八年级数学分式方程精讲精练1
八年级数学上册_153_分式方程例题讲解_新人教版
八年级数学上册_153_分式方程例题讲解_新人教版15.3分式方程1.分式方程的概念分母中含未知数的方程叫做分式方程.谈重点分式方程与整式方程的区别从分式方程的定义可以看出分式方程有两个重要特征:一是方程;二是分母中含未知数.因此整式方程和分式方程的根本区别就在于分母中是否含未知数.【例1】下列方程:①A.①②C.③④2.分式方程的解法(1)解分式方程的基本思路:去分母分式方程――→整式方程.转化(2)解分式方程的一般方法和步骤:①去分母:即在方程两边同乘最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原方程的根,使最简公分母等于0的根不是原方程的根,必须舍去.(3)对分式方程解法的理解:①解分式方程的基本思想是转化,即把分式方程转化为整式方程,通过解整式方程从而确定分式方程的解;②将分式方程转化为整式方程时,是将分式方程两边同乘最简公分母,当所乘的整式不为零时,所得整式方程与原分式方程同解;当所乘整式为零时,所求出的未知数的值就不是原分式方程的解;③在解分式方程时,方程两边约去含有未知数的公因式时,若该公因式的值为零,会造成原方程失根,所以在解分式方程时,两边不能同时除以含有未知数的公因式;④验根的方法:代入原分式方程,看左右两边是否相等,但这种方法较麻烦,直接代入最简公分母验根较为简捷.【例2】解下列方程:某-331+某1某21,②=2,③=5.其中是分式方程的有().5某5+某22某B.②③D.②③④736某522(2)-1=.某+某某-某某-12某-55-2某2分式方程的应用主要是列方程解应用题,它与列一元一次方程解应用题的基本思路和方法是一样的.列分式方程解应用题的一般步骤:①审:审清题意;②找:找出相等关系;③设:设未知数;④列:列出方程;⑤解:解这个分式方程;⑥验:既要检验根是否是所列分式方程的根,又要检验根是否符合题意;⑦答:写出答案.【例3】今年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?解:设原计划每天生产某吨纯净水,18001800则依据题意,得=3,某1.5某整理,得4.5某=900,解之,得某=200.把某=200代入原方程,成立,∴某=200是原方程的解.答:原计划每天生产200吨纯净水.4.分式方程无解型问题解答分式方程无解型问题的方法是:首先将分式方程转化为整式方程,然后再将分式方程的增根(使分式方程的分母为零的未知数的值)代入整式方程(因为方程若有增根,则增根是通过解整式方程而得到的,故它满足整式方程),从而求出方程中的参数值.列分式方程解实际问题时,关键是从实际问题中找出等量关系.另外,还要注意对方程的根进行检验.检验时,要注意双重检验:既要根据所列方程进行检验,又要根据实际问题进行检验.举例:甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等.已知甲、乙两人每天共加工35个玩具,问甲、乙两人每天各加工多少个玩具?解:设甲每天加工某个玩具,则乙每天加工(35-某)个玩具.90120,解得,某=15.某35-某经检验,某=15是原方程的解且符合实际意义.所以35-某=35-15=20(个).答:甲每天加工15个玩具,乙每天加工20个玩具.【例4-1】已知关于某的分式方程a-11有增根,则a=________.某+2解析:去分母得a-1=某+2,将某=-2代入得a-1=0,解得a=1.答案:1【例4-2】若关于某的方程某-2m2无解,求m的值.某-3某-3解:方程两边同乘(某-3),得某-2=m+2(某-3).整理,得m=-某+4.因为当某=3时,分式方程无解,所以m=1.【例5】某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?解:(1)设第一批购进书包的单价是某元,则第二批购进书包的单价为(某+4)元.20006300某3=,解得某=80.某某+4经检验,某=80是原方程的解.答:第一批购进书包的单价是80元.20006300(2)某(120-80)+84)=1000+2700=3700(元).8084 2000解法二:(2000+6300)=12000-8300=3700(元).80答:商店共盈利3700元.在解分式方程中的阅读题时,首先要认真阅读题意,仔细观察列举的条件,观察比较所给各方程的特点和它的解与原方程的关系,发现解答过程的错误或探究得出其中的规律,然后根据题目的要求改正题目中的错误或者根据发现的规律解答提出的问题.阅读理解题是新课标理念下的创新题型,应予以重视.7.分式方程中的开放型问题分式方程中的开放型问题,其答案一般不唯一.有两种类型:一是条件开放型问题,二是结论开放型问题.6解答这类题目的一般方法是:通过条件,联想有关概念或法则,探求结论.例如:请根据所给方程+某解:甲、乙两人合作加工一批零件,已知甲比乙每小时多加工5个零件,他们合作6h完成了加工任务.问:甲、乙每小时各加工零件多少个?这批零件共有几个?8.列分式方程解答综合性问题解答应用题的关键是弄清题目中的数量关系,选择合适的关系式列出分式方程,求出方程的解来解决问题.如果涉及用其他知识的综合题,应认真分析题意建立适当的数学模型来解答.例如:从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路.小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路和上坡路上保持匀速).解:设小明在平路上的速度为某千米/时,13101120=3,6某6某解得某=15.经检验,某=15是所列方程的解,且符合题意.答:小明在平路上的速度为15千米/时.【例6】先阅读下列一段文字,然后解答问题:111已知方程某1的解是某1=2,某2=-.某22121方程某-=某1=3,某2.某33131方程某-=某1=4,某2.某44141方程某-=某1=5,某2.某55110问题:观察上述方程及其解,再猜想出方程某-10某11和你的同伴互相交流.1解:某1=11,某2方程的左边是未知数与其倒数的差,方程的右边是比带分数的整数部分大1的11数与其倒数的差,此时方程的解就可以直接写出了.【例7】请选择一组a,b的值,写出一个形如样的分式方程可以是__________.解析:根据题意,把某=2化简整理,得a=4b.再任意给出一对a,b的值,使其满足a=4b即可.写出一个题目所要求的分式方程,如当a=4,b=1时,所写的方程为答案:【例8】某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.解:(1)设甲工程队每天能铺设某米,则乙工程队每天能铺设(某-20)米.350250根据题意得,解得某=70.某某-20检验:某=70是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,a某+2=b的关于某的分式方程,使它的解为某=2,这a某+2=b中,41.某+241(不唯一)某+2则分配给乙工程队(1000-y)米.y70≤10,由题意,得解得500≤y≤700.1000-y50所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.。
人教版八年级数学解分式方程讲义(含解析)(2020年最新)
第12讲解分式方程知识定位讲解用时:5分钟A 、适用范围:人教版初二,基础一般;B 、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习解分式方程。
分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型。
在中考中,有关分式的内容所占比例较大,所以要重视本节课知识的学习,学会解分式方程。
知识梳理讲解用时:20分钟分式方程22x 1、分式方程的定义:分母中含有未知数的方程叫做分式方程.100602020vv3162x x 分式方程整式方程2、判断下列方程中,哪些是分式方程?哪些是整式方程?2231323=π212x x x x x xx x4371111052131xy x x xx x x x解分式方程的步骤在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想.增根的定义:由去分母后所得的整式方程解出的,使分母为零的根.分式方程的解法:去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式方程有增根和无解的区别:(1)分式方程有增根:指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,扩大了未知数的取值范围产生的未知数的值,从而使分式方程无解.(2)分式方程无解:指的是无论未知数取何值,都不能使方程两边的值相等,包含两种情况:原方程化去分母后的整式方程无解;原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而使原方程无解.100602020vv转化一元一次方程两边同乘以(20+v )(20-v ),得100(20-v )=60(20+v )解得:v=5检验:当v=5代入分式方程,左边=4=右边所以v=5是原方程的解.解:课堂精讲精练【例题1】下列方程中是分式方程()A.B.C.D.【答案】D【解析】直接利用分式方程以及一元一次方程的定义分析得出答案.解:A、﹣3x=1是一元一次方程,故此选项错误;B、2x﹣=1,是一元一次方程,故此选项错误;C、﹣2x=0是一元一次方程,故此选项错误;D、﹣2=0,是分式方程,正确.故选:D.讲解用时:1分钟解题思路:此题主要考查了分式方程以及一元一次方程的定义,正确把握相关定义是解题关键.教学建议:学会判断分式方程和整式方程.难度: 2 适应场景:当堂例题例题来源:桐梓县期末期末年份:2016【练习1.2】下列方程是分式方程的是()A.(a,b为常数)B.x=c(c为常数)C.x=5(b为常数)D.【答案】B【解析】利用分母中含有未知数的方程叫做分式方程,进而判断即可.解:A、=2﹣(a,b为常数),是整式方程,不合题意;B、x=c(c为常数),是分式方程,符合题意;C、x=5(b为常数),是整式方程,不合题意;D、=3,是整式方程,不合题意.故选:B.讲解用时:1分钟解题思路:此题主要考查了分式方程的定义,正确把握定义是解题关键.教学建议:学会判断分式方程和整式方程.难度: 2 适应场景:当堂练习例题来源:筠连县校级期中年份:2017【例题2】解方程:=+1.【答案】x=3【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(x+1)(x﹣2)=x﹣1+(x﹣1)(x﹣2)x2﹣x﹣2=x﹣1+x2﹣3x+2x=3经检验:x=3是原方程的解,所以原方程的解是x=3.讲解用时:3分钟解题思路:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.教学建议:掌握解分式方程的步骤,切记要验根看是否成立.难度: 3 适应场景:当堂例题例题来源:灌云县一模年份:2018 【练习2.1】解分式方程:﹣=1【答案】x=﹣2【解析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:化为整式方程得:x2+2x+1+2=x2﹣1,化简得:2x=﹣4,解得:x=﹣2,经检验当x=﹣2时,1﹣x2≠0,所以x=﹣2是原方程的根.讲解用时:3分钟解题思路:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.教学建议:掌握解分式方程的步骤,切记要验根看是否成立.难度: 3 适应场景:当堂练习例题来源:兰州模拟年份:2018 【练习2.2】解分式方程:﹣1=.【答案】无解【解析】首先找出最简公分母,进而去分母解方程即可.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.讲解用时:3分钟解题思路:此题主要考查了解分式方程,正确找出最简公分母是解题关键.教学建议:掌握解分式方程的步骤,切记要验根看是否成立.难度: 3 适应场景:当堂练习例题来源:衢州一模年份:2018 【例题3】关于x的方程:=+1.(1)当a=2时,求这个方程的解;(2)若这个方程无解且a≠1,求a的值.【答案】(1)x=-4;(2)-3【解析】(1)把a=2代入方程,解分式方程即可;(2)根据增根的概念解答.解:(1)当a=2时,原方程为=+1,方程两边同时乘以(x﹣1)得:2x+1=﹣2+x﹣1,解这个整式方程得:x=﹣4,检验:将x=﹣4代入x﹣1=﹣4﹣1=﹣5≠0,∴x=﹣4是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1=﹣2+x﹣1,若原方程无解,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.讲解用时:3分钟解题思路:本题考查的是分式方程的解法,掌握解分式方程的一般步骤是解题的关键.教学建议:掌握解分式方程的步骤,明白无解是如何产生的.难度: 3 适应场景:当堂例题例题来源:五莲县期末年份:2017【练习3.1】若关于x的方程﹣=1的根是2,求(m﹣4)2﹣2m+8的值.【答案】0【解析】把x=2代入分式方程求出m的值,代入原式计算即可得到结果.解:∵关于x的方程﹣=1的根是2,∴把x=2代入方程得:2﹣=1,解得:m=4,则(m﹣4)2﹣2m+8=(4﹣4)2﹣2×4+8=0.讲解用时:3分钟解题思路:此题考查了分式方程的解,做题时始终注意分式的分母不为0这个条件.教学建议:熟练掌握解分式方程的方法.难度: 3 适应场景:当堂练习例题来源:海淀区二模年份:2017【例题4】若关于x的方程+2=有增根,求增根和k的值.【答案】x=3;k=1【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出k的值.解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.