高等数学课后习题答案第四章
高等数学第4章课后习题答案(科学出版社)
第四章 习题解答习 题 4-11.求下列不定积分:(1);(2) 2(23)d x x x +⎰;(3)⎰+)1(d 22x x x;(4) 2cot d x x ⎛⎫+⎪⎭⎰;(6) 21(1)x x -⎰; (7)1d 1cos 2xx +⎰;(9)221d sin cos x x x ⎰;(10){}max ||,1d x x ⎰.2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.解答:1.求下列不定积分: (1)解53225125212d 1()3x x x C x C --+-==+=-++-⎰. (2)解:⎰+x x xd )32(2C xx x +3ln 29+6ln 62+2ln 24=(3)=+-=+⎰⎰⎰22221d d )1(d x x x x x x x C x x+--arctan 1(4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x xx +cot arcsin(5)1131352222222242(2)d 235x x x x x x x x x C -==-+=-++⎰⎰(6) 33571244444214(1)(1)d ()d 47x x x x x x x x x C x ----=-⋅=-=++⎰⎰⎰(7) 解2111d d tan 1cos 22cos 2x x x C x x ==++⎰⎰ (8) 解:⎰x x x x d sin cos 2cos 22⎰⎰-=-=x xx x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解:222222221sin cos 11d d d d sin cos sin cos cos sin x x x x x x x x x x x x +==+⎰⎰⎰⎰ 22sec d csc d tan cot x x x x x x C =+=-+⎰⎰(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,1>,+211≤≤1,+1<,+21=)(32212x C x x C x x C x x F 须处处连续,有又)(x F)+21(lim =)+(lim 121→21→+C x C x x x ,,21112C C +-=+-即 )(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d .由0)0(=y ,得0=C ,因此所求曲线方程为441x y =. 3.解:x 2sin 21x x cos sin =, x x x sin cos cos 212='⎪⎭⎫ ⎝⎛- x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-2 1.求下列不定积分: (1) 1d 12x x -⎰; (2) 100(23)d x x -⎰;(3) 12ed xx x ⎰; (4)211sin()d x x x ⎰;(5) ⎰-294d x x;(7) 1d ln lnln x x x x⎰;(8)x e x d 11⎰+;(9)⎰+3xx dx ; (10)x x x x x d )cos 2(sin sin 2cos 2⎰+-; (11)3cos d x x ⎰; (12)⎰+x x d 412;(14)2sin d cos 6cos 12x xx x -+⎰;(15)x ; (16) dx x ⎰5cos(17) ⎰x x x d cos sin 52(18)cos5sin 4d x x x ⎰;(19)⎰+x xx d sin 1sin ; (20)x exd 112⎰+(21) xx ⎰;(22)x x⎰. 2. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.3.已知x x f 22tan )(sin =',求函数)(x f .4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 5. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.6. 已知)(u f 有二阶连续的导数,求∫d )e (′′e2x f x x;解答:1.求下列不定积分:(1) 解: 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+. (2) 解 10010010111(23)d (23)d(23)(23)3303x x x x x C -=---=--+⎰⎰ (3) 解:⎰x xexd 21C e x e x x +=)1-d( =11∫(4) 解:211111sin()d sin d()cos x C x x x x x=-=+⎰⎰ (5) 解:=-⎰294d x xc xx x x x +|323+2|ln 121=d 321+3+2141∫ (6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12(7) 解:x x x x d ln ln ln 1⎰C x x x x x x +===⎰⎰ln ln ln )ln d(ln ln ln 1)d(ln ln ln ln 1(8) 解:x ee x e e e x e xxx x x x d )11(d 11d 11⎰⎰⎰+-=+-+=+=C e x x ++-)1ln( (9) 解 令)0( 6>=t t x ,则⎰⎰+=+23536t t dtt x x dxdt tt t )111(62⎰+-+-=C t t t t ++-+-=))1ln(23(623C x x x x ++-+-=)1ln(6 6 32663(10) 解:)cos 2+(sin d )cos 2+(sin 1 =d )cos 2+(sin sin 2cos∫∫22x x x x x x x x x =C xx ++-cos 2sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (12) 解:∫∫2d 2+1121=d +4122x xx x =C x +2arctan 21. (13)解:2x 231arcsin d(arcsin )(arcsin )3x x x C ==+⎰.(14)解:22sin d d(cos 3)cos 6cos 12(cos 3)3x x x C x x x -=-=-+-+⎰⎰ (15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d 1arctan 22x x xx x x ⎰⎰+=+=C x x x +==⎰2)(arctan)d(arctan arctan2(16) x x x x x x sin d )sin -1( =sin d cos =d cos ∫∫∫2245=C x x x ++-52sin 51sin 32sin .(17) ⎰⎰⎰+-=-=x x x x x x x x x x sin d )sin sin 2(sin sin d )sin 1(sin d cos sin 64222252c x x x ++-=753sin 71sin 52sin 31 (18) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos (19) 解:∫∫∫d )tan +sec (tan =d sin -1)sin +1(sin =d sin +1sin 22x x x x x xx x x x x ⎰-+=x x x x d )1sec sec (tan 2=C x x x +-+tan sec .(20) 解:令)1ln(212-=t x ,则t t t x d 1d 2-=,于是C t t t t t t t t x ex ++-=-=-⋅=+⎰⎰⎰11ln 21d 11d 11d 11222 =C x e e x x +-++-)212ln(2122(21) 解:设sin (0)2x a t t π=<<,d cos d x a t t =,则22421sin cos cos d sin 2d 4x x a t a t a t t a t t =⋅⋅=⋅⎰⎰⎰ 444111(1cos 4)d sin 48832a t t a t a t C =-=-+⎰ 44211sin cos (12sin )88a t a t t t C =--+42211arcsin 2)88x a a x C a =--+. (22) 解:令sec x a t =,d sec tan d x a t t t =⋅,则22tan sec tan d tan d (sec 1)d sec a t a t t t a t t a t t a t =⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )a a C x=-+.2.求下列不定积分(1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222 ()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰.(11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d3.已知x x f 22tan )(sin =',求函数)(x f .解 依题求得xx x f -='1)(,因此 C x x x x xx x x x f +---=--=-=⎰⎰⎰|1|ln d d 11d 1)(. 4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 解=+='='⎰⎰C x f x x f x xx f )(ln ln d )(ln d )(ln C x +1.5. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)6. 解⎰''x f x xd )e (e2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e习 题 4-31. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.2. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.3. 已知)(u f 有二阶连续的导数,求⎰''x f x xd )e (e2;解答1.求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰. (11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d2. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)3. 解⎰''x f x x d )e (e 2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e .习题4-4求下列不定积分:(1)23d 56x x x x +-+⎰; (2)21d (1)x x x -⎰;(3)22d (1)(1)xx x x +++⎰; (4)3224d 56x x x x x +++⎰.x x x d )+1(1 5∫28)(; (6)2d 3sin xx+⎰;(7)⎰++311d xx(8)sin d 1cos x xx x ++⎰.解答 (1) 解233(3)(2)56(2)(3)23(2)(3)x x A B A x B x x x x x x x x x ++-+-==+=-+------,即3(3)(2)x A x B x +=-+-,比较系数知1323A B A B +=⎧⎨--=⎩(或者用赋值法:分别在3(3)(2)x A x B x +=-+-中令3x =与2x =,也可解出A 与B ),解之得56A B =-⎧⎨=⎩,于是62356d ()d ln(3)5ln 25623x x x x x C x x x x +-=+=---+-+--⎰⎰65(3)ln 2x C x -=+-.(2) 解 令221(1)1(1)A B Cx x x x x =++---,用待定系数法或者用赋值法可求出1A =,1B =-,1C =,故221111d []d (1)1(1)x x x x x x x =-+---⎰⎰2111d d d 1(1)x x x x x x =-+--⎰⎰⎰1ln ln 11x x C x =---+-. (3) 解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以 2222d 1()d (1)(1)11x x x x x x x x x x -+=+++++++⎰⎰222221d(1)1d(1)1d 212121x x x x x x x x x +++=-+++++++⎰⎰⎰2221d()1112ln(1)ln(1)13222()24x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.(4) 解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498d (1)d 5632x x x x x x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. (5)解 ⎰⎰⎰+=+=+2888288728)1()1()1(1x x dx dx x x x dx x x =C xx +)1+1ln(+118188(6)解⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u ⎰+=2)32(1d 31u uC x +=3tan 2arctan 321(7)解 ⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232 (8)解 注意到sin d d(1cos )x x x =-+及211d d d(tan )1cos 22cos2xx x x x ==+,可将原来的积分拆为两项,然后积分,即sin sin d d d 1cos 1cos 1cos x x x x x x x x x x +=++++⎰⎰⎰1d(tan )d(1cos )21cos x x x x=-++⎰⎰tantan d ln(1cos )22x xx x x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan 2ln cos ln(2cos )222x x xx C =+-+1tan (ln 2)2x x CC C =+=-.习题4-5利用积分表计算下列不定积分: (1);(2)3ln d x x ⎰; (3)221d (1)x x +⎰;(4);(5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.解答 (1)解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x xC x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1 现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)=+⎰x x d )1(122解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x xd 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31dC a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----= C a x a x x a +--+--+--322222])1[(31)1(1ln 85. (6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x x x⎰-+-12d 12x x xx x C x x x +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n n d cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C x x x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e xd 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e axax +-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx+--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131复习题A一、选择题1. 设)(x F 是)(x f 的一个原函数,则等式( )成立。
高等数学 第四章不定积分课后习题详解.doc
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
北大版高等数学第4章习题集解答
