九年级数学上册第1课时 位似图形及其画法
课件北师大版九年级数学上册 图形的位似精美PPT课件
画法二:△ABC与△DEF异侧
解:画射线OA,OB,OC;
A
沿着射线OA,OB,OC反方向上分别取点D,E,F, 如(1)果两两个个位相似似形多一边定形是任相意似一形组;对应顶点P,P̍ 所在的直线都过同一点O,且OP ̍ =k· OP (k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.
在射线OA,OB,OC上反分向别延取长点线D上,E分,F别,使取O点DD=,E2,FO,A使,OEA = 2OBD,,OOFB== 22OOCE;,
顺序连接D,E,F,使△DEF 用问橡题皮 :筋下放面大两图个形多的边方形法相放似大,图将形两:个图形的顶点相连,观察发现连接的直线相交于点O.
(解1):两画个射位线似O形A一,O定B,是O相C;似形;
。
。
。。
。
。
。
。
。
O
。
。
• 1.若△ABC与△A’B’C’的相似比为:
1:2,则OA:OA’=( 1:2 A’)。
A
B
B’
O
C
C’
性质:位似图形上任意一对对应点到位似中心的距离 之比等于相似比.
归纳
画位似图形的关键是画出图形中顶点
的对应点,画图的方法大致有两种:一是每
对对应点都在位似中心的同侧,二是每对对
探索与思考☞ 观察下列图形的特点
A
B
C
P
D
特征: (1)是相似图形 (2)每组对应点所在的直线都经过同一个点
问题:下面两个多边形相似,将两个图形的顶点相连,
观察发现连接的直线相交于点O. OA' ,OB' ,OC' ,OD' ,OE'
OA OB OC OD OE 有什么关系?
北师大版数学九年级上册《位似图形》教案
北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。
本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。
但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。
三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。
2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。
3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.位似图形的概念和性质。
2.位似比的概念和计算方法。
3.位似变换的方法和应用。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。
六. 教学准备1.准备相关的教学实例和图片。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。
3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。
4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。
5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。
2023年北师版九年级数学上册第1课时 位似图形的概念及其画法
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
探究新知
A B
如图,是两个相似五边形,设 直线AA′与BB′相交于点O,那么直
E
线CC′,DD′,EE′是否也都经过点O?
C
有什么关系?
D
A′ B′
E′ C′ D′
OA ,OB ,OC ,OD ,OE OA OB OC OD OE
根据测量可以得出
O
OA = OB = OC = OD = OE OA OB OC OD OE
1.将两根等长的橡皮筋系在一 起,连接处形成一将系在一起的橡皮筋的一端 固定在定点,把一支铅笔固定 在橡皮筋的另一端.
4.拉动铅笔,使两根橡皮筋的结 点沿所选图形的边缘运动,当 结点在已知图形上运动一圈时, 铅笔就画出了一个新的图形. 这个新图形与已知图形形状相同.
使它与△ABC位似,且相似比为2.
A′
取点A, B,C,使 OA′ = OB′ = OC′ =2 OA OB OC
B′′
A
C′′
O
C
北师大版中学数学九年级上册 图形的位似(第一课时 位似图形及其画法 ) 课件PPT
知识讲解
位似图形的画法
例1:如图,已知△ABC,以点O为位似中心画△DEF, 使其与△ABC位似,且位似比为2.
解:画射线OA,OB,OC;在射
D
线OA,OB,OC上分别取点
D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接
A E
D,E,F,使△DEF与△ABC位
B
似,相似比为2.
下面我们就一起来学习一种把图形放大或缩小的方法。
3
知识讲解
位似图形的定义 通过对这几幅图案的观察你发现了什么?有什么特点?
这些图案虽大小不同,但形状相同且有特殊的位置关系。
4
知识讲解
以上五幅图片是由一组形状相同的图片组成,在图片 ①和图片②上任取一组对应点A,B,直线AB经过镜头中 心点P吗?换其他的对应点试一试,还有类似规律吗?
O
C
F
想一想:你还有其他的画法吗?
知识讲解
画法二:△ABC与△DEF异侧 解:画射线OA,OB,OC;沿着射线OA,OB,OC 反方向上分别取点D,E,F,OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF与 △ABC位似,相似比为2.
O F
A
B C
E
D
随堂训练
为 7∶4 ;△OAB与 △OA′B′ 是位似图形,位似比为
7∶4 .