讲解用时:3分钟解题思路:本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.教学建议:掌握增根的由来以及解分式方程的方法.难度: 3 适应场景:当堂例题例题来源:定陶区期末年份:2017 【练习4.1】若解关于x的分式方程+=会产生增根,求m的值.【答案】﹣4或6【解析】分式方程去分母转化为整式方程,由分式方程有增根,求出m的值即可.解:去分母得:2x+4+mx=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,解得:x=2或x=﹣2,当x=2时,4+4+2m=0,即m=﹣4;当x=﹣2时,﹣2m=﹣12,即m=6,综上,m的值是﹣4或6.讲解用时:3分钟解题思路:此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.教学建议:掌握增根的由来以及解分式方程的方法.难度: 3 适应场景:当堂练习例题来源:凤庆县期末年份:2017 【练习4.2】计算:当m为何值时,关于x的方程+=会产生增根?【答案】-10或-4【解析】根据等式的性质,可得整式方程,根据分式方程的增根是整式方程的解,可得关于m的方程,根据解方程,可得答案.解:方程得两边都乘以(x+1)(x﹣1),得2(x﹣1)﹣5(x+1)=m.化简,得m=﹣3x﹣7.分式方程的增根是x=1或x=﹣1.当x=1时,m=﹣3﹣7=﹣10,当x=﹣1时,m=3﹣7=﹣4,当m=﹣10或m=﹣4时,关于x的方程+=会产生增根.讲解用时:3分钟解题思路:本题考查了分式方程的增根,利用分式方程的增根满足整式方程得出关于m的方程是解题关键.教学建议:掌握增根的由来以及解分式方程的方法.难度: 3 适应场景:当堂练习例题来源:安岳县期中年份:2017【例题5】已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.【答案】(1)m=-6;(2)1.5或-6;(3)-1、-6或1.5【解析】方程去分母转化为整式方程,(1)根据分式方程的增根为x=1,求出m的值即可;(2)根据分式方程有增根,确定出x的值,进而求出m的值;(3)分m+1=0与m+1≠0两种情况,根据分式方程无解,求出m的值即可.解:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,综上,m的值为﹣1或﹣6或1.5.讲解用时:3分钟解题思路:此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.教学建议:学会区分分式方程无解和有增根这两种情况.难度: 3 适应场景:当堂例题例题来源:长泰县月考年份:2017 【练习5.1】若关于x的方程:+=.(1)有增根,求a的值;(2)无解,求a的值.【答案】(1)-6或8;(2)1【解析】分式方程去分母转化为整式方程,(1)由分式方程有增根,得到最简公分母为0求出x的值,代入整式方程求出a的值即可;(2)整式方程变形后,由分式方程无解,确定出a的值即可.解:分式方程去分母得:3x+9+ax=4x﹣12,(1)由分式方程有增根,得到(x+3)(x﹣3)=0,即x=3或x=﹣3,把x=3代入整式方程得:18+3a=0,即a=﹣6;把x=﹣3代入整式方程得:﹣3a=﹣24,即a=8,综上,a的值为﹣6或8;(2)整式方程整理得:(a﹣1)x=﹣21,由方程无解,得到a﹣1=0,即a=1.讲解用时:3分钟解题思路:此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.教学建议:学会区分分式方程无解和有增根这两种情况.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】一项工作由甲单独做需a天完成;如果甲、乙合做,则可提前b天完成.问乙每天可完成这项工作的几分之几?【答案】【解析】甲乙合作需(a﹣b)天,那么甲乙合作的工效为;甲单独做需a天完成,甲的工效是,那么乙的工效=甲乙合作的工效﹣甲的工效=﹣.解:根据分析可以得到:﹣=.故答案为.讲解用时:3分钟解题思路:找到所求量的等量关系是解决问题的关键.本题需注意:问乙每天可完成这项工作的几分之几实际是求乙的工效.教学建议:学会用分式方程去解决实际问题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】甲做60个零件和乙做80个零件共用4h,若甲、乙每小时做的零件个数比为3:4,问甲、乙两人每小时各做多少个?设甲、乙两人每小时分别做3x、4x(个),则列方程为.【答案】【解析】设甲每小时做3x个零件,表示出乙每小时做的零件个数,然后根据“甲做60个零件与乙做80个零件所用的时间相同”列出方程即可.解:设甲每小时做3x个零件,则乙每小时做4x个零件,根据题意得,故答案为:讲解用时:3分钟解题思路:本题考查了由实际问题抽象出分式方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.教学建议:学会用分式方程去解决实际问题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x棵,根据题意得方程.【答案】【解析】关键描述语为:“提前4天完成任务”;等量关系为:原计划植树天数﹣实际植树天数=4.解:原计划植树天,而实际每天植树(x+20)棵,实际植树天数为天.可列方程为:.讲解用时:3分钟解题思路:列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.教学建议:学会用分式方程去解决实际问题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】2010年五月,某厂职工到距15千米的世博园参观,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同刚到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为.【答案】【解析】关键描述语是:“一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达”;等量关系为:乘汽车同学所用的时间=骑自行车同学所用的时间﹣,根据等量关系列式.解:若设自行车的速度为x千米/时,那么骑自行车用的时间为:,而坐汽车用的时间为:;根据骑自行车多用了40分钟即小时,那么方程可表示为:.故答案为:.讲解用时:3分钟解题思路:考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题用到的等量关系为:时间=路程÷速度.注意时间单位的统一.教学建议:学会用分式方程去解决实际问题.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】若关于x的方程无解,则m的值为()A.m=1 B.m=﹣1 C.m=2 D.m=﹣2【答案】B【解析】先去分母方程两边同乘以x+3根据无解的定义即可求出m.解:方程去分母得,x+2=m,则x=m﹣2,当分母x+3=0即x=﹣3时,方程无解,所以m﹣2=﹣3即m=﹣1时方程无解,故选:B.难度: 3 适应场景:练习题例题来源:成都模拟年份:2018解分式方程:+1=.【答案】x=4【解析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:化为整式方程得:x2﹣4x+4+x2﹣4=16,x2﹣2x﹣8=0,解得:x1=﹣2,x2=4,经检验x=﹣2时,x+2=0,所以x=4是原方程的解.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:徐汇区二模年份:2018 【作业3】若关于x的方程+=有增根,求增根和m的值.【答案】x=1,m=﹣6【解析】分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出x的值,代入整式方程求出m的值即可.解:去分母得:﹣3(x+1)=m,由分式方程有增根,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣6;把x=﹣1代入整式方程得:m=0(舍去),则增根为x=1,m=﹣6.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:龙海市期中年份:2017关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.【答案】(1)x=-2;(2)-3【解析】(1)把a的值代入分式方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由分式方程有增根,得到最简公分母为0,求出x的值,代入整式方程即可求出a的值.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:安岳县期末年份:2016【作业5】为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数x人,那么x应满足怎样的方程?【答案】【解析】要求的未知量是人数,有捐款总额,一定是根据人均捐款额来列等量关系的.关键描述语是:两次人均捐款额相等.等量关系为:第一次人均捐款额=第二次两次人均捐款额,也就是:第一次的捐款总额÷第一次的捐款人数=第二次的捐款总额÷第二次的捐款人数.解:设第一次捐款人数x人,第二次捐款人数(x+20)人,由第一次人均捐款额=第二次两次人均捐款额,故可得:.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。
初二下数学分式方程经典例题及练习
初二数学分式方程专题一、考点、热点回顾分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有四种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.即时知识梳理1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.(验根的方法:将所求得的未知数的知数的值代入)3.列方程解决实际问题的步骤(1)审;找出 (2)设; (3)列;(4)解;检验:是否是原方程的根;这个根在实际问题中是否有实际意义; (5)答;二、典型例题题型一:分式方程题型 【例1】解下列分式方程 (1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++x x x x ; (4)61244444402222y y y y y y y y +++---++-=2例2、 解方程x x x x x x x x +++++=+++++12672356练习:(1)11115674x x x x +=+++++(2)121043323489242387161945x x x x x x x x --+--=--+--(3)【例2】(1)若关于x 的方程211333x x kx x x x ++-=-- 有增根,求增根和k 的值(2)、m 为何值时,关于x 的方程22432x m x x x -+-=+2会产生增根? 解:方程两边都乘以x 24-,得2436x m x x ++=- 整理,得()m x -=-110242401111x x x xx x x x+++=-+++当时,如果方程产生增根,那么,即或()若,则()若,则()综上所述,当或时,原方程产生增根m x m x x x x m m x m m m ≠=---===-=--=∴=-=---=-∴==-11014022121012422101263462 说明:分式方程的增根,一定是使最简公分母为零的根 练习: 1.若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或B. -12或C. 12或D. 12或-分析:分式方程产生的增根,是使分母为零的未知数的值。
(完整版)初中数学分式方程典型例题讲解
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
2019-2020年数学:16.3分式方程(二)精讲精练(人教新课标八年级下)
