中考数学专题:例+练——第3课时 开放探究题
中考数学专题复习:规律探索题
中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为
.
七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).
人教版初中数学中考 练本 第三单元 函 数 第3课时 二次函数的实际应用
∴线段CD的表达式为y2=-0.6x+120(0≤x≤130). 设产量为x kg时,获得的利润为W元, 当0≤x≤90时,W=x[(-0.6x+120)-(-0.2x+60)]=-0.4(x-75)2+2 250, ∴当x=75时,W的值最大,最大值为2 250; 当90≤x≤130时,W=x[(-0.6x+120)-42]=-0.6(x-65)2+2 535, 由-0.6<0知,当x>65时,W随x的增大而减小,
答:养鸡场的最大面积为288 m2.
4.(2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状.她对此展开 研究:测得喷水头P距地面0.7 m,水柱在距喷水头P水平距离5 m处达到最高, 最高点距地面3.2 m.建立如图所示的平面直角坐标系,设抛物线的解析式为y=a (x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面 的高度. (1)求抛物线的解析式;
解:(1)由题意知,抛物线的顶点坐标为(5,3.2),
则抛物线的解析式为y=a(x-5)2+3.2.
将点P(0,0.7)代入,得0.7=25a+3.2,
(2)爸爸站在水柱正下方,且距喷水头P的水平距离为3 m,身高1.6 m的小红 在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
∴90≤x≤130时,W≤2 160, ∴当x=90时,W=-0.6(90-65)2+2 535=2 160. 因此当该产品产量为75 kg时,获得的利润最大,最大值为2 250.
②当w=240时,-(x-34)2+256=240,
解得x1=38,x2=30. ∵超市本着尽量让顾客享受实惠的销售原则, ∴售价为30元/件.
(选做)某企业生产并销售某种产品,假设销售量与产量相等.如图中的折线 ABD、线段CD分别表示该产品每千克的生产成本y1(元)、每千克的售价y2 (元)与产量x(kg)之间的函数关系.当该产品产量为 75 kg时,获得的利润
开放探究题-中考数学
开放探究题-中考数学开放探索性试题在中考中越来越受到重视,由于条件与结论的不确定性,使得解题的方法与答案呈多样性,学生犹如八仙过海,各显神通。
探索性问题的特点是:问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法,这类题主要考查学生分析问题和解决问题的能力和创新意识。
这类题对同学们的综合素质要求比较高,这类题往往作为中考试卷中的压轴题出现,在中考中所占比例在9%左右。
1.条件开放与探索给出问题的结论,让解题者分析探索使结论成立应具备的条件,而满足结论的条件往往不惟一,这样的问题是条件开放性问题。
它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
[例1] 已知△ABC 内接于⊙O ,⑴当点O 与AB 有怎样的位置关系时,∠ACB 是直角?⑵在满足⑴的条件下,过点C 作直线交AB 于D ,当CD 与AB 有什么样的关系时,△ABC ∽△CBD ∽△ACD ? ⑶画出符合⑴、⑵题意的两种图形,使图形的CD =2cm 。
[解析]:⑴要使∠ACB =90°,弦AB 必须是直径,即O 应是AB 的中点;⑵当CD ⊥AB 时,结论成立;⑶由⑵知DB AD CD ⋅=2,即422==⋅DB AD ,可作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 作CD⊥AB 交⊙O 于C 点,连结AC 、BC ,即得所求。
⑴当点O 在AB 上(即O 为AB 的中点)时,∠ACB 是直角; ⑵∵∠ACB 是直角,∴当CD ⊥AB 时,△ABC ∽△CBD ∽△ACD ;⑶作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 点作CD ⊥AB 交⊙O 于C 点,连结AC 、BC ,即为所求(如下图所示)。
[评注]:本题是一个简单的几何条件探索题,它突破了过去“假设——求证”的封闭式论证,而是给出问题的结论,逆求结论成立的条件,强化了对学生通过观察、分析、猜想、推理、判断等探索活动的要求。
《24.2.2 第3课时 切线长定理》教案、导学案、同步练习
《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件
(2)如图②,过点 F 作 FG⊥AB 于 G,连接 FE.∵AF=BE,AF∥BE,∴ 四边形 ABEF 是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32 3= 8×FG,∴FG=4 3,在 Rt△FAG 中,AF=8,∴∠FAG=60°,当点 G 在 线段 AB 上时,∠FAB=60°,当点 G 在线段 BA 延长线时,∠FAB=120°,
解:(1)原命题不成立,新结论为:∠APB=90°, AF+BE=2AB(或 AF=BE=AB),证明:∵AM∥BN, ∴∠MAB+∠NBA=180°,∵AE,BF 分别平分∠MAB,∠NBA,
∴∠EAB=12∠MAB,∠FBA=12∠NBA,
∴∠EAB+∠FBA=12(∠MAB+∠NBA)=90°, ∴∠APB=90°,∵AE 平分∠MAB,∴∠MAE=∠BAE, ∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA, ∴AB=BE,同理:AF=AB,∴AF+BE=2AB(或 AF=BE=AB);
辽宁专用
专题三 解答题重难点题型突破
题型二 几何图形探究题 类型1 与三角形、四边形有关的探究题
【例1】 (2016·抚顺)如图,在△ABC中,BC >AC,点E在BC上,CE=CA, 点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图①,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F. ①求证:FA=DE; ②请猜想三条线段DE、AD、CH之间的数量关系,直接写出结论; (2)如图②,当∠ACB=120°时,三条线段DE、AD、CH之间存在怎样的数量关 系?请证明你的结论.
(3)成立.∵四边形 ABCD 是正方形,∴BC=CD,∠FBC=∠ECD=90 °,
中考数学复习第二讲《开放探究型问题》经典题型含答案
中考数学复习专题第二讲开放探究型问题【要点梳理】开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,需要通过观察、比较、分析、综合及猜想,展开发散性思维,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.在解开放探究题时,常通过确定结论或补全条件,将开放性问题转化为封闭性问题.【学法指导】三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.【考点解析】条件开放型问题(2017贵州安顺)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.( 5分)理由:∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.结论开放型问题(2017广西河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD 上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE ⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.存在开放型问题(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.综合开放型问题(2017山东泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E 是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【考点】LO:四边形综合题.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,证得△AME≌△CNE,△ADE≌△CFE,根据全等三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,在△AME与△CNE中,,∴△AME≌△CNE,∴∠ADE=∠CFE,在△ADE与△CFE中,,∴△ADE≌△CFE,∴∠DEA=∠FEC,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED⊥EF.【真题训练】训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.参考答案:训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=√3OA,OD=√3OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=√3OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=√3AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,{AO=BO∠AOC′=∠BOD′OC′=OD′,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=√3AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=√3OA,OD=√3OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=√3OC′,∠AOC′=∠BOD′,∴OBOA =OD′OC′=√3,∴△AOC′∽△BOD′,∴BD′AC′=OBOA=√3,∠OAC′=∠OBD′,∴BD′=√3AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.。
中考数学二轮专题复习(专题五 开放探索问题)
下 页
返 回
步步高中考简易通
【例题1】 (2012· 浙江义乌)如图,在△ABC中,点D
专 题 解 读
是BC的中点,作射线AD,在线段AD及其延长 线上分别取点E、F,连接CE、BF.添加一个条
件,使得△BDF≌△CDE,并加以证明.你添
加的条件是________.(不添加辅助线).
专 题 突 破
∵点P(x,y)的坐标满足x+y=xy,∴x,y符号相
同,代入数字进行验证,符合条件的点的坐标有
(0,0),(2,2)等.故答案为:(0,0). 答案 (0,0)(答案不唯一)
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
三、综合开放型
这类问题没有明确的条件和结论,并且符合条件的 结论具有多样性,需将已知的信息集中进行分析, 探索问题成立所必须具备的条件或特定的条件应该 有什么结论,通过这一思维活动得出事物内在联 系,从而把握事物的整体性和一般性.