习题4.13212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.332.f x x x x f f f f f x x x xx x f x f x =-+==='-+===+''=∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点.处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列解1111()[1,1]Rolle ,,(1,1),()0.(1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1(2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m nx x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----==∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32),(0).33.()ln [1,],?11(),()(1)ln ln11(1), 1.grange (1)|sin sin |||;(2)|tan tan |||,,(/2,/2);(3)ln x f f x x e c f x f e f e e c e x cy x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||.(3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c aa b ax y x x y c x y x y y x x y x c y x y x b a b b a b ab a x b ac a b a a c aP x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,.()1,2,Rolle ,,,()(2,1),(1,1),(1,2).6.,,,:()cos cos 2cos (0,).n n P x P x c c c f x c x c x c nx π±±---=+++L L 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证1211()sin sin 2sin [0,]2((0)()0),()(0,).n g x c x c x c nx ng g f x πππ=+++==L 在满足定理的条件故其导函数在内必有根证22(()()7.()()(,),()0,0,(,).()():,()(),(,).(()()()()()()()()()0,()()()(),,,()(),()f xg x f x g x a b g x x a b f x g x k f x kg x x a b f x g x f x g x f x f x g x f x g x g x g x g x f x k k f x kg x g x ≠=∈''=∈'''''⎛⎫-=== ⎪⎝⎭==设函数与在内可微且证明存在常数使根据公式的一个推论存在常数使即证(,).8.()(-,)(),.:(),,,.(())()0,.,(),.9.(1)arcsin arccos /2,-11;(2)arctan .x a b f x f x k x f x kx b x k b f x kx f x k k k x f x kx b x x x x x x π∈'∞+∞=-∞<<+∞=+-∞<<+∞''-=-=-=-∞<<+∞-=-∞<<+∞+=≤≤=-∞<<+∞设在上可微且证明其中为常数证明下列等式:证证(1)2arcsin arccos arcsin arccos 0,(1,1),arcsin arccos [1,1],arcsinarccos ,arcsin 0arccos 0,arcsinarccos .22(2)arctan11x x x x x x x x x C C x x x x ππ'''+⎛⎫=+=∈-+- ⎝+==+=+='⎛⎫- ⎝=-+在连续故()=()+()210,1arctan ,00,arctan 0,(,).x x C x C x x =-=+-===-=∈-∞+∞以代入得故220210.:sin ,0/2.sin ()(0/2),(0)1,[0,/2],cos sin cos (tan )(0,/2),()0.2[0,/2],()()(0)1,0/2.211.()(,),(,),li x x x x xf x x f f xx x x x x x f f x x x f f f x f x f x a b x a b πππππππππ<<<<=<≤=--'==<=<<=<<∈证明不等式在连续在可导在严格单调递减设函数在内可微对于任意一点若证 00000000m (),lim ()().()()limlim (01)lim ()lim ().12.(Darboux )()(,),[,](,),()().::x x x x x x x x x f x f x f x f x x x f x xf x x f x y f x A B a b A B f a f b θθθη→→∆→∆→∆→→'''='+∆∆∆'==<<∆∆''=+∆==⊂''<存在则中值定理设在区间中可导又设且证明对于任意给定的00f(x +x)-f(x )证x 1011222()(),(,)().()()()0().()lim 0,)/20,()()00,()()0.()().:0()/2,()().[,]x f a f b c a b f c f a x f a f a f b f a b a xf a x f a x f a x f a f a f a x b a f b f b f a b c ηηδδδδδδ∆→+''<<∈'=+∆-'''<<=<->>∆+∆-<∆≤<+∆-<+<∆<<--<都存在使得先设存在(使得时即特别类似存在某点取最小证1,()()(),,,.(,),Fermat ()0.:()().()().()(),()()0,()()0,,(,)()()0,().f c f a f a c a c b c a b c f c f a f bg x f x x g x f x g a f a g b f b c a b g c f c f c δηηηηηηηη≤+<≠≠∈'''''=<<=-=-''''=-<=->∈'''=-==值f(c)同理是极小值点, 由引理,再设考虑由前面的结果存在使得即习题4.20000000L Hospital :212ln 2ln 21.lim lim .313ln 3ln 3cos 1sin sin 2.lim lim lim 1.ln(1)11/(1)13.lim ln(1)lim x x x x x x x x x x x x x xx x x xx →→→→→→→'-==---==-=--+-+⎛⎫-⎪⎪+⎭⎛=用法则求下列极限000/2lim lim 1lim .2tan 34.lim lim tan x x x x x x x π→→→→⎫⎛⎫==⎛⎫==-=222/222001000000001/5010003sec 3 3.sec ln(cos )(1/(cos ))(sin )5lim lim .ln(cos )(1/(cos ))(sin )ln 1/16.lim ln (0)lim lim lim 0.()7.lim lim x x a x x x x x x y x x ax ax ax a a bx bx bx b bx x x x x x x e y x e παααααα→→→---→+→+→+→+-→→+∞=-==->===-=-=505050/50/50/50220222200022250lim lim lim 0.8.lim (tan ).(tan ),lim ln lim (2)ln tan ln tan sec /tan lim lim 2lim 122(2)y y y y y y y x x x x x z x x y y e e e x y x y x xx x x x x ππππππππππ→+∞→+∞→+∞--→-→-→-→-→-→-⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-===----()022ln 200022lim ln 01/0033000tan 0,lim lim sin 1.1ln 9.lim 1(0)lim lim ln .1arcsin arcsin 10.lim lim sin x yx x yy y xx y y y y y z z y ez ee a a aa x a a y y y y yy y πππ→-→-→-→∞→→→→→=====-->===--==20011111230111.3361ln 111.lim lim 1ln (1)ln ln 11ln lim lim ln (1)/ln (1)1/1lim .ln 22112.lim l sin y y y y y y y x x y y y y y y y y y y y y y y y y y y x e x x →→→→→→→-→==-=-⎛⎫⎛⎫-+-= ⎪ ⎪--⎝⎭⎝⎭⎛⎫⎛⎫+-== ⎪ ⎪+-+-⎝⎭⎝⎭⎛⎫== ⎪+⎝⎭--=22224200001/1/02220002011im lim 11lim lim .222arctan arctan 13.lim ,,arctan arctan 1ln (/arctan )lim ln lim lim 2(1)arctan lim 2x y x y y y y y x x x x x x x x e y e x y e e y x x y x x xx xx x x x x y x xx x x --→→--→→→→→→→----=-+-===-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-+⨯==-+=232001/1/3011ln ln 112arctan 1arctan 1lim lim ,633arctan lim .14.lim arctan .arctan .22ln arctan 2lim ln lim lim ln arctan (12x x x x xxx x x x x x x x x x x e x x y x x x y x x ππππ→→-→→+∞→+∞→+∞→+∞--==-=-⎛⎫= ⎪⎝⎭⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭==-⎛⎫- ⎪⎝⎭21ln 12222200000)limlim 1,lim arctan .112arctan (1)(1)tan sec 1tan 215.lim lim lim lim lim 2.sin 1cos 1cos 1cos sin xx x x x x x x x x x x x e x x x x x x x x x x x x x x x x π-→+∞→+∞→+∞→→→→→+⎛⎫=-=-=--= ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭--=====---- 2000111cosh cos sinh sin cosh cos 16.limlim lim 1.22(ln 1)1(ln 1)117.lim lim lim ln 11/11x x x x x xx x x x x x x x xx x x x x x x x x x x x →→→→→→-++===-+-+-==-+--211222/(ln 1)lim 2.12218.lim arctan .arctan .21ln(arctan )(1/arctan )21lim ln lim lim,112lim arctan .x x x xxx x x x xx x x x x y x x x x y x x x e ππππππ-→→+∞→+∞→+∞→+∞-→+∞++==--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⨯+===--⎛⎫= ⎪⎝⎭习题4.3221221223212222211.0Taylor :(1)sinh 2111()22!(21)!2!(21)!().3!(21)!111(2)ln 2122221x xn n n n n n n o o x e e x x x x x x x x n n x x x x n x x x x x x x n n -+++++-=-=⎛⎫⎛⎫⎛⎫=++++--++-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭=++++++⎛⎫-=--+---- ⎪+-⎝⎭L L L L 求下列函数再点的的局部公式22212321224221212223()2221().32111(2)(2)(2)(3)sin (1cos 2)(1)().222!4!(2)!21(4)(21)(1())1(n n nn n nn n n n o o o o x x x x n n x x x x n x x x x x x n x x x x x x x x x x x ---+⎛⎫⎛⎫+-++ ⎪ ⎪-⎝⎭⎝⎭⎛⎫=-++++ ⎪-⎝⎭⎛⎫=-=-++-+ ⎪⎝⎭+-=-+-++++-=-+++L L L L L 22211236636342333())2(())(1())1222().(5)cos 1(1)().2!(2)!2.0Taylor :(1)sin ()sin 1()266n n n n n n n n nn n x xo o o o o o x x x x x x x x x x x x x x x x x n x e x x x x x e x x x x ++++++-+++++++++=-----+=-++-+=⎛⎫=++++-+ ⎪⎝⎭L L L L 求下列函数再点的的局部公式至所指定的阶数解3424424234452344333()().3()11151()1()2816128224153251().2816384)111(2)(228o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x x ⎛⎫=+++ ⎪⎝⎭⎛⎫⎛⎫=+-+-+-++ ⎪⎪⎝⎭⎝⎭=+--++=+-+--+233222231)(2)161111(3)(3)(3)2816x x x x x x x x ⎛⎫+-+ ⎪⎝⎭⎛⎫-+-+--++-+ ⎪⎝⎭323223332331111(2)(4)(8)28161111(3)(96)(27)()28161115().2816o o x x x x x x x x x x x x x x ⎛⎫=+-+-+- ⎪⎝⎭⎛⎫-+-+--+-+ ⎪⎝⎭=+++222221212003521211/23.0Taylor (1)arctan .11(1)()11(1)(2)arcsin ()121(1)().352111111222(1)n n n k n x k n k n n n o o o x x x x x xx dt x x t k x x x x x n k x ++=++-==-++-++-==+++=-+++-++⎛⎫⎛⎫⎛⎫-----+ ⎪⎪ ⎝⎭⎝⎭⎝⎭=+=∑⎰L L L 求下列函数在点的局部公式:解202000212100()!(21)!!(1)()(2)!!(21)!!(),(2)!!(21)!!arcsin ()(2)!!(21)!!().(2)!!(21)4.Taylor :1(1)lim n k n k nk kn k nkn k nx x k nk nk n k x o o o o o x x k k x x k k x x k k x t dx t dt k k x t k k ====++=→⎪+-=-+-=+-=+-=++-∑∑∑∑⎰⎰∑利用公式求下列极限2422423402200000011()21lim.sin 2816()111112(2)lim lim lim lim .1(1)(1)(())21cos 1sin cos (3)lim lim sin sin sin x x x xx x x x x x x x x o o o x x x x x e x x x x x e x e x x e x e x e x x x x x x x x x x x x -→→→→→→→⎛⎫---++ ⎪-⎝⎭==-+----⎛⎫-==== ⎪---+⎝⎭-⎛⎫-= ⎪⎝⎭32333001sin ()1()62sin cos 1lim lim .3x x o xx x x x x x x x x x →→⎛⎫ ⎪⎝⎭⎛⎫---+ ⎪-⎝⎭===习题4.4532222221221.:(1)35.1515(1),15(1)15(1)(1)0,1,0, 1.y x xx x xy x x x x x x x x=-'-=-'=-=-+==-==求下列函数的单调性区间与极值点4解y=15x2132311(2).0.2110, 1.y xx xxy xx x x=-≠-'=-+=== x (-∞,0) (0,1) 1 (1,+ ∞)x (-∞,-1) -1 (-1,0) 0 (0,1) 1 (1,+ ∞) y'+ 0 -0 -0 +y 极大值❍无极值❍极小值22225.,sin cos sin(),,||/2.()sin()(sin cos)(0)0,()cos()cos,()sin().()sin()()(0)(0),22|()||sin()(sin cos)|2x a x a a x axf x a x a x af f x a x af x a xf c a cf x f f x x xxf x a x a x a++=+-+'==+-''=-+''-+'=++==+-+≤当较小时可用近似代替其中为常数试证其误差不超过证23441/32342344.116.01/3,1,26810.11111 1,126242624243.000717810.x xx xx xx e x x x ee e ee x x x x e x x x xθθ--<≤=+++⨯⎛⎫⎛⎫=++++-+++=≤⨯⎪ ⎪⎝⎭⎝⎭=<⨯L设按公式计算的近似值试证公式误差不超过证y'+ -0+y ❍极小值222222222(3),(,).1121220, 1.(1)(1)xy xxx x xy xx x=∈-∞+∞++--'=⨯=⨯==±++x (-∞,-1) -1 (-1,1) 1 (1,+∞) y'-0 + 0 -y ❍极小值-1 极大值1 ❍22222221(4)ln,0.2(ln)(1/)ln2(ln)ln ln[2ln]0,1,.y x xxx x x x x x x xy x x ex x x=>---'====== x (0,1) 1 (1,e2) e2(e2,+ ∞) y'-0 + 0 -y ❍极小值 极大值❍32222.()29122[1,3],.()618126(32)6(1)(2)0,1,2.(1)21,(1)7,(2)6,(3)11.(1)21,(3)11f x x x x f x x x x x x x x f f f f f f =-++-'=-+=-+=--==-=-===-=-=求函数在区间上的最大值与最小值并指明最大值点与最小值点是最小值是最大值.解()()()()2222203.22()()2(),/2.3222()(2)430,3333,(/2)()0.().44312.22p x V x p x p x px p p x p x p V p p x px p px p x p V p V p V p p p p ππππ=---=--≤≤'=---=-+=====-=将周长为的等腰三角形绕其底边旋转一周,求使所得旋转体体积最大的等腰三角形的底边长度.设腰长为则是最大值等腰三角形的底边长度 解,23x322324.,()12,(),[0,3].()32,320,1 2.3,0.()3.()333(1)(1)0,1,()6,(1)6,(1),(l k f x x lx kx x l k f x f x x lx k l k l k k l f x x x f x x x x x f x x f f f =++=-'=++-+=-+-==-='=-=-=-+=''''=±=±=±求出常数与的值使函数在处有极值并求出在这样的与之下的所有极值点以及在上的最小值和最大值是极小值解 1).(0)0,(1)2,(3)18.(1)2,(3)18.f f f f f -==-==-=是极大值是最小值是最大值5.,,,.sin OB OA a O A Kϕπ设一电灯可以沿垂直线移动是一条水平线长度为.问灯距离点多高时点有最大的照度6.,,?a b 若两条宽分别为及的河垂直相交若一船从一河转入另一河问其最大的长度是多少3000/2csc sec ,0.2sec tan csc cotsec tan 0,,csc cot tan ,tan arctan lim (),lim (),02l a b al a b ba b l l l θθπθπνθθθθθθθθθθθθπθθθ→→=+<<'=-+=====⎛⎫=+∞=+∞ ⎪⎝⎭设船与一岸夹角为则船长为在,有最小值,是最小值点.解,()()()()222222220.7.()(),0.32()3233323()0,.333a a a x V a x a x x a V x a x a x x ax a ax ax a x a x a x πππππ==-+≤≤'=-++-=--+=-+-=--+==在半径为问其高及底半径应是多少?设球心到内接圆锥体底的距离为,则锥体体积=解3332(0),()0,().()333273a aV a V a V a V ππ===⨯为最大值.ab20222222224,0,4,0,(4)2.89.4(18,0)()1818(),0().44lim (),()[0118180,448z h a V h a V V a r a ay x y z d f y y z g z z z y g z g z z z z →+∞''<<>>===⎛⎫⎛⎫==-+=-+=≤<+∞= ⎪ ⎪⎝⎭⎝⎭=+∞+∞⎛⎫'-+=-= ⎪⎝⎭当时当时为最小值,此时在曲线上求出到点的距离最短的点. 在,)有最小值.g (z)=2解()()2222264,(0)324,(64)68(0),(64)8,16.44(18,0)(16,8),(16,8)10.,.,(),0.2()232g g g y g y z x y x H H x HV x R x x R RV x R x x Rx x x R ππππ===<==±===-=-≤≤'=--=-=为最小值.曲线上到点的距离最短的点.试求内接于已知圆锥且有最大体积的正圆柱的高度.