化工原理第三章---过滤

合集下载

化工专业化工原理实验---过滤

化工专业化工原理实验---过滤

实验二 过滤实验1 实验目的(1)了解过滤设备的构造和操作方法。

(2)掌握过滤问题的简化工程处理方法。

(3)测定在恒压操作时的过滤常数K ,q e ,τe ,并以实验所得结果验证过滤方程式,增进对过滤理论的理解。

(4)改变压强差重复上述操作,测定压缩指数s 和物料特性常数k (选做)。

2 基本原理过滤过程是将悬浮液送至过滤介质及滤饼一侧,在其上维持另一侧较高的压力,液体则通过介质而成滤液,而固体粒子则被截留逐渐形成滤饼。

过滤速度由过滤介质两端的压力差及过滤介质的阻力决定。

过滤介质阻力由二部分组成,一为过滤介质,一为滤饼(先沉积下来的滤饼成为后来的过滤介质)。

因为滤饼厚度(亦即滤饼阻力)随着时间而增加, 所以恒压过滤速度随着时间而降低。

对于不可压缩性滤饼,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:2e e ()(+) q q K θθ+= (2.1) (2.1)式中:q —单位过滤面积获得的滤液体积,m 3/m 2;q e —单位过滤面积的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ;θe —虚拟过滤时间,s ;K —过滤常数,m 2/s 。

将(2.1)式微分,可以得到:e 22d q q dq K Kθ=+ (2.2) 当各数据点的时间间隔不大时,d θ/ d q 可以用增量之比△θ/△q 来代替,即:e 22q q q K Kθ∆=+∆ (2.3) 式(2.3)为一直线方程。

试验时,在恒压下过滤要测定的悬浮液,测出过滤时间θ及滤液累积量q 的数据,在直角坐标纸上标绘△θ/△q 对q 的关系,所得直线斜率为2/K ,截距为2q e /K ,从而可以分别得到K 和q e 。

式(2.1)中的θe 可由下式获得:2e e q K θ= (2.4)其中,过滤常数K 的定义式为:1=2s K k p -∆ (2.5) 将式(2.5)两边取对数,得到:l g =(1)l g ()l g K s p k -∆+(2.6)因为s 为常数,k =1/(μr 0v ),k 也为常数,故在双对数坐标体系中,K 与△p 为线性关系,直线的斜率为1-s ,截距为lg(2k ),由此可分别计算出压缩性指数s 和物料的特性常数k 。

化工原理课件第三节过滤

化工原理课件第三节过滤

•设备革新
增大过滤面积
弹性压榨隔膜
第二章
29
第二章
30
dV A2p
dt rv(V Ve)
V
(VVe)dV
A2pt
dt
0
rv 0
恒压过滤方程
V2 2VeV2A2pt
rv
令 K 2p
rv
K——过滤常数,m2/s
V22VeV K2A t
第二章
13
二、恒压过滤方程
V22VeV K2A t
令 q=V/A qe=Ve/A
压滤是利用压缩空气
或液体输送设备在输
送料液时产生的压力 为推动力完成过滤。
第二章
18
板框压滤机
间歇操作 压滤设备
由机头(固定头)、滤框、滤板、头板、尾板、压紧装置等组成。
第二章
19
板框压滤机
框、板形状 :
材料:金属(铸铁、碳钢、不锈钢、铝)、塑料、木材等。 过滤面积:框——长×宽×2 板——两面
qe——过滤常数,m3/m2
q2 2qeqKt
——均为恒压过滤方程 * 当滤饼阻力远远大于过滤介质阻力时:
V2 KA2t & q2 Kt
第二章
14
三、过滤常数K、qe测定
恒压条件下,测得t1、t2时间获得的滤液体积V1、V2 :
V12 2VeV1 KA2t1
V22 2VeV2 KA2t2
每旋转一周的生产能力为 Q=60nV
优缺点:
适于处理量大而又容易过滤的料浆,对不易过滤的细、粘料浆可采 用助滤剂的方法也很方便(刮刀稍微离开转鼓表面一定距离)。附 属设备较多,投资费用高;滤饼含液量较高(约30%);料浆温度 不能过高。