2019-2020年数学:16.3分式方程(二)精讲精练(人教新课标八年级下)【自主领悟】1.某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.320320200.5x x-=-B.320320200.5x x-=-C.3203200.520x x-=-D.3203200.520x x-=-2.某实验室现有30%的盐酸50克,要配制25%的稀盐酸,需加入x克水,下面是小华的学习小组所列的关于x的方程,你认为正确的是()A.3050x+=25% B.5050x+=25% C.1515x+=25% D.1550x+=25%3.一项工程,甲、乙两人合做需m小时完成,甲独做需n小时完成,那么乙独做需____________小时完成.4.甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.5.某市为缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,须将原定的工作效率提高12%,问原计划完成这项工程用多少个月?【自主探究】问题1某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A.12012022x x-=-B.12012032x x=-+C.12012032x x=-+D.12012032x x=--名师指导列方程解应用题的关键步骤在于找相等关系,本题可用来列方程的相等关系是采用新技术后每天增加生产3件.由题意,原计划每天能生产零件120x件,采用新技术后提前两天即(2)x -天完成,所以每天能生产1202x -件,根据相等关系可列出方程12012032x x =--. 问题2 为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程______ __.名师指导题目设原计划每天种植x 棵,那么可用来列方程的相等关系是实际比原计划提前4天完成任务.由题意,原计划植树720x天,而实际每天植树(20)x +棵,实际植树天数为72020x +天,所以根据相等关系可列方程720720420x x -=+. 问题3 甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?名师指导本题的相等关系有两个“乙队单独完成这项工程要比预期多用3天”和“若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成”.考虑到问题要求的是规定的工期,所以根据第二个相等关系来列方程比较直接,因此设规定的工期是x 天,则甲队完成这项工程要x 天,再根据第一个相等关系,乙队完成这项工程的天数就可以表示为(3)x +天.解题示范解:设规定的工期是x 天,则甲队完成这项工程要x 天,乙队完成这项工程要(3)x +天, 记总工程量为1,由题意可列方程111()2(2)133x x x x +⨯+-=++. 解这个方程,得6x =.检验:6x =时,(3)0x x +≠,6x =是原方程的解.答:规定的工期是6天.归纳提炼列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.问题3中的两个“如期完成”就是一个隐含条件.【自主检测】1. 新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x 天,根据题意可列方程 .2. 小王做90个零件所需要的时间和小李做120个零件所用的时间相同,又知每小时小王与小李两人共做35个机器零件.求小王、小李每小时各做多少个零件?设小王每小时做x 个零件,根据题意可列方程 .3. 某商品的标价比成本高p %,当该商品降价出售,为了不亏本,降价幅度不得超过d %,请用p 表示d .4. 某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走.怎样调配劳动力才使挖出来的土能及时运走且不窝工(停工等待).为解决此问题,可设派x 人挖土,其他人运土.列方程为 ①14413x x -=;②1443x x -=;③3144x x +=;④3144x x=-.上述所列方程,正确的有 ( ) A .1个 B .2个 C .3个 D .4个5. “五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为 ( )A .18018032x x -=-B .18018032x x -=+C.18018032x x-=+D.18018032x x-=-6.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林x公顷,根据题意列方程正确的是()A.24024054x x+=+B.24024054x x-=+C.24024054x x+=-D.24024054x x-=-7.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.8.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书的价格高出一半,因此他们所买的科普书比所买的文学书少一本.这种科普书和这种文学书的价格各是多少?小明和同学买了科普书和文学书各多少本?9.某商场销售某种商品,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问此商品的进价是多少元?商场第二个月共销售多少件?10.某单位将沿街的一部分房屋出租作为店面房,每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)求出租的房屋总间数;(2)分别求历年每间房屋的租金.【自主评价】一、自主检测提示3.设商品成本为1,则标价为(1%)p +,由题意,(1%)(1%)1p d +-=,整理得1%p d p =+ 二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸【例题】甲、乙两人两次同时在一家粮店购买大米,两次大米的价格分别为每千克a 元和b 元(a ≠b ).甲每次买100千克大米,乙每次买100元大米.(1)用含a 、b 的代数式表示:甲两次购买大米共需付款 元,乙两次共购买 千克大米.若甲两次购买大米的平均单价为每千克1Q 元,乙两次购买大米的平均单价为每千克2Q 元,则1Q = ,2Q = .(2)若规定谁两次购粮的平均价格低,谁购粮的方式就更合理,请你判断比较甲、乙两人的购粮方式,哪一个更合理,并说明你的理由.【参考答案】(1)1001002100100,,,2a b ab a b a b a b++++; (2)作差法:1Q -2Q =22()22()a b ab a b a b a b +--=++>0.所以乙的购粮方式更合理.参考答案1.1112()142x+⨯=2.9012035x x=-3.1%pdp=+4.C 5.B 6.B (1)60天,(2)24天8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本9.此商品进价是500元,第二个月共销售128件.10.(1)12间,(2)8000元、8500元。
经典讲解和复习题八年级数学分式方程
1 小时,已知甲与乙速度比为8:7,求两人速度。 4
解:设甲的速度8x千米/时, 乙的速度是7x千米/时。
甲
v
8x 7x
s
28 28
t
28 8x
28 28 1 7 x 8x 4
乙
28 7x
(2)一船在静水中每小时航行20千米,顺水航行 72千米的时间恰好等于逆水航行48千米的时间, 求每小时的水流速度。
例2:从2004年5月起某列车平均 提速v千米/时,用相同的时间, 列车提速前行驶s千米,提速后比 提速前多行驶50千米,提速前列 车的平均速度为多少?
练习1.某单位将沿街的一部分房屋出租,每间房 屋的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元 .
(1).分别求两年每间出租房屋的租金?
如:条件:已知水速为2 km/h, 问题:求船在静水中的速度 ?解:设船在静水中的速度为x km/h.
2 2 2 x2 x2 3
2=16 化简得:X
解得x=±4
经检验x= ±4是原方程的根, 但是x=-4不符合题意,应舍去.
答:船在静水中的速度是 4km/h.
列分式方程解应用题的 一般步骤
答:自行车的速度是15千米/时, 汽车的速度是45千米/时。
列分式方程解应用题的步骤:
(1)审题。
(2)设未知数。
(3)弄清各个量之间的关系。 (4)找出等量关系,列出方程。 (5)解方程及检验。 (6)答题。
先填表,后列方程。(只列方程,不用解方程)
(1)甲、乙两人骑自行车各行28公里,甲比乙快
分析:
2
骑自车的路程=乘车的路程/骑车速度的3倍=乘车的速度
/
部编数学八年级上册专题38解分式方程特训50道(解析版)含答案
专题38 解分式方程特训50道1.解方程:(1)2332x x =--(2)11222x x x-=---.2.解下列分式方程:(1)752x x =-(2)11322x x x-+=--【答案】(1)x =﹣5(2)无解【分析】(1)观察方程可得最简公分母为(2)x x -,两边同乘最简公分母把分式方程化为整式方程即可得解;(2)观察方程可得最简公分母为(2)x -,两边同乘最简公分母把分式方程化为整式方程即可得解.(1)解:去分母得:7x =5x ﹣10,解得:x =﹣5,检验:把x =﹣5代入得:x (x ﹣2)≠0,∴分式方程的解为x =﹣5;(2)解:去分母得:1+3(x ﹣2)=x ﹣1,解得:x =2,检验:把x =2代入得:x ﹣2=0,∴x =2是增根,分式方程无解.【点睛】本题考查分式方程的解法,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根;熟练找到最简公分母是解题的关键.3.解分式方程:(1)231233x x x x -=--;(2)13121422x x +=--.【答案】(1)3x =(2)3x =【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:方程两边都乘23x x -,得326x x -=-,解这个方程,得3x =, 经检验,3x =是原方程的增根,原方程无解;(2)解:方程两边都乘42x -,得 2321x +=-,解这个方程,得3x =,经检验,3x =是原方程的根.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解本题的关键.4.解分式方程:(1)23211x x =+-(2)214111x x x ++=--(1)2x =32x +(2)51122x x x-+=--【答案】(1)4x =(2)x =-1【分析】(1)根据解分式方程的过程即可求解;(2)根据解分式方程的过程即可求解.(1)解:方程两边同时乘x (x +2),得2(x +2)=3x化简,得x -4=0解得:x =4经检验,x =4是原分式方程的解所以x =4(2)解:方程两边乘(x -2),得5+(x -2)=1-x化简,得2x =-2解得: x =-1检验:当x =-1时,x -2≠0所以x =-1是原分式方程的解【点睛】本题考查了解分式方程,解决本题的关键是解分式方程时要验根.6.解下列方程(1)23201x x x x +-=--;(2)723222x x x --=++.【答案】(1)无解【解析】(1)(1)解:分式两边同乘(1)x x -得:3(2)0x x -+=解得:1x =检验:当1x =时,(1)0-=x x故原分式方程无解.(2)(2)解:分式两边同乘2x +得:72(2)23x x -+=-解得:=1x -检验:当=1x -时,20x +¹故原分式方程的解为:=1x -.【点睛】本题主要是考查了分式方程的求解,熟练将分式方程化成整式方程进行求解,最后注意验根,这是解决这类问题的主要思路.7.解方程:(1)213111x x x --=+-;(2)28122x x x x-=--.8.解下列分式方程:(1)11x -+21x -=1;(2)2x x -﹣1=284x -.∴原分式方程无解.【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.9.解方程:(1)54 2332xx x+=--(2)21233xx x -=---10.解方程:(1)1221x x=+;(2)3123xx x+=+-.11.解方程(1)33122x x x-+=--(2)()()31121-=-+-x x x x 【答案】(1)1x =;(2)无解.【分析】(1)去分母化分式方程为整式方程,然后解整式方程,最后验根即可;(2)去分母化分式方程为整式方程,然后解整式方程,最后验根即可.【详解】解:(1)去分母得:323x x -+-=-,移项合并得:22x =,解得:1x =,经检验1x =是该方程的根;(2)去分母得:(2)(2)(1)3x x x x +-+-=,去括号得:22223x x x x +--+=,移项合并得:1x =,经检验1x =是该方程的增根,即该方程无解.【点睛】本题考查解分式方程.解分式方程的思想就是去分母化分式方程为整式方程求解,一定要记得验根哦.12.解下列分式方程:(1)1122 xx x-=--(2)223111xx x+=--.13.解方程:(1)3113x x=-+(2)2512424xx x x-=+--14.解方程(1)1213x x =++ (2)221212141x x x +=+--【答案】(1)原分式方程的解为1x =;(2)原分式方程的解为0x =.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【详解】(1)解:两边同乘()(13)x x ++,得32(1)x x +=+解得1x =检验:当1x =时,(1)(3)0x x ++¹所以,原分式方程的解为1x =(2)解:两边同乘(21)(21)x x -+,得(21)(21)2(21)(21)x x x x ++=++-22(21)241x x +=+-解得0x =检验:当1x =时,(21)(21)0x x -+¹所以,原分式方程的解为0x =.【点睛】本题考查了解分式方程,注意要检验方程的根.15.解分式方程(1)232x x =+ (2)21124x x x -=--16.解方程:(1)21233x x x -=+--(2)22142x x x +=--【答案】(2)x=5;(2)x =﹣3【分析】先去分母,系数化为1,再检验答案即可.【详解】解:(1)去分母得:x ﹣2=2x ﹣6﹣1,解得:x =5,经检验x =5是分式方程的解;(2)去分母得:2+x 2+2x =x 2﹣4,解得:x =﹣3,经检验x =﹣3是分式方程的解.【点睛】本题考查解分式方程,解题的关键是掌握分式方程求解的基本步骤.17.解方程:(1)228124x x -=-- (2)2214224x x x -=+--.【答案】(1)x=0;(2)原分式方程无解.【分析】先将原分式方程去分母转换成整式方程,解整式方程,再检验即可得出答案.【详解】(1)解: 方程两边同时乘以x 2-4得:2(x+2)-8=x 2-4,解得:x=0,或x=2,经检验:x=0是原分式方程的根,x=2是原分式方程的增根,∴原分式方程的根为:x=0;(2)解: 方程两边同时乘以x 2-4得:2(x-2)+(x+2)=4,解得:x=2,经检验:x=2是原分式方程的增根,∴原分式方程无解.故答案为(1)x=0;(2)原分式方程无解.【点睛】本题考查解分式方程,解题的关键是熟练掌握解分式方程的方法,注意解分式方程要检验.18.解方程(1)22411x x =-- (2)2115-2x 25x x ++=-19.解方程:(1)22+=124x x x --(2)33122x x x-+=--【答案】(1)x =-3;(2)x =1.