2.如图,图中两个四边形是位似图形,它们的位似中
心是( D )
A.点M
B.点N
C.点O
D.点P
第1题图
第2题图
15
当堂检测
3.下列相似图形是否是位似图形?如果是请指出位似中心,如
果不是请说明理由。
27.3 第1课时 位似图形的概念及画法
27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA ′,BB ′,它们的交点就是位似中心.解:(1)连接对应点AE 、BF ,分别延长AE 、BF ,使AE 、BF 交于点O ,点O 就是位似中心;(2)连接对应点AN 、BM ,延长AN 、BM ,使AN 、BM 的延长线交于点O ,点O 就是位似中心;(3)连接AA ′、BB ′,AA ′、BB ′的交点就是位似中心O . 方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题 【类型三】 画位似图形按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍; (2)图②中,以O 为位似中心,把△ABC 缩小为原来的13.解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题 【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明; (2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EFDC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计位似图形的概念及画法 1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
湘教版九年级数学上册3.6位似第1课时
同理可证, BC k, AC k,B′C′∥BC,A′C′∥AC.
BC
AC
所以,AB BC AC k, 则△A′B′C′∽△ABC.
AB BC AC
A′B′∥AB,B′C′∥BC,A′C′∥AC.
因此,两个图形位似,则这两个图 形相似,它们的对应边平行(或在同一直 线上),当位似比大于0时,位似比等于 相似比.
A′
A
O
B
B′
图4
我们发现:
点A, A′与点O在一条直线上,点B , B′ 与点O也在一条直线上.
2.测量计算:
分别量出OA,OA′,OB,OB′的长度,并计算 (精确到0.1):
OA
=
, OB =
.
OA
OB
我们发现:
继续在左、右两只小狗找一些对应点,我们
会发现每一对对应点都与点O在一条直线上,且每 一对对应点与点O所连线段的比与上述 OA ,OB
D
D′
C C′
下图中的菱形A′B′C′D′,是以菱形ABCD 的对称中心点O(即对角线AC、BD的交点)为 位似中心,把菱形ABCD放大2倍得到的:
A′
A
B′
B O
D
D′
C
C′
反思总结
1.什么样的两个图形是位似图形? 一般地,取定一点O,如果一个图形G上每一
个点P 对应于另一个图形G′上一点P′,且满足:
2.如图,以点O为位似中心,将四边形ABCD放大 为原来的2倍.
C D
A
O
B
作法1:连接OD、OC,在线段OA、OB、OC、 OD的延长线上分别截取OA′=2OA,OB′=2OB, OC′=2OC,OD′=2OD,依次连接A′、B′、C′、 D′,则四边形A′B′C′D′即为所求作的四边形.
第1课时 位似图形及其画法(教材配套课件)
所以 S 四边形 = BCDE 25 S 四边形 = B′C′D′E′ 25 ×18=50.
9
9
·数学
1.下列各组图形中,不是位似图形的是( B )
2.已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这 样的图形可以作出( B ) (A)1个 (B)2个 (C)4个 (D)无数个
AB
AC AB
同理可得, AE = AD = AC = AB =k,
AE AD AC AB
又因为四边形 BCDE 与四边形 B′C′D′E′的对应顶点相交于一点 A, 所以四边形 BCDE 与四边形 B′C′D′E′是位似图形.
·数学
(2)若 AB = 3 ,S 四边形 B′C′D′E′=18,求 S 四边形 BCDE.
或一边上,也可
能在两个图形的 一侧 或中间.
(2)位似图形上任意一对对应点到位似中心的距离之比等于 相似比 .
(3)每组对应点的连线都经过 位似中心
.
·数学
探究点一:位似图形的画法 【例 1】如图,已知▱ABCD 及一点 O,以点 O 为位似中心,将▱ABCD 缩小为原来的 1 .
2
·数学
【导学探究】 1.▱ABCD 的位似图形与▱ABCD 分别在点 O 的 同
BB 2 【导学探究】 2.四边形BCDE与四边形B′C′D′E′的相似比为 为 25∶9 .