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
步步高中考简易通
【例题5】 (2011· 青海)学校在艺术周上,要求学生制
专 题 解 读
作一个精美的轴对称图形,请你用所给出的几何图 形:○○△△ (两个圆,两个等边三角形,
课 时 跟 踪 检 测
两条线段)为构件,构思一个独特,有意义的轴对 称图形,并写上一句简要的解说词.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
【例题3】 (2012· 浙江丽水)写出一个比-3大的无理 数是________.
解析 根据这个数即要比-3 大又是无理数,解答出
课 时 跟 踪 检 测
中考数学专题:例+练——第3课时 开放探究题(含答案)
第3课时开放探究题开放探究题是一种新的题型, 关于开放题的概念,主要有下列几种描述:(1)答案不固定或者条件不完备的习题成为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题.开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探究题常见的类型有:(1)条件开放型:即问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:即在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合型:即条件、结论、策略中至少有两项均是开放的.在解决开放探究题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.类型之一条件开放型问题解这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
1. (郴州市)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_________.2.(庆阳市)如下左图,D、E分别是ABC△的边AB、AC上的点,则使△的条件是.△∽ABCAED类型之二结论开放型问题解决这种类型的问题的时候要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维. 它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。
3.(滨州市)如上右图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_________(把你认为正确的序号都填上)。
中考数学探究题解题技巧
中考数学探究题解题技巧中考数学探究题是很多学生和家长关注的重点,这类题目不仅考察学生的数学基础知识,还考察学生的思维能力、探究能力和创新能力。
本文将介绍中考数学探究题的常见题型、解题技巧及注意事项,帮助同学们更好地应对中考数学探究题。
一、中考数学探究题常见题型中考数学探究题通常以实际问题、图表、图象等形式呈现,要求学生通过观察、分析、归纳、猜想等方法,寻求解决问题的策略。
常见的题型有:规律型探究题、统计型探究题、开放型探究题等。
二、解题技巧1. 认真审题:仔细阅读题目,理解题意,找出关键信息,理解问题的本质。
2. 规律总结:对于规律型探究题,要善于观察、分析、总结其中的规律。
例如,通过观察一组数据的变化规律,可以找到解题的突破口。
3. 统计图应用:在统计型探究题中,要根据图表中的数据进行分析,从中找出规律或趋势。
同时,要善于利用图表中的信息来解题。
4. 合理猜想:在开放型探究题中,要敢于猜想、尝试、验证,找到问题的答案。
同时,要注意猜想的合理性和可行性。
5. 逻辑推理:在解题过程中,要善于运用逻辑推理,逐步找到问题的答案。
要注意推理的严密性和连续性。
6. 细心计算:在解题过程中,要认真进行计算,确保计算的准确性和完整性。
三、注意事项1. 不要被题目的表面现象所迷惑,要善于发现问题的本质和规律。
2. 不要盲目尝试,要善于分析题目中的信息,找到解题的突破口。
3. 不要忽视细节,要认真阅读题目要求,确保答案的准确性和完整性。
4. 不要忽略题目中的数字或字母符号,要认真进行计算。
5. 不要过于紧张,要保持冷静,逐步找到问题的答案。
通过以上技巧和注意事项,同学们可以更好地应对中考数学探究题。
在解题过程中,要善于观察、分析和总结,找到问题的规律和答案。
同时,要保持冷静和自信,相信自己能够克服困难,找到问题的答案。
祝愿同学们在中考中取得优异的成绩!。
全等三角形开放探索型问题例析
口湖北董迎新开放探索型试题重在开发思维,促进创新,提高数学素养,是近几年中考试题的热点.中考数学试题中关于全等三角形的探索型问题更是倍受关注.现举例分类说明.‘。
一一、探索条件犁、此类题给出了结论.要求探索使该结论成立所具备的条件.解这类题时。
一般应依据三角形全等的判定方法,补充所缺少的条件.例1如图1。
△A B C 中,点D 在B C 上,点E 在A 曰上,B D =B E ,要使△A D B 錾△C E B .还需添加一个条件.;f 1)给出下列四个条件:①A D =C E ;②A E =C D ;③厶B A C =£B C A :④£A D B =£C EB .请你从中选出一个能使△A D B 鲨△C EB的条件.并给出证明.(2)在(1)中所给出的条件中,能使△A D B 錾△蚀B 的还有哪些?B DC 图1直接在题后横线上写出满足题意的条件序号:.暖珏■这是一道探索条件、补充条件的开放型试题.根据“探索三角形全等的条件”,添加条件②,利用SA S 可以判定A A D B 兰A C E B .若添加条件③.利用SA S 可以判定.若添加条件④,可以用A SA 判定.(1)添加条件②,③,④中任一个即可,以添加②为例证明.证明:.A E=C D ,B E =B D ,.‘.A B =C &又Z A B D =£C B E ,B E =B D ,.‘.△A D B 錾△C 胎(SA S).(2)可填③④.△—●=、结论齐放墅’+i此类题给出了限定条件,但结论并不唯,呈现多样性,要求根据所给条件探索可能得到的结论.例2如图2,A 、E 、B 、D 在同一直线上,在A A B C 和△D EF 中,A B =D E ,A C =D F ,A c //D F 、(1)求证:△A B C 錾△D E F .(2)你还可以得到的结论是’(写出一个即可,不再添加其他线段。
不再标注或使用其他字母).,,一暖囫(1)证明:。
中考命题研究(怀化)2022中考数学 综合专题闯关训练三 规律探索与猜想
专题三规律探索与猜想专题命题规律纵观怀化7年中考,规律探索与猜想题型共考查了5次,以选择、填空形式出现,3分或4分,难度中等,考查类型有:1.数字规律;2.图形规律,常以图形变换中的规律探索为主.善于发现图形变换的过程中的特点,抓住其周期性是解决此类问题的关键.2022预测预计2022年怀化中考还会以类似方式和方法、难度来考查,故在学习中应突出训练、总结规律.,中考重难点突破)数字规律【经典导例】【例1】(2022中考预测)正整数按如图所示的规律排列,请写出第20行第21列的数字.【解析】首先应发现第1列中的数与所在行数的关系,再关注第n行的第1个数与第(n+1)列的第1个数的关系,那么第n行第n+1列这个数应该不难确定.【学生解答】【方法指导】1.对于数阵类的规律问题,题目中的数据与有序数对是对应的,设问方式有求有序数对数值和表示某个数值的有序数对.解题步骤为:(1)分析数阵中的数字排列方式,从以下方面寻找规律:①每行的个数,②每列的个数,③相邻数据的变化特点,并且观察是否某一行或者某一列的数具有某些特别的性质(如完全平方数、正整数)等;(2)找出该行或列上的数字与其所在的行数和列数的关系;(3)使用(1)中找出的具有特殊性质的数字根据(2)中的性质定位,求得答案.2.对于数字不循环变换类规律题,需要掌握如下方法:(1)当所给的一组数是整数时,先观察这组数字是自然数列、正整数数列、奇数列、偶数列还是正整数数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一个符号,如果是交替出现的用(-1)n表示数字的符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字规律题的数字是分数和整数结合的时候,把这组数据的所有整数写成分数,然后分别推断出分子和分母的数字规律[其他方法同(1)],从而得出分子和分母的规律,最后得到该组第n 项的规律.3.对于数字循环变换类规律题,求经过N 次变换后对应的数字的解题步骤为:(1)通过观察这组数字,得到该组数字经过一个循环变换需要的次数,记为n ;(2)用N 除以n ,当商b 余m(0≤m<n)时,第N 次变换后对应的数字就是一个循环变换中第m 次变换后对应的数字;(3)根据题意,找出第m 次变换后对应的数字,推断出第N 次变换后对应的数字.4.对于数式的规律探究题,求第n 个等式(式子的结果)的解题步骤为:(1)先观察给出的等式式子(计算出给出式子的计算结果);(2)分析对比所得的结果,从结果与序数或结果与所给数式中数字的构成个数两方面进行对比,寻找不变的量和变化的量之间的变化关系,从而得到结果与各自等式或式子之间满足的关系式,求第n 个数式直接套用关系式即可.1.(2022安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.2.(2022怀化二模)计算下列各式的值:92+19;992+199;9992+1999;99992+19999.观察所得结果,总结存在的规律,应用得到的规律可得99…922022个9+199…92,2022个9) )=________. 3.(2022东营中考)将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行 9 8 7 14 …第四行 10 11 12 13 …第五行 ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2022对应的有序数对为________.4.(2022常德中考)已知:2-122-12=13;4-3+2-142-32+22-12=15;计算:6-5+4-3+2-162-52+42-32+22-12=________;猜想:[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12)=________. 