【分析】(1)分式方程两边同乘(x +2)(x -2)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘(x -2)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:去分母得:x (x +2)+2=(x +2)(x -2),解得:x =-3,检验:把x =-3代入(x +2)(x -2)得:(x +2)(x -2)≠0,∴分式方程的解为x =-3;(2)解:去分母得:x -3+x -2=-3,解得:x =1,检验:把x =1代入(x -2)得:x -2≠0,∴分式方程的解为x =1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.解下列分式方程:(1)11222x x x -+=--;(2)212422x x x x -=--+.【答案】(1)无解(2)x =1【分析】(1)方程两边都乘(2)x -得出12(2)1x x -+-=-,求出方程的解,再进行检验即可;(2)方程两边都乘(2)(2)x x +-得出(2)22x x x -+=(-),求出方程的解,再进行检验即可.(1)解:方程两边都乘(2)x -得,12(2)1x x -+-=-,解得x =2,检验:当x =2时,2x -=0,∴x =2是增根,原方程无解;(2)解:方程两边都乘(2)(2)x x +-得,(2)22x x x -+=(-),解得1x =,检验:当1x =时,(2)(2)0x x +-¹,∴1x =是原方程的解.【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,特别注意解分式方程需要验根.21.解方程:(1)2512112x x +=--(2)22162242x x x x x -+-=+--【答案】(1)=1x -(2)无解22.解方程:(1)2141x x =+-;(2)()()31112x x x x -=--+.【答案】(1)x =6(2)无解【分析】(1)首先方程两边同时乘以(x +4)(x -1)即可转化成整式方程,然后即可求得方程的解.(2)首先方程两边同时乘以(x -1)(x +2)即可转化成整式方程,然后即可求得方程的解.(1)23.解方程:(1)12x -+3=12x x --.(2)11x x +--221x -=1.24.解方程(1)1223x x=+;(2)33122xx x-+=--.25.解方程:(1)22411x x =--;(2)2115225x x x ++=--.26.解分式方程:(1)29472393x x x x +-=+--;(2)22402242x x x x x -++=+--27.解方程:(1)233x x =-;(2)11222x x x-=---.28.解分式方程:(1)3111x x x -=-+(2)11222x x x-+=--.【答案】(1)2x =(2)无解【分析】(1)先去分母,然后可进行求解方程;(2)先去分母,然后再进行求解方程即可.(1)解:去分母得:()()()()11131x x x x x +-+-=-,去括号得:22133x x x x +-+=-,移项、合并同类项得:24x -=-,解得:2x =,经检验:当2x =时,()()110x x +-¹,∴原方程的解为2x =;(2)解:去分母得:()1221x x -+-=-,去括号得:1241x x -+-=-,移项、合并同类项得:2x =,经检验:当2x =时,20x -=,∴原方程无解.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.29.(1)234022x x x x --=--;(2)221211x x x x --=--30.解分式方程:(1)11222x x x -=---(2)23124x x x -=--31.解方程(1)21122x x x =---(2)221111x x x x --=--【答案】(1)x =-1(2)x =2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,再检验即可得到分式方程的解.(1)32.解方程:(1)6x =521x -.(2)2114111x x x +-=--33.解方程:(1)253x x =+;(2)214111x x x +-=--.【答案】(1)5x =-(2)无解【分析】(1)方程两边同时乘以(3)x x +,得25(3)x x =+,再求解此方程,然后验根即可;(2)方程两边同时乘(1)(1)x x -+,得2(1)4(1)(1)x x x +-=+-,再求解此方程,然后验根即可.(1)方程两边同时乘以(3)x x +,得25(3)x x =+,化简,得50x +=,解得5x =-,经检验,5x =-是原分式方程的解,所以5x =-.(2)方程两边同时乘(1)(1)x x -+,得2(1)4(1)(1)x x x +-=+-,化简,得10x -=,解得:1x =,经检验,1x =是原分式方程的增根,所以原分式方程无解.【点睛】本题考查了分式方程的求解,掌握分式方程的一般解法是关键,分式方程要检验.34.解方程:(1)342x x =-;(2)22111x x x -=--.35.解方程:(1)232x x =+;(2)214111x x x ++=--【答案】(1)4x =(2)3x =-【分析】(1)方程两边都乘以x (x +2)得出方程2(x +2)=3x ,求出方程的解,再代入x (x +2)进行检验即可;(2)方程两边都乘以(x 2-1)得出(x +1)2+4=x 2−1,求出方程的解,再代入(x 2-1)进行检验即可.(1)解:去分母得2(x +2)=3x ,去括号得2x +4=3x ,移项、合并同类项得x =4,检验:当x =4时,x (x +2)≠0,∴原分式方程的解为x =4;(2)解:去分母得(x +1)2+4=x 2-1,去括号得x 2+2x +1+4=x 2-1,移项、合并同类项得2x =-6,系数化为1得x =-3,检验:当x =-3时,x 2-1≠0,∴原分式方程的解为x =-3.【点睛】本题考查了分式方程的解法,关键是把分式方程转化成整式分式,注意解分式方程一定要进行检验.36.解分式方程:(1)542332x x x +=--;(2)1293313x x x -=--.【答案】(1)x =1(2)原方程无解37.解方程:(1)131x x x x +=--.(2)214111x x x +-=--【答案】(1)x =-3(2)无解【分析】(1)方程两边同时乘以最简公分母()()31x x --,化为整式方程,解方程即可求解,注意最后要检验;(2)方程两边同时乘以最简公分母()()11x x +-,化为整式方程,解方程即可求解,注意最后要检验;(1)解:方程两边同时乘以最简公分母()()31x x --,得,()()()131x x x x -=-+,即2223x x x x -=--,解得3x =-,检验:将3x =-代入()()31x x --()64240=-´-=¹,\3x =-是原方程的解;(2)解:方程两边同时乘以最简公分母()()11x x +-,得,()22141x x +-=-222141x x x ++-=-解得1x =检验:将1x =代入()()11x x +-0=\1x =是原方程的增根【点睛】本题考查了解分式方程,正确的计算是解题的关键.38.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---39.解分式方程:(1)123x x =+.(2)16322x x x =---.【答案】(1)3x =(2)原方程无解【分析】(1)根据解分式方程的一般步骤即可求解.(2)根据解分式方程的一般步骤即可求解.(1)解:等式两边同时乘以(3)x x +得:32x x +=,解得3x =,经检验,3x =是原方程的解,∴原方程的解为3x =.(2)等式两边同时乘以2x -得:36(2)x x =--,解得2x =,经检验2x =是原方程的增根,∴原方程无解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.40.解方程(1)3211x x =+-;(2)2236111x x x +=+--.【答案】(1)x =5;(2)原方程无解【分析】(1)先给方程两边同时乘以(x +1)(x -1)去分母化为整式方程,然后求出整式方程的解并检验即可解答;(2)先给方程两边同时乘以(x +1)(x -1)去分母化为整式方程,然后求出整式方程的解并检验即可解答.(1)解:去分母得:3(x -1)=2(x +1),去括号得:3x -3=2x +2,解得:x =5,经检验:x =5是原方程的解,∴x =5;(2)解:去分母得:2(x -1)+3(x +1) =6,去括号得:2x -2+3x +3=6,解得:x =1,经检验:把x =1代入得:(x +1)(x -1)=0,∴x =1是原方程的增根,∴原方程无解.【点睛】本题主要考查了解分式方程,利用解分式方程的一般步骤解答是解题的关键.41.解方程:(1)572x x =-(2)21233x x x-=---【答案】(1)x =﹣542.解分式方程:(1)132x x =+;(2)23193x x x -=--.【答案】(1)x =1(2)x =﹣4【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:去分母得:x +2=3x ,解得:x =1,检验:把x =1代入得:x (x +2)≠0,∴分式方程的解为x =1;(2)解:去分母得:3+x (x +3)=x 2﹣9,解得:x =﹣4,检验:把x =﹣4代入得:(x +3)(x ﹣3)≠0,∴分式方程的解为x =﹣4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.43.解下列分式方程:(1)31144x x x -+=--;(2)21111x x =--.【答案】(1)3x =(2)0x =【分析】(1)分式方程的两边同乘以(x -4)去分母,解方程得出x 的值,再进行检验即可;(2)分式方程的两边同乘以(x -1)(x +1)去分母,解方程得出x 的值,再进行检验即可.(1)解:方程两边同乘以(x -4),得3-x -1=x -4,解得x =3,检验:当x =3时,x -4≠0,所以x =3是原方程的解;(2)解:方程的两边同乘以(x -1)(x +1),得x +1=1,解得x =0,检验:当x =0时,(x -1)(x +1)≠0,所以x =0是原方程的解.【点睛】本题考查了解分式方程,解题的关键是能够熟练去分母,不要漏乘常数,不要漏写检验.44.解下列方程.(1)21133x x x x =-++(2)2236111y y y +=+--()()21316y y -++=,解得:1y =,检验:当1y =时,210y -=,∴y =1是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤是解题的关键.45.解方程:(1)8021023(3)x x =+-(2)32122x x x =---46.解下列方程:(1)3122x x x +=--.(2)214 1.11x x x +-=--47.解分式方程:(1)2112x x=--;(2)311(1)aa a a-=--.【答案】(1)3x=(2)3a=【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验即可得到分式方程的解.(1)解:方程两边乘(x ﹣1)(x ﹣2),得2(x ﹣2)=x ﹣1,去括号得:2x ﹣4=x ﹣1,解得:x =3,检验:当x =3时,(x ﹣2)(x ﹣1)≠0.∴这个分式方程的解为x =3;(2)方程两边同乘以a (a ﹣1),得a 2﹣a (a ﹣1)=3,解得:a =3,检验:当a =3时,a (a ﹣1)≠0,所以原分式方程为a =3.【点睛】此题考查了解分式方程,利用了转化的思想,将分式方程转化为整式方程,解分式方程注意要检验.48.解方程(1)5302x x -=-(2)21424x x =--【答案】(1)3x =-(2)无解【分析】(1)根据解分式方程的一般步骤求解即可;(2)根据解分式方程的一般步骤求解即可.(1)解:方程两边同乘以公分母()2x x -,得()5320x x --=解得3x =-经检验,3x =-是原方程的解,因此,原方程的解为:3x =-(2)解:方程两边同乘以最简公分母()()22x x +-,得24x +=解得:2x =经检验2x =不是原方程的解,所以原方程无解.【点睛】题目主要考查解分式方程的一般方法步骤,熟练掌握解分式方程的方法是解题关键.49.解下列分式方程:(1)33122x x x -+=---(2)11321242x x =---【答案】(1)1x =(2)3x =【分析】(1)先去分母化为一元一次方程求解,然后进行检验即可;(2)先去分母化为一元一次方程求解,然后进行检验即可.(1)去分母,得323x x -+-=-移项,得332x x +=-++合并同类项,得22x =系数化为1,得1x =检验,当1x =时,2121x -=-=-≠0∴原方程的解为1x =(2)方程两边同时乘2(21)x -,得2213x =--化简得26x =,解得3x =检验:当3x =时,2(21)x -≠0,∴原方程的解为3x =.【点睛】题目主要考查解分式方程的一般步骤,熟练掌握解分式方程的方法是解题关键.50.解方程:(1)561x x =+;(2)214111x x x +-=--.。
第3讲 分式方程(题型精练)(原卷版)