5∶3
,面积比
解:(2)因为 AB = 3 ,所以 AB = 3 ,所以四边形 BCDE 与四边形 B′C′D′E′
BB 2
AB 5
的相似比为 5∶3,面积比为 25∶9,因为 S 四边形 B′C′D′E′=18,
·数学
九年级数学 位似图形的概念及画法(教案、导学案)
27.3位似第1课时位似图形的概念及画法教学目标【知识与技能】1. 掌握位似图形的定义、性质及画法.2. 掌握位似图形与相似图形的区别和练习.【过程与方法】经历观察、思考及动手操作等过程,锻炼学生的分析问题,解决问题的能力.【情感态度】通过对位似图片的观察,欣赏,可激发学生的学习兴趣,增强审美意识.【教学重点】理解并掌握位似图形的定义,性质及画法.【教学难点】位似图形的多种画法.教学过程一、情境导入,初步认识问题在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?【教学说明】通过所展示的几幅美丽图片的观察,既可以激发学生的学习兴趣和求知欲望,增强审美意识,又能通过相似图形的这种特殊位置关系初步感受位似图形教学时,教师应着重引导学生观察这些相似图形所具有的特殊位置关系,可逐个进行剖析.二、思考探究,获取新知问题如图,图中有多边形相似吗?如果有,那么这些图形有什么特征?【教学说明】让学生相互交流,共同发现,然后选取代表发表自己的观点,认识位似图形.【归纳结论】位似图形:如果两个图形的对应顶点相交于一点,对应边互相平行,这样的两个图形叫做位似图形.位似图形的特征:(1)位似图形必定是相似图形(反过来就不一定成立);(2)位似图形的对应顶点连线(或延长线)必相交于同一点,对应边互相平行;(3) 位似图形的对应边的比称为位似比,对应顶点连线(或延长线)相交的那个交点称为位似中心.)利用位似,可以将一个图形放大或缩小.三、典例精析,掌握新知例1如图,指出各组图形中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【教学说明】教师应引导学生掌握怎样判别两个图形是位似图形的方法,然后由学生自主探究,相互交流获得结论.显然(1)、(2)、(3) 中的两个图形都是位似图形,其位似中心分别为A,A,P,而(4)中两个正方形就不是位似图形,因为对应点的连线不能相交于同一点,即点O并不是对应点连线的交点.通过本例的处理可加深学生对位似图形及其性质的理解.解答过程略.例2 如图所示的是一个四边形ABCD,请将它缩小为原图的.【分析】将一个图形缩小的原图的,即是要新图形各个顶点到位似中心的距离与原图中各对应顶点到位似中心的距离之比为1:2,因而只要在同一平面内确定了某一点为位似中心的话,就一定能得到缩小后的四边形.而选取某一点为位似中心时,这点可在两个图形的外部,中间或它们的内部几种不同情形,我们不妨按三种不同情形来进行画图,试试看.解作法一:(1)在四边形ABCD的外面任取一点0(如图①所示)(2) 过点O分别作射线OA、OB、OC、OD;(3) 分别在OA、OB、OC、OD上截取点A',B’,C’,D’,使得====;(4) 顺次连接A’,B’,C’,D’,所得的四边形A’B' C’D’就是将四边形ABCD缩小后的图形,且其位似比为作法二:(1)在四边形ABCD外任取一点O (如图②)(2)作射线OA 、OB 、OC 、OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点 A’ ,B’ ,C’,D’ , 使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 也是四边形ABCD 缩小的图形.作法三:(1)在四边形ABCD 的内部任取一点O (如图③) (2)连OA 、OB 、OC 、OD ;(3)分别在OA ,OB ,OC ,OD 上截取点 A’ ,B’ ,C’,D’ , 使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 是将四边形ABCD 缩小的图形.【教学说明】对上述三种作图方法,教师可选讲其中一种,另两种方法在稍作提示后应留给学生完成,让学生积极参与,动手实践,在实践中增长知识,获取技能.四、运用新知,深化理解1. 如图,△OAB 和△OCD 是位似图形,AB / /CD 吗?为什么?2. 如图,以O为位似中心,画出将△ABC放大为原来的两倍的图形.【教学说明】这两道小题让学生独立完成后,相互交流.教师巡视,适时参与讨论,设计,进一步加深学生理解和掌握位似图形的定义和性质.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1. 位似图形和相似图形的联系和区别是什么?请说说看;2. 将一个图形放大或缩小,可以利用位似得到. 你认为画出一个图形的位似图形的关键是什么?通常有几种可能?【教学说明】师生共同回顾,对所学过知识进行反复梳理,加深认识.1.布置作业:从教材P51习题27.3中选取.2.完成创优作业中本课时的“课时作业”部分.教学反思本课时教学通过创设'清境让学生感受了位似的概念,接着通过实际操作,让学生体会了位似图形的作法.在教学时,应注意加强与学生的互动与交流,并让学生动手操作,提高学生的自主学习能力.27.3 位似第1课时位似图形的概念及画法一、新课导入1.课题导入观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征呢?这就是这节课要研究的问题.(板书课题)2.学习目标(1)知道位似图形以及相似与位似的关系,能说出位似图形的性质.(2)能按要求作一个图形的位似图形,会利用位似作图将一个图形放大或缩小.3.学习重、难点重点:位似图形的概念、性质和位似作图.难点:利用作位似图形的方法将一个图形按一定的比例放大或缩小.二、分层学习1.自学指导(1)自学内容:教材P47.(2)自学时间:6分钟.(3)自学方法:观察、交流和归纳,并完成自学参考提纲.(4)自学参考提纲:①观察:下列各组图形中的两个图形,它们有什么特征?特点:两个图形相似;对应点所在的直线交于一点.