化工原理过滤

化工原理过滤

化工原理过滤
化工原理中的过滤操作是一种常见的分离技术,常用于固液分离或浓缩溶液中的悬浮物。

过滤的基本原理是利用过滤介质的孔隙来阻挡固体颗粒,使液体通过,从而实现固液分离。

过滤可以通过不同的方法进行,常见的有压力过滤、真空过滤和重力过滤等。

压力过滤是利用外部压力将液体推动通过过滤介质,真空过滤则是利用负压将液体吸附并通过过滤介质,而重力过滤则是利用重力将液体逐渐通过过滤介质。

在过滤过程中,过滤介质的选择十分重要。

通常选择具有一定孔隙大小和孔隙分布的过滤介质,以阻挡固体颗粒的同时保证液体的通过。

过滤介质可以是多种形式,如滤纸、滤布、滤板等。

滤纸是一种常见的过滤介质,具有不同的过滤速度和过滤精度。

滤布和滤板则常用于需要更高的过滤精度和更长使用寿命的场合。

在过滤过程中,还可以采用一些辅助设备来提高过滤效果。

常见的辅助设备包括搅拌装置、加热装置和冷却装置等。

搅拌装置可以通过搅拌将固体颗粒更好地分散在液体中,加快过滤速度;加热装置和冷却装置则可以改变液体的温度,提高过滤效果。

需要注意的是,在进行过滤操作时,要根据具体情况选择适当的过滤方式、过滤介质和辅助设备。

同时,要根据固液分离的要求和液体性质进行操作,并进行必要的控制和调整,以获得满意的过滤效果。

化工原理第三章沉降与过滤PPT

化工原理第三章沉降与过滤PPT
真空过滤
利用真空泵降低过滤介质两侧 的压力差进行过滤,适用于易 产生泡沫或悬浮液中含有大量
气体的场合。
过滤设备与操作
板框压滤机
由滤板和滤框组成,适 用于各种颗粒分离,但
操作较繁琐。
转筒真空过滤机
叶滤机
袋式过滤器
结构简单,操作方便, 但只适用于颗粒较大的
分离。
适用于精细颗粒的分离, 但设备成本较高。
过滤原理
利用颗粒大小、形状、密度等物 理性质的差异,使不同颗粒在过 滤介质两侧形成不同的速度或动 量,从而实现分离。
过滤操作的分类
恒压过滤
在恒定压力下进行过滤,适用 于颗粒粒度较小、悬浮液粘度
较大的情况。
变压过滤
在改变压力下进行过滤,适用 于颗粒粒度较大、悬浮液粘度 较小的情况。
热过滤
在加热条件下进行过滤,适用 于悬浮液中含有热敏性物质的 情况。
设备
沉降槽、沉降池、离心机等。
操作
将悬浮液引入沉降设备中,在重力作用下使固体颗粒下沉,上清液从上部排出, 底部沉积的固体经过排出装置排出。操作过程中需控制适当的温度、流量和停留 时间等参数,以保证分离效果。
02
过滤
过滤的定义与原理
过滤定义
通过多孔介质使固体颗粒截留, 从而使液体与固体分离的操作。
实验步骤 1. 准备实验装置,包括过滤器、压力计、流量计等。
2. 将过滤介质放入过滤器中。
过滤实验操作
3. 将待测流体引入过滤器,并施加一定的压力。 5. 收集过滤后的流体样本,测量其中颗粒的浓度。
4. 记录不同时刻的流量和压差数据。
注意事项:确保过滤器密封性好,避免流体泄漏;保持 恒定的流体流量和压力,以获得准确的实验数据。

化工原理 第三章 过滤

化工原理 第三章 过滤

1、恒压过滤方程式
dV
A 2 p


d rv(V Ve )
条件:恒压 Δ p=const 设备一定 A=const
过滤介质一定 Ve=const 悬浮液一定 r、μ 、v =const

K 2p
rv
——过滤常数

dV
KA2

d 2(V Ve )
2(V Ve )dV KA2 d
2019/8/3
2019/8/3
5、助滤剂 (1)滤饼的种类
不可压缩滤饼:颗粒有一定的刚性,所形成的滤饼并
滤饼
不因所受的压力差而变形 ;
可压缩滤饼:颗粒比较软,所形成的滤饼在压差的作
用下变形,使滤饼中的流动通道变小,
阻力增大。
助滤剂一般用于可压缩滤饼。
2019/8/3
(2)助滤剂的作用 对于可压缩滤饼,过滤阻力在过滤压力提高时明显增大,
几点说明:
①其中多孔介质称为过滤介质;所处理的悬浮液称为滤浆; 滤浆中被过滤介质截留的固体颗粒称为称为滤饼或滤渣;通 过过滤介质后的液体称为滤液;
②驱使液体通过过滤介质的推动力可以有重力、压力(或压 差)和离心力,工业过程中经常采用的是压力;
③过滤操作的目的可能是为了获得清净的液体产品,也可能 是为了得到固体产品;
2019/8/3
V+V V e
V+V e
V
B
V e0