第3讲 分式方程(精练)A 基础训练B 能力提升A 基础训练一、单选题1.(2022·河南·上蔡县第六初级中学八年级阶段练习)解分式方程14222x x-=--时,去分母得( ) A .()1224x --= B .()1224x --=- C .()1224x ---=-D .()1224x --=2.(2022·云南玉溪·八年级期末)若关于x 的方程22x mx +-+12x x--=3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3 B .m ≥-7且m ≠-3 C .m ≤-7D . m ≥-73.(2022·安徽滁州·七年级期末)方程4122x xx x -=+--的解为( ) A .x =1B .x =-2C .x =2D .无解4.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x 的分式方程3122m x x x ++=--有解,则实数m 应满足的条件是( ) A .m =-1B .m ≠-1C .m =1D .m ≠15.(2022·湖南·八年级期中)为贯彻国务院印发的《扎实稳住经济的一揽子政策措施》,某大型5G 产品生产厂家更新了技术,现在平均每天比更新技术前多生产40万件产品,现在生产600万件产品所需时间与更新技术前生产500万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( ) A .50060040x x=- B .50060040x x =- C .50060040x x =+ D .50060040x x=+ 6.(2022·湖南·岳阳县甘田中学八年级阶段练习)若方程144-=--x mx x 有增根,则m 的值是( ) A .5B .3C .-3D .27.(2022·江苏·苏州工业园区东沙湖实验中学八年级期中)如图,《四元玉鉴》是我国古代数学重要著作之一,为元代数学家朱世杰所著.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x 株,则符合题意的方程是( )A .62103=xB .621031=-x C .621031-=x xD .()621031x x-=8.(2022·福建·泉州市第六中学八年级期中)方程212=11x x --的解是( )A .=1xB .1x =-C .=2xD .无解9.(2022·广东·深圳市南山外国语学校(集团)二模)某工程队经过招标,中标2500米的人才公园跑道翻修任务,但在实际开工时.……,求实际每天修路多少米?在这个题目中,若设实际每天翻修跑道x 米,可得方程250025001050x x-=-.则题目中用“……”表示的条件应是( )A .每天比原计划多修50米的跑道,结果延期10天完成B .每天比原计划少修50米的跑道,结果提前10天完成C .每天比原计划少修50米的跑道,结果延期10天完成D .每天比原计划多修50米的跑道,结果提前10天完成 10.(2022·四川·测试·编辑教研五九年级阶段练习)若代数式22x -和32x 1+的值相等,则x 的值为( ) A .3B .7C .4-D .8-11.(2022·广东·佛山市顺德区拔萃实验学校八年级期中)若关于x 的方程233a xx x+=--有增根,则a 的值是( ). A .9-B .3-C .3D .912.(2022·重庆第二外国语学校九年级期中)某渔民为估计池塘里鱼的总数,先随机打捞20条鱼给它们分别作上标志,然后放回,待有标志的鱼完全混合于鱼群后,第二次打捞80条,发现其中2条鱼有标志,从而估计该池塘有鱼( )A .1000条B .800条C .600条D .400条13.(2022·湖南·明德湘南学校八年级阶段练习)若解分式方程322k k xx x-=---产生增根,则k 的值为( ) A .2B .1C .0D .任何数14.(2022·贵州省三穗中学八年级期末)小明家距离学1500米,一天,小明从家出发去学校上学,出发8分钟后,爸爸发现他的数学作业忘记拿了,立即带上作业去追他,在距离学校200米的地方追上了他,已知爸爸的速度是小明速度的2倍,若设小明的速度为x 米/秒,则可列方程为( ) A .150********82x x --= B .1500200150020082x x ---= C .1500200150020082x x---= D .150020015002008602x x---=⨯ 二、填空题15.(2022·上海奉贤·九年级阶段练习)在一不透明的盒子中只有红、黄两色的小球(这些小球除颜色外无其他差别),其中红球有4个,如果从盒子中随机取出一个为红球的概率是13,那么黄球的个数是 _____. 16.(2022·甘肃·临泽二中八年级期末)若方程255x mx x =---有增根,则m =___________. 17.(2022·山东青岛·八年级期中)如果关于x 的方程211x x m-+=的解是正数,那么m 的取值范围是______.18.(2022·安徽安庆·七年级期末)分式方程+233x a x x =--有增根,则a 的值是_____. 三、解答题19.(2022·河北·北师大石家庄长安实验学校八年级阶段练习)解方程: (1)233x x =+ (2)2236111x x x +=+--20.(2022·辽宁铁岭·八年级期末)解分式方程:(1)231233x x x x-=--; (2)13121422x x +=--.21.(2022·辽宁·沈阳市南昌初级中学(沈阳市第二十三中学)八年级阶段练习)在A ,B 两地间仅有一条长为360千米的笔直公路,若甲,乙两车分别从A 、B 两地同时出发,匀速前往终点B ,A 两地,乙车速度是甲车速度的34倍,乙车比甲车晚到90分钟,求乙车每小时行驶多少千米?22.(2022·北京十一晋元中学八年级期中)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某工厂为了满足市场需求,提高生产效率,在生产操作中需要用机器人来搬运原材料.现有A ,B 两种机器人,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运750kg 所用时间与B 型机器人搬运500kg 所用时间相等,求两种机器人每小时分别搬运多少原料?B 能力提升23.(2022·甘肃天水·八年级期末)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项改造工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)若两队合做这项工程,求完成工程所需的天数.(3)若甲队的费用每天1200元,乙队每天850元,可以有哪些施工方案?怎样施工费用最低?24.(2022·湖南·岳阳县甘田中学八年级阶段练习)解方程: (1)512552x x x +=-- (2)22211x x x=-+25.(2022·山西·大同市云州区初级示范中学校九年级阶段练习)电影《长津湖》是一部讲述抗美援朝题材影片,该片以朝鲜长津湖战役为背景,讲述一个志愿军连队在极寒严酷环境下坚守阵地奋勇杀敌、为战役胜利作出重要贡献的故事,2021年8月首映,深受人们的喜爱.2022年清明节来临之际某电影院开展“清明祭英烈共铸中华魂”系列活动,对团体购买该电影票实行优惠,决定在原定零售票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200元.(1)求每张零售电影票的原定价;(2)为了弘扬爱国主义精神,该影院决定对网上购票的个人也采取优惠,原定零售票价经过连续两次降价后票价为每张32.4元,求原定零售票价平均每次的下降率.。
八年级数学分式方程冀教版知识精讲
初二数学分式方程冀教版【本讲教育信息】一. 教学内容:1. 了解分式方程的概念,理解分式方程的增根,掌握分式方程验根的方法.2. 解分式方程的关键是去分母,将分式方程化成整式方程,在解题过程中体会数学转化思想的运用.二. 知识要点:1. 分式方程的概念分母中含有未知数的方程叫做分式方程.判断一个方程是不是分式方程,应看这个方程的分母中是否含有未知数,而不是含不含字母.如方程x a=1(a 是常数,且a ≠0,x 是未知数)就不是分式方程. 2. 分式方程的解法(1)解分式方程的基本思路是:先将分式方程转化为整式方程,再解得到的整式方程,最后把整式方程的根代入分式方程(或公分母)中进行检验,确定出分式方程的根.(2)解分式方程的主要步骤是:①去分母:在方程两边都乘以公分母,把它化为整式方程.②解这个整式方程.③检验:把这个整式方程的根代入公分母,如果结果不为0,这个根就是分式方程的根;如果结果为0,它就是分式方程的增根,必须舍去.(3)解分式方程时,由于在方程的左右两边同时乘含有未知数的公分母(含未知数的整式),得到了一个整式方程,从而使原分式方程中未知数的取值范围扩大了.因此,在解分式方程时必须验根.3. 解分式方程产生增根的原因解分式方程产生增根主要是去分母造成的,去分母后,分式方程转化为整式方程,原方程中分母不等于0的限制,在整式方程中自动取消,这样所得整式方程的根就可能使原分式方程的公分母的值为0.若此情况恰好出现,则此根就是整式方程的根而不是分式方程的根,即为增根.三. 重点难点:重点是解可化为一元一次方程的分式方程,难点是对增根的理解.四. 考点分析:1. 本节是中考命题的要点,题型有选择题、填空题、解答题.2. 今后的中考题中,分式方程仍然是必考内容,主要以基础题为主.【典型例题】例1. 指出下列方程中的分式方程:(1)1x =4x -3 (2)x 2x=1 (3)x a =25(a 是常数,a ≠0)(4)x 3=x -12分析:(1)、(2)的分母中含有未知数,是分式方程.(3)、(4)的分母中不含未知数,是整式方程.解:(1)和(2)是分式方程.评析:判断一个方程是不是分式方程,就看这个方程的分母中是否含有未知数.误区(1):认为分母中含有字母的方程就是分式方程.事实上字母和未知数是两个不同的概念,字母也可以表示常数.误区(2):认为:如x 2x =1的方程化简得x =1,x =1是整式方程,故x 2x =1也是整式方程.事实上,x 2x 和x 并不相同,x 2x 是分式,x 的取值范围为不为零的实数,而x 是整式,x 的取值范围是任意实数.故x 2x=1是分式方程,而x =1是整式方程.例2. 解方程:(1)3x x -1-21-x=1. (2)x +1x -1-4x 2-1=1. 分析:(1)将原方程整理得3x x -1+2x -1=1,两边都乘以x -1,去掉分母化成整式方程是:3x +2=x -1.解这个方程得x =-32,把x =-32代入原方程检验.(2)方程两边都乘以最简公分母(x +1)(x -1).解:(1)原方程可以化为:3x x -1+2x -1=1, 两边都乘以x -1,得3x +2=x -1.解这个方程得x =-32. 检验:把x =-32代入x -1,不等于0. 所以x =-32是原方程的解. (2)两边都乘以(x +1)(x -1),得(x +1)2-4=x 2-1.解之,得x =1.检验:把x =1代入(x +1)(x -1),得0.所以x =1是原方程的增根,即原方程无解.评析:解分式方程的关键步骤是两边都乘以最简公分母化成整式方程的过程,易出错的步骤是验根.例3. (1)解关于x 的方程x -3x -1=m x -1产生增根,则常数m 的值为__________. (2)当m =__________时,关于x 的分式方程2x +m x -3=-1无解. 分析:(1)先把分式方程化为整式方程,再把增根(即使分式方程的最简公分母为0的未知数的值)代入这个整式方程,即可求得m 的值.即x -3=m ,当x =1(原方程的增根)时,m =-2.(2)分式方程2x +m x -3=-1的增根是x =3,把分式方程化为整式方程2x +m =-x +1,即3x =3-m ,把x =3代入得,m =-6,也就是当m =-6时,关于x 的分式方程2x +m x -3=-1无解. 解:(1)-2(2)-6例4. 在式子1R =R 1+R 2R 1R 2中,R ≠R 1,求出表示R 2的式子. 分析:应该注意:在这个方程中,未知数是R 2;已知数是R 和R 1.解:去分母,得:R 1R 2=(R 1+R 2)R解这个整式方程,R 1R 2=R 1R +RR 2R 1R 2-RR 2=RR 1所以(R 1-R )R 2=RR 1因为R ≠R 1所以R 2=RR 1R 1-R例5. 若分式方程a x -2+1x 2-4+2=0有增根x =2,求a 的值. 分析:由分式方程a x -2+1x 2-4+2=0有增根x =2,得a (x +2)+1+2(x +2)(x -2)=0,将x =2代入所得方程即可求出a .解:原分式方程去分母,得a (x +2)+1+2(x +2)(x -2)=0,把x =2代入所得方程,得4a +1+0=0,a =-14, 所以当a =-14时,x =2. 评析:增根是分式方程化成的整式方程的根,是使最简公分母为0的未知数的值.例6. 数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so .研究15、12、10这三个数的倒数发现:112-115=110-112.我们称15、12、10这三个数为一组调和数.现有一组调和数:x 、5、3(x >5),则x 的值是__________.分析:根据题意,调和数的前项的倒数差等于后两项的倒数差.因此,调和数x 、5、3也满足这一规律,所以1x -15=15-13.解这个分式方程得x =15. 解:15【方法总结】分式方程的特点是未知数在分母中,因此它的解法的基本思路是先化分式方程为整式方程,再解出未知数,再检验确认.分式方程的解法步骤可以变成如下顺口溜:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.通过分式方程的解法,要体会到转化思想在解决数学问题中的作用.【模拟试题】(答题时间:50分钟)一. 选择题1. 下列说法正确的是( )A. 有分母的方程叫分式方程B. 分母中有字母的方程叫分式方程C. 分子和分母中都含有未知数的方程叫做分式方程D. 分母中含有未知数的方程叫分式方程2. 分式方程x x +1=12的解是( ) A. x =1B. x =-1C. x =2D. x =-23. 解方程2x +1+3x -1=6x 2-1,下列说法不正确的是( ) A. 方程两边分式的最简公分母是(x +1)(x -1)B. 方程两边乘以(x +1)(x -1),得整式方程2(x -1)+3(x +1)=6C. 解这个整式方程,得x =1D. 原方程的解为x =14. 下列给出的四个方程中,其解是x =0的方程是( )A. x +1=0B. x =0C. x 2-1=0D. 1x=1 *5. 