②如果两个相似图形的对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时我们说这两个图形关于这点位似.③在各图形中,位似图形的位似中心与这两个图形有什么位置关系?位似中心可在两个图形之间或之外. 在各图形中,任取一对对应点,度量这两个点到位似中心的距离,计算这两个距离的比与这两个相似图形的相似比有何关系?相等.④如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?如果AB∥CD, 那么△OAB和△OCD是位似图形吗? 为什么?AB∥CD,因为AB、CD是两个位似图形的对应边.如果AB∥CD,则△OAB与△OCD是位似图形.因为AB∥CD,则△OAB∽△OCD,又因为对应点连接交于O点,所以△OAB与△OCD是位似图形.2.自学:参考自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对位似图形定义的两个要素的把握情况.②差异指导:根据学情进行指导.(2)生助生:小组交流、研讨.4.强化(1)判断位似图形两要看:一要看这两个图形是否相似,二要看对应点的连线是否都经过同一点.(2)点学生口答自学参考提纲第④题,并点评.1.自学指导(1)自学内容:教材P47~P48练习之前的内容.(2)自学时间:8分钟.(3)自学要求:完成探究提纲.(4)探究提纲:①把四边形ABCD 放大到原来的2倍.作法一:a.在四边形ABCD 外 任取一点O ,过点O 分别作射线 OA 、OB 、OC 、OD ;b.分别在射线 OA 、OB 、OC 、OD 上取点 A′、B′、C′、D ′,使得2OA OB OC OD OA OB OC OD''''====. c.顺次连接 A′、B′、C′、D′ ,得到所要画的四边形A′B′C′D′.作法二:自己独立完成.a.在四边形ABCD 外任取一点O ,过点O 分别作射线AO 、BO 、CO 、DO;b.分别在射线AO 、BO 、CO 、DO 上取点A′、B′、C′、D′,使得2OA OB OC OD OA OB OC OD''''====. c.顺次连接A′、B′、C′、D′,得到所要画的四边形A′B′C′D′.②把四边形ABCD 缩小到原来的12. 作法同上,使12OA OB OC OD OA OB OC OD ''''====. ③如图,以点O 为位似中心,把△ABC 放大为原来的3倍.如图所示.2.自学:参考自学指导,体会学习方法指导,展开自学.3.助学(1)师助生:①明了学情:明了学生能否掌握位似图形的画图方法.②差异指导:根据学情进行指导.(2)生助生:小组交流、研讨.4.强化(1)位似图形的画法.(2)点几名学生展示探究提纲第③题,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?还有哪些疑虑?2.教师对学生的评价:(1)表现性评价;从学生参与到学习活动中的积极性、小组交流与合作等方面进行评价;(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过创设情境让学生感受了什么是位似图形,接着通过实际操作让学生体会了位似图形的作法.学生之间相互交流讨论,明白位似图形是一种特殊的相似图形,所以它具有相似图形的一切性质,又具有特殊的性质.应用知识的迁移,引导学生快速掌握位似图形的性质.同时学会利用位似,可以将一个图形放大或缩小.一、基础巩固(70分)1.(10分)下列说法不正确的是(D)A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于相似比D.位似图形中每组对应点所在的直线必相互平行2.(10分)用作位似图形的方法,可以将一个图形放大或缩小,位似中心(D)A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原图形的边上D.可以选择任意位置3.(10分)如图, △ABC与△DEF是位似图形, 相似比为2∶3, 已知AB=4, 则DE的长等于(A)A.6B.5C.9D.8 3第3题图第4题图4.(10分)如图, 点O是等边△PQR的中心, P′,Q′,R′分别是OP,OQ,OR的中点, 此时, △P′Q′R′与△PQR是位似三角形, 则相似比、位似中心分别是(D)A.2,点PB.12,点PC.2,点OD.12,点O5.(10分)如图, 火焰的光线穿过小孔O, 在竖直的屏幕上形成倒立的实像, 像的高度BD=2 cm, OA=60 cm, OB=15 cm, 则火焰的高度为8 cm .6.(10分)如图,如果虚线图形与实线图形是位似图形,求它们的相似比并找出位似中心.解:(1)相似比为2∶1,位似中心为点A;(2)相似比为2∶1,位似中心为点B;(3)相似比为4∶1,位似中心为点C.7.(10分)如图,以点P为位似中心,将五角星缩小为原来的12.解:如图所示.二、综合应用(20分)8.(20分)如图,正方形EFGH,IJKL都是正方形ABCD的位似图形,点P是位似中心.(1)如果相似比为3,正方形ABCD的位似图形是哪一个?(2)正方形IJKL是正方形EFGH的位似图形吗?如果是,求相似比;(3)如果由正方形EFGH得到它的位似图形正方形ABCD,求相似比.解:(1)正方形IJKL.(2)是;3∶2.(3)1∶2.三、拓展延伸(10分)9.(10分)如图, △ABC与△A′B′C′是位似图形, 点A, B, A′, B′,O共线, 点O 为位似中心.(1)AC与A′C′平行吗? 请说明理由;(2)若AB=2A′B′, OC′=5, 求CC′的长.解:(1)AC∥A′C′.∵△ABC与△A′B′C′是位似图形,∴∠A=∠B′A′C′,∴AC ∥A′C′.(2)∵△ABC 与△A′B′C′位似, ∴△ABC ∽△A′B′C′, ∴2OC AB OC A B ==''', ∴OC=10,∴CC′=OC -OC′=5.。
湘教版初中数学九年级上册3.6 第1课时 位似图形的概念及画法PPT课件
使得
3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.