设已知圆锥的高度为底半径为设内接正圆柱的底半径为则其体积为解()2222230,0,.322(0)()0..().33311.1.cos ,02.sin (,0),cos (1sin ),0.2x x R H H V V R V R h R R R x y x a bx a t t y b t b S ab t t t S ππ-==⎛⎫==-= ⎪⎝⎭+==⎧≤≤⎨=⎩-=+≤≤'为最大值此时内接正圆柱的高度=试求内接于椭圆且其底平行于轴的最大等腰三角形的面积设内接等腰三角形的顶点在而底边上的一个顶点在第一象限.内接三角形面积解22200[sin (1sin )cos ][1sin 2sin ](sin )1(21)(21)(1)0,sin .21133(0),()0,()11.242ab t t t ab t t t z ab z z ab z z z t S ab S S t ab ab π=-++=--==-+-=--+===⎛⎫===-+= ⎪⎝⎭为最大值222012.8m/min ,50m ,,6m/min.??.()(8)(506),0.lim (),()0.()12812(506)2006000, 3.(0)50,t A O B x x A B s f t t t t f t f t t f t t t t t f f →+∞==+-≥=+∞≥'=--=-===设动点自平面坐标的原点开始以速度沿y轴正向前进而点在轴的正向距离原点处同时沿轴向原点作匀速运动速度为问何时与距离最近最近的距离是多少在取最小值解222(3)24321600,40.340m.d d =+===开始后分钟达到最近距离习题4.5()()()()22222222222321.()()212,()12(2)4642320,0,x x x x x xx x f x xe f x e x e e x f x e x x xe e x x xe x x --------='''-=-=---=-+=-+==求函数 的凸凹性区间及拐点.解=x(-∞,-32)-32(-32,0) 0(0, -32) 32(32,+∞)f " - 0 + 0 - 0 + f⋂拐点⋃拐点⋂拐点⋃x(,0)-∞0 (0,1)1 (1,2)2 (2,)+∞y '- 0 + + 0 - y ''+ + - - y☎⋃极小值⋃拐点⋂极大值☎⋂2321,(,).32(2)0,0,2.220, 1.y x x x y x x x x x y x x =-∈-∞∞'=-=-==''=-==作下列函数的图形:2.222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2.x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==±x(,0)-∞(0,22)-22-(22,2)-2(2,22)+22+ (22,)++∞y '-+ +--y ''++--+y]⋃ 极小值 Z ⋃ 拐点 Z ⋂极大值 ]⋂ 拐点 ]⋃x(,1)-∞-1-(1,0)- (0,1)1(1,)+∞y ' + 0 - -0 + y ''- -+ + y⋂极大值☎⋂☎⋃极小值⋃222314.,0.1110,21;.y x x xx y x x xy x =+≠-'=-==''=±=x(,1)-∞- -1(1,1)- (1,5)5(5,)+∞y ' + 0 + - 0 + y ''-+++yZ ⋂拐点 Z ⋃ ]⋃ 极小值 Z ⋃32223422244323226(1)5., 1.(1)3(1)(1)2(1)(1)(1)(1)(1)(3322)(1)(1)(5)(1)(5),(1)(1)(1)0,1,5.[2(1)(5)(1)](1)3(1)(5)(1)(1)[2(x y x x x x x x y x x x x x x x x x x x x x y x x x x x x x x y x x +=≠-+--+-'=-+----+--+-===---'==-+-++--+--''=-+=22442422441)(5)(1)](1)3(1)(5)(1)(1){[2(5)(1)](1)3(1)(5)}(1)(1){(39)(1)3(45)}(1)(1){(3129)3(45)}24(1)0 1.(1)(1)x x x x x x x x x x x x x x x x x x x x x x x x x x x x -++--+--+-++--+-=-+-----=-+-+---+====---,224333/2ln6.,0.1ln0,.12(1ln)12(1ln)32ln),0,.xy xxxy x exx x x x xxyx x xy x e=>-'===-⨯--+--''==-=-''==x (,)e-∞ e 3/2(,)e e3/2e3/2(,)e+∞y'-0 + +y''+ + 0 -y ]⋃极小值Z⋃拐点Z⋂221221221121122121()(,)()(,).()0,(,).()(,)(,),,(,),,()()()(),()()()().0(()())(),y f x a b f x a b f x x a b y f x a b a b x a b xf x f x f x x x f x f x f x x xf x f x x xx x''''=≤∈=∈<''≤+-≤+-''≤--->117.设函数在内有二阶导数且在内向上凸证明在在内向上凸故对于任意x x两式相加得消去得证12210()(),()(),(),()0, (,).f x f x f x f x f x f xx a b'''''''≤-≤≤∈即是单调递减函数故习题4.632223/223/221.:111(1)31,;399(2)3,12(3)()(sin ),()(1cos ),,|6|(1)91,18, 6.(1)(10)112(2)1,1,1(1)(y x x x y x x t a t t y t a t a t y y x y x K y y x y y x x π⎛⎫=-+- ⎪⎝⎭⎛⎫=⎪-⎝⎭=-=-''-'''=-===='++'''=++=-=--求下列曲线在指定点的曲率在处在处;其中为常数在=/2处.解33/22223/222223/21164..91)125(1)16(3)(1cos ),sin ,sin ,cos ,()2.21(0,1)(1)(1)154,40,1,44||14,(1)4K x a x a t x a t y a t y a t K a a y x y y y y x y y y y y K R y αβ==-+''''''=-=====+=+'''++'''==-==+=+=''''''==='+求曲线在点处的曲率圆方程.00解.=x 222223/223/251,:().443.243?.44-4, 4.1,(1,1)(1)(1(44)).x y y x x y y x y K x y x ⎛⎫+-= ⎪⎝⎭=-+'''''====='++-曲率圆方程问曲线上哪一点处曲率最大并对其作几何解释当时最大对应点恰是抛物线的顶点解第四章总练习题000000001..()()[()()].()(),[0,].()()(),(0)0.Lagrange ,(0,1)()(0)(),f x h f x h f x h f x h h f x x f x x x h g g x f x x f x x g g h g g h h θθθθθθ''+--=++-+--∈'''=++-=∈'-=00设y=f(x)在[x -h,x +h](h>0)内可导证明存在,0<<1使得令g(x)=(x)在[0,h]内可导,根据公式存在使得证00000()()[()()].2.:0,()1/4()1/2lim ()1/4,lim ()1/2.4(())211()(124x x f x h f x h f x h f x h h x x x x x x x x x x θθθθθθθθ→→+∞''+--=++-≥=≤≤=====+=++=+即证明当时中的满足且00).11()(12),44111()(12)(1(1)2).44211lim ()lim (12).441lim ()lim (12)41lim 4x x x x xx x x x x x x x x x x θθθθ→→→+∞→+∞≥+=-=+≤+++-==+==+=由算术几何平均不等式得22111lim lim .4423,0123.()()[0,2]1, 1,01(2)(0)1().120, 1x xx x f x f x x xx x f f f x x x====⎧-≤≤⎪⎪=⎨⎪<<+∞⎪⎩-≤≤⎧-⎪'==⎨--<<+∞⎪⎩设求在闭区间上的微分中值定理的中间值.解2/23/21.221111,;,()[0,2]222x x x f x x -=--=-=-=-=1在闭区间上的微分中值定理的中间值为22324.[1,1]Cauchy ()()()30(1,1),Cauchy (1)(1)()()0,()200,(0)0,.(1)(1)()()5.()[,],(,f x x g x x g x x f f f c f c f c c c g g g g c g c f x a b a -=='=∈-''--''======''--在闭区间上中值定理对于函数与是否成立?并说明理由.由于有零点中值定理的条件不满足.其实其结论也不成立.因为若,但无意义设在上连续在解2121212),()0,(,)()()0,(,)()0.(,),()0,Rolle (,),(,)()()0.()[,](,),()0,()0,(,).(b f x x a b f a f b x a b f x c a b f c a c c c b f c f c f x c c c c f f x x a b f ξξ''≠∈==∈≠∈=∈∈''=='''''∈=≠∈''上有二阶导数且又证明当时若存在则由定理存在使得对于在应用定理,存在使得此与条件矛盾由假设1证一,c 证二,00)0,(,),,().()(,())(,0)(,())(,0),()0,(,).6.()[,],()()0,(,)()0.:(,)()0.x x a b Darboux f x f x a f a a b f b b f x x a b f x a b f a f b c a b f c a b x f x ''''≠∈==<∈==∈>''<根据定理恒正或恒负不妨设恒正,于是f下凸,曲线严格在连结的弦下方故设在上有二阶导数且又存在使证明在内至少存在一点使由公式存在证一,c 12121221021()()()(,),()0,()()()(,),()0.()[,]Lagrange (,),()()()0.,()0,(,),[,],(,(f c f a f c a c f c c a c af b f c f c c b f c b c c af x c c c c f c f c f x c c f x x a b f a b a f a -'∈==>----'∈==<--'∈''-''=<-''≥∈0满足存在满足对于在应用公式,存在x 使得若不然在下凸曲线在连结12c 证二))(,0)(,())(,0),()0,(,).a b f b b f x x a b ==≤∈的弦下方故1201120121100112121201120127.1-12101.(),1111-121()1-12n n n n nn n n n n n n n n n n n a a a a aa x a x a x a n n n a x a x a a a a x a x a af x x n n n n n n aa a a f x a x a x a x a n n n ---+-----++++=++++++⎛⎫=++++-+++++ ⎪+-+⎝⎭'=++++-++++++L L L L L L 证明方程在与之间有一个根考虑函数证1201120121(0)(1)0.,(0,1),()0,1-12101.n n n n n nn a f f Rolle c f c c a a a a aa x a x a x a n n n ---⎛⎫ ⎪⎝⎭'==∈=++++=++++++L L 由定理存在即是在与之间的一个根00000008.()(,),,().?Lagrange ,()()()(),|()||()()()||()||()||()||(f x a b f x f x f x f c x x f x f x f c x x f x f c x x f x ''∈∈'-=-''=+-≤+-≤0设函数在有限区间内可导但无界证明在(a,b)内也无界逆命题是否成立试举例说明.若不然设f (x)在(a,b)内有界M,取定x (a,b),则对于任意 x (a,b),根据 公式证,)|||().(0,1),01,(0,1)M b a +-<<=内有界内无界.(1)(1)00002009.()[,](),(),()[,].(:()()()()()0,()).()[,]2,()()()()0,()n n k f x a b n k k f x f x a b f x f x x x g x g x x f x k n f x a b x f x x x g x g x f x --=-≠'=-≠若函数在区间上有个根一个重根算作个根且存在证明在至少有一个根注意若可以表示成且则称为的重根我们对于作归纳法证明函数在区间上有2个根.如果是重根则且则证.2000121212012001002()()()(),().()[,],,,[,]Rolle ,(,),()0..()[,]11,()()()()0,()(n x x g x x x g x f x x f x a b x x x x x x x x x f x n f x a b n f n x f x x x g x g x f x +''=-+-<'∈=++=-≠'=有根如果在区间上有2个不同的根在应用定理存在使得设结论对于个根的情况成立现在假定在区间上有个根.如果有重根重根则且则10000011000111211121)()()()()()((1)()()()),(1)()()()(),()(1)()0,().1,,[,],,[,]Rolle ,(,),,(n n n n n n n n n n x x g x x x g x x x n g x x x g x n g x x x g x g x g x n g x f x x f n x x x x x x c x x c x x ++++'+-+-=-++-'++-==+≠+∈∈L L L 有n重根如果如果有个单重根在区间上应用定理存在,11112111121111])()()0,().,,,,,,11,1.[,],,[,]Rolle ,(,),,()()()0.()1(1)n kk k i i k k k kk i i f c f c f x n f x n n n k n n x x x x c x x c f c f c f x k n n =---='''===+>>=+∈∈''''===-+-=∑∑L L L L L L 1k-1k 使得至少有个根如果有不同的根x 重数分别为在上应用定理存在x ,x 使得至少有根个.对f (x)()(1)(())().n n f x f x +'=用归纳假设,至少有一个根22111111112111110.:Lerendre ()[(1)](1,1).2!1()(1)],(1)(1)0,[ 1.1]Rolle 2!(1,1),()0.(1)(1)0(1),1)(,1)Rolle 1),n n n n nn n d P x x n n dxf x x f f f n c f c f f n f c c c c =---=-=-''''∈-=-==>-∈-证明多项式在内有个根对于在应用定理,存在使得当时对于在(,应用定理,存在(,证=2122211211(-1)(-1)111111121()12,1)()()0.()(1,1),,(1)(1)0Rolle ,,,(1,1)()()0.()n n n n n n n n n n n n n n c c f c f c x c c f f c c c c x x fx P x P x --------''∈==--==∈-==L L L (n-1)1(使得如此下去,f 在有零点,,在(-1,),(,),,(,1)应用定理, 得到x 使得是n 次多项式,至多有n 个零点()n P x n ,故恰有个零点.00011.(,),lim ()lim ().:(,),()0.()lim ()lim ().(,),(,),()0.(),().,,(,),()(x x x x f f x f x c f c f x f x f x A x c f c f x A f x A a b x a b f a f x →-∞→+∞→-∞→+∞-∞+∞='∈-∞+∞=≡==∈-∞+∞∈-∞+∞'=≠><∈<设函数在内可导且证明必存在一点使得证若取任意一点都有设存在不妨设根据极限不等式存在a,b,满足:000000),()().[,],[,]()()(),()()(),(,),,Fermat ,()0.()()lim ()0lim0.lim ()0x x x f b f x f a b c a b f c f x f a f c f x f b x a b x f c f x f x f x xf x x →+∞→+∞→+∞<∈≥>≥>∈'='∞=='=0在连续必在一点取最大值. 故为极大值点根据引理12.设函数在无穷区间(x ,+)可导,且,证明证由于,根据极限定义,存在正数101111111111,|()|()()()()()())|()|()|()||()||()||()|.,.max{,},()(),2,lim 0.x x f x f x f x f x f c x x f x f x f x x x x x f x f x f x f x x X x x x f x f x x X x x εεεεεεε→+∞'>'-+-++==≤<+<>=><=11使得x>x 时<.(x-x 为使只需令当时必有故13.()[,),()0,()()0,,()0.()0,()()()()()()0,(),,,,f x a f x l f a f a a a l f x f a f a f a f a a f a f c f a l l l l f a f a a l a a '+∞>>⎛⎫<- ⎪⎝⎭=<⎛⎫⎛⎫⎛⎫'-=+->+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎡⎤-⎢⎥⎣⎦设函数在无穷区间内连续且当x>a 时其中l 为常数.证明:若则在区间内方程有唯一实根证在连续由连续怀念书函数的中间值定理在区间()()0.,()Rolle ,(),,()0.14.()(,)lim ()0.()(1)(),lim ()0.lim ()lim((1)())lim (x x x x x f a f x l f a f x a a f x l l f x f x g x f x f x g x g x f x f x f →∞→∞→∞→∞→∞⎛⎫-= ⎪⎝⎭⎛⎫''->> ⎪⎝⎭'-∞+∞==+-='=+-=内方程至少有一实根若有两个实根根据定理将在有一零点这与条件矛盾设函数在上可导,且现令证明证)(01)0.x θθ+<<=12121215.()[,]Lipschiz ,0,,[,],|()()|||.(1)()[,],()[,]Lipschiz (2)(1)?(3)[,]Lipschiz (1)()[,]0,f x a b L x x a b f x f x L x x f x a b f x a b a b f x a b L >∈-≤-''>称函数在满足条件若存在常数使对于任意都有若在连续则在满足条件中所述事实的逆命题是否成立举一个在上连续但不满足条件的函数.解在连续,存在常数12121212122121|()|.[,].,[,],,[,],|()()||()()||()|()().(2).()[,]Lipschiz ()[,]()||[1,1]Lipschiz f x L x a b x x a b x x c x x f x f x f c x x f c x x L x x f x a b f x a b f x x '≤∈∈<∈''-=-=-≤-'=-使得根据中值公式,对于任意存在使得否在满足条件,未必处处可导,更谈不到在连续.