若分式方程x x +1-m +1x 2+x=x +1x 产生增根,则m 的值为( ) A. -1或-2 B. -1或2 C. 1或2 D. 0或-2*6. 若关于x 的方程1x 2-1-m x +1=1-2m x -1不会产生增根,则m 为( ) A. m ≠0 B. m ≠14 C. m ≠0且m ≠-12 D. m ≠14且m ≠-12**7. 若4x -1表示一个整数,则整数x 的取值共有( ) A. 3个 B. 4个 C. 5个 D. 6个**8. 关于x 的方程a +x b =x -b a+2(a ≠b )的解为( ) A. x =a -bB. x =a +bC. x =2bD. x =b -a二. 填空题1. 若分式x -1x 2+1的值为零,则x =__________. 2. 方程2x -1=1的解为x =__________. 3. 方程1x =4x +3的解x =__________. 4. 已知x =3是方程x -1a +1=1的一个解,则a =__________. 5. 在R -r n=S 中,已知R 、r 、S ,则n =__________. 6. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为__________. 7. 阅读下面解题过程,然后回答问题.解方程1x -2=1-x 2-x-3. 解:方程两边都乘以x -2,得1=x -1-3(x -2),解这个方程得x =2.(1)上述解方程过程体现了__________的数学思想,即在解分式方程时,总是把分式方程通过__________化为__________方程,从而达到求解的目的;(2)上述解题过程中还缺少的一步是__________.**8. 若关于x 的分式方程2x +a x -2=-1的解是正数,则a 的取值范围是__________.三. 解答题1. 解分式方程:1x -3=2+x 3-x.2. 解方程x +1x -1-4x 2-1=1.3. 解方程:t 3+t -t 2-t=2.*4. 试写一个分式方程,并且使它的根是x =10.*5. 当m 为何值时,方程m x -2+3=1-x 2-x会产生增根.【试题答案】一. 选择题1. D2. A3. D4. B5. D 提示:原方程两边都乘以x (x +1),约去分母得2x =-m -2,即x =-m -22,因为原方程有增根,所以x =0或x =-1,所以-m -22=0或-m -22=-1,所以m =-2或m =0.6. D 提示:去分母得1-(x -1)m =(x +1)(1-2m ),而x ≠1时,m ≠14;x ≠-1时,m ≠-12. 7. D 提示:整数包括正整数、负整数和零,x 可取的值是5、3、2、0、-1、-3.8. D 提示:a 、b 为已知数,这是一个一元一次方程.二. 填空题1. x =12. x =33. x =14. 15. r R -S6. -1 提示:去分母得ax +1-(x -1)=0,而x =1时方程有增根,所以a +1=0,所以a =-1.7. (1)转化 去分母 整式(2)检验8. a <2且a ≠-4 提示:去分母得2x +a =2-x ,整理得3x =2-a .要使x 为正数,需2-a >0,即a <2.注意原方程要求x ≠2,即3×2≠2-a ,得a ≠-4.三. 解答题1. 整理得1x -3=2-x x -3,去分母得1=2(x -3)-x .即x =7.经检验x =7是原方程的解.2. x =1是增根,原方程无解.3. 去分母,得t (2-t )-t (3+t )=2(3+t )(2-t ).化简得,-t =12-2t .解得,t =12.经检验t =12是原方程的解.4. 如:100x=10.等(答案不唯一,注意要求:①所写方程必须是分式方程;②根为x =10)5. 解关于m 的方程m x -2+3=1-x 2-x得m =-2x +5.若原方程有增根,则增根只能是x =2,所以m =-2×2+5=1.即当m =1时方程m x -2+3=1-x 2-x 会产生增根.。
分式方程经典例题+习题
第二十讲分式方程【要点梳理】要点一、分式方程、根与增根1.分式方程分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.2.分式方程的根、增根及检验分式方程的解也叫作分式方程的根.在检验时只要把所求出的未知数的值代入最简公分母中,如果它使最简公分母的值不等于O,那么它是原分式方程的一个根;如果它使最简公分母的值为O,那么它不是原分式方程的根,称它是原方程的增根.要点诠释:(1)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(2)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.要点二、分式方程的解法1.解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2.分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】 类型一、判别分式方程例1、(2016春•闵行区期末)下列方程中,不是分式方程的是( )A .B .C .D .【思路点拨】判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数. 【答案】B ;【解析】解:A 、该方程符合分式方程的定义,属于分式方程,故本选项错误; B 、该方程属于无理方程,故本选项正确;C 、该方程符合分式方程的定义,属于分式方程,故本选项错误;D 、该方程符合分式方程的定义,属于分式方程,故本选项错误; 故选:B .【总结升华】本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程. 类型二、解分式方程 例2、 解分式方程(1)10522112x x +=--;(2)225103x x x x-=+-. 【答案与解析】 解:(1)10522112x x+=--, 将方程两边同乘(21)x -,得10(5)2(21)x +-=-.解方程,得74x =. 检验:将74x =代入21x -,得52102x -=≠. ∴ 74x =是原方程的根. (2)225103x x x x-=+-, 方程两边同乘以(3)(1)x x x +-,得5(1)(3)0x x --+=.解这个方程,得2x =.检验:把2x =代入最简公分母,得2×5×1=10≠0. ∴ 原方程的解是2x =.【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根. 举一反三: 【变式】解方程:21233x x x-=---. 【答案】 解:21233x x x-=---, 方程两边都乘3x -,得212(3)x x -=---,解这个方程,得3x =,检验:当3x =时,30x -=, ∴ 3x =是增根, ∴ 原方程无解. 类型三、分式方程的增根【高清课堂405788 分式方程的解法及应用 例3(1)】 例3、(2015春•安岳县期中)若解关于x 的分式方程会产生增根,求m 的值.【思路点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值. 【答案与解析】解:方程两边都乘(x+2)(x ﹣2),得2(x+2)+mx=3(x ﹣2)∵最简公分母为(x+2)(x ﹣2), ∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4. 把x=﹣2代入整式方程,得m=6. 综上,可知m=﹣4或6.【总结升华】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 举一反三: 【变式】如果方程11322xx x-+=--有增根,那么增根是________. 【答案】2x =;提示:因为增根是使分式的分母为零的根,由分母20x -=或20x -=可得2x =.所以增根是2x =.类型四、分式方程的应用例4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种 60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树? 【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等. 【答案与解析】解:设甲班每小时种x 棵树,则乙班每小时种()2x +棵树.由题意可,得60662x x =+, 解这个方程,得20x =.经检验20x =是原方程的根且符合题意. 所以222x +=(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含x 的分式表示甲、乙两班种树所用的时间. 举一反三:【变式】(2015•十堰)在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米? 【答案】解:设原来每天改造管道x 米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解, 答:引进新设备前工程队每天改造管道30米.【巩固练习】 一.选择题1.下列关于x 的方程中,不是分式方程的是( )A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 2.分式方程的解为( ) A .x=2 B .x=﹣2C .x=﹣D .x=3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). A.0 B.-1 C.21D.14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). A.310+=x y B.2y x =+ C.310xy -=D.72y x =--5.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). A.3B.1C.0D.-16.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为( ) A . 6天 B . 8天C . 10天D .7.5天二.填空题7. 当x =______时,分式3x 与26x-的值互为相反数. 8.某市为治理污水,需要铺设一段全长600m 的污水排放管道,铺设120m 后,为加快施工进度,后来每天比原计划增加20m ,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm 管道,那么根据题意,可列方程 . 9.方程:=1﹣的根是 .10.当a =______时,关于x 的方程4532=-+x a ax 的根是1.11.若方程114112=---+x x x 有增根,则增根是______. 12.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________. 三.解答题13.解分式方程:=﹣.14. 甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.15.有一个两位数,它的个位数字比十位数字大1,这个两位数被个位数字除时,商是8,余数是2,求这个两位数.【答案与解析】 一.选择题 1. 【答案】C ;【解析】C 选项中分母不含有未知数,故不是分式方程. 2. 【答案】B ;【解析】解:去分母得:2x=x ﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解,则分式方程的解为x=﹣2,故选B.3. 【答案】B ; 【解析】由题意442154x x x x --⨯=--,化简得:2415x x -=-解得1x =-. 4. 【答案】C ;【解析】由题意()()()()1423x y x y --=+-,化简得:310y x =-,所以选C. 5. 【答案】A ;【解析】将1x =代入31x k =-+,得3k =. 6. 【答案】B ;【解析】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x+1天,乙队需x+4天,根据题意列方程得: 3(+)+=1,解方程可得x=8,经检验x=8是分式方程的解, 故选B .二.填空题 7. 【答案】18; 【解析】3206x x+=-,解得18x =. 8. 【答案】(或)【解析】解:由题意可得,,化简,得.9. 【答案】x=3;【解析】解:去分母得:3﹣x=x ﹣4+1,解得:x=3,经检验x=3是分式方程的解. 故答案为:x=310.【答案】173-; 【解析】将1x =代入原方程,得85512a a +=-,解得173a =-.11.【答案】1x =;【解析】原方程化为:()22141x x +-=-,解得1x =,经检验1x =是增根. 12.【答案】a <1且a≠0;【解析】解:方程去分母得,a=x+1,解得,x=a-1, ∵x <0,∴a-1<0即a <1,又a≠0则a 的取值范围是a <1且a≠0.三.解答题 13. 【解析】 解:原方程可化为:=﹣,两边同时乘以(2x+1)(2x ﹣1)得:x+1=3(2x ﹣1)﹣2(2x+1), x+1=6x ﹣3﹣4x ﹣2, 解得:x=6.经检验:x=6是原分式方程的解. ∴原方程的解是x=6. 14.【解析】解:设自行车的速度为/xkm h ,汽车的速度为2.5/xkm h , 由题意,得50500.522.5x x=++, 解方程,得12550 6.25x =+12x =经检验,12x =是原方程的根,2.530x =.所以自行车的速度为12/km h ,汽车的速度是30/km h . 答:自行车的速度为12/km h ,汽车的速度是30/km h . 15.【解析】解:设十位上的数字为x ,则个位上的数字为1x +,得10(1)281x x x ++-=+.解方程,得3x =.经检验:3x =是原方程的根.所以个位上的数字为:1x +=3+1=4. 所以这个两位数是:3×10+4=34. 答:这个两位数是34.。
专题09 分式方程(归纳与讲解)(解析版)
专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。