A
B
D
A'
B'
D' C
C' O
探 究
对于上面的问题,还有其他方法吗?如果在四边形外任选一个点O,分别在
OA、OB、OC、OD的反向延长线上取A' ,B' 、C' 、D' ,使得
呢?如果点O取在四边形ABCD内部呢?
分别画出这时得到的图形.
C'
O
D'
B'
A'
A B
C
D
A
D
B
O
C
练习
1.如同,△OAB和△OCD是位似图形,AB与CD平行吗?
为什么?
C
AB∥CD
A
∵△OAB与△ODC是位似图形
D
∴△OAB∽△OCD
O
B
∴∠OAB=∠C
AB∥CD
2. 如图,以O为位似中心,将△ABC放大为原来的两倍. ①作射线OA 、OB 、 OC
②分别在OA、OB 、OC 上取点A' 、 B' 、C' 使得
B'
③顺次连结A' 、B' 、C' 就是所
B
39; C'
课后练习 见《学练优》本课练习“课后巩固提升”
图中有多边形相似吗?如果有,那么这种相似有什么特征? O O
O
九年级数学上册第1课时 位似图形及其画法
作品编号:522325647891253697158学校:朝阳岗市溪边镇柳树小学*教师:谢德刚*班级:蝴蝶叁班*8 图形的位似第1课时位似图形及其画法【知识与技能】1.了解图形的位似的概念,会判断简单的位似图形和位似中心.2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.【过程与方法】采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.【情感态度】使学生亲身经历位似图形的概念形成过程和位似图形性质的探索过程,感受数学知识的实用性.【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】探索位似概念、位似图形的性质及利用位似准确地把一个图形通过不同的方法放大或缩小.一、情境导入,初步认识下列图片是形状相同的一组图形.在图①上取一点A与图②上取相应点B的连线是否经过镜头中心P?换其它点呢?【教学说明】展示现实生活中的位似图形,让学生体会本课的价值,激发学生的兴趣.启发学生寻找图形的特点.二、思考探究,获取新知观察下面图形,有相似图形吗?如果有,有什么特征?【教学说明】教师演示引导学生观察对应点连线、对应边有什么特点.【归纳总结】如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,并且对应边平行(或在同一直线上),那么这样的两个图形叫做位似图形, 这个点叫做位似中心. 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.注意:同时满足下面三个条件的两个图形才叫做位似图形.三条件缺一不可:①两图形相似;②每组对应点所在直线都经过同一点;③对应边互相平行(或在同一直线上).2.把下面的四边形缩小到原来的12(相似比是12或位似比是12).解:(位似中心在图形外)作法略.四边形A ′B ′C ′D ′即为所求.你有其他画法吗?请互相交流.【教学说明】启发学生自己画,引导学生利用位似图形的性质画位似图形.组织学生讨论位似中心的位置有几种情况并画出图形.【归纳总结】画位似图形的方法:1.确定位似中心;2.找对应点;3.连线;4.下结论.三、运用新知,深化理解1. 下列说法中正确的是( D )A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.如图,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm ,OA=60cm,OB=15cm ,则AC 的长度为8cm.3. 如图,五边形A ′B ′C ′D ′E ′与五边形ABCDE 是位似图形,且位似比为12. 若五边形ABCDE 的面积为17cm 2, 周长为20cm ,那么五边形A ′B ′C ′D ′E ′的面积为2174cm ,周长为 10 cm .4.如图,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A=4∶3,则△ABC 与 △A ′B ′C ′ 是位似图形,位似比为 7∶4 ;△OAB 与 △OA ′B ′ 是位似图形,位似比为 7∶4 .答案:△A′B′C′7∶4 △OA′B′7∶45.如图:三角形ABC,请你在网格中画出把三角形ABC以C为位似中心放大2倍的三角形.【教学说明】小组合作交流、探究,动手操作.通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.四、师生互动,课堂小结通过本节课的学习,你有哪些收获?1.布置作业:教材“习题4.13”中第1、2 题.2.完成练习册中相应练习.在学习图形的位似概念过程中,让学生用类比的方法认识到事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识到事物的结论必须通过大胆猜测、推理和归纳.在分析理解位似图形性质时,加强师生的互动,提高学生分析问题、解决问题的能力.。
初中数学第1课时 位似图形的概念及画法
问题2:从左图中我们可以看到,△OAB∽△OA' B',
则 OA OB AB , AB∥A' B '. 右图呢?你得到了什么? OA' OB ' A' B '
归纳探究 1.位似图形是一种特殊的相似图形,它具有相似图形 的所有性质,即对应角相等,对应边的比相等.
