要引导学生通过观察、分析、推理等方法,深入理解一次函数的本质,并能够运用一次函数解决实际问题。

本文通过对一次函数实践教学的反思,总结教学过程中的得失,以期为今后的教学提供参考。

二、实践教学过程中的成功经验1. 注重理论联系实际,提高学生的应用能力在实践教学过程中,我注重将一次函数的理论知识与实际生活相结合,通过举例说明一次函数在生活中的应用,如温度、速度、距离等。

例如,在讲解一次函数的图像时,我以气温变化为例,让学生观察气温与时间之间的关系,从而理解一次函数图像的特点。

这种教学方法有助于提高学生的应用能力,使他们能够将所学知识运用到实际生活中。

2. 采用多样化的教学方法,激发学生的学习兴趣为了激发学生的学习兴趣,我在教学中采用了多种教学方法。

例如,利用多媒体技术展示一次函数的图像,让学生直观地感受函数的变化规律;通过小组合作探究,让学生在交流讨论中共同解决问题;设计有趣的数学游戏,让学生在轻松愉快的氛围中学习。

这些方法有助于提高学生的学习兴趣,使他们在主动探究中掌握知识。

3. 关注学生的个体差异,实施分层教学在实践教学过程中,我关注学生的个体差异,根据学生的不同学习基础,实施分层教学。

对于基础较好的学生,我鼓励他们深入探究一次函数的性质,拓展知识面;对于基础较差的学生,我耐心讲解,帮助他们克服困难,逐步提高。

这种分层教学有助于提高全体学生的学习效果。

三、实践教学过程中的不足之处1. 对一次函数知识的讲解不够深入在实践教学过程中,我发现部分学生对一次函数的性质理解不够深入,对于一些特殊情况的处理不够灵活。

一次函数的应用教学反思4篇 一次函数应用题教学反思

一次函数的应用教学反思4篇 一次函数应用题教学反思

一次函数的应用教学反思4篇一次函数应用题教学反思一次函数的应用教学反思1本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

一、有效的“复习回顾”学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。

在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

二、有效的“新知探究”根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。

三、有效的“拓展延伸”设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

四、有效的“感悟收获”通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

五、有效的“巩固提高”通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

六、有效的“作业布置”根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家一次函数的应用教学反思2从整体上反思在这节课中我总体完成了知识目标,但是过程目标与情感态度价值观目标在课堂中体现的不过好,完成了重点但没有更好的突破难点,整体的课堂环节较为完整。

首先将课堂实施做以反思:在创设情境,这块在课堂实施过程中做得还算可以,基本上达到预设效果,但在揭示课题时语言组合的还不够完美。

《一元一次方程的应用》教学反思(精选13篇)

《一元一次方程的应用》教学反思(精选13篇)

《一元一次方程的应用》教学反思《一元一次方程的应用》教学反思(精选13篇)一元一次方程的应用是初一数学教学中的重点,而对于刚进入初中没多久的学生来说,它却又是学习的一个难点,下面是关于《一元一次方程的应用》教学反思,希望对大家有帮助!《一元一次方程的应用》教学反思篇1《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。

在教学中应如何突出重点,特别是要突破学生学习的难点,这是我们数学教师不断研究和探讨的问题。

一、成功之处:1、能创设一个有趣的问题情境,与学生日常生活有关的问题切入,七年级的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。

充分调动学生的积极性。

2、能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

3、恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

4、营造了一种非常宽松、愉悦的课堂气氛,让学生在高兴的情绪下积极和老师互动,和同学互动、讨论。

二、不足之处:1、七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。

但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。

如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

2、本节课的教学中,我忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。

让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。

在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。

这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。

一元一次方程的应用教学反思(四篇)

一元一次方程的应用教学反思(四篇)

一元一次方程的应用教学反思方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占有重要地位!也是代数学的核心之一!下面我想就几个方面的教学的得与失进行反思和总结.成功之处:1:能创设一个有趣的问题情境,与学生日常生活有关的问题切入,初一的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。

充分调动学生的积极性。

2:能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

3:对学生进行了文化的渗透,使学生对数学有了更深一层的了解,从而对今后学好数学奠定了良好的基础。

4:恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

5:营造了一种非常宽松、愉悦的课堂气氛,是学生在高兴的情绪下去积极的和老师互动,和同学互动、讨论。

不足之处:1:利用一元一次方程解应用题是数学教学中的一个重点,而对于学生来说却是学习的一个难点。

七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。

但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。

如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

2:教学内容量偏大,以致没有时间让学生进行自我归纳和总结。

3:对学生不够熟悉,不能在课上叫出学生的名字。

在以后的教学中,我会继续发扬我的成功之处,逐步完善我的不足之处,我将尽自己最大的能力,上好每一堂课。

一元一次方程的应用教学反思(二)《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。

在教学中应如何突出重点,特别是要突破学生学习的难点,这一直是我们数学教师不断研究和探讨的问题。

本节课主要是讲行程问题,是学生最难解决的一类应用题,教材上只安排了一道例题(环形跑道中的追及问题),我根据教学的需要及学生的情况,对教材进行了适当的加工和处理,增加了几道例题,由直线上的相遇问题、追及问题,到环形跑道上的相遇问题、追及问题,由浅入深,层层递进。