4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。
人教版2023中考数学专题复习:分式方程精讲精练
分式方程精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.4.分式方程的应用(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.针对训练一、单选题1.下列方程中是分式方程的是( )A .212x x -=B .223x x =-C .122x =-D .312x π+=2.分式方程61222x x x -=---的解是( ) A .3x =- B .2x =- C .0x = D .3x =3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.若关于x 的方程221m x x =+无解,则m 的值为( ) A .0 B .4或6 C .4 D .0或45.已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥- B .4m ≥-且3m ≠- C .4m >-D .4m >-且3m ≠- 6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x =-+B .72072054848x -=+C .72072054848x -=-D .72072054848x -=- 7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .900900231x x =⨯+-B .900900231x x =⨯-+C .900900213x x =⨯-+D .900900213x x =⨯+- 8.某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x =-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量D .篮球的数量 9.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 10.若关于x 的不等式组52111322x a x x +≤⎧⎪⎨⎛⎫-<+ ⎪⎪⎝⎭⎩有且仅有四个整数解,关于y 的分式方程26121ay y y -=+--有整数解,则符合条件的所有整数a 的和是( )A .2B .5C .10D .12二、填空题11.解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 12.分式方程522x x=+的解为_______. 13.若关于x 的分式方程25k x x =+的解为10x =-,则k =_______. 14.代数式32x +与代数式21x -的值相等,则x =______. 15.设m ,n 为实数,定义如下一种新运算:39n m n m =-☆,若关于x 的方程()(12)1a x x x =+☆☆无解,则a 的值是______.16.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是____________. 17.对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____. 18.若关于x 的分式方程3211x m x x+=--的解为正数,则m 的取值范围是 ______. 19.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h .若甲、乙两船在静水中的速度相同,则可求得两船在静水中的速度为___________km /h .20.开学之际,学校需采购部分课桌,现有A ,B 两个商家供货,A 商家每张课桌的售价比B 商家优惠20元,若该校花费1500元在A 商家购买课桌的数量与花费2500元在B 商家购买课桌的数量一样多,设A 商家每张课桌的售价为x 元,则可列方程为________.三、解答题21.解下列方程:(1)2131x x=+-(2)11222xx x-=---(3)2134412142xx x x+=--+-22.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?23.我县教育局新建了一栋办公楼,需要内装修,甲工程队单独施工需要80天完工,由甲乙两工程队同时施工,那么16天完成了总工程的13 25.(1)如果乙工程队单独施工,则需要多少天完成?(2)如果甲工程队单独施工一天的工钱是5000元,乙工程队单独施工一天的工钱是8100元,为了节约工钱,应选用哪个工程队单独施工比较划算?24.某商场用5000元购进了一批服装,由于销路好,商场又用18600元购进了第二批这种服装,所购数量是第一批同进量的3倍,但单价贵了24元,商场在出售该服装时统一按照每件200元的标价出售,卖了部分后,对剩余的40件,商场按标价的6折进行了清仓处理并全部售完.求:(1)商场两次共购进了多少件服装?(2)两笔生意中商场共盈利多少元?25.小明的爸爸出差回家后,小明发现爸爸的通信大数据行程卡上显示爸爸去过西安、成都、重庆.已知西安到成都的路程为770公里,比西安到重庆的路程少230公里,小明爸爸驾车从西安到重庆的平均车速和西安到成都的平均车速比为8:7,从西安到重庆的时间比从西安到成都的时间多1.5 小时.(1)求小明爸爸从西安到重庆的平均车速;(2)从西安到成都时,若小明的爸爸比之前到达的时间至少要提前1小时,则平均车速应满足什么条件?26.金师傅近期准备换车,看中了价格相同的两款国产车.(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)。
八年级数学上册 15.3《分式方程》分式方程的概念和解法重难点突破素材 新人教版(2021年整理)
八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版的全部内容。
分式方程的概念和解法重难点突破一、认识分式方程,探索分式方程的一般解法突破建议:1.观察由章引言得出的方程的特点,给出具有相同特征的几个方程,让学生在观察和思考的过程中,发现并概括出分式方程的本质特征,认识其本质属性—-分母中含有未知数,同时为后续探索解分式方程的基本思路和关键步骤做铺垫.2.学生初次接触分式方程,在对整式方程的认识还不够深入的情况下,就遇到比解整式方程复杂的求解过程,学生对此内容的接受会有较大困难.由实际问题引出分母中含有未知数的方程,让学生了解研究分式方程的必要性,由于已经会求解整式方程,自然想到能否将分式方程化为整式方程再求解,根据学生的知识基础,想到实现这一过程的关键是去分母,根据等式的性质,在分式方程两边乘最简公分母.依托这一分析探索过程,教师总结解分式方程的是先去分母将分式方程化为整式方程,再解整式方程.可以通过以下几个问题明确解分式方程的方法和依据:(1)如何将分式方程化为整式方程?(2)如何去分母?(3)方程两边乘什么式子才能把每一个分母都约去?(4)这样做的依据是什么?师生活动:学生通过独立思考和合作交流,回答问题.【设计意图】通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,并知道解决问题的关键是去分母.追问你得到的解一定是分式方程的解吗?师生活动:学生回答问题,相互补充.【设计意图】让学生知道检验分式方程的解的方法——将未知数的值代入原分式方程的两边,看左右两边的值是否相等;学生通过检验,发现这个整式方程的解就是元分式方程的解;说明上述解分式方程的方法是有效的,进而得知:将分式方程去分母化为整式方程是解分式方程必要和有效的步骤.本节教学中,应始终抓住分式方程的特征,让学生根据分式方程的特征认识解分式方程的基本思路.二、分析增根产生的原因突破建议:将分式方程化为整式方程时,需在方程两边乘最简公分母,该整式是否为0是不确定的,如果该整式的值为0,那么对方程的变形就不是同解变形,这样得到的整式方程如果有解,这个解也会导致分式方程中的相应分式没有意义.这样的操作在解整式方程时也出现过,但不需要检验,是因为那时是在方程两边乘同一个具体的数(这个数不等于0),因此所得新方程与原方程同解.这就是为什么解一元一次方程不需要检验,而解分式方程时必须检验的原因.例3解分式方程.师生活动:教师提出问题,学生在独立思考后解此方程,得出去分母后的整式方程的解.有的学生认为是原分式方程的解,有的学生发现,当时,分式,都没有意义,但不能解释原因.【设计意图】(1)让学生积累去分母的经验,去分母的通法是分式两边同乘最简公分母;(2)让学生感受到在去分母解分式方程的过程中已经对原分式方程进行了变形,这种变形可能会使方程的解发生变化.追问2通过对两个分式方程的求解,我们发现同样是去分母将分式方程化为整式方程,为什么整式方程的解是分式方程的解,而整式方程的解却不是分式方程的解呢?师生活动:教师针对上述两个分式方程的解答过程提出问题,学生独立思考,然后小组交流,教师适时点拨.最后达成共识:在去分母的过程中,对原分式方程进行了变形,而这种变形是否会引起分式方程解的变化,主要取决于所乘的最简公分母是否为0;对解进行检验时,主要有两种方式,其一是将整式方程的解代入原分式方程,看左右两边是否相等;其二是将整式方程的解代入最简公分母,看是否为0.【设计意图】让学生了解分式方程产生增根的原因—-—当整式方程的解使得所乘最简公分母不等于0时,相当于方程两边同时乘以非0数,方程的解不发生变化;当整式方程的解使得所乘最简公分母等于0时,相当于方程两边同时乘以0,方程的解发生变化,就出现了分母为0的情况.。
八年级数学专题20 分式方程(知识点串讲)(解析版)
专题20 分式方程【重点突破】知识点一分式方程解分式方程的基本1)去分母(两边同乘最简公分母,约去分母,化成整式方程)。
2)解整式方程(去括号-移项/合并同类项-系数化为1)。
3)检验(把整式方程的解代入最简公分母,若最简公分母为0 ,则x=a不是分式方程的解若最简公分母不为0,则x=a是分式方程的解4)写出答案增根的概念:在分式方程化为整式方程的过程时,若整式方程的根使最简公分母为0(即根使整式方程成立,但分式方程中分母为0 ),那么这个根叫做原分式方程的增根。
知识点二利用分式方程解决实际问题分式方程解决实际问题的步骤:1. 根据题意找等量关系2. 设未知数3. 列出方程4. 解方程,并验根(对解分式方程尤为重要)5. 写答案【考查题型】考查题型一分式方程的定义典例1.(2020·无锡市第一女子中学初二期中)下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=1【答案】B 【提示】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断. 【详解】A. C. D 项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x ,故是分式方程, 故选B. 【名师点拨】本题考查的是分式方程,熟练掌握分式方程是解题的关键.变式1-1.(2020·兴安盟期末)下列关于x 的方程是分式方程的是( )A .23356x x ++-=;B .137x x a-=-+; C .x a b x a b a b -=-; D .2(1)11x x -=-【答案】D 【解析】根据分式方程的定义——分母中含有未知数的方程.故选D.变式1-3.(2020·锡林郭勒市期末)下列方程是分式方程的是( ) A .1023x-= B .42x=- C .213x -=D .2x +1=3x【答案】B 【解析】A 选项是一元一次方程;B 选项的方程的分母中含有未知数,所以为分式方程;C 选项是一元二次方程;D 选项是一元一次方程. 故选B.考查题型二 解分式方程典例2.(2020·衡水市期末)解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=-B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=-【答案】D 【解析】试题提示:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.变式2-1.(2018·安阳市期末)方程1223x x=+的解为()A.x=﹣1 B.x=0 C.x=35D.x=1【答案】D【解析】提示:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D.名师点拨:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.变式2-2.(2019·文登区期中)若分式方程1133a xx x-+=--有增根,则a的值是( )A.4 B.0或4 C.0 D.0或﹣4 【答案】A【解析】试题解析:方程两边同时乘以x-3得,1+x-3=a-x,∵方程有增根,∴x-3=0,解得x=3.∴1+3-3=a-3,解得a=4.故选A.变式2-3.(2020·余杭区期中)解分式方程11x-+1=0,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【答案】A【提示】先去分母化为整式方程,再求解即可.【详解】11x-+1=0,1+x-1=0,x=0,经检验:x=0是原方程的根, 故选A.考查题型三 分式方程的解典例3.(2020·成都市期末)已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2C .m <3D .m <3且m≠2【答案】D 【提示】解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围. 【详解】21m x -+=1, 解得:x=m ﹣3, ∵关于x 的分式方程21m x -+=1的解是负数, ∴m ﹣3<0, 解得:m <3,当x=m ﹣3=﹣1时,方程无解, 则m≠2,故m 的取值范围是:m <3且m≠2, 故选D . 【名师点拨】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键. 