5.(2022广东中考)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是________. 6.(2022乌鲁木齐中考)如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( ) 1112 121 316131 411211214A.160B.1168C.1252D.12807.(2022武威中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2022是第________个三角形数.8.(2022临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2022个单项式是( )A.2022x2022B.4029x2022C.4029x2022D.4031x2022图形规律【经典导例】【例2】(2022娄底中考)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由________个▲组成.【解析】观察发现:第1个图案有3×2-3+1=4个三角形;第2个图案有3×3-3+1=7个三角形;第3个图案有3×4-3+1=10个三角形;…第n个图案有3(n+1)-3+1=(3n+1)个三角形.【学生解答】【方法指导】图形规律探索有以下几种类型:1.求个数,方法为:(1)标序数:按图号标序;(2)找关系:找后一个图与前一个图中所求量之间的关系(一般是通过作差或作商的形式观察是否含有定量)或找出图中的所求量与序数之间的关系;(3)算结果:计算每个给出图中所求量的个数;(4)找规律:对求出的结果进行一定的变形,使其呈现一定的规律;(5)归纳:归纳结果与序数之间的关系,即可得到第n个图中所求量的个数;(6)验证:代入序号验证所归纳的式子是否正确.2.求面积,方法为:(1)根据题意可得出第一次变换前图形的面积为S;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,第四次变换后图形的面积,……,归纳出后一个图形的面积与前一个图形的面积之间存在的倍数关系n;(3)第M次变换后,求得图形的面积为n M S.1.(2022山西中考)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,……依此规律,第n 个图案有________个三角形(用含n 的代数式表示).2.(2022武汉中考)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )A .31B .46C .51D .663.(2022沧州模拟)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .(12)n ·75°B .(12)n -1·65°C .(12)n -1·75°D .(12)n ·85°4.(2022内江中考)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2022个图形是________.5.(2022衡阳中考)如图,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n +1都是等腰直角三角形,其中点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y =x 上,已知OA 1=1,则OA 2022的长为________. (第5题图)(第7题图)6.(2022深圳中考)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有________.7.(2022珠海中考)如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…,则OA 6的长度为________.点的坐标规律【经典导例】【例3】(2022威海中考)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…30°,若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2022的横坐标为( )A .0B .-3×(233)2022C .(23)2022D .3×(233)2022 【解析】∵∠A 2OC 2=30°,OA 1=OC 2=3,∴OA 2=23OC 2=3×233;∵OA 2=OC 3=3×233,∴OA 3=23OC 3=3×(233)2;∵OA 3=OC 4=3×(233)2,∴OA 4=23OC 4=3×(233)3,∴OA 2022=3×(233)2022,而2022=4×503+3.∴点A 2022在x 轴的负半轴上,∴点A 2022的横坐标为-3×(233)2022. 【学生解答】【方法指导】求点坐标,根据图形点坐标的变换特点可知这类题有两种考查形式:一类是点坐标变换是在同一象限递推变化;另一类是点坐标变换在坐标轴上或象限内循环递推变化;解决这类题的方法如下:(1)若第一个点的坐标未给出,可先由所给信息求出坐标(a ,b);(2)根据题目中给出的线段的数量关系及角度,通过勾股定理或直角三角形的边角关系得到第二个,第三个,第四个…的坐标,观察它们之间存在的比例关系,比值记为n ;(3)当点坐标在同一象限变换时,通过第M 次变换后,图形的点坐标为(n M a ,n M b);(4)当点坐标在整个平面直角坐标系里变换,先观察点的变换规律为顺时针循环还是逆时针循环,通过第M 次变换后,用M÷4=w +q(0≤q<4),当q =0时,点坐标所在象限与起点相同,依此类推,当确定出点坐标落在x 轴正半轴时,点坐标为(n M c ,0),点坐标落在y 轴正半轴时,点坐标为(0,n M c),点坐标落在x 轴负半轴时,点坐标为(-n M c ,0),点坐标落在y 轴负半轴时,点坐标为(0,-n M c).1.(2022靖州模拟)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作正△P2CP3,…,如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P6的坐标是________.2.(2022聊城中考)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.3.(2022齐齐哈尔中考)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x 轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…依此规律,得到等腰直角三角形△A2022OB2022,则点A2022的坐标为________.4.(2022河北中考)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.。
中考数学复习指导:相似三角形的探索性问题
相似三角形的探索性问题探索性问题一般没有明确的结论,没有固定的形式和方法,要求学生通过自己的观察、分析、比较、概括,得出结论,形成方法和思路的数学问题,这类题是考查学生分析问题和解决问题的重要题型,它可以分为三类:一、条件探索性问题条件探索性问题是指所给问题中结论明确,而需要完备使结论成立的条件的题目,这类问题大致分为两种类型:一是问题中的条件未知或不足需要探求,二是条件多余或有错,要求排除或修正.例1:如图1,已知△ABC ,P 是AB 边上的一点,连结CP .要使△APC ∽△ACB ,则应添加一个条件是_______.分析:⑴∠ACP =∠B (或∠APC =∠ACB )时,可得到△APC ∽△ACB ;⑵即△APC ∽△ACB方法探究:在△APC 和△ACB 中,已有一角对应相等,因此添加的条件应从“有两个角对应相等,两个三角形相似”和“两边对应成比例,且夹角相等的两个三角形形似”两个途径进行思考,本题是一个条件探究题,这类问题一般解法是把结论当作已知反溯条件.二、结论探索性问题它是指题目结论不确定,不唯一,或题目结论需要通过类比引申推广,或题目给出特例,要通过归纳总结出一般结论.例2:已知:如图2, △ABC 中,点D.E 分别在边AB.AC 上,连结DE 并延长交BC 的延长线于点F ,连结DC.BE .若∠BDE +∠BCE =180°.(1)写出图中三对相似三角形(注意:不得加字母和线);(2)请在你所找出的相似三角形中选取一对,说明他们相似的理由.分析: 先由角的关系入手,由∠BDE +∠BCE =180°和图形中∠BDE +∠ADE =∠BCE +∠ECF =180°, 可得∠BDE =∠ECF , ∠ADE =∠BCE , 易得△ADE ∽△ACB (∠A 为公共角)、 △ECF ∽△BDF (∠F 为公共角), 其次,由△ECF ∽△BDF 得 可得△FDC ∽△FBE (∠F 为公共角).图2A图1PCB解:⑴△ADE ∽△ACB ,△ECF ∽△BDF ,△FDC ∽△FBE .⑵①△ADE ∽△ACB . 证明如下:∵∠BDE +∠BCE =180°.又∵∠BDE +∠ADE =180°,∴∠ADE =∠BCE . ∵∠A =∠A ,∴△ADE ∽△ACB 。
八年级数学下第17章17.5的应用第3课时列解几何问题习题沪科版
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖价格 分别为55元/块和80元/块,若只选其中一种地板砖都恰 好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的 地板砖所需的费用较少?
解:用规格为0.80×0.80(单位:m)的地板砖所需的 费用:96÷(0.80×0.80)×55=8 250(元). 用规格为1.00×1.00(单位:m)的地板砖所需的费用: 96÷(1.00×1.00)×80=7 680(元). ∵8 250>7 680,∴用规格为1.00×1.00(单位:m)的 地板砖所需的费用较少.
答:当剪去正方形的边长为52 cm 时,所得长方体盒子的侧 面积为 200 cm2.