初中数学_4.4.2一次函数的应用教学设计学情分析教材分析课后反思

初中数学_4.4.2一次函数的应用教学设计学情分析教材分析课后反思

课题:4.4.2一次函数的应用课型:新授课年级:八年级姓名:单位:电话:邮箱:能否提供录像课:能教学目标:1.能通过函数图像获取信息,发展形象思维,培养学生的数形结合意识.2.能利用函数图像解决简单的实际问题,发展学生的数学应用能力,培养学生良好的环保意识和热爱生活的意识.3.初步体会方程与函数的关系,建立良好的知识联系.教学重点与难点:重点:一次函数图象的应用.难点:正确地根据图象获取信息,并解决现实生活中的有关问题.课前准备:多媒体课件.教学过程:一、创设情境,引入新课师:水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料,请同学们观看.(多媒体展示)今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.师:请同学们继续观察下面这四幅图,它们反映了怎样的自然现象?引导语:今天我们就一起对节约用水问题,从数学知识的角度来进行全面的分析,共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.【板书课题:4.4 一次函数的应用(2)】设计意图:通过水资源的资料和生活中的图片引入新课比较贴近生活,可以吸引学生的注意力,增强学生的社会使命感,调动了学生学习新课的兴趣. 激发学生的学习热情,引入课题.二、合作探究,学习新知由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量v(万米3)的关系如下图所示,回答下列问题:(1)上图反映的是和的函数图象.(2)水库原有蓄水量v是多少3万米?(3)干旱持续10天,蓄水量为多少3万米?连续干旱23天呢?(4)蓄水量小于4003万米时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(5)按照这个规律,预计持续多少天水库将干涸?处理方式:先让学生独立思考,试试自己能否独立完成.然后小组交流讨论,教师巡视及时启发诱导,让学生学会识图.5分钟后学生展示.参考答案1.图像反映的是蓄水量和干旱持续时间的函数图象.2.水库原有蓄水量1200万立方米.教师引导说明理由2:如图1因为水库原有蓄水量就是干旱开始时,水库的最高蓄水图量,即当t=0时,v的值.3.干旱持续10天,蓄水量为1000万立方米.教师通过多媒体引导演示,先在横轴上找到10天,并过这一点作横轴的垂线,与图象交于一点,过这一点作纵轴的垂线,得到蓄水量为1000万立方米.如图2.以及通过多媒体演示干旱持续23天,蓄水量为700万立方米:先在横轴上找到23天,并过这一点作横轴的垂线,与图象交于一点,过这一点作纵轴的垂线,得到蓄水量为700万立方米.4.40天.教师通过多媒体引导演示,先在纵轴上找到400,并过这一点作纵轴的垂线,与图象交于一点,过这一点作横轴的垂线,得到40天.如图3.5.60天.教师通过多媒体引导演示,延长直线交横轴与一点,交点的横坐标即为所求.如图4.处理方式:由学生自由发挥,集体讨论然后师生共同总结得出:①理解横纵坐标分别表示的的实际意义;②分析已知(看已知的是自变量还是因变量),通过作x 轴或y 轴的垂线,在图象上找到对应的点,由点的横、纵坐标的值读出要求的值;③利用数形结合的思想:将“数”转化为“形”,由“形”定出“数”.图3图4教师强调:仔细观察图象,弄清横轴和纵轴表示的意义,找出图象中的特殊点是解决问题的关键;利用图象信息解决实际问题也要了解k和b的实际意义.设计意图:通过生动的现实情景引入一次函数图象的应用,把整个探索过程交给小组去做,教师只作为一个协助者,让学生思考、讨论、从而得出结论,了解点的坐标的实际意义,培养了学生的识图能力.学生通过自己的观察、分析、合作,初步感受到数形结合的解题方法.跟踪练习:一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含有备用零钱)的关系如图:(1)农民自带的零钱有多少元?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他每千0.8元将剩余土豆售完,这是他手中的钱是62元,问他带了多少千克土豆?处理方式:让学生到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.参考答案1.农民带来的零钱是10元,从图像中我们发现所谓的零钱就是x=0时,y的值.2.降价前他每千克土豆出售的价格是1.2元.观察图像可知46包括零钱和出售土豆的钱,所以()÷元千克.46-1030=1.23.他带了50的土豆,由图像可知62元中包括零钱和降价前后售出的土豆钱,所以()÷千克,然后再加上降价前的土豆即62-460.8=2020+30=50千克.设计意图:通过跟踪练习,让学生进一步体会生活中一次函数图象的应用.同时,检验学生对已学内容掌握情况,为以后的学习作铺垫.另外,通过此题要学生体会到农民的不易,号召同学们珍惜现在的生活和学习.三、合作探索,再得新知例2 某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)该图反映的是和关系的函数图象.其中横轴表示,纵轴表示 .(2)油箱最多可储油多少升?(3)一箱汽油可供摩托车行驶多少千米?(4)摩托车每行驶100千米消耗多少升汽油?(5)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?处理方式:放手让学生自己读图、识图,完成题中的问题,然后老师组织学生在班上交流.当学生有疑问时也可请求其他学生帮助解决.在答题过程中,老师适时地展示解答过程.