变式3-1.(2020·西安市期中)若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34【答案】B 【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.变式3-2.(2020·兰州市期末)若关于x的方程111m xx x----=0有增根,则m的值是A.3 B.2 C.1 D.-1 【答案】B【解析】试题提示:若关于x的方程111m xx x----=0有增根,则x=1为增根.把方程去分母可得m-1-x=0,把x=1代入可得m-1-1=0,解得m=2.变式3-3.(2020·贵阳市期末)若144m xx x--=--无解,则m的值是()A.-2B.2C.3D.-3【答案】C【解析】试题解析:方程两边都乘(x-4)得:m+1-x=0,∵方程无解,∴x-4=0,即x=4,∴m+1-4=0,即m=3,故选C.名师点拨:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.考查题型四分式方程的实际应用典例4.(2019·南宁市期末)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【提示】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【详解】解:(1)设乙队单独完成需x天.根据题意,得:11120()241 6060x⨯++⨯=.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有11()1 6090y+⨯=,解得,y=36;①甲单独完成需付工程款为:60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【名师点拨】本题考查分式方程的应用,提示题意,找到关键描述语,找到合适的等量关系是解决问题的关键.变式4-1.(2019·天水市期末)我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.【答案】(1)A、B 两种型号电动自行车的进货单价分别为2500 元3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为11000 元.【提示】(1)设A、B 两种型号电动自行车的进货单价分别为x 元、(x+500)元,根据用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样,列分式方程即可解决问题;(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题.【详解】解:(1)设A、B 两种型号电动自行车的进货单价分别为x 元、(x+500)元,由题意:50000x=60000x+500,解得:x=2500,经检验:x=2500 是分式方程的解,答:A、B 两种型号电动自行车的进货单价分别为2500 元3000 元;(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为11000 元.【名师点拨】本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.变式4-2.(2020·九江市期末)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【答案】(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.【提示】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论. 【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:312042009x x=-, 解得:x =35,经检验,x =35是原方程的解, ∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得: 26a +35(200﹣a )=6280, 解得:a =80.答:购买了80条A 型芯片. 【名师点拨】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.变式4-3.(2019阳泉市期末)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天. (1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里. 【答案】(1)80;(2)0.8. 【解析】试题提示:(1)根据乙队筑路总千米数是甲队筑路总千米数的43倍列式计算即可得; (2)设甲队平均每天筑路5x 千米,则乙队平均每天筑路8x 千米,根据题意可得等量关系:甲队筑路用的天数-20=乙队筑路用的天数,列出方程解方程即可.试题解析:(1)60×43=80(千米),即乙队筑路的总千米数为80千米. (2)设甲队平均每天筑路5x 千米,则乙队平均每天筑路8x 千米, 根据题意,得608020=58x x-, 解得x =110, 经检验,x =110是原分式方程的解且符合题意,110×8=45, 答:乙队平均每天筑路45千米.【名师点拨】本题考查了分式方程的应用,关键是弄懂题意,找出题中的数量关系,根据数量关系确定等量关系.变式4-4.(2020·佳木斯市期末)为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件? 【答案】(1)A 型学习用品20元,B 型学习用品30元;(2)800. 【解析】(1)设A 种学习用品的单价是x 元,根据题意,得18012010x x=+,解得x =20.经检验,x =20是原方程的解.所以x +10=30. 答:A 、B 两种学习用品的单价分别是20元和30元.(2)设购买B 型学习用品m 件,根据题意,得30m +20(1000-m )≤28000,解得m ≤800.所以,最多购买B 型学习用品800件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.3分式方程(二)
【自主领悟】
1.某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()
A.320320
20
0.5
x x
-=
-
B.
320320
20
0.5
x x
-=
-
C.320320
0.5
20
x x
-=
-
D.
320320
0.5
20
x x
-=
-
2.某实验室现有30%的盐酸50克,要配制25%的稀盐酸,需加入x克水,下面是小华的学习小组所列的关于x的方程,你认为正确的是()
A.30
50x
+=25% B.
50
50x
+
=25% C.
15
15x
+
=25% D.
15
50x
+
=25%
3.一项工程,甲、乙两人合做需m小时完成,甲独做需n小时完成,那么乙独做需____________小时完成.
4.甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.
5.某市为缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,须将原定的工作效率提高12%,问原计划完成这项工程用多少个月?
【自主探究】
问题1某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()
A.120120
2
2
x x
-=
-
B.
120120
3
2
x x
=-
+
C.120120
3
2
x x
=-
+
D.
120120
3
2
x x
=-
-
名师指导
列方程解应用题的关键步骤在于找相等关系,本题可用来列方程的相等关系是采用新
技术后每天增加生产3件.由题意,原计划每天能生产零件
120x
件,采用新技术后提前两天即(2)x -天完成,所以每天能生产1202x -件,根据相等关系可列出方程12012032x x =--. 问题2 为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程______ __.
名师指导
题目设原计划每天种植x 棵,那么可用来列方程的相等关系是实际比原计划提前4天完成任务.由题意,原计划植树720x
天,而实际每天植树(20)x +棵,实际植树天数为72020x +天,所以根据相等关系可列方程720720420
x x -=+. 问题3 甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?
名师指导
本题的相等关系有两个“乙队单独完成这项工程要比预期多用3天”和“若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成”.考虑到问题要求的是规定的工期,所以根据第二个相等关系来列方程比较直接,因此设规定的工期是x 天,则甲队完成这项工程要x 天,再根据第一个相等关系,乙队完成这项工程的天数就可以表示为(3)x +天.
解题示范
解:设规定的工期是x 天,则甲队完成这项工程要x 天,乙队完成这项工程要(3)x +天, 记总工程量为1,由题意可列方程
111()2(2)133
x x x x +⨯+-=++. 解这个方程,得
6x =.
检验:6x =时,(3)0x x +≠,6x =是原方程的解.
答:规定的工期是6天.
归纳提炼
列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.问题3中的两个“如期完成”就是一个隐含条件.
【自主检测】
1. 新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的
一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x 天,根据题意可列方程 .
2. 小王做90个零件所需要的时间和小李做120个零件所用的时间相同,又知每小时小王
与小李两人共做35个机器零件.求小王、小李每小时各做多少个零件?设小王每小时做x 个零件,根据题意可列方程 .
3. 某商品的标价比成本高p %,当该商品降价出售,为了不亏本,降价幅度不得超过d %,
请用p 表示d .
4. 某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走.怎样调配
劳动力才使挖出来的土能及时运走且不窝工(停工等待).为解决此问题,可设派x 人挖土,其他人运土.列方程为 ①14413x x -=;②1443
x x -=;③3144x x +=;④3144x x
=-.上述所列方程,正确的有 ( ) A .1个 B .2个 C .3个 D .4个
5. “五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点
游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为 ( )
A .18018032x x -=-
B .18018032
x x -=+
C.180180
3
2
x x
-=
+
D.
180180
3
2
x x
-=
-
6.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林x公顷,根据题意列方程正确的是()
A.240240
5
4
x x
+=
+
B.
240240
5
4
x x
-=
+
C.240240
5
4
x x
+=
-
D.
240240
5
4
x x
-=
-
7.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合做完成这项工程所需的天数.
8.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书的价格高出一半,因此他们所买的科普书比所买的文学书少一本.这种科普书和这种文学书的价格各是多少?小明和同学买了科普书和文学书各多少本?
9.某商场销售某种商品,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问此商品的进价是多少元?商场第二个月共销售多少件?
10.某单位将沿街的一部分房屋出租作为店面房,每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.
(1)求出租的房屋总间数;
(2)分别求历年每间房屋的租金.
【自主评价】
一、自主检测提示
3.设商品成本为1,则标价为(1%)p +,由题意,(1%)(1%)1p d +-=,整理得1%
p d p =+ 二、自我反思
1.错因分析
2.矫正错误
3.检测体会
4.拓展延伸
【例题】甲、乙两人两次同时在一家粮店购买大米,两次大米的价格分别为每千克a 元和b 元(a ≠b ).甲每次买100千克大米,乙每次买100元大米.
(1)用含a 、b 的代数式表示:甲两次购买大米共需付款 元,乙两次共购买 千克大米.若甲两次购买大米的平均单价为每千克1Q 元,乙两次购买大米的平均单价为每千克2Q 元,则1Q = ,2Q = .
(2)若规定谁两次购粮的平均价格低,谁购粮的方式就更合理,请你判断比较甲、乙两人的购粮方式,哪一个更合理,并说明你的理由.
【参考答案】(1)1001002100100,,,2a b ab a b a b a b
++++; (2)作差法:1Q -2Q =2
2()22()
a b ab a b a b a b +--=++>0.所以乙的购粮方式更合理.
参考答案
1.1
11
2()1
42
x
+⨯=2.
90120
35
x x
=
-
3.
1%
p
d
p
=
+
4.C 5.B 6.B (1)
60天,(2)24天8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本9.此商品进价是500元,第二个月共销售128件.10.(1)12间,(2)8000元、8500元。