例如,在 满足条件111111(3)()[0,1],Lipschiz ()(0,1].16.()[,],()()[,],()()().()()(()())()()()()banni i i i i i i ni i i i f x f x F x a b F x f x a b f x dx F b F a F b F a F x F x F x x f x x ξξ--==-=='='==-'-=-=--→⎰∑∑∑,但在0不可导.连续但不满足条件,因其导函数无界设在可导且其导函数在上可积证明证1()(()0).{}[,].17.()(),(,),()()(),1,,bai n f x dx x a b P x a P x b c a b P x c P x n P x x x n λ∆→--∈-∈<<+⎰L 为的分割设多项式与的全部根都是单实根证明对于任意实数多项式的根也全都是单实根.证不妨设a=0,b>0,c (0,b),是次多项式,且首项系数为正.有单实根则这些根把实轴分为个区间每个区间保持固定正负号且正负相间.否则某个根将为极值点,导数为111232322212221222lim ().0(),,(,),,,(,),(,),().n x k k k k k k i n k P x b P x b x x x x x x x x x x x x x x P x b →∞----=''∞>=<<'''''''<∈∈∈+∞=L L 零,此与单实根矛盾.在两个无穷区间保持正号,且严格单调递增或递减,在每个有穷区间有一个最值点,且在其两侧分别递增和递减,设为偶数,则=+设且有n 个单实根.必有根据连续函数的中间值定1122233322222*********,(0,),(,),(,),(,),(,),(,),(,),().,k k k k k k k k i i c b c x c x x c x x c x x c x x c x P c c P n c ------'∈∈-∞∈'''∈∈∈+∞∈+∞=理对于存在使得为次多项式是P(x)=c 的所有单实根.18.()(,),,()0.()()0(,)(),()()0,[,](,)),.Rolle ()(()())0,()()0.19.3x f x a b f x f x f x a b f x g a g b g a b a b g x e f x f x f x f x A x -∞+∞='+==='''∈=+=+=设函数在内可导且是方程的两个实根证明方程在内至少有一个实根.设在 连续, 在可导根据定理, 存在 c (a,b),使得即决定常数的范围,使方程x 证 g(x)=e 43243232322212318624.()38624,()1224122412(22)12[(2)(2)]12(2)(1)12(2)(1)(1)0,.1,1, 2.()19,(1)13,(2)8.((x x x A P x x x x x P x x x x x x x x x x x x x x x x x x P x P P P --++'=--+=--+=--+=---=--=--+==-===-==-有四个不相等的实根根据这些数据画图,由图易知当在区间解4321),(2))(13,8)38624P x x x x A -=----++时有四个不相等的实根.2300220.()1(1).:()023,.0()0,21lim (),lim (),,,,()0,()0.(,),()0.()1nn x x x x x f x x f x n nn x f x f n k f x f x a b a b f a f b x a b f x f x x x →-∞→+∞=-+-++-=≤>=-=+∞=-∞<><∈='=-+-L 设证明方程当为奇数时有一个实根当为偶数时无实根当时故只有正根当为奇数时,存在根据连续函数的中间值定理,存在使得 证 ,2122222110(0),0,,1.1210, 1.101,()0,1,()0,(1)0,(1)0,().21.()()()()[,k k k k x x x x f x x n k x x x x x x f x x f x f x f n f x u x v x u x v x a ---++-=<>>---+'=-+-++===--''<<<>>>>''L L 当时严格单调递减故实根唯一当为偶数时,f (x)=是时的最小值故当为偶数时无实根设函数与以及它们的导函数与在区间],[,].()(),.()().()().b uv u v a b u x v x u x v x u x v x ''-上都连续且在上恒不等于零证明在的相邻根之间必有一根反之也对即有与的根互相交错地出现试句举处满足上述条件的与121212121212212,()[,].0,()0,()0.()[,],[,],()()0,Rolle ,[,],()()0,)()0,[,]x x u x a b x x u v uv v x v x v x ux x w a b w x w x c x x vu v uv w c c u v uv c u v uv v x x ''<-≠≠≠==∈''-'''''==-=-设是的在的两个根,由于如果在上没有根则=在连续由定理存在使得即(此与恒不等于零的假设矛盾.故v(x)在上有证cos(),sin ,--10,sin cos .u x v x u v uv x x ''===≠根.例如的根交错出现22222222222arctan 22.:0(),arctan (tanh ).tanh 2tanh arctan arctan sinh cosh (1)arctan 1cosh ()tanh tanh (1)tanh cosh 1sinh 2(1)arctan ()2(1)tanh cosh x x f x x x x x xx x x x x x x f x x x x x x x x xg x x x x π'>=<-'-+⎛⎫+'=== ⎪+⎝⎭-+==+证明当时函数单调递增且证22222222222222.(1)tanh cosh (0)0.()cosh 212arctan ,(0)0,2()2sinh 22arctan ,(0)0,12(1)222(1)()4cosh 224cosh 21(1)11444cosh 20(0cosh 11x x x g g x x x x g xg x x x g xx x x g x x x x x x x x x x x x x +=''=--=''''=--=++--'''=--⨯=--++++=-+>>++当时31),Taylor 0()()0,()0,.3!arctan arctan lim ()lim ,0.tanh 2tanh 2x x x g x g x x f x f x x f x x x x θππ→+∞→+∞>>'=>>==><由公式,对于有严格单调递增故对于有22222tan 23.:0.2sin ()sin tan ,()cos tan sin sec 2sin sin sec 2,()cos sec 2sin sec tan 2(cos sec 2)2sin sec 201(cos sec cos 2,(0,/2)).cos (0)(0)0x x x x xf x x x x f x x x x x x x x x x f x x x x x x x x x x x x x x xf f ππ<<<=-'=+-=+-''=++-=+-+->+=+≥∈'==证明当时有证2223222,Taylor ()tan ()0,sin tan 0,((0,/2)).2sin 24.:(1)1,0.(2)ln(1),0.2(3)sin ,0.611,0.21(2)ln(1),0.(1)ln(1)x x xf x x x f x x x x x x x xe x x x x x x x x x x x e e x x x x x x x x x x x x x θθπθ''=>-><∈>+≠-<+>-<<>=++>+≠+=-<>++=-根据公式,证明下列不等式证(1)2233321,0.23(1)2(3)()sin ,(0)0,()1cos 0,2()0,0,()(0)0,0.()sin ,6()cos 1,()sin 0,0.02,()(0)0,x x x x x f x x x f f x x x n f x x f f x f x x g x x x x g x x g x x x x g x g x g x θπ+>->+''=-==-≥==>>=>⎛⎫=-- ⎪⎝⎭⎛⎫'''=--=-+>>> ⎪⎝⎭>=仅当时故当时严格单调递增当时严格单调递增2111ln 120.25.(1)(1)(1),[0,1)...ln ln(1),11...26.()tan /4Taylor tan(50)()sec ,()nn n n n nniin n i i qx qn n n x q q q q x q q qx x q q q q x eex x f x x x f x x f x π+==-︒>=+++∈-=+<=<--=<=='''==∑∑L 设其中常数证明序列有极限单调递增有上界故有极限求函数在处的三阶多项式,并由此估计的值.证解22242sec tan ,()4sec tan 2sec .x x f x x x x '''=+()1,()2,()4,()16.4444f f f f ππππ''''''====。
《高等数学第五版》(黄立宏)(上)第4章习题详解附答案
习题4-11. 利用定义计算下列定积分: 定积分 定积分的概念定积分的定义(1) d ();b ax x a b <⎰ 10(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=-L 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==L 则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-L 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==L 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰L2. 利用定积分概念求下列极限:定积分 定积分的概念定积分的定义111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭L ;21(2)lim n n →+∞+L解:(1)原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰L (2)原式13200122lim ..33n x x n →+∞====⎰L 3. 用定积分的几何意义求下列积分值:定积分 定积分的概念定积分的定义10(1)2 d x x ⎰;(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式: 定积分 定积分的性质定积分的性质2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 21(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤ 由积分的保序性知:2111d e d ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰5. 证明:(1) 12lim 0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰定积分定积分的性质 定积分的性质 定积分定积分的性质 积分中值定理证明:(1) 当102x ≤≤时,0,n n x ≤≤于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰Q习题4-21. 计算下列定积分: 定积分 定积分的计算微积分学基本定理3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰(4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数: 定积分 定积分积分法复合函数求导法20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .定积分 定积分积分法 复合函数求导法解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数()y y x =的导数.定积分 定积分积分法 复合函数求导法解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限: 定积分 定积分积分法微积分学基本定理2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t xx t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22lim lim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.定积分 定积分积分法 复合函数求导法解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:不定积分 求不定积分的方法基本积分公式2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx x -⎛⎫- ⎪⎝⎭⎰解:原式=e d d e 2.xx x x x c x-=-+⎰⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 不定积分 求不定积分的方法 基本积分公式 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 3. 在下列各式等号右端的空白处填入适当的系数,使等式成立.不定积分 求不定积分的方法 基本积分公式(1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx xd -=; (4)()33(1)x x a a dx d =-;(5)()sin3cos3xdx d x=;(6)()2cos5tan5dxxd x =;(7)()221ln1x x ddx x=--;(8)()l2552ndd xxx=--;()(1arcs in)d x-=;(10)()2arcta9n13ddxxx=+;(11)()()2(3)(3)4dx dx x=---;(12)()22(1)x xx de d e--+=. 4.利用换元法求下列积分:不定积分求不定积分的方法基本积分公式2(1)cos()dx x x⎰;解:原式=22211cos d sin.22x x x c=+⎰(2)x;解:原式=12333(sin cos)d(sin cos)(sin cos).2x x x x x x c---=-+⎰2d(3)21xx-⎰;解:原式=1d112x c=+-+⎰.c=+3(4)cos d x x⎰;解:原式=231(1sin)dsin sin sin.3x x x x c-=-+⎰(5)cos cos d2xx x⎰;解:原式=1133d sin sin.cos cos232222xxx x cx⎛⎫=+++⎪⎝⎭⎰(6)sin2cos3dx x x⎰;解:原式=111(sin5sin)d cos cos5.2210x x x x x c-=-+⎰2arccos(7)xx;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) d ;x x⎰解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x ===故上式33arccosc x+.(29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t 所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:不定积分 求不定积分的方法分部积分法2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+6. 求下列不定积分:不定积分 求不定积分的方法分部积分法221(1)d (1)(1)x x x x ++-⎰;解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分: (1)2sin3d x e x x -⎰;解:由积分表(十三)中公式(128)得()()()222221sin 32sin 33cos32312sin 33cos313x xxe xdx e x x C e x x C ---=--+-+=-++⎰(2)x ; 解:令u =,则dx =,由积分表(六)中公式(39)得(9ln 2ln 4u C C⎤==+⎥⎦=++(3)arcsin d 2xx x ⎰;()()2221142arcsin sin 22421arcsin 22x x x x dx acr C x x C⎛⎫=- ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰由积分表十二中公式得(4);()()12,,45211ln 221ln 22x u dx du u C x C ==⎡⎤==+⎢⎥⎣⎦=++令则由积分表七中公式得(5)()21d 1x x x -⎰;()()()2261111ln 11111ln xdx C x x x x xCx x--=-++--=--+⎰g 由积分表一中公式得(6)x ; ()()51111arccos arccos 1C Cx x =+=+由积分表七中公式得(7)x x ⎰;()()((256121ln .88x xx x C =-++⎰由积分表七中公式得(8)x ;()()().5961=arcsin .x C ==-+⎰⎰Q 由积分表八中公式和得(9)x ;()()12,3721313ln 32u x dx du C C x=====+令则,由积分表六中公式得(10)4sin d x x ⎰.()()432339513sin sin cos sin 441311sin cos sin cos 4422133sin cos sin cos 488xdx x x xdx x x x x dx x x x x x C=-+⎡⎤=-+-+⎢⎥⎣⎦=--++⎰⎰⎰由积分表十一中公式得习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数) 定积分 定积分的计算 微积分学基本定理(1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分: 定积分 定积分的计算 ??此处更细还需看(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)()()()()111111311122115451415441554541616125542541631616xx xx x----------=-=-+=---=---=⎰⎰⎰⎰⎰⎰g g(2)原式=221e211).(1ln)d(1ln)x x-=++=⎰(3)原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭(4)原式=πππ2π0002d cos d cos dcosx x x x x xx==⎰⎰ππ2π02x x==(5)原式=22243411111151ln d d4ln2.ln44164x x x xx x=-=-⎰⎰(6)ππππ22222222000e cos d e dsin e sin2e sin dx x x xx x x x x x==⋅-⎰⎰⎰πππ2π2π222200e2e d cos e2e cos4e cos dx x xx x x x=+=+-⎰⎰所以,原式=π1(e2)5-.(7)原式=3322111111d ln ln2ln5.333122xxx x x-⎛⎫==--⎪-++⎝⎭⎰(8)原式11611d6d(1)t1t tt t t⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰3. 