2.位似图形上任意一对对应点到位似中心的距离之比 等于相似比.(位似图形的相似比也叫做位似比) 3.对应线段平行或者在一条直线上.
3.位似分为内位似和外位似,内位似的位似中心在连接 两个对应点的线段上;外位似的位似中心在连接两个图形( B )
A
B
C
D
2.下列说法正确的个数为( B ) ①位似图形一定是相似图形; ②相似图形一定是位似图形; ③两个位似图形若全等,则位似中心在两个图形之间; ④若五边形ABCDE与五边形A′B′C′D′E′位似, 则其中△ABC与△A′B′C′也是位似的,且位 似比相等. A.1 B.2 C.3 D.4
解:①作射线OA 、OB 、 OC ,
②分别在OA、OB 、OC 上
B'
取点A' 、B' 、C' 使得
B
③顺次连接A' 、B' 、C'
就是所要求图形.
O
A C
A' C'
课堂小结
位似图形的概念 位似的概念及画法 位似图形的性质
画位似图形
做一做
如图,四边形木框ABCD在灯泡发出的光照射下形成的
影子是四边形A′B′C′D′,若OB∶O′B′=1∶2,则四边形
ABCD的面积∶四边形A′B′C′D′的面积为( D )
九年级数学位似图形及其画法
8 图形的位似第1课时位似图形及其画法1.关于对位似图形的4个表述中:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.正确的个数为( B )(A)1个(B)2个(C)3个(D)4个2.图中的两个四边形是位似图形,它们的位似中心是( D )(A)点M (B)点N(C)点O (D)点P3.如图所示是△ABC的位似图形的几种画法,其中正确的个数是( C )(A)1 (B)2 (C)3 (D)44. 如图,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F得△DEF,则下列说法正确的个数是( C )①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1∶2④△ABC与△DEF的面积比为4∶1(A)1 (B)2 (C)3 (D)45.已知△ABC与△A′B′C′关于点O位似,其相似比是1∶2,AO=5 cm,则对应点A,A′之间的距离为 5 cm或15 cm .6. 如图,△A′B′C′是将△ABC放大后的图形,若图中线段AA′=OA,且S△A′B′C′=18 cm2,则△ABC的面积是8 cm2.7.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的相似比;(3)以点O为位似中心,再画一个△A″B″C″,使它与△ABC的相似比等于1.5.解:(1)如图所示,连接B′B,A′A,并延长B′B,A′A相交于点O,点O 即为它们的位似中心.(2)因为AB==,A′B′==2,所以△ABC与△A′B′C′的相似比为==.(3)如图所示,连接OA,OB,OC,并分别延长OA,OB,OC到A″,B″,C″,使OA″=OA,OB″=OB,OC″=OC.连接A″B″,B″C″,C″A″,则△A″B″C″即为所求作的图形.8.如图,下列由位似变换得到的图形中,面积比是1∶9的是( D )9. 矩形ABCD与矩形AB′C′D′是位似图形,A为位似中心,已知矩形ABCD的周长是24,BB′=4,DD′=2,求AB和AD的长.解:因为矩形ABCD与矩形AB′C′D′是位似图形,且点A为位似中心,所以=,即=,所以2AB=4AD,即=,又因为矩形ABCD的周长为24,所以AB+AD=12,所以AB=8,AD=4.10. 如图,在▱ABCD中,点E是BC的中点,AE,BD相交于点O,(1)写出图中的位似三角形,并指出其位似中心和位似比.(2)如果S△BOE=6,求S△ABD的值.解:(1)△AOD与△EOB位似,位似中心为O,位似比为2.(2)在▱ABCD中,AD∥BC,则△AOD∽△EOB,所以==,所以=,=,又S△BOE=6,所以S△AOD=24,S△AOB=12,所以S△ABD=36.11. (规律探究题)如图,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…,正△A n B n C n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点,…,A n是OA n-1的中点,顶点B2,B3,…,B n,C2,C3,…,C n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n C n(n≥2)的周长.解:(1)因为△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,所以正△A2B2C2的边长为,正△A3B3C3的边长为,正△A10B10C10的边长为,正△A7B7C7的边长为.所以正△A10B10C10和正△A7B7C7的相似比为=,它们的位似中心为点O.(2)因为第n个三角形△A n B n C n(n≥2)的边长为,所以第n个三角形△A n B n C n(n≥2)的周长为.。
北师版九年级数学上册《图形的位似》PPT课件
感悟新知
知3-导
第二步;画出图形各顶点与位似中心O的连线; 第三步:按相似比取点; 第四步:顺次连接各点,所得的图形就是所求的图形.