2.【中考·山西】如图,在一块长12 m,宽8 m的矩形 空地上,修建同样宽的两条互相垂直的道路(两条道 路各与矩形的一条边平行),剩余部分栽种花草,且 栽种花草的面积为77 m2,设道路的宽为x m,则根 据题意,可列方程为___(_1_2_-__x_)(_8_-__x_)_=__7_7_______ __(或__x_2_-__2_0_x_+__1_9_=__0_)____.
4.【中考·包头】一幅长20 cm,宽12 cm的图案,如图 (单位:cm),其中有一横两竖的彩条,横、竖彩条的 宽度比为3:2,设竖彩条的宽度为x cm,图案中三条 彩条所占面积为y cm2. (1)求y与x之间的函数关系式; 解:根据题意可知横彩条的宽度为32x cm. ∴y=20×32x+2×1Байду номын сангаас·x-2×32x·x, 整理得 y=-3x2+54x.
(2)若图案中三条彩条所占面积是图案面积的25,求 横、竖彩条的宽度.
解:根据题意可得-3x2+54x=25×20×12 解得 x1=2,x2=16(舍去). ∴32x=3(cm) 答:横彩条的宽度为 3 cm,竖彩条的宽度为 2 cm.
(部编版)2020年中考数学第一部分考点研究复习第一章数与式第3课时代数式与整式含因式分解真题
第一章 数与式第3课时 代数式与整式(含因式分解) 江苏近4年中考真题精选(2013~2016)命题点1 代数式及其求值(2016年淮安7题,2015年4次,2014年9次,2013年6次)1. (2016淮安7题3分)已知a -b =2,则代数式2a -2b -3的值是( )A. 1B. 2C. 3D. 72. (2013苏州9题3分)已知x -1x=3,则4-12x 2+32x 的值为( ) A. 1 B. 32 C. 52 D. 723. (2014盐城9题3分)“x 的2倍与5的和”用代数式表示为________.4. (2013苏州15题3分)按照下图所示的操作步骤,若输入x 的值为2,则输出的值为________.第4题图5. (2015连云港11题3分)已知m +n =mn ,则(m -1)(n -1)=________.6. (2014连云港12题3分)若ab =3,a -2b =5,则a 2b -2ab 2的值是________.7. (2014盐城16题3分)已知x (x +3)=1,则代数式2x 2+6x -5的值为________.8. (2014泰州14题3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式b a +a b 的值等于________.9. (2013淮安18题3分)观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3,…,则第2013个单项式是________.10. (2014南通18题3分)已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于________. 命题点2 整式的运算(2016年14次,2015年13次,2014年15次,2013年15次)11. (2016盐城2题3分)计算(-x 2y )2的结果是( )A. x 4y 2B. -x 4y 2C. x 2y 2D. -x 2y 212. (2016南京3题2分)下列计算中,结果是a 6的是( )A. a 2+a 4B. a 2·a 3C. a 12÷a 2D. (a 2)313. (2015镇江15题3分)计算-3(x -2y )+4(x -2y)的结果是( )A. x -2yB. x +2yC. -x -2yD. -x +2y14. (2014扬州2题3分)若 ×3xy =3x 2y ,则 内应填的单项式是( )A. xyB. 3xyC. xD. 3x15. (2016徐州2题3分)下列运算中,正确的是( )A. x3+x3=x6B. x3·x9=x27C. (x2)3=x5D. x÷x2=x-116. (2014连云港10题3分)计算:(2x+1)(x-3)=________.17. (2016无锡19(2)题4分)计算:(a-b)2-a(a-2b).18. (2014南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.19. (2014盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(2016年9次,2015年8次,2014年5次,2013年5次)20. (2015盐城10题3分)分解因式:a2-2a=________________.21. (2016盐城9题3分)分解因式:a2-ab=_______________.22. (2016淮安10题3分)分解因式:m2-4=______________.23. (2013苏州12题3分)因式分解:a2+2a+1=_________________.24. (2015宿迁11题3分)因式分解:x3-4x=_______________.25. (2014南通12题3分)因式分解:a3b-ab=_______________.26. (2016常州11题2分)分解因式:x3-2x2+x=________.27. (2013扬州10题3分)因式分解a3-4ab2=________.28. (2016南京9题2分)分解因式2a(b+c)-3(b+c)的结果是__________.29. (2015南京10题3分)分解因式(a-b)(a-4b)+ab的结果是____________.答案1. A 【解析】∵a -b =2,∴2a -2b -3=2(a -b )-3=2×2-3=1.2. D 【解析】∵x -1x =3,∴x 2-1=3x ,∴x 2-3x =1,∴原式=4-12(x 2-3x )=4-12=72. 3. 2x +5 【解析】根据题中表述可得该式为2x +5.4. 20 【解析】由题图可知,运算程序为(x +3)2-5;当x =2时,(x +3)2-5=(2+3)2-5=25-5=20. 5. 1 【解析】∵(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1,∵mn =m +n ,∴原式=1.6. 15 【解析】∵ab =3,a -2b =5,∴a 2b -2ab 2=ab (a -2b )=3×5=15. 7. -3 【解析】∵x (x +3)=1,∴2x 2+6x -5=2x (x +3)-5=2×1-5=2-5=-3. 8. -3 【解析】∵a 2+3ab +b 2=0,∴a 2+b 2=-3ab ,∴原式=22a b ab =-3ab ab =-3. 9. 4025x 3【解析】系数依次为1,3,5,7,9,11,…,2n -1;x 的指数依次是1,2,3,1,2,3,…,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为3,故可得第2013个单项式是4025x 3. 10. 4 【解析】∵m -n 2=1,即n 2=m -1≥0,得m ≥1,∴原式=m 2+2m -2+4m -1=m 2+6m +9-12=(m +3)2-12,则代数式m 2+2n 2+4m -1的最小值等于(1+3)2-12=4. 11. A 【解析】(-x 2y )2=(-x 2)2·y 2=x 4y 2. 12. D 【解析】13. A 【解析】-3(x-2y)+4(x-2y)=x-2y.14. C 【解析】根据题意得:3x2y÷3xy=x.15. D 【解析】16. 2x2-5x-3 【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.17. 解:原式=a2-2ab+b2-a2+2ab=b2.18. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=x2y(2xy-2)÷x2y=2xy-2.19. 解:原式=a2+4ab+4b2+b2-a2=4ab+5b2,当a=-1,b=2时,原式=4×(-1)×2+5×22=12.20.a(a-2) 【解析】提取公因式a,即a2-2a=a(a-2).21. a(a-b)【解析】提取公因式a,即a2-ab=a(a-b).22. (m-2)(m+2) 【解析】原式=(m-2)(m+2).23. (a+1)2【解析】a2+2a+1=(a+1)2.24. x(x+2)(x-2) 【解析】本题考查了多项式的因式分解,x3-4x=x(x2-4)=x(x+2)(x-2),故填x(x +2)(x-2).25. ab(a+1)(a-1) 【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).26. x(x-1)2【解析】主要考查了提取公因式法以及公式法分解因式.原式=x(x2-2x+1)=x(x-1)2.27. a(a+2b)(a-2b) 【解析】a3-4ab2=a(a2-4b2)=a(a+2b)·(a-2b).28. (b+c)(2a-3) 【解析】提取公因式(b+c)得,原式=(b+c)·(2a-3).29. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式得a2-4ab+4b2=(a-2b)2.。
第四章第03讲 探究三角形全等的条件(6类热点题型讲练)(原卷版)--初中数学北师大版7年级下册