证明:2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);定积分 定积分的计算 换元法证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算0a⎰(a 为正常数)定积分 定积分的计算换元法证明:ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.定积分定积分积分法分部积分法解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值: 定积分 反常积分 反常积分的计算:定积分的计算22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=100e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰L(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰2. 讨论下列广义积分的敛散性:定积分 定积分的计算 反常积分的计算:定积分的计算2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知0sin πd 2x x x +∞=⎰,求:定积分 定积分的计算反常积分的计算:定积分的计算sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰ (2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 定积分 反常积分 反常积分敛散性定理 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . 定积分 定积分积分法 牛顿莱布尼兹公式 (2)设2x e -是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ .定积分 定积分的计算 换元法(3)设[]x 表示不超过x 的最大整数,则定积分[]()2012d x x x -⎰的值是多少 1006 .定积分 定积分的计算 牛顿莱布尼兹公式(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14.定积分定积分的计算复合函数求导法(5)反常积分220d (1)x x x +?+ò的值为 12.定积分 反常积分的计算定积分的计算2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).定积分定积分的性质定积分性质A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''< C.d ()dg()f x x < D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ).定积分 定积分的计算A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( A ). (05年全国考研题第(8)题)定积分 定积分基本公式 原函数定义A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数 (4)设ln xx为()f x 的一个原函数,则()d xf x x '=⎰( D ).定积分定积分基本公式 原函数定义A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x 的( C ).定积分 定积分的计算 牛顿莱布尼兹公式A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限:定积分 定积分的概念 定积分的定义(1)lim n →∞; 解:(1)()()11112001=lim 12131333nn n i n x d x →∞=-===++==⎰⎰g原式(2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦L . 解:(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰L ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程. 不定积分 不定积分的计算 基本积分公式解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式;定积分定积分的计算 牛顿莱布尼兹公式(2)求函数()f x 的单调区间与极值.微分中值定理 函数的单调性与凹凸性 函数凹凸性判别法解:(1)00()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)解:()()()()()()()()()()()22222224222020022020304221214limlimlim 02010lim lim 000110limlim2124limlim 33xt x x x x xt x x xt xt x x x x x e dte xx xxf x x e dtA f x f x x xA A e dt e dt x f xx exx →→→→→→→→→--====---=-==--'==-==⎰⎰⎰⎰Q g 若在处可导,则存在,若,则上述的极限不存在为无穷大,故于是283x =定积分 定积分的计算牛顿莱布尼兹公式7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.定积分定积分的计算 牛顿莱布尼兹公式解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)xf x x xe ππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1exx+⎰; 不定积分 求不定积分的方法基本积分公式解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;不定积分求不定积分的方法分部积分法解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;不定积分求不定积分的方法分部积分法解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;不定积分 求不定积分的方法 基本积分公式解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=+==所以,结论正确.(5)sin(ln)dx x⎰;不定积分求不定积分的方法基本积分公式解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1ln d d ln(.x x x cx=-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;不定积分 求不定积分的方法分部积分法解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;不定积分求不定积分的方法分部积分法解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).不定积分求不定积分的方法分部积分法解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.不定积分求不定积分的方法 基本积分公式解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1解:210210211220,1,2,3110422=2111212ln 1112ln 2t x t dx tdt x t x t t tdt dtt t dt t t t ==-=-====-∴=--⎛⎫=+=⎡+-⎤ ⎪⎣⎦-⎝⎭=-⎰⎰⎰则当时,,当时,原式 (2)1定积分 定积分的计算基本积分公式解:原式=211112⎛⎫+ ⎪-== (3) ln3ln 2d e ex xx--⎰;定积分 定积分的计算基本积分公式解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(4)x ⎰;定积分 定积分的计算分部积分法解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;定积分定积分的计算分部积分法解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.解:{}2123301122401max ,1151724244x x dx xdx x dxxx =+=+=+=⎰⎰⎰11. 计算下列积分(n 为正整数): (1)1;n x ⎰定积分 定积分的计算换元法解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰L L为偶数, 为奇数.(2)π240tan d .n x x ⎰定积分 定积分的计算分部积分法解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-L。
高等数学课后习题答案--第四章
a11 0 0 a12 a22 a11 − a21 a12 a11 a32 a11 − a31 a12 a11 a23 a11 − a21 a13 , a11 a33 a11 − a31 a13 a11 a13
2 2 2 1 2. 设 A = 1 − 1 ,B = − 1 3 ,计算 2A-3B,5A+2B。 1 − 3 5 − 2 −2 1 12 14 2. 【答案】(1) 5 1 . − 11 ; (2) 3 − 13 0 15 − 19 2 1 2 1 −4 2 3. 设 A = −1 4 − 2 ,B = − 1 3 ,C = 1 5 − 2 1 A(2B-3C)。 4 −1 15 − 14 3 【答案】AB = − 15 14 ; BA = − 4 16 7 − 28 2 − 1 , 计算 AB,BA,AC,CA, − 3
~ ~ = 0 ,则 a a a + a a a + a a a − a a a − a a a − a a a = 0 , 于是, 若a 33 11 22 33 13 21 32 12 23 31 11 23 32 12 21 33 13 22 31
记 L1 , L2 , L3 分别表示第1,2,3个方程的左端, 有
《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)
第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。
A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。
[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。
[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。
高等数学课后习题答案--第四章不定积分
第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。
高等数学-习题答案-方明亮-第四章
习 题 4-11.求下列不定积分: (1)解:Cx x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x xxd )32(2C xxx++⋅+=3ln 296ln 622ln 24(3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(cscd 11d )cot11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxx x +===⎰⎰80ln 80d 80d 810(6) 解:x x d 2sin 2⎰=Cx x x x ++=-=⎰sin 2121d )cos 1(21(7)⎰+x xx xd sin cos 2cos C x x x x x x xx xx +--=-=+-=⎰⎰cos sin d )sin (cosd sin cos sincos 22(8) 解:⎰x xx x d sincos2cos 22⎰⎰-=-=x xxx xx xx d )cos1sin1(d sincos sincos222222Cx x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d xxy =,从而⎰+==Cx x x y 4341d由0)0(=y ,得0=C ,因此所求曲线方程为 441xy =.3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x2cos21-、 x2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xxd = d (x1-+ C) (2)x xd 1= d (x ln + C)(3)x e x d = d (x e + C) (4) x x d sec 2 = d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x xd 112- = d (x arcsin + C) (8)x xx d 12- = d (21x-+ C)(9)x x x d sec tan = d (x sec + C) (10)xx d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2xarctan+ C) (12) x x d = d (22x+ C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x xxd ln4⎰C xx x +==⎰5ln)d(ln ln54(3) 解:⎰x xe x d 21Ce xe x x+-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32Ce eee e e xxxx x x +++=++=⎰22131)d()22(4332(5) 解:⎰-294d xx Cx x x x x +=-=-=⎰⎰23arcsin31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln(12(7) 解:x xx x d ln ln ln 1⎰Cx x xx xx +===⎰⎰ln ln ln )ln d(ln lnln 1)d(ln ln ln ln1(8) 解:⎰-+x ee xxd 1Ce e exxx+=+=⎰arctan )d(112(9) 解:⎰x x d cos 4x xx x xd 42cos 2cos 21d )22cos 1(22⎰⎰++=+=x xx d )42cos 22cos 41(2++=⎰ ++=42sin xx xxd 24cos 1⎰+++=42sin 3xx Cx +44sin(10) 解:x xx x x d cos sin cos sin 3⎰-+Cx x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sinsin 3(12) 解:x xxd 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos(13) 解:x xx d 1arcsin 2⎰-C xx x +==⎰2arcsin)d(arcsin arcsin 2(14) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d1arctan 22x x xx xx⎰⎰+=+=Cx x x +==⎰2)(arctan )d(arctan arctan2(16) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252Cx x +-=68cos61cos81(17) 解:⎰xx x d sec tan 53⎰⎰-=xx x x x x sec d sec)1(secsec d sec tan4242Cx x x +-=57sec 51sec 71(18) 解:Cx x x xx x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(19) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323Cx x x ++=56tan41tan 61(20) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t tx x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=Cx x +-66arctan66(21) 解:令t x sec =,]2,0[π∈t ,t t t x d tan sec d =,则C t t t t t tt x x x +===-⎰⎰⎰d d tan sec tan sec 1d 112=Cx+1arccos(22) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x xx⎰⎰⎰-=--±=-)1)1d((1)1(1222--=⎰xx1)1(22-=xC xx +-=212习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2Cx x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d (3)解:⎰x x x d ln 2⎰⎰⎰-=-==x xx xx xx xxx d 3ln 3)d(ln 3ln 3)3d(ln 23333C xx x+-=9ln 333(4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222xx x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=Cx x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=xxe x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=xx ex ex exxxd 2sin 42cos 22sin于是⎰-x x exd 2sin C xex exx+--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x xx xxx arctan d 3arctan 33darctan 333⎰+-=x xxx xd 131arctan 3233⎰+-+-=x xx x x x xd 131arctan 3233C x x x x+++-=)1ln(31arctan 3223(8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x xxd )2cos (21d 22cos 1⎰+=x x x xd 2cos 2142⎰+=x x x2sin d 4142⎰-+=x x x x xd 2sin412sin 4142C x x x x+-+=2cos 812sin 4142(9)解:⎰x x xd arcsin1⎰⎰-==xx x x x x arcsin d 2arcsin2d arcsin2⎰--=x xx x d 11arcsin 2Cx x x +-+=12arcsin 2(10)解:⎰x e x xd 32xxxxxex e x x xee x ex 33233232d 923d 323d 