感悟新知
知3-导
2.要点精析: (1)位似中心的选取要使画图方便且符合要求,一般以多边形
的一个顶点为位似中心画图最简便. (2)画位似图形时,要弄清相似比,即分清是已知图形与新图
课堂小结
图形的位似
知识总结
知识方法要点
关键总结
注意事项
每组对应点所在直线交于一 画位似图形时要找准对应点,
位
点的相似多边形是位似多边 理解相似比.注意位似中心的位
似 多
形; 位似多边形的对应边平 置:①位似中心在多边形的一
边
行或在一条直线上,多边形 侧;②两个多边形分居在位似
形
上任意一组对应点到位似中 中心的两侧;③位似中心在两
感悟新知
知识点 3 位似图形的画法
知3-导
1.画位似图形的步骤:
第一步:确定位似中心O(位似中心可以在图形外部,也可以在
图形内部,还可以在图形的边上,还可以在某一个顶点上);
特别提醒: ◆位似中心的选取一般考虑使画图方便且符合要求. ◆以一点为位似中心画位似图形时,符合要求的图形往往
不唯一,一般情况下,同一个位似中心的两侧各有一 个符合要求的图形.
求出AD的长,然后根据△OAD∽△OBG,求出
OB的长,即可确定C点的坐标.
∵正方形BEFG的边长是6,∴BE=EF=6,
∵两正方形的相似比为1∶3. ∴ CB CB 1 .
EF 6 3
∴AB=BC=CD=AD=2.
根据位似图形的性质可知,OA=1,即 OB 2 1 .
OB 3
九年级数学知识点归纳:位似图形
九年级数学知识点归纳:位似图形九年级数学知识点归纳:位似图形1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.3.难点的突破方法(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.(3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.一、选择题1.下列说法正确的是().A.相似的两个五边形一定是位似图形B.两个大小不同的正三角形一定是位似图形C.两个位似图形一定是相似图形D.所有的正方形都是位似图形考查目的:考查位似图形的概念.答案:C.解析:位似图形是相似图形的特例,相似图形不一定是位似图形,故答案应选择C.2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是()A.16B.32C.48D.64考查目的:考查位似图形的概念和性质.答案:A.解析:位似图形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比.相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.故答案应选择A.3.如图,以点A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若S1表示△ADE的面积,S2表示四边形DBCE的面积,则S1∶S2=()A.1∶2B.1∶3C.1∶4D.2∶3考查目的:考查位似图形的性质和画法.答案:B.解析:位似图形必定相似,具备相似形的性质,△ADE与△ABC相似比为1∶2,则面积比为1∶4,所以△ADE与四边形DBCE的面积比为1∶3,故答案应选择B.二、填空题4.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为1:2.若五边形ABCDE的面积为17cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为________cm2,周长为________cm.考查目的:考查位似图形的概念和性质.答案:68;40.解析:位似图形必定相似,相似比是1∶2,则面积比是1∶4,故五边形A′B′C′D′E′的面积应是68cm2;周长是40cm.5.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为________cm.考查目的:考查位似图形的概念和性质.答案:50.解析:位似图形一定是相似图形,具备相似图形的性质,其相似比等于一组对应边的比,相似比是3∶5,则周长比是3∶5,故答案应是50.三、解答题6.利用位似的方法把下图缩小到原来的一半,要求所作的图形在原图内部.考查目的:考查位似图形的画法.答案:解析:利用位似的方法作图,要求所作图要位于原图内部,关键是确定位似中心,本题的位似中心取在原图内部,(1)在五边形ABCDE内部任取一点O.(2)以点O为端点作射线OA、OB、OC、OD、OE.(3)分别在射线OA、OB、OC、OD、OE上取点A′、B′、C′、D′,使OA∶OA′=OB∶OB′=OC∶OC′=OD∶OD′=OE∶OE′=2∶1.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′.7.如图,小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18m,已知小明的身高是1.6m,他的影长是2m.(1)图中△ABC与△ADE是否位似?为什么?(2)求古塔的高度.考查目的:考查位似图形的概念和性质.答案:△ABC与△ADE位似;古塔的高度为16m.解析:根据位似图形的概念,△ABC与△ADE中,BC与DE平行,两个三角形相似,且对应顶点的连线相交于一点,所以△ABC与△ADE位似.利用相似三角形对应边成比例,可求出DE的长,故古塔的高度是16m.。
北师大版-数学-九年级上册-位似图形的概念、性质与画法 重难点突破
初中-数学-打印版
位似图形的概念、性质与画法重难点突破
位似图形的准确作图及动手能力的落实
突破建议
1.对位似中心与图形的位置关系进行分类
如在进行“已知位似中心点O与△ABC,画△ABC关于点O的位似图形”的教学时,可以采用开放式的探讨方式,给出问题交给学生交流讨论:
(1)如果位似中心点O是一动点,则点O与△ABC有几种位置关系,画出示意图.