第03讲探究三角形全等的条件(6类热点题型讲练)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.知识点01全等三角形的判定(1)判定定理1:SSS ﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS ﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA ﹣﹣两角及其夹边分别对应相等的两个三角形全等.(可以简写成“角边角”或“ASA ”).特别说明:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .(4)判定定理4:AAS ﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(可以写成“角角边”或“AAS ”)特别说明:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.知识点02全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.知识点03全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型01三角形的稳定性及应用【例题】(2024上·广西南宁·八年级统考期末)如图,南宁白沙大桥是一座斜拉索桥,造型美观,结构稳固,其蕴含的数学道理是()A.三角形的稳定性B.四边形的不稳定性C.三角形两边之和大于第三边D.三角形内角和等于180【变式训练】1.(2023上·河北沧州·八年级统考期中)以下生活现象不是利用三角形稳定性的是()A.B.C.D.2.(2024上·福建厦门·八年级统考期末)周日,小乔在家帮妈妈打扫卫生,为方便拆取窗帘,他拿来一个人字梯,并且在人字梯的中间绑了一条结实的绳子,如图所示,请问小乔这样做的道理是()A .两点之间,线段最短C .三角形具有稳定性3.(2024上·湖北省直辖县级单位角形,这样做的数学依据是题型02用SSS 证明两三角形全等【例题】(2023·云南玉溪·统考三模)如图,点B EC F ,,,在一条直线上,AB DF AC DE BE CF ===,,,求证:ABC DFC △≌△.【变式训练】1.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.2.(2023春·全国·七年级专题练习)如图,已知90E F ∠=∠=︒,点B C ,分别在AE AF ,上,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)求证:DE DF =.题型03用ASA 证明两三角形全等【例题】(2023春·广东惠州·八年级校考期中)如图,BC EF ∥,点C ,点F 在AD 上,AF DC =,A D ∠=∠.求证:ABC DEF ≌△△.【变式训练】1.(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD BE =,A EDF ∠=∠,.E ABC ∠=∠求证:AC DF =.2.(2023·浙江温州·温州市第八中学校考三模)如图,在ABC 和ECD 中,90ABC EDC ∠=∠=︒,点B 为CE 中点,BC CD =.(1)求证:ABC ECD ≌△△.(2)若2CD =,求AC 的长.题型04用AAS 证明两三角形全等【例题】(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E 在ABC 边AC 上,AE BC =,BC AD ∥,CED BAD ∠=∠.求证:ABC DEA△△≌【变式训练】1.(2023·浙江温州·统考二模)如图,AB BD =,DE AB ∥,C E ∠=∠.(1)求证:ABC BDE ≅ .(2)当80A ∠=︒,120ABE ∠=︒时,求EDB ∠的度数.2.(2023秋·八年级课时练习)如图,已知点C 是线段AB 上一点,DCE A B ∠∠∠==,CD CE =.(1)求证:ACD BEC △≌△;(2)求证:AB AD BE =+.题型05用SAS 证明两三角形全等【例题】(2023·广东广州·校考模拟预测)如图,已知OA OC =,OB OD =,AOB COD ∠=∠.求证:AOB COD ≌△△.【变式训练】1.(2023·吉林松原·校联考三模)已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AB DE =,BF CE =.求证:ABC DEF ≌△△.2.(2023春·山东济南·七年级济南育英中学校考期中)如图,点B 、E 、C 、F 在一条直线上,AC DF ∥,AC DF =,BE CF =.求证:ABC DEF ≌△△.题型06添加条件使两三角形全等【例题】(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【变式训练】1.(2023·黑龙江鸡西·校考三模)如图,点,,,B F C E 在一条直线上,已知,==BF CE AC DF ,请你添加一个适当的条件_________使得ABC DEF ≌△△.(要求不添加任何线段)2.(2023·北京大兴·统考二模)如图,点B ,E ,C ,F 在一条直线上,AC DF ∥,BE CF =,只需添加一个条件即可证明ABC DEF ≌△△,这个条件可以是________(写出一个即可).3.(2023秋·八年级课时练习)如图,已知90A D ∠=∠=︒,要使用“HL ”证明ABC DCB △≌△,应添加条件:_______________;要使用“AAS ”证明ABC DCB △≌△,应添加条件:_______________________.一、单选题1.(2023上·湖北恩施·八年级统考期末)巴东长江大桥全长2.1公里,位于长江水道之上,是连接巴东县南北两岸的重要通道.如图,这是大桥中的斜拉索桥,那么斜拉索大桥中运用的数学原理是()A .三角形的内角和为180︒B .三角形的稳定性C .两点之间线段最短D .垂线段最短2.(2024上·浙江衢州·八年级统考期末)如图,小筧家里有一块三角形玻璃碎了,他带着残缺的玻璃去玻璃店配一块与原来相同的,请问师傅配出相同玻璃的依据是()A .SSSB .SASC .AASD .ASA3.(2023上·江苏盐城·八年级统考期末)在下列条件中,不能作为判断ABC DEF ≌△△的条件是()A .,,AB DE BC EF C F==∠=∠B .,,AB DE AC DF A D ==∠=∠C .,,AB DE AC DF BC EF ===D .,,A D B E AC DF∠=∠∠=∠=4.(2024上·山东烟台·七年级统考期末)如图,ABC 中,90AB AC BAC =∠=︒,,CD AD ⊥于点D ,BE AD⊥于点E ,若74CD BE ==,,则DE 的长为()A .2B .3C .4D .75.(2024上·海南儋州·八年级统考期末)如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙24cm AD =,12cm CE =.木块墙之间刚好可以放进一个等腰直角三角板,点B 在DE 上,点A 和C 分别与木块墙的顶端重合,则两堵木块墙之间的距离DE 为()A .48cmB .42cmC .38cmD .36cm二、填空题8.(2024上·山东滨州·八年级统考期末)BB '可以绕着O 点转动,就做成了一个测量工具,那么判定OAB 和OA B ''△全等的依据为9.(2024上·河南驻马店·八年级统考期末)教育部颁布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校社团组织了一次测量探究活动,测量校园内的小河的宽度,如图所示,小东和小颖在河对岸选定一个目标点别与河岸垂直且A 、C 、E三、解答题11.(2024上·吉林长春·八年级统考期末)如图,点A 、C 、D 、B 在同一条直线上,点E 、F 分别在直线AB 的两侧,AE BF =,CE DF =,AD BC =.(1)求证:ACE BDF V V ≌.(2)若55CDF ∠=︒,求ACE ∠的度数.12.(2023上·四川巴中·八年级统考期末)如图,BD AC ⊥于点D ,CE AB ⊥于点E ,BE CD =,BD 与CE 交于点O .(1)求证:COD BOE ≌△△;(2)若2CD =,5AE =,求AC 的长.13.(2024上·浙江湖州·八年级统考期末)如图,在ABC 中,E 是AB 上一点,AC 与DE 相交于点F ,F 是AC 的中点,AB ∥CD .(1)求证:AEF CDF △≌△;(2)若107AB CD ==,,求BE 的长.14.(2023上·四川眉山·八年级校考期中)如图,在四边形ABCD 中,AB CD ,12∠=∠,DB DC =,DBC DCB ∠=∠.(1)求证:ABD EDC △≌△;(2)若135A ∠=︒,30BDC ∠=︒,求BCE ∠的度数.15.(2024上·浙江丽水·八年级统考期末)如图,,,A D B E AF CD ∠∠∠∠===.(1)求证:ABC DEF ≌△△;(2)若20A ∠=︒,75E ∠=︒,求BCF ∠的度数.16.(2023上·甘肃武威·八年级校考期中)如图,在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若100A ∠=︒,50C ∠=︒,求DEC ∠的度数.17.(2024上·四川宜宾·八年级统考期末)小明和小亮准备用所学数学知识测一池塘的长度,经过实地测量,绘制如下图,点B F C E 、、、在直线l 上(点F 、C 之间的距离为池塘的长度),点A 、D 在直线l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若120m BE =,38m BF =,求池塘FC 的长度.18.(2023上·广西来宾·八年级统考期中)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)求证:CB CD =;(2)若8AE =,6CD =,求四边形AECF 的面积;(3)猜想DAB ∠,ECF ∠,DFC ∠三者之间的数量关系,并证明你的猜想.。
2022年中考数学专题复习:开放探究题