31⎰⎰⎰-=-==C exe e x xxx++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos Cxx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分 (1)解:⎰-x x xd 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123C x x xx+-+++=1ln 2323(2)解:⎰--+x xx x x d 8345⎰⎰---+++=x xx x x x x xd 8d )1(322⎰⎰+---+++=x x x xx x x d )13148(d )1(2C x x x x xx++---+++=1ln 31ln 4ln 82323(3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=xxx x x x d )1(43d 12222⎰⎰+--++--+xxxx x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--=Cx x x x x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28) (4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x xd ])1(1124[2C x x x +-+-+=111ln 2ln 4Cx x x +-+-=11)1(ln 22(5)解:⎰-+-x x x x xd 123x xx xd )1)(1(2⎰+-=xxx x xd 11211d 212⎰⎰+---=Cx x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+xx 2sin3d ⎰-=xx2cos 7d 2xu tan =⎰+243d uu⎰+=2)32(1d 31u uC x+=3tan 2arctan321(7)解:⎰++311d xx 31xt +=⎰+tt t 1d 32t tt d )111(3⎰++-=Ct t t +++-=1ln 232(8)解:x xx x d 11⎰-+xx t -+=11⎰+-t t ttd )1)(1(4222tt t t d )121111(2⎰+++--=Ct t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分:(1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x ax x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d xx x C xx x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n nd ln)(ln d ln1现在3=n ,重复利用此公式三次,得⎰x x d ln3Cx x x x x x x +-+-=6ln 6ln3ln23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+baxxb b axb x x axb 2222d 21)(2d )(1于是现在1=a ,1=b ,于是=+⎰x xd )1(122Cx x xxxx x +++=+++⎰arctan )1(21d 21)1(2222(4)⎰-1d 2x x x解:在积分表中查得公式(51)C xa ax ax x +=-⎰arccos1d 12于是现在1=a ,于是⎰-1d 2x x x C x+=1arccos(5)x x x x d 222-⎰ 解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰tt t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C ax x aax a x x x a x x+-+---=-⎰2222222222ln 8)2(8dCa x x a x x +-=-⎰32222)(31dC ax x aax x x a x +-+--=-⎰2222222ln 22d于是x x x xd 222-⎰2222)1())1(2[81ax a x x -----=Ca x ax x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+bax xx b a bx b ax b ax xxd 2d 2Cbb ax bbax xx +-+-=+⎰arctan 2d于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x xx xx Cx xx +-+-=12arctan 212(7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=xx nn x x nx x n n nd cos1sin cos1d cos21现在6=n ,重复利用此公式三次,得⎰x x d cos6Cx x x x •x x ++++=)22sin 41(2415sin cos 245sin cos6135.(8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)Cbx b bx a eba x bx e axax+-+=⎰)cos sin (1d sin 22现在2-=a ,3=b ,于是Cx x e x x eaxx+--=⎰-)3cos 33sin 2(131d 3sin 2 Cx x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空. (1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x xx d sin 22.(2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为12+=x y .(3)如果 ⎰+=C x x x x f ln d )(,则)(x f = 1ln +x .(4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(. (5)如果 ⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2. 二、求下列不定积分.(1)解:x xxd 2cos 1cos12⎰++x x x d 1cos21cos122⎰-++=x xxd coscos 12122⎰+=xx d )sec1(2⎰+=Cx x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=xxxxeeexe1)1d(1d Ce x++-=)1ln((3)解:x xxx d 42532⎰⋅-⋅x x x x d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin22⎰-⋅-=221d arcsin 2arcsin xx x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin222⎰-+--=C x x x x x ++--=2arcsin 12arcsin22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t tttttt ++-=+--=-=-=⎰⎰⎰11lnd )1111(1d 2)1(d 222(6)解:x x xd )1(223⎰+x xxx xxx x xxx d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+=Cx x ++++=)1(21)1ln(2122(7)解:⎰-221)(arcsin d xx xCxx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x xx x --+-=⎰⎰Cxx +-+=2494132arcsin21(9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec2(sec357C xxx ++-=4sec3sec8sec 468(10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d xx ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2t t t ttt t tt tttC xx x C tttt x C t t +---=+-=+-=211arcsin 2sin2cos22sin 2sin2arcsin 2tan(11)解:⎰x e x x d 23Ceex xee x ex xxxx x+-=-==⎰⎰222222121d 2121d 212222(12)解:xxx d ln ln ⎰Cx x x +=⎰ln ln ln d lnln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F)21(lim )(lim 2210C x x C x x x ++=++--→-→ ,即,21C C =)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x . 四、若,d tan I ⎰=x x n n ,,3,2 =n 证明:21tan11----=n n n x n I I .证明:因为.⎰=x x nn d tan I ⎰⎰-==--x x x x x x n n d )1(sectand tantan2222⎰⎰---=x x x x x n n d tand sectan222⎰⎰---=xx x x n n d tantan d tan2221tan11----=n n x n I故 21tan11----=n n n x n I I .本章复习题B一、填空. (1) xex121--; (2) c x x +-331; (3)21232534154c x c x x+++(4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee xxd arctan 2xx ee 2d arctan 21-⎰-=]d 1)(11arctan [21222x ee e e e xxxx x ⎰+---=]d )11(arctan [2122x eeee exx xxx⎰+----=Ce ee exxx x+++---)arctan arctan (212。
复旦大学出版社,高等数学,第四版,教材习题答案详细解析
高等数学上(复旦大学出版社,第四版)教材习题答案第四章,一元函数积分学。
第三节 不定积分与原函数求法,习题4-3,答案5.0 用分部积分,求下列不定积分。
东风冷雪1.0=-=--=--=-+-=-+++⎰⎰⎰⎰⎰222222x sinxdxx dcosx (x cosx 2xcosxdx)(x cosx 2xdsinx)x cosx 2xsinx 2sinxdx x cosx 2xsinx 2cosx c2.0------=-=--=--+⎰⎰⎰x x x x x x xe dx xde (xe e dx)xe e c3.0==-=-+⎰⎰⎰22222111ln xdx (x ln x x *dx)22x11x ln x x c 24x ln xdx4.0==-++-=-+=--+=-+++⎰⎰⎰⎰23332232322322x arctanxdx111x arctanxdx x arctanx 3331x 11x(1x )x x arctanx dx 331x 1111x arctanx (x ln |1x |)3322111x arctanx x ln |1x |c 3665.0=+=-=-+⎰2arccosxdxx *arccosx x *arccosx x *arccosx c6.0=-=-=--=+-=+-+⎰⎰⎰⎰⎰222222x tan xdx1x(sec x 1)dx xdtanx x 21dcos x 1x tanx tanxdx x x tanx x 2cos x 21x tanx ln |cos x |x c 2 7.0------------==-=--=-=-+⎰⎰⎰⎰⎰⎰x x x x x x x x x x x x e cos xdxe dsinx e sinx e dcos xe sinx e cos x cos xe dx2e cos xdx e sinx e cos x1e cos xdx e (sinx cos x)c 28.0==-=--=-++⎰⎰⎰⎰xsinxcosxdx11xsin2xdx xdcos2x 24111(xcos2x cos2xdx)xcos2x sin2x c 4489.0=-=--=-+=--+=---=---+=-++++⎰⎰⎰⎰⎰⎰⎰323233223232232232(lnx)dxx 1ln x 3ln x ln x 1ln xd ()(3ln xd )x x x x xln x 3ln x 6lnx ln x 3ln x 1dx 6lnxd x x x x x xln x 3ln x 6lnx 6dx x x x x 1(ln x 3ln x 6lnx 6)c x10.0===-=--=++-=+++=+=++⎰⎰⎰⎰⎰222222222atant,a sec tdtant a sec t tant a tan tsec tdta (sec t tant (sec t 1)sec tdta (sec t tant ln |sec t tant |sec tdtant)1a (sec t tant ln |sec t tant |)21x x a (*ln ||2a a a 1ln |x 2+|c6.0 求下列不定积分;1.0++-+=+++-+-+-+-+++=+==-=+=-++-+-+=-+++⎰⎰⎰222222222222x 1dx(x 1)(x 1)x 1a b c x 1x 1(x 1)(x 1)(x 1)a(x 1)b(x 1)c(x 2x 1)x 111a ,b 1,c 2211x 1122dx ()dx x 1x 1(x 1)(x 1)(x 1)11ln |x 1|c 2x 12.0++=+++-+-+-++++===-=-==-++-+-+--=+--+=+--++-+=+⎰⎰⎰⎰⎰3222222223dx x 13a bx c x 1(x 1)(x x 1)x x 1a(x x 1)(bx c)(x 1)3a 1,b 1,c 23dx 1x 2dx ()dx x 1(x 1)(x x 1)x x 112x 13ln |x 1|2x x 1131ln |x 1|ln |x x 1|1322(x )24ln |+2c3.0 (这道题,有些坑人,没有意思)+--+-+-++-=----=++++---=+++-+-+-=++-+-+-=-+++-==-=-⎰⎰⎰⎰5423332332233323222x x 8x (x x)x(x x)x x x x 8dx dx x x x x 123x x 33(x x 1)dx x x x x 23x 1113x x x ln |x x |dx 323x(x 1)(x 1)23x a b c 3x(x 1)(x 1)x x 1x 123x a(x 1)b(x x)c(x x)323101a ,b ,c 33-=---+-+=---++++-+---+=---++--=+++--⎰⎰⎰543323323x 12310133dx ()x(x 1)(x 1)3x x 1x 1231013ln |x |ln |x 1|ln |x 1|3331(ln |x |ln |x 1|ln |x 1|23ln |x |10ln |x 1|13ln |x 1|31ln(24ln |x |9ln |x 1|12ln |x 1|)3x x 8dxx x 11x x x 8ln |x |3ln |x 1|32-++4ln |x 1|c 4.0+==++⎰⎰263332x dxx 11dx 1arctanx c 33(x )15.0+-==-=--=-++⎰⎰⎰⎰222sinx dx1sinx sinx(1sinx)dx (tanxsecx tan x)dx cos xsecx (sec x 1)dx secx tanx x c6.0++==+--+==+-++++++-==-=-=-+⎰⎰⎰⎰⎰222222222cot x dxsinx cos x 1x 2t tan ,dx dt 21t 1t 21t 1t 22t *dt **dt 2t 22t 2t 1t 1t 1t 11t 1t 11t 1111()dt (1)dt lnt t 2t 2t 221x 1x ln |tan |tan c 22227.0=====+=++⎰⎰⎰2sect 2sec t tant dt 2sectdt sect tant 2ln |sect tant |2ln ||c8.0==-===-=-+=-+++=-+++⎰⎰⎰(1t,2tdt12(1)2t2ln|1t|2ln|1t11tx4ln|1|c记住口诀,反,对,幂,指,三。
高等数学第四章多元函数的微分知识点及习题
− − −
=
=
特别:曲线方程写成: = , 时,令 , , = , − 则在 , ,
的法向量为 = , , −
例题、求曲面 2 + 2 2 + 3 2 = 36在点
线方程。
。
三、全微分
全微分: = (, ) ,
= (, , ) ,
ⅆ =
ⅆ
ⅆ =
+
ⅆ
ⅆ
+
ⅆ
例题、计算 = ⅇ 在点 2,1 处的全微分。
+
ⅆ
例题、计算 = +
解:
=1
sin
2
+ ⅇ 的全微分。
求证
+
1
ln
= 2
例题、设 = arcsin
例题、设 = 1 +
,求 , 。
2
2
+
,求 , 。
例题、设 =
ln tan ,求 , 。
例题、设 =
2
ⅇ
sin
1, −2,1 处的切线方程和法平面方程。
十一、曲面的切平面和法平面方程
曲面: , , = 在 , , 处的法向量
= , , , , , , , ,
切线方程:
− + − + − =
高等数学工专教材答案
高等数学工专教材答案1. 课后题答案1.1 第一章1.1.1 选择题答案1.1.2 填空题答案1.1.3 解答题答案1.2 第二章1.2.1 选择题答案1.2.2 填空题答案1.2.3 解答题答案1.3 第三章1.3.1 选择题答案1.3.2 填空题答案1.3.3 解答题答案1.4 第四章1.4.1 选择题答案1.4.2 填空题答案1.4.3 解答题答案1.5 第五章1.5.1 选择题答案1.5.2 填空题答案1.5.3 解答题答案1.6 第六章1.6.1 选择题答案1.6.2 填空题答案1.6.3 解答题答案2. 习题答案2.1 第一章习题答案2.2 第二章习题答案2.3 第三章习题答案2.4 第四章习题答案2.5 第五章习题答案2.6 第六章习题答案3. 工程应用题答案3.1 第一章工程应用题答案3.2 第二章工程应用题答案3.3 第三章工程应用题答案3.4 第四章工程应用题答案3.5 第五章工程应用题答案3.6 第六章工程应用题答案4. 常见错误与解析4.1 第一章常见错误与解析4.2 第二章常见错误与解析4.3 第三章常见错误与解析4.4 第四章常见错误与解析4.5 第五章常见错误与解析4.6 第六章常见错误与解析5. 附录5.1 数学工具表5.2 参考书目以上为《高等数学工专教材》的答案内容。
本答案提供了课后题、习题以及工程应用题的详细解答,同时包含每章的常见错误与解析。
附录部分提供了数学工具表和参考书目。
希望这份教材答案能够帮助您更好地理解和应用高等数学知识。
如有任何问题,请随时与我们联系。
高等数学 线性代数 习题答案第四章
习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。
(完整word版)高等数学课后习题及参考答案第四章