解:观察图象,得(1)该图反映的是油箱中的剩余油量与摩托车行驶路程之间的关系;其中横轴表示摩托车行驶路程,纵轴表示油箱中的剩余油量. (2)当x=0时,y=10,此时表示:摩托车的油箱最多可储油10升.(3)当y=0时,x=500,此时表示:一箱汽油最多可供摩托车行行驶500千米.(4)x从0增加到100时,y从10减少到8,因此摩托车每行驶100千米消耗2升汽油.(5)当y=1时,x=450,因此行驶了450千米后,摩托车将自动报警.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题四、练习巩固,深化提高看图填空(1)当y =0时,x = ;(2)直线对应的函数表达式是__________.处理方式:让学生到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.参考答案1.观察图象可知当y =0时,x =-2;2.直线过()-2,0和()0,1设表达式为y kx b =+,根据题意,得20,1.k b b -+=⎧⎨=⎩解之得 0.5,1.k b =⎧⎨=⎩ 所以直线对应的函数表达式是0.51y x =+.问题:请大家根据刚做的练习来思考:一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?处理方式:让学生思考、讨论、交流,发表自己的看法,教师引导归纳一元一次方程0.510x +=与一次函数0.51y x =+到底有什么联系?师生总结:从“数”的角度看,当一次函数0.51=+的函数值为y x0时,相应的自变量的值即为方程0.510x+=的解;从“形”的角度看,函数0.51=+与x轴交点的横坐标即为方程y xx+=的解.0.510设计意图:通过本题让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系:从“数”的角度看,当一次函数y kx b=+的函数值为0时,相应的自变量的值即为方程0+=的解;kx b从“形”的角度看,函数y kx b=+与x轴交点的横坐标即为方程0+=kx b的解.使学生能用函数关系解决方程问题的同时也能用方程的观点来看待函数.五、小结反思,发展潜能师:同学们,“芝麻开花节节高”,只要善于总结,数学学习的提高会很快的.通过本节课的学习,你有哪些收获呢?学会了哪些知识,还有什么疑难问题要和大家一起探讨吗?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养学生课堂主人翁精神,提高语言表达能力和概括能力.六、能力检测,当堂达标1.某植物t天后的高度为y厘米,图1中l反映了y与t之间的关系,根据图象回答下列问题:(1)3天后该植物的高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?(4)图象对应的一次函数y kt b =+中,k 和b 的实际意义分别是什么?2.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y 元与行李质量的关系如图:(1)想一想紫红色那段图象表示什么意思?(2)旅客最多可免费携带多少千克行李?(3)超过30千克后,每千克需付多少元?3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用教学反思
本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

教学时,能够达到三维目标的要求,突出重点把握难点。

能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。

用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。

同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。

具体分析本节课,首先简单的用几分钟时间回顾一下一次函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。

本节课用函数的观点处理实际问题,主要围绕着路程、价格这样的实际问题,通过在速度一定的条件下路程与时间的关系,总价在单价一定的情形下,总价与数量的关系这几个例题,认识到一次函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,如在建立一次函数模型进行预测的问题时,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。

在讲解例题的同时,试着让
学生利用图象解决问题,培养学生数形结合的思想并提示学生注意自变量在实际情境中的取值范围问题。

而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关一次函数的有价值的问题,说出来与全班共同分享。

这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。

更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。

最后在总结中让学生体会到利用一次函数解决实际问题,关键在于建立数学函数模型,并布置了作业。

从总体看整个教学环节也比较完整。

这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。

当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的板书形式展示出来,在一定程度上也节省了时间。

相关文档
最新文档