2022年中考数学专题复习:开放探究题1.点E 是矩形ABCD 边AB 延长线上一动点(不与点B 重合),在矩形ABCD 外作Rt△ECF 其中△ECF =90°,过点F 作FG △BC 交BC 的延长线于点G ,连接 DF 交CG 于点H .(1)发现如图1,若AB =AD ,CE =CF ,猜想线段DH 与HF 的数量关系是______ (2)探究如图2,若AB =nAD ,CF =nCE ,(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)拓展在(2)的基础上,若FC 的延长线经过AD 的三等分点,且AD =3,AB =4,请直接写出线段EF 的值2.如图1,在Rt ABC 中,90B ∠=︒,4AB =,2BC =,点D 、E 分别是边BC 、AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现△当0α=︒时,AE BD =________;△当180α=︒时,AEBD=______. (2)拓展探究试判断:当0360α︒≤<︒时,AEBD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决CDE △绕点C 逆时针旋转至A 、B 、E 三点在同一条直线上时,请直接写出线段BD 的长________.3.如图1,在Rt△ABC 中,△ACB =90°,CA =CB ,点D 为AB 边上一动点,连接CD ,并将CD 绕点C 逆时针旋转90°得到CE ,连接BE 、DE ,点F 为DE 中点,连接BF .(1)求证:△ACD ≅△BCE ;(2)如图2所示,在点D 的运动过程中,当ADn BD=时(n >1),分别延长AC 、BF 相交于G :△当32n =时,求CG 与AB 的数量关系; △当AD BD =n 时(n >1),ABCG= . (3)当点D 运动时,在线段CD 上存在一点M ,使得AM +BM +CM 的值最小,若CM =2,则BE = .4.如图,在Rt △ABC 中,△ACB =90°,AC =6,△ABC =30°,点D ,E 分别在边AB ,AC 上,在线段ED 左侧构造Rt △DEF ,使△DEF △△BCA .(1)如图1,若AD =BD ,点E 与点C 重合,DF 与BC 相交于点H .求证:2CH =BH .(2)当AE =2时,连接BF ,取BF 的中点G ,连接DG . △如图2,若点F 落在AC 边上,求DG 的长.△是否存在点D ,使得△DFG 是直角三角形?若存在,求AD 的长;若不存在,试说明理由.5.【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,△BAC =△G =90°,BC =6,若△ABC 固定不动,将△AFG 绕点A 旋转,边AF 、AG 与边BC 分别交于点D ,E (点D 不与点B 重合,点E 不与点C 重合)△求证:AE 2=DE •BE ; △求BE •CD 的值; 【拓展探究】(2)如图2,在△ABC 中,△C =90°,点D ,E 在边BC 上,△B =△DAE =30°,且34AD AE,请直接写出DE BC的值.6.(1)[问题发现]如图1,在Rt△ABC中,AB=AC=4,△BAC=90°,点D为BC的中点,以CD为一条边作正方形CDEP,点E恰好与点A重合.则线段BE与AF的数量关系为;(2)[拓展研究]在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请就图2的情形给出证明;(3)[问题发现]当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.7.综合与实践在△ABC中,BD△AC于点D,点P为射线BD上任一点(点B除外),连接AP,将线段P A绕点P顺时针方向旋转α,α=△ABC,得到PE,连接CE.(1)如图1,当BA=BC,且△ABC=60°时,BP与CE的数量关系是,BC与CE的位置关系是(2)如图2,当BA=BC,且△ABC=90°时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.(请选择图2,图3中的一种情况予以证明或说理)(3)在(2)的条件下,若AB=8,AP=CE的长.8.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分△DAM.【探究展示】(1)请你判断AM,AD,MC三条线段的数量关系,并说明理由;(2)AM = DE + BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否仍然成立?请分别作出判断,不需要证明.9.【背景】如图1,在△ABC中,AB=AC,过点A的直线MN△BC,点D是直线MN 上的一动点,将射线DB绕着点D逆时针旋转,交线段AC于点P,使△BDP=△BAC,试说明:DB=DP.小丽提出了自己的想法:如图2在线段AB上取一点F,使DA=DF,通过证明△BDF△△PDA可以解决问题.【尝试】△请你帮助小丽完成说理过程.△若AC=6,BC=4,AD=3,求AP的长.【拓展】如图3,过点A的直线MN△BC,AB=3 cm,AC=4cm,点D是直线MN上一点,点P是线段AC上的一点,连接DP,使得△BDP=△BAC,求DBDP的值.10.如图1,E是直线AB,CD内部一点,AB△CD,连接EA,ED.(1)探究猜想:△若∠A=30°,∠D=40°,则∠AED等于_______度;△若∠A=20°,∠D=60°,则∠AED等于_______度;△猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,△△△△分别是被射线FE隔开的4个区域(不含边界,其中区域△、△位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系并选择其中一个证明.11.在△ABC中,AC=BC,△ACB=90°,点P为△ABC外一点,点P与点C位于直线AB异侧,连接AP,△APB=45°,过点C作CD△P A,垂足为D.(1)当△ABP=90°时,直接写出线段AP与CD的数量关系为AP=_____________;(2)如图,当△ABP>90°时.△试探究(1)中的结论是否成立;△在线段AP上取一点K,使得△ABK=△ACD,画出图形并直接写出KPBP的值.12.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分△AEF 交CD 于点M ,且△FEM =△FME .(1)若2△AEF = △MFE ,求△AEF 的度数.(2)如图2,点G 是射线 MD 上一动点(不与点M ,F 重合),EH 平分△FEG 交CD 于点H ,过点H 作HN △EM 于点N ,设△EHN =α,△EGF = β. △当点G 在点F 的右侧时,若β= 50°,求α的度数;△当点G 在运动过程中,α 和β之间有怎样的数量关系?请写出你的猜想,并加以证明.13.已知:点E 是矩形ABCD 边AB 延长线上的一动点,在矩形ABCD 外作RtECF △,90ECF ∠=︒.FG BC ⊥交BC 的延长线于点G ,连接DF ,交CG 于点H .(1)初步发现:如图1,若AB AD =,CE CF =.求证:DH HF =.(2)深入探究:如图2,若AB nAD =,CF nCE =.DH 与HF 是否仍然相等?若相等,进行证明;若不相等,写出新的数量关系并证明;(3)拓广延伸:在(2)的条件上,3AD =,4AB =,且射线FC 过边AD 的三等分点,直接写出线段EF 的长.14.【感知】如图△,在四边形AEFC 中,EB 、FD 分别是边AE 、CF 的延长线,我们把△BEF 、△DFE 称为四边形AEFC 的外角,若△A +△C =260°,则△BEF +△DFE = 度.【探究】如图△,在四边形AECF 中,EB 、FD 分别是边AE 、AF 的延长线,我们把△BEC 、△DFC 称为四边形AECF 的外角,试探究△A 、△C 与△BEC 、△DFC 之间的数量关系.【结论】综合以上,请你用文字描述上述关系: .【应用】如图△,FM 、EM 分别是四边形AEFC 的外角△DFE 、△BEF 的平分线,若△A +△C =210°,求△M 的度数.15.ABC 中,AB AC =,ABC α∠=,过点A 作直线MN ,使//BC MN ,点D 在直线MN 上(不与点A 重合),作射线BD ,将射线BD 绕点B 顺时针旋转α后交直线AC 于点E .(1)如图1,点D 在射线AN 上,60α=︒,求证:AB AD AE +=;(2)如图2,点D 在射线AN 上,45α=︒,线段AB ,AD ,AE 之间又有何数量关系?写出你的结论,并证明;(3)若30α=︒,15ABE ∠=︒,BC =AD 的长.16.综合与探究:如图△,在△ABC 中,△C >△B ,AD 是△BAC 角平分线.(1)探究与发现:如图△,AE △BC 于点E ,△若△B =20º, △C =70º,则△CAD =_______º, △DAE =_____º; △若△B =40º,△C =80ºº,则△DAE =_____º;△试探究△DAE 与△B 、△C 的数量关系,并说明理由.(2)判断与思考:如图△,F 是AD 上一点,FE △BC 于点E ,这时△DFE 与△B 、△C 又有怎样的数量关系?17.在ABC 中,AB AC =.(1)如图1、求证:B C ∠=∠:(2)如图2,D 为AB 上一点,连接CD ,E 为CD 中点,过点E 作EF CD ⊥于点E ,连接,FC FD ,求证:FC FD =;(3)如图3,在(2)的条件下,过点F 作FH AC ⊥于点H ,连接AF ,若AF△BC ,FH=4,CH=20,BD=10,求ADF 的面积18.如图1,四边形ABCD 为正方形,△AEF 为等腰直角三角形,△EAF =90°,连接BE、DF.(1)求证:△ABE△△ADF;(2)如图2,延长DF交AB于点G,交BE于点H,连结AH.△求△EHA的度数;△过点D作DM△HA交HA的延长线于点M,请你写出线段AM与BH之间的数量关系,并证明你的结论.19.在ABC中,AB=AC,△BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与直线CF相交于点G.(1)若点D在线段BC上,如图1,判断:线段BC与线段CG的数量关系,位置关系;(2)如图2,△若点D在线段BC的延长线上,(1)中判断线段BC与线段CG的数量关系与位置关系是否仍然成立,并说明理由;△当G为CF中点,BC=2时,求正方形ADEF的面积(直接写出结果).20.如图1,在正方形ABCD和正方形BEFG中,点A、B、E在同一直线上,连接DF,且点M是DF的中点,连接MC、MG.(1)在图1中,MC与MG的位置关系是,数量关系是;(2)如图2,将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD和矩形BEFG”,其他条件不变,求证:MC=MG;(3)如图3,若将条件“正方形ABCD和正方形BEFG”改为“菱形ABCD和菱形BEFG”,点A、B、E在同一直线上,连接DF,且点M是DF的中点,连接MC、MG,且△ABC=△BEF=60°求MCMG的值.。