高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231.(3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx x x 21; 解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x mn mC x mn dx x dx x mn m m n m nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx x x 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224. (15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx x e e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532;解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ; 解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为y =ln|x |+1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e xch x 都是x x e x sh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x +e x ch x =e x (sh x +ch x )x x x x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x +e x sh x =e x (ch x +sh x )x x x x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x x e d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332x dx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d x dx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2.(11)⎰-+dx ee x x 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ;解 )sin cos (cos sin 1cos sin cos sin 33x x d xx dx x x x x +--=-+⎰⎰C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx x x 239;解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a x a x a C t a t a +--=+-=222222arcsin 22sin 421.(35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+x dx 21; 解C x x C t t dt t tdt t tx xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan .(40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d x x x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x xx x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233⎰⎰+-+-=dx x dx x x 3127)93(2C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458;解 ⎰⎰⎰--++++=--+dx x x x x dx x x dx x x x x 3223458)1(8⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222. 8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u x u dxx 221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u x u dxx 221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17. ⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解 ⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dxx x )122(221111111令C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4x x dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxx x x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx.解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u u dx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662. 4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln . 6. ⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9. ⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax axax ax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e b a ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e e dxx x)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x xdx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12. 16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a ++=tan 1tan 31434C xa x a x a x a+-+-⋅=224322341)(31.17.⎰+241x xdx;解tdt t t tx x xdx2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx .24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444. 25.⎰-416x dx; 解⎰⎰⎰++-=+-=-dx xx dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx x xx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x ex23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x e x x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dxx x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x xC t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C e e x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xde d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x x xx de e e e x )111(1C e e e x x x x ++-++-=)1ln(ln 1C e e xe x x x ++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ; 解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t tx dx x 2232/321sin cos secsec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx xx xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令 ⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。
高等数学课后习题及参考答案(第四章)
高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。
高等数学第三版 第四章 矩阵和线性方程组 答案
1 mol H2 0oC, 1 atm 22.4 dm3
状态 1
1 mol H2 0oC, 0.5 atm 44.8 dm3
状态 2
状态函数 --- 描述体系宏观状态的物理量(也
称体系的性质),例如 p,V,T等。
特点:只与始态和终态有关,与途径无关。
H2O (s, 25°C, 1atm ) Hsub H2O (g, 25°C, 1atm )
Hfus
Hvap
H2O (l, 25°C, 1atm )
Hsub= Hfus +Hvap
状态定,函数定; 函数变,状态变。
分为两种性质:
广延性质 --- 与体系中物质的量成正比,相同条件下 有加和性。如 V、Cp、U、H、S、G 等。
强度性质 --- 体系中各处的性质是均匀的,与物质的量 无关。 如 P、T、C浓度 等。
例:甲醇挥发
与体系可进行能量、物质的交换Biblioteka NOTE: 其划分随需要而变
三种体系
体系与环境之间 既有能量交换又 有物质交换。
体系与环境之间 有能量交换、没 有物质交换。
体系与环境之间 既没有能量交换 也没有物质交换。
b. 状态与状态函数 (State and State function)
状态 ---- 体系所有物理性质和化学性质的综合表现,
1 cal = 4.18 J 证明能量转换关系
U = q – w 能量守恒定律
能量多种形式,不生不灭,互相转化。
U = q – w
q :体系从环境吸热(+) w: 体系对环境作功( +) 体系向环境放热(-) 环境对体系作功(-)
注意: 体系一定为封闭体系; 体系与环境之间的能量转化只有功和热两种,也 就是说如果一个体系内能U发生变化,那么其变化 过程必然是通过q 和 w与环境进行交换完成的; 这里的w包括所有形式的功。
高等数学第四章习题
数学题库(第四章:积分部分)一、填空1、 若)(x f 在],[b a 上连续),(b a c ∈,则⎰⎰=+cabcdx x f dx x f )()(答案:⎰badx x f )(2、=⎰24sin4πxdx dxd答案:03、 =⎰20dx答案:C4、 若函数)(x f 在区间],[b a 上连续,)(x F 是)(x f 的 则)()()(a F b F dx x f ba -=⎰答案:一个原函数5、 =⎰2dx答案:26、 ⎰=dx x f e x f )(')( 答案:c e x f +)(7、 ⎰=dx e a x )( 答案:c a eax+8、 ⎰=dx x d 1答案:dx x19、⎰-=+66)1(sinππdx x答案:3π10、 =⎰aadx x f )(答案:011、=dx )4(xd答案:412、dx= d(3-5x) 答案:5113、=xdx )15(2+x d 答案:10114、=dx x 2 )21(3x d - 答案:61-15、=dx x 3 )13(4-x d 答案:12116、=dx x 1)ln 23(x d -答案:21-17、=dx e x 2)1(2xe d + 答案:2 18、=-dx xex2)(2xed -答案:21-19、=xdx 23sin )23(c o s x d 答案:23-20、=dx x2cos1 )t a n 211(x d -答案:2- 21、=+dx x 2911 )3(a r c t a n x d答案:3122、=-21xxdx )1(2x d -答案:1- 23、=-241xdx )2(a r c s i n x d答案:24、=dx x x 2cos )(s i n 2x d 答案:2125、=dx x x ln 2)(l n x d答案:2126、=+21arctan x x 2)(a r c t a n x d答案:21““”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“” 二、选择1、⎰⎰=+baabdx x f dx x f )()(( )A 0B 1C 2D 3 答案:A2、⎰-=11dx( )A 0B 1C 2D 3 答案:C3、下列积分中常用分部积分法计算的题是( ) A⎰+dx x )12cos( B ⎰-dx x x21C⎰xdx xcos 2D⎰+dx xx221答案:C4、设)(x f 为可导函数,则⎰'))((dx x f 为( ) A )(x f B c x f +)( C )('x f D c x f +)(' 答案:A5、 ⎰=xdx 2sin( )Ac x +2sin 21 B c x +2si nC c x +-2cos 2D c x +-2cos 21答案:D6、⎰=dx x f k )(2( ) A⎰dx x k f )(2B⎰)()(kx d kx fC ⎰dx x f k )(2D ⎰dx kx f k )( 答案:C7、下列函数对中是同一原函数的是( ) A x arccos arcsin 与x B x 2ln lnx 2与 C x cos 2x 2cos 2与 D x 22cos x si n 与答案:C8、若)(x f 的一导数是x sin ,则)(x f 有一个原函数为( )A x sin 1+ B x sin 1- C cosx 1+ D cosx 1-答案:D 9、⎰=dx x x f 2'1)1(( ) A c x f +)1( B c xf +-)1(C c xf +-)1( D c xf +--)1(答案:B10、⎰=kdx ( )A kxB c kx +C xD c x + 答案:B11、F(x)与G(x)都是区间(c,d )内函数飞f(x)的一个原函数,则A .F(x)=G(x) ()d c x ,∈ B.C x dG x dF +=)()( C.⎰=)()(x F dx x fD.),(,),()()()(d c b a a G b G a F b F ∈-=- 12、下列函数对中是同一函数的原函数的是 A .arcsinx 与arccosx B.x x 2ln ln 2与 C.x 2cos 22cos 与D.x x 22cossin与13、若⎰⎰=的为则下列各式中,不成立),()(x dg x dfA .)()(''x g x f =B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题4-1 (A)1、什么是)(x f 的原函数?原函数与函数的导数以及不定积分有什么关系?解答:见书上定义。
原函数的全体就是函数的不定积分。
原函数是一个函数,不定积分适宜个函数的集合。
2、证明x x 22cos sin -及x 2cos 21-都是同一个函数的原函数,试分析为什么同一个函数会有几个不同的原函数?解:由于x x x x 2sin cos sin 2)(sin 2==')x x x x 2sin cos sin 2)(cos 2=='x x 2sin )2cos 21(='- 所以他们都是x 2sin 的原函数。
因为一个函数的原函数有无穷多个,即当)(x F 是)(x f 的原函数时,C x F +)(也是)(x f 的原函数时,其中C 为任意的常数。
3、利用基本公式求下列不定积分 (1)、C xdx +-=-⎰221(2)、=⎰dx x 331=+⋅=⎰C x dx x323233131=+C x 3221 (3)、C x dx x +-=+-⎰arctan 112(4)、c x dx x++-⎰arcsin 112(5)、dx e e xx ⎰--)(21C c h x dx shx +==⎰(6)、=⎰dx ex x2C e e dx e x x +=⎰2ln )2()2((7)、C eC e e dx edx e x xx x+⋅-=+==⎰⎰1211ln1)1(1x (8)、dx x x⎰2cos sin C x dx x x +==⎰sec tan sec(9)、C x x d xx +-=⎰cs c co t c s c c ot(10)、C C dx xx x+-=+=⎰33ln 31ln 3131 4、求下列不定积分(1)、C x C x dx x x xx++=+⋅+=+⎰3322332)32( (2)、C xx x x dx x x x x ++--=-+-⎰322433121ln 4)1112( (3)、dx xx x ⎰++332C x x x dx x x x +++=++=⎰-21225212362152)3((4)、dx x x x ⎰++)1(21222=+++=⎰dx x x x x )1()1(2222C x x dx x x ++-=++⎰arctan 1)111(22 (5)、dx xx ⎰-+4211C x dx x+=-=⎰arcsin 112(6)、dx e e xx ⎰+-112C x e dx e x x +-=-=⎰)1( (7)、dx x x x⎰-sin cos 2cos C x x dx x x +-=+=⎰sin cos )sin (cos(8)、⎰-dx x x x )tan (sec sec C x x dx x x x +-=-⎰sec tan )tan sec (sec25、求解下列问题(1)、设曲线上点),(y x 处切线的斜率为)0(12>+x x x ,并且曲线经过点)2,1(-,求曲线的方程解:由题设有)0(1)(2>+='x xx x f 所以2312)(2--=x x x f经过点)2,1(-有2121-=+-C 23-=C 所以C x x dx xx x f +-=+=⎰12)1()(22 (2)、一个直线运动的物体,在t 时刻的运动加速度为1)(2+=t t a ,并且当0=t 时,速度为1)(=t v ,距离0)0(=s ,求物体的运动规律解:C t t dt t dt t a t v ++=+==⎰⎰3)1()()(321)0(==C v ,所以13)(3++=t t t vC t t t dt t t dt t v t s +++=++==⎰⎰2432112)13()()(0)0(==C s所以t t t t s ++=242112)( (3)、某商品的需求量Q 是它的价格p 的函数,该商品的最大需求量为1000(即p=0时,Q=1000),并且知道需求量的变化率为pp Q )31(3ln 1000)(⋅-=' ,求该商品的需求函数解:⎰'=dp p Q p Q )()(C p +-⋅-=3ln 1)31(3ln 1000C p +⋅=)31(1000 ==1000)0(Q C +=1000,0=C所以=)(p Q p)31(1000⋅= (B)1、计算下列不定积分(1)、=+⎰dx xx 221C x x dx x +-==+-⎰arctan )111(2 (2)、dx x x ⎰+)1(122=+-+=⎰dx x x x x )1(12222C x x dx x x +--=+-⎰arctan 1)111(22 (3)、dx