(2)分别以O为位似中心,将△ABC放大或缩小.让学生经历猜想,实验,总结的过程,将成果展示给所有人,对学生掌握图形分类思想方法和自我反思归纳的思维方式有很大的帮助.
2.对作图方法的模仿、归纳和总结
在教学时,规范点O在△ABC外部时候的作图方法,并强调作图的三个步骤:一是连接位似中心与三角形三个顶点,二是根据相似比截取对应点,三是顺次连接对应点到位似图形.
初中-数学-打印版。
九年级数学 导学案 第1课时 位似图形的概念及画法
27.3 位似第1课时位似图形的概念及画法教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.一.创设情境活动1 提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.思考:观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.)结论:________________________________________________二、利用位似,可以将一个图形放大或缩小活动2 提出问题:把图1中的四边形ABCD 缩小到原来的21. 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:作法二:作法三:三、课堂练习1下列图中的两个图形不是位似图形的是( )A .B .C.D.2下列四图中的两个三角形是位似三角形的是()A.图(3)、图(4)B.B.图(2)、图(3)、图(4)C.C.图(2)、图(3)D.D.图(1)、图(2)3.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:795455385809833310022221525
学校:动主汛市服全腾镇里器小学*
教师:管大发*
班级:飞翔参班*
8 图形的位似
第1课时位似图形及其画法
【知识与技能】
1.了解图形的位似的概念,会判断简单的位似图形和位似中心.
2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.
【过程与方法】
采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.
【情感态度】
使学生亲身经历位似图形的概念形成过程和位似图形性质的探索过程,感受数学知识的实用性.
【教学重点】
图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.
【教学难点】
探索位似概念、位似图形的性质及利用位似准确地把一个图形通过不同的方法放大或缩小.
一、情境导入,初步认识
下列图片是形状相同的一组图形.在图①上取一点A与图②上取相应点B的
连线是否经过镜头中心P?换其它点呢?
【教学说明】展示现实生活中的位似图形,让学生体会本课的价值,激发学生的兴趣.启发学生寻找图形的特点.
二、思考探究,获取新知
观察下面图形,有相似图形吗?如果有,有什么特征?
【教学说明】教师演示引导学生观察对应点连线、对应边有什么特点.
【归纳总结】如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,并且对应边平行(或在同一直线上),那么这样的两个图形叫做位似图形, 这个点叫做位似中心. 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.
注意:同时满足下面三个条件的两个图形才叫做位似图形.三条件缺一不可:
①两图形相似;
②每组对应点所在直线都经过同一点;
③对应边互相平行(或在同一直线上).
2.把下面的四边形缩小到原来的1
2
(相似比是
1
2
或位似比是
1
2
).
解:(位似中心在图形外)作法略.
四边形A ′B ′C ′D ′即为所求.
你有其他画法吗?请互相交流.
【教学说明】启发学生自己画,引导学生利用位似图形的性质画位似图形.组织学生讨论位似中心的位置有几种情况并画出图形.
【归纳总结】画位似图形的方法:1.确定位似中心;2.找对应点;3.连线;
4.下结论.
三、运用新知,深化理解
1. 下列说法中正确的是( D )
A.位似图形可以通过平移而相互得到
B.位似图形的对应边平行且相等
C.位似图形的位似中心不只有一个
D.位似中心到对应点的距离之比都相等
2.如图,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm ,OA=60cm,OB=15cm ,则AC 的长度为8cm.
3. 如图,五边形A ′B ′C ′D ′E ′与五边形ABCDE 是位似图形,且位似比为12
. 若五边形ABCDE 的面积为17cm 2, 周长为20cm ,那么五边形A ′B ′C ′D ′E ′的面积为2174
cm ,周长为 10 cm .
4.如图,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A=4∶3,则△ABC 与 △A ′B ′C ′ 是位似图形,位似比为 7∶4 ;△OAB 与 △OA ′B ′ 是位
似图形,位似比为7∶4 .
答案:△A′B′C′7∶4 △OA′B′7∶4
5.如图:三角形ABC,请你在网格中画出把三角形ABC以C为位似中心放大2倍的三角形.
【教学说明】小组合作交流、探究,动手操作.通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.
四、师生互动,课堂小结
通过本节课的学习,你有哪些收获?
1.布置作业:教材“习题4.13”中第1、2 题.
2.完成练习册中相应练习.
在学习图形的位似概念过程中,让学生用类比的方法认识到事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识到事物的结论必须通过大胆猜测、推理和归纳.在分析理解位似图形性质时,加强师生的互动,提高学生分析问题、解决问题的能力.。