(完整版)中考数学题型归纳——探究题参考答案
s in t h e i r e g o o d f o 2)仿照上述数形结合的思想方法,设计相关图形,求1+3+.(本小题满分10分))………………………………………………………3′)∵AP=AD=,又∵PD=AD-AP=AD=,领航教育中学辅导专用∴ S△PBC=S四边形ABCD-S △ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC∴S△PBC=S △DBC+S△ABC;(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD又∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA,∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC,∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC。
in th ei r be i n g a r e g o o df o r s o领航教育中学辅导专用问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.解:用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.(1分)验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为和.(3分)结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.(5分)猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?(6分)验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,可以找到惟一一组适合方程的正整数解为.(:镶嵌平面时,在一个顶点周围围绕着1个正三角形、garegoodfora t i m e a n d A l l th i n g s i n th e(2012·青岛)23.(10分)问题提出:以n 边形的n 个顶点和它内部的(m+n )个点作为顶点,可把原n 边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC 的三个顶点和它内部的1个点P ,共4个点为顶点,可把e a n d Al l th i n gs in th ei r b e i n g a r e g o o d f o r s o 领航教育中学辅导专用实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分,故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2(1﹣1),三角形内部2个点时,共分割成5部分,5=3+2(2﹣1),三角形内部3个点时,共分割成7部分,7=3+2(3﹣1),…,所以,三角形内部有m 个点时,3+2(m ﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m 个点,则分割成的不重叠的三角形的个数为:4+2(m ﹣1)或2m+2;…6分问题解决:n+2(m ﹣1)或2m+n ﹣2;…8分实际应用:把n=8,m=2012代入上述代数式,得2m+n ﹣2,=2×2012+8﹣2,=4024+8﹣2,=4030.…10分atimengsintheirt h ei r be i ng ar eg oo d f o r s o 领航教育中学辅导专用几何建模:(1)变形:x (x+2)=35.(2)画四个长为x+2,宽为x 的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x 的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x (x+2)+22∵x (x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x >0∴x=5归纳提炼:求关于x 的一元二次方程x (x+b )=c (x >0,b >0,c >0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y >0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a >2,b >2时,表示ab 与a+b 的大小关系.根据题意,设a=2+m ,b=2+n (m >0,n >0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)be i n g a r e g o o df o r s o 解:【研究速算】归纳提炼:十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果.【研究方程】归纳提炼:画四个长为x+b ,宽为x 的矩形,构造答图1,则图中的大正方形面积可以有两种不同的表达方式:(x+x+b )2或四个长为x+b ,宽为x 的矩形面积之和,加上中间边长为b 的小正方形面积.即:(x+x+b )2=4x (x+b )+b 2∵x (x+b )=c ,∴(x+x+b )2=4c+b 2∴(2x+b )2=4c+b 2∵x >0,∴x=.e an d Al l th i n gs in th ei r be i ng a r e g o o d f o r so 【研究不等关系】归纳提炼:(1)画长为2+m ,宽为2+n 的矩形,并按答图2方式分割.(2)变形:a+b=(2+m )+(2+n )(3)分析:图中大矩形面积可表示为(2+m )(2+n ),阴影部分面积可表示为2+m与2+n 的和.由图形的部分与整体的关系可知,(2+m )(2+n )>(2+m )+(2+n ),即ab >a+b .(2014·青岛)23.(10分)数学问题:计算+++…+(其中m ,n 都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.eandAllthingsintheirbeingaregoodforso领航教育中学辅导专用根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+ ++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)a ti m e dAl l th 解决问题:计算+++…+.次分割图,在图上标注阴影部分面积,并完成以下填空)次分割图可得等式: 所以,+++…+= +++…+.其中阴影部分的面积为;次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;次分割,把上次分割图中空白部分的面积继续四等分,次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,次分割图可得等式:+++…+=1﹣,l l thi n g s i n t h ei r b e i n ga r e g o o d f o r s o 领航教育中学辅导专用两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+ (1),=n ﹣(+++…+),=n ﹣(﹣),=n ﹣+.。
中考数学学练测《第4讲第3课时分割与拼接操作型问题》课件
归类探究 分层集训
图4-3-1 (1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B= 60°,求证:CD为△ABC的完善分割线; (2)在△ABC中,∠A=48°,CD是△ABC的完善分割线,且 △ACD为等腰三角形,求∠ACB的度数;
全效学习 中考学练测
归类探究 分层集训
归类探究 分层集训
第3课时 分割与拼接操作型问题
全效学习 中考学练测
全效学习 中考学练测
归类探究 分层集训
[202X·宁波]如图4-3-1,从三角形(不是等腰三角形)一 个顶点引出一条射线与对边相交,顶点与交点之间的线段把 这个三角形分割成两个小三角形,如果分得的两个小三角形 中一个为等腰三角形,另一个与原三角形类似,我们把这条 线段叫做这个三角形的完善分割线.
-a)=( 3+1)ab,
∴2 2ab·sin75°=( 3+1)ab,
∴sin75°=(
3+1)ab= 2 2ab
6+ 4
2 .
如答图②,推导如下:设图形内部四边形的顶点为P,Q,
M,N.由拼图知,四边形PQMN是平行四边形.
过N作NK⊥PQ,K为垂足.
全效学习 中考学练测
归类探究 分层集训
在Rt△PNE中,∠PEN=90°,∠PNE=30°,PE=a,
交于点 N,求ANME的值; (3)在(2)的条件下,若AAFB=k(k 为大于 2
的常数),直接用含 k 的代数式表示AMMF的值.
全效学习 中考学练测
图4-3-4③
归类探究 分层集训
【解析】 (1)思路1:先证DC与EF平行且 相等,进而再利用AAS证△DMC≌ △EMF;思路2:连结BD交AF于点H, 再利用平行线分线段成比例可证;
中考开放性探究题
专题七 ┃ 热点探究
(1)根据上述各式反映的规律填空,使式子称为“数字对 称等式”: ①52×________=________×25; ②________×396=693×________. (2)设这类等式左边两位数的十位数字为a,个位数字为 b,且2≤a+b≤9,写出表示“数字对称等式”一般规律 的式子(含a、b),并证明.
专题七 ┃ 热点探究
解:(1)①275,572;②63,36 (2)一般规律的式子为:(10a+b)×[100b+10(a+b)+a] =[100a+10(a+b)+b]×(10b+a). 证明:∵左边=(10a+b)[100b+10(a+b)+a] =11(10a+b)(10b+a), 右边=[100a+10(a+b)+b](10b+a) =11(10a+b)(10b+a), ∴左边=右边,原等式成立.