x ⎰2cot C x x dx x +--=-=⎰cot )1(csc 2(4)、dx x ⎰2sin2C x x dx x +-=-=⎰)sin (212cos 1 (5)、dx x f ⎰'+)](1[C x f x ++=)(2、一个质点做直线运动,已经知道加速度为t t t a sin 312)(2-=,如果当0=t 时,初速度3,500==s v ,求该质点的运动速度,及运动方程解:C t t t t dt t a t v ++=-==⎰⎰cos 34)sin 312()()(3252)0(=+=C v ,所以解得2==)(t v 2cos 34)(3++=t t t vC t t t dt t t dt t v t s ++-=++==⎰⎰2sin 3)2cos 34()()(433)0(==C s ,所以 32s i n 3)(4++-=t t t t s3、生产某产品Q 个单位所需要的成本C 是Q 的函数,已经知道固定成本为20元,边际成本函数为102+=Q C M ,求总成本的函数 )(Q C解:C Q Q dQ Q Q C ++=+=⎰10)102()(220)0(=C C所以 2010)(2++=Q Q Q C 4-2(A )1、设)(x F 是)(x f 原函数,求下列各式的积分(1)、dx x f ⎰)2(C x F x d x f +==⎰)2(21)2()2(21 (2)、dx x x f ⎰)(2C x F x d x f +==⎰)(21)()](21222(3)、dx kx f ⎰-)1()0()1(1)1()1(1≠+--=---=⎰k C kx F kkx d kx f k(4)、=⎰dx x x f )ln 2(C x F x d x f +=⎰)ln 2(21)ln 2()ln 2(21 (5)、d xx f s i n )2(c os ⎰-C x F x d x f +--=---=⎰)2(c o s )2(c o s )2(c o s(6)、dx x x f ⎰-2sec )2tan 3(c x F xd x x f +-=--=⎰)2tan 3(31)2tan 3(sec )2tan 3(312 (7)、dx e e f x x⎰--+)1(C e F e d e f x x x ++-=++-=--⎰)1()1()1((8)、dx x x f ⎰+-21)arctan 1(C x F x x d x x f +--=-+--=⎰)a r c s i n 1()a r c s i n 1(1)ar c t a n 1(22、设⎰=dx x f I )(,如果做变换)(t x ϕ=后得到⎰'=dt t t f I )()]([(ϕϕ,则按下列给出的条件写出换元后的积分(1)、t x dx ee I xxln ,1=+=⎰ 解:设t x ln =,有dt tdx 1=C e C t dt t dt t t t dx ee I xx x ++=++=+=⋅+=+=⎰⎰⎰)1ln()1ln(11111 (2)、)0(,,12+∞<≤=+=⎰t t x dx xx I解:设tdt dx t x 2,2==C t t t t dt t t t dt t t I ++-+-=+-+-=+=⎰⎰)1ln(2232)111(2122323C x x x x ++-+-=)1ln(223223)0(+∞<≤t 3 (3)、)0(,c o s 2,44122π<<=--+=⎰t t x dx xx I解:设tdt dx t x sin 2,cos 2-==C x xC t t dt t tdt t t I +-=+-=+=+=⎰⎰2arccos cos 2)sin 21(sin 2sin 2sin 21(4)、,1,121163+=-+-+=⎰t x dx x x I (或者t x =-61)解:设dt t dx t x 566,1=+=dt t tt I 523621⋅++=⎰ (5)、t x dx x x I tan ,)1(323=+=⎰(或者t x =-61) 解:tdt dx t x 2sec ,tan ==,tdt t t I 2323sec )(sec )(tan ⎰=tdt t t ⎰=43sec tan dt t t ⎰=cos sin 3 (6)、t x x dx x x I 1),10(,11=<<-=⎰ 解:设dt tdx tx 21,1-== =--⋅=⎰dt t t t t I )1(122⎰--12t dt3、求下列不定积分(1)、dx x ⎰-5)13(C x x d x +-=--=⎰65)13(181)13()13(31 (2)、dx e x⎰-4C ex x d e x x +-=--=--⎰4441)4(41 (3)、dx x x ⎰-52)5(52122--=⎰x d x C x x +--=5)5(3122(4)、dt t t ⎰-3325C t t d t +-=--=⎰-3233313)5(21)5()5(31(5)、dx x x ⎰2cos 12C x x d x +-=-=⎰2s i n 21)2(1c o s 21(6)、dx xx ⎰-arcsin 112C x x d x +==⎰)ln (a r c s i n )(a r c s i n a r c s i n 1(7)、dx x x ⎰-1tan cos12C x x d x +-=--=⎰1t a n 2)1(t a n 1t a n 1(8)、dx x x ⎰2ln 1=C xx d x +-=⎰ln 1)(ln ln 12 (9)、dx x x ⎰+462C x x d x +=+=⎰2rc t a n 61)2()2(11613323 (10)、dx x ⎰-29161C xx d x +=-⋅=⎰43rc t a n 31)43()43(1134412 (11)、dx x x ⎰sin cos 5C x x xd +-=-=⎰65cos 61)(cos cos (12)、dx x x ⎰33sin cos C x x x d x x +-=-=⎰6432si n 61s i n 41)(s i n s i n )s i n1((13)、dx x x ⎰+3sin 2cos C x x d x ++=++=⎰)3si n 2l n ()3s i n 2(3s i n 21(14)、dx x x x ⎰+2sin sin cos 32C x x d x ++=++=⎰)2ln (s i n 31)2(s i n 2s i n 131333(15)、dx xx ⎰+1解:设tdt dx t x 2,2==dx x x⎰+1C t t t t dt t t t t tdt t ++-+-=+-+-=+⋅=⎰⎰)1ln(2232)111(2122322C x x x x x ++-+-=)1ln(2232(16)、dx xx ⎰--+22441解:设tdt dx t x cos 2,sin 2==dx x x ⎰--+22441C t t tdt t t ++=⋅+=⎰sin 2cos 2cos 2cos 21C x x++=2arcsin(17)、dx xx x ⎰+-441解:设dt t dx t x 344,==dx x x x ⎰+-4341C t t t dt t t dx t t t t +++-=++-=⋅+-=⎰⎰)1ln(882)122(44)1(1232 C x x x +++-=)1ln(88244(18)、dx x ⎰++3211解:设tdtdx t x ==+,32=++⎰dx x 3211=+⎰t tdt 1C x x C t t dt t +++-+=++-=+-⎰)321ln(32)1ln()111((B)1、求下列不定积分 (1)、dx x x ⎰+2sin 12sin C x xx d ++=++=⎰222sin 12sin 1)sin 1((2)、=-⎰dx xx4cos 12sin C x dx x x d +=--⎰)arccos(cos)(cos 1)(cos 2222(3)、dx x x x ⎰+-21arctan -+=⎰dx x x 21dx x x⎰+21arctan-+=⎰)(112122x d x ⎰)(arctan arctan x xd C x x +-+=22)(arctan 21)1ln(21(4)、C x x x x x x d dx x x x +-==+⎰⎰ln 1)ln ()ln ()ln (ln 122(5)、C x x dx x x xd cox dx x x +-=+⋅-=⎰⎰⎰5sin 101sin 21cos 21)5(551213sin 2sin (6)、dx x x ⎰2cos 3sin C x x dx x x xd +--=+⋅=⎰⎰5cos 101cos 21sin 21)5(5sin 5121 (7)、dx x x ⎰sec tan 3C x x x d x +-=-=⎰s e c s e c 31)(s e c )1(s e c32 (8)、C x x d x dx x x x +==⎰⎰433)tan (ln 41)tan (ln )tan (ln cos sin )tan (ln (9)、dx x x x ⎰+++32321C x x x x d x x +++=++++=⎰322232)32(43)32(32121 (10)、dx x x x ⎰+)1(arctan C x x d x +==⎰2ar c t a n )(a r c t a n a r c t a n 2(11)、dx x x x ⎰++542dx x x x ⎰++-+=54442212dx x x x x d ⎰++++=54)54(212dx x x d ⎰+++-1)2()2(22C x x x ++-++=)2arctan(2)54ln(212 (12)、dx x x x ⎰--542dx x x x ⎰--+-=54442212dx x x x x d ⎰----=54)54(2122dx x x ⎰+-+)1)(5(12 dx x x x x d ⎰----=54)54(2122dx x x )1151(31+--+⎰ C x x x x ++-+--=15ln 31)54ln(212 C x x x x ++--+++-=)1ln(31)5ln(31)1ln(21)5ln(21 C x x +++-=)1ln(61)5ln(65 2、求下列不定积分 (1)、dx x ⎰++3211解:设dt t dx t x t x 2333,2,2=-==+dx x ⎰++3211dt t t ⎰+=132⎰++-=dt tt )111(3C t t t ++--=)1ln(33232C x x x +++-+-++=)21ln(3)2(3)21(23331323 (2)、dx x ⎰-29解:设tdt dx t x cos 3,sin 3==dx x ⎰-29C t t dt t dt t ++=+==⎰⎰2sin 4929)2cos 1(29cos 92 C x x x +-+=29213arcsin 29 (3)、dx x x ⎰++1)2(1解:设tdt dx t x t x 2.1,12=-==+dx x x ⎰++1)2(1C x C t dx tt t++=+=+=⎰1arctan 2arctan 2)1(22(4)、dx x x ⎰---412121解:设dt t dx t x 342,12==-dx x x ⎰---412121dt t t t ⎰-=)1(23C t t t dt t t +-++=-++=⎰)1ln(22)11122 C x x x +--+-+-=)112ln(21221244(5)、dx x ⎰-232)1(1解:设dx tdt t x ==cos ,sindx x ⎰-232)1(1C x xC t t tdt +-=+==⎰231tan cos cos (6)、dx xa x⎰-221解:设dx tdt a t a x =-=sin ,cosdx x a x⎰-221C t t at a t a tdt a +-=⋅-=⎰tan sec ln 1cos sin sinC xx a a a +--=22ln 1 (7)、dx x a ⎰+2322)(1解:设tdt a dx t a x 2sec ,tan ==dx x a ⎰+2322)(1C t a t a tdt a +==⎰sin 1sec sec 2332C x a x a ++⋅=2221 (8)、dx ex⎰+11解:设12,1,122-=-==+t tdtdx t e t e xxdx ex ⎰+11C t t dt t t t ++-=-=⎰11ln )1(22C e e x x +++-+=1111ln3、设)(x F 是)(x f 的原函数,求下列不定积分(1)、dx x x f ⎰cos )sin 2(C x F t d x f +==⎰)s i n 2(21)s i n 2()s i n 2(21(2)、dx x x f ⎰-)1(2C x F x d x f +--=---=⎰)1(21)1()1(21222(3)、x d x xx f t a n c o s)(t a n 22⎰C x F x d x f +==⎰)(t a n 21)(t a n )(t a n 21222(4)、dx x F x f ⎰+)(1)(2C x F x F x F d +=+=⎰)(r c t an )(1)((24-3(A )1、求下列积分(1)、⎰d x x s i nC x x x d x x x +-=+-=⎰c o s s i n co s co s(2)、dx xx ⎰2cos C xx x dx x x x ++=-=⎰2cos 42sin 22sin 22sin2 (3)、=⋅-=⎰⎰dx x x x x dx xx123ln 23ln 32323dx x x x ⎰--313223ln 23C x x +-=)3ln 2(4332(4)、)1(ln ≠⎰n xdx x n⎰+-+=+dx x n x x n nn 11ln 111 C x n x x n n n ++-+=++121)1(1ln 11 (5)、⎰-dx xe x ⎰--+-=dx e xe x x =+--=--C e xe x x C x e x ++-=-)1((6)、⎰+dx x x )1sin(⎰+++-=dx x x x )1cos()1cos(++-+=)1c o s()1s i n(x x x (7)、⎰d xx c os 2⎰-=d xx x x s i n 2si n 2]co s co s 2[si n 2⎰+--=d x x x x xC x x x x ++-=cos 2sin )2(2(8)、⎰dx x x 2cos22⎰+⋅=dx x x 2cos 12d x x dx x cos 212122⎰⎰+=dx x x x x x ⎰-+=sin sin 216123]cos cos [sin 216123dx x x x x x x ⎰+--+= C x x x x x x +-++=sin cos sin 216123C x x x x x ++-+=cos sin )121(6123(9)、⎰-d xx 2s i n)1(2⎰⎰-=d xd xx 2s i n 2s i n 2x xdx x x x 2cos 212cos 2cos 212++-=⎰x xdx x x x x 2cos 212sin 212sin 212cos 212+-+-=⎰C x x x x x x ++++-=2cos 212cos 412sin 212cos 212C x x x x ++--=2sin 212cos )43(212(10)、⎰+dx x )1ln(2⎰+-+=dx x x x x 22212)1ln( =+--+=⎰dx xx x )122()1ln(22C x x x x ++-+=arctan 22)1ln(2 (11)、⎰d xa r c t a n⎰+-=dx x xx x 21arctan ⎰++-=221)1(21rc t a n x xd x xC x x x ++-=)1ln(21arctan 2(12)、⎰d xa r c os ⎰-+=dx xx x x 21arccos⎰-+=dt t ttx x )sin (sin cos arccos C t x x ++=sin arccos C x x x +-+=21arccos(13)、⎰-dx e x x 2⎰--+-=dx xe e x x x 22⎰---+--=dx e xe e x xx x 222C e x x x +++-=-)22(2(14)、⎰dx ex⎰=dt te t 2⎰-=dt e te t t 22C e t t +-=)1(2C ex x+-=)1(2(15)、⎰++dx x x )1ln(2dx xx x x x ⎰+-++=221)1ln(⎰++-++=2221)1(21)1ln(xx d x x x C x x x x ++-++=221)1ln((16)、⎰-d x e xc os I ==I ⎰-xdx e x cos ⎰--+=xdx e x e x x sin sin ⎰-----=xdx e x e x e x x x cos cos sin =I I x e x e x x ----cos sin =I C x x e x+--)cos (sin 21 (B)1、求下列积分(1)、⎰dx x 2)(ln ⎰-=dx x x ln 2ln 2⎰+-=dx x x x x 2ln 2ln 2C x x x x x ++-=2ln 2ln 2(2)、⎰+dx x x )1ln(2⎰+-+=dx x x x x 23221)1ln(2⎰+--+=dx xx x x x )1()1ln(2222 C x x x x x +++-+=)1ln(21)1ln(22222C x x x +-++=2)1ln(21222(3)、⎰d xxa r c t a n ⎰+-=dx x x x x 222121arctan 2⎰+--=dx xx x )111(21arctan 222 C x x x x ++-=arctan 212arctan 22C xx x +-+=2arctan 212 (4)、⎰dx x x )ln(ln )(l nln 1ln )ln(ln ln )(ln )ln(ln x d x x x x x d x ⎰⎰⋅-== C x x x +-=ln )ln(ln ln C x x +-=]1)[ln(ln ln(5)、⎰dx ex3⎰=dt e t t 23⎰-=dt te e t t t 632⎰+-=dt e te e t t t t 6632C e te e t t t t ++-=6632C ex x x++-=3)22(3332(6)、⎰-dx x ex2sin2 ⎰-=dx x e I x 2sin 2⎰--+-=dx x e x e x x 2cos 412sin 2122 ⎰-----+-=dx x e x e x e x x x 2sin 161)2cos 21(412sin 21222=I I x e x e x x 1612cos 812sin 2122-----C e xx x ++-=-2]2cos 2sin 4[172(7)、⎰d x x 2c os ⎰⎰-+=+=x x x x dx x x x 2sin 412sin 4141)2cos (212 C x x x x +++=2cos 812sin 41412 (8)、⎰dx x x2cos C x x x d x x x ++=-=⎰c o s ln tan tan tan (9)、⎰d xx a r c t a n2⎰+-=dx xx x x 233131arctan 3 ⎰+--=dx xx x x x )1(31arctan 323C x x x x +++-=)1ln(616arctan 3223 2、设)(x F 是)(x f 的原函数,求⎰'dx x f x )( 解:⎰⎰-='dx x f x xf dx x f x )()()(C x F x xf +-=)()(3、求⎰-''dx x f x )1(解:⎰-''dx x f x )1(⎰-'+-'-=dx x f x f x )1()1(C x f x f x +---'-=)1()1(。