专题七 ┃ 热点探究
例4 [2011· 南昌] 某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90° ).现把小棒依次摆放在两射线AB,AC之间,并 使小棒两端分别落在两射线上. 活动一 如图X7-3①所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两 端点处互相垂直,A1A2为第1根小棒. 数学思考 (1)小棒能无限摆下去吗?答:________.(填“能”或“不能”) (2)设AA1=A1A2=A2A3=1. ①θ=________度; ②若记小棒A2n- 1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,), 求此时a2,a3的值,并直接写出an(用含n的式子表示).
专题七 ┃ 热点探究
【题干关键词】 网格,对角线,穿过,互质,不互质. 【提示】 特殊到一般,猜想验证.
解:(1)如表: m n m+n f 1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 6 3 4 7 6 f=m+n-1 (2)当m、n不互质时,上述结论不成立,如图2×4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时开放探究题开放探究题是一种新的题型, 关于开放题的概念,主要有下列几种描述:(1)答案不固定或者条件不完备的习题成为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题.开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探究题常见的类型有:(1)条件开放型:即问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:即在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合型:即条件、结论、策略中至少有两项均是开放的.在解决开放探究题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.类型之一条件开放型问题解这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
1. (•郴州市)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_________.2.(•庆阳市)如下左图,D、E分别是ABC△的△的边AB、AC上的点,则使AED△∽ABC条件是.类型之二结论开放型问题解决这种类型的问题的时候要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维. 它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。
3.(•滨州市)如上右图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_________(把你认为正确的序号都填上)。
4.(•梅州)如图,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF分别交AB、DC于点E、F,与CB、AD的延长线分别交于点G、H.(1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.5.(•常德市)如图,在梯形ABCD中,若AB//DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)?(2)请你任选一组相似三角形,并给出证明.类型之三策略开放型问题策略开放型也称为设计方案型,是指题目的条件和结论都已知或部分已知,需要探索解题方法或设计解题方案的一类试题;这种类型的开放性试题的处理方法一般需要模仿、类比、试验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得以解决。
策略开放性问题的解题方法一般不惟一或解题路径不明确,要求解题者不墨守成规,善于标新立异,积极发散思维,优化解题方案和过程。
6.(·盐城)如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF ⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=42,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.类型之四综合型问题这类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,并寻求解法的一类问题;它更具有开发性,能为我们提供宽松的思维环境,解这类题时,要求我们对课本知识特别熟悉并能灵活运用。
7.(·大连市)点A、B分别是两条平行线m、n上任意两点,在直线n上找一点C,使BC = kAB,连结AC,在直线AC上任取一点E,作∠BEF =∠A BC,EF交直线m于点F.⑴如图1,当k = 1时,探究线段EF与EB的关系,并中以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图2中补全图形,完成证明.⑵如图3,若∠ABC = 90°,k≠1,探究线段EF与EB的关系,并说明理由.图1 图2 图3第3课时开放探究题答案1.【解析】由90∠=∠=∠=︒可知四边形ABCD是矩形,再得到正方形方法有很多,比如邻边相等、对角线A B C互相垂直等。
答案不唯一。
【答案】 AB=BC或者BC=CD或者CD=DA或者DA=AB2.【解析】由本题图形相似已经有一个公共角,再找一组对应角相等或公共角的两边对应成比例即可。
【答案】AED B=∠∠,或ADE C∠∠,或AD AE==AC AB3.【解析】由于A、C、E三点共线可证明三角形ACD与三角形BCE全等(边角边)从而可证AD=BE、∠AOB=∠CAD+∠CEB=∠CCBE+∠CEB =∠ACB= 60°,再证三角形ACP全等于三角形BCQ,从而可证AP=BQ,PQ∥AE。
如果DE=DP,那么就会有DE=DP=EQ(三角形CEQ全等于三角形CDP)EQ=CE因为∠DCE=60°,所以三角形CEQ 为等边三角形,矛盾。
【答案】(1)(2)(3)(5)4.【解析】考察了相似的两种基本图形,平行四边形中利用全等三角形的简单证明.【答案】(1) ∆AEH 与∆DFH .(或∆AEH 与∆BEG , 或∆BEG 与∆CFG ,或∆DFH 与∆CFG )(2)OE =OF .证明:∵四边形ABCD 是平行四边形,AB ∴∥CD ,AO CO = EAO FCO ∠=∠∴,AOE COF ∠=∠∵, ∴△AOE ≌△COF ,OE OF =∴.5.【答案】解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P 31= (2)证明:选择①、③证明.在△AOB 与△COD 中, ∵AB ∥CD,∴∠CDB =∠DBA , ∠DCA =∠CAB,∴△AOB ∽△COD选择②、④证明.∵四边形ABCD 是等腰梯形, ∴∠DAB =∠CAB,∴在△DAB 与△CBA 中有AD=BC, ∠DAB =∠CAB,AB=AB,∴△DAB ≌ △CBA,∴∠ADO =∠BCO.又∠DOA =∠COB, ∴△DOA ∽△COB6.【答案】:(1)①CF 与BD 位置关系是 垂直、数量关系是相等;②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得 AD=AF ,∠DAF=90º.∵∠BAC=90º,∴∠DAF=∠BAC , ∴∠DAB=∠FAC ,又AB=AC ,∴△DAB ≌△FAC , ∴CF=BD∠ACF=∠ABD .∵∠BAC=90º, AB=AC ,∴∠ABC=45º,∴∠ACF=45º,∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD(2)画图正确当∠BCA=45º时,CF ⊥BD (如图丁).理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)当具备∠BCA=45º时,过点A 作AQ ⊥BC 交BC 的延长线于点Q ,(如图戊)∵DE 与CF 交于点P 时, ∴此时点D 位于线段CQ 上,∵∠BCA=45º,可求出AQ= CQ=4.设CD=x ,∴ DQ=4—x ,容易说明△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-,221(2)144x CP x x ∴=-+=--+. ∵0<x ≤3 ∴当x=2时,CP 有最大值1.7.【答案】(1)EF=EB .证明:如图,以E 为圆心,以EA 为半径画弧交直线m 于点M,连结EM .∴EM=EA, ∴∠EMA=∠EAM .∵BC=Kab,k=1,∴BC=AB .∴∠CAB=∠ACB .∵m ∥n ,∴∠MAC=∠ACB, ∠FAB=∠ABC .∴∠MAC=∠CAB .∴∠CAB=∠EMA .∵∠BEF=∠ABC, ∴∠BEF=∠FAB .∵∠AHF=∠EHB, ∴∠AFE=∠ABE .∴△AEB ≌△MEF .∴EF=EB .探索思路:如上图,∵BC=Kab,k=1,∴BC=AB .∴∠CAB=∠ACB .∵m ∥n ,∴∠MAC=∠ACB .添加条件:∠ABC=90°.证明:如图,在直线m 上截取AM=AB ,连结ME .∵BC=kAB,k=1,∴BC=AB .∵∠ABC=90°, ∴∠CAB=∠ACB=45°,∵m ∥n ,∴∠MAE=∠ACB=∠CAB=45°, ∠FAB=90°.∵AE=AE, ∴△MAE ≌△ABE .∴EM=EB, ∠AME=∠ABE .∵∠BEF=∠ABC=90°, ∴∠FAB+∠BEF=180°.∴∠ABE+∠EFA=180°,又∵∠AME+∠EMF=180°,∴∠EMF=∠EFA .∴EM=EF . ∴EF=EB . (2)EF=k1EB . 说明:如图,过点E 作EM ⊥m 、EN ⊥AB,垂足为M 、N .∴∠EMF=∠ENA=∠ENB=90°.∵m ∥n ,∠ABC=90°, ∴∠MAB=90°.∴四边形MENA 为矩形.∴ME=NA, ∠MEN=90°. ∵∠BEF=∠ABC=90°. ∴∠MEF=∠NEB . ∴△MEF ∽△NEB . ∴.EB EF EN ME =∴.EBEF EN AN = 在Rt △ANE 和Rt △ABC 中,tan ∠BAC=k ==AB BC AN EN , ∴EF=k1EB .。