2019/8/3
0' e
e
e
恒压过滤的滤液体积与过滤时间关系曲线.swf
(5)由比阻r的定义可以看出,其值与滤饼的空隙率ε 及比
例系数有关。如果滤饼不可压缩,则这两个量便与压力无关

大学化工原理实验三 过滤实验

大学化工原理实验三 过滤实验
实验三 过滤试验
过滤是分离非均相混合物的 方法之一。
本实验装置主要测定给定物 料在一定操作条件和过滤介质时 的过滤常数。
一、实验目的和任务
熟悉过滤的工艺流程 掌握过滤的操作级调节方法 学会测定过滤常数K、qe、τe及物料特性常
数K和压缩性指数S或比阻r0
二、实验原理
恒压过滤 dV A2p1s
d rv(V Ve)
令 k 1/ rv K 2kp(1s) q Ve/ A qe Ve / A 对上式积分,得 (q qe )2 K ( e )
二、实验原理
过滤常数K、qe、τe的测定
2(q
d
dq
qe 2 K
)dq q
Kd
2 K qe
q
2 K
q
2 K
qe
得一直线,由此直线的斜率及截距确定2/K 及2qe/K,由此求得K,qe。并通过下式求出τe
整理实验数据,完成实验报告
五、实验基本操作步骤
配制含CaCO3 8%~13%(wt.%)的水悬浮液, 作为滤浆
开动循环水泵,使水力真空喷射泵开始工 作,若系统不能造成真空,检查原因并作 适当处理
五、实验基本操作步骤
真空系统运转正常后,调好真空度,将过 滤板放入清水盆中,将清水吸入剂量筒中 某液面建立零点,然后关闭阀门。
二、实验原理
滤饼特定常数k和压缩指数s的测定 改变实验过滤压差,可测得不同的k值,
由的定义式两边取对数,得一直线 ㏒K=(1-s) ㏒△p+㏒2k
斜率为(1-s)可得滤饼压缩性指数s, 进而可得物料特性常数k
பைடு நூலகம்
二、实验原理
滤饼比阻r0的测定 如果测得滤液的粘度μ以及实验过程得
到的滤饼体积和滤液体积,求得单位滤液 体积所生成的滤饼体积的值υ,即可由

化工原理第三章过滤3-2

化工原理第三章过滤3-2

导致滤饼两侧的压强差增大。滤饼的压缩性对压强差有较大影响。
加入助滤剂
改变滤饼的结构
增加刚性
助滤剂的加入,可以增大滤饼的空隙率,对于所处理的悬浮液 颗粒比较细小而且粘度很大时,效果尤为明显。
使用方法:
①混入悬浮液:助滤剂混入待滤的悬浮液一起过滤。
②预涂:预先制备只含助滤剂颗粒的悬浮液并先行过。
适用场合:以获得清洁滤液为目的才使用,当滤饼是产品时不能 使用助滤剂。
C 1 C 1
C
P

Ρp:固体的密度 Ρc:湿滤渣的密度 Ρ:液体的密度
kg干渣/ kg悬浮液
X—单位质量悬浮液中所含干滤渣质量。
ω—得到1m3滤液所形成的干滤渣质量。 取1kg悬浮液为基准:
kg(干渣)/m3(滤液)
X 1 CX /
湿滤渣质量与滤液体积的比值ωC ωC——kg湿渣/m3滤液
过滤基本方程
过滤速度: 单位时间内通过单位过滤面积的滤液体积,
m3/m2s。
过滤速率: 单位时间内获得的滤液体积,m3/s。
任一瞬间的过滤速度为:
pc dV 3 u 2 ( ) 2 Adt 5a (1 ) L
Apc dV 3 2 ( ) 2 dt 5a (1 ) L
(三)助滤剂
随着过滤的进行,滤饼的厚度增大,滤液的流动阻力亦逐渐增大, 滤饼分为可压缩滤饼和不可压缩滤饼。 不可压缩滤饼:某些悬浮液中的颗粒所形成的滤饼具有一定的刚 性,滤饼的空隙结构不会因为操作压差的增大而变形。 可压缩滤饼:滤饼因为操作压差的增大而发生不同程度的变形, 滤饼中的流动通道缩小,流动阻力增加。 克服滤饼压缩性的手段:
管道截面积 d e 4 水力半径 4 润湿周边长

(化工原理)第三节 过滤

(化工原理)第三节 过滤
Ve=0,θe=0
qe2 =Kθe q2+2qqe =Kθ (q+qe)2=K(θ+θe)
恒压过滤-6
K是由物料特性及过滤压强差所决定的常数, 称为滤饼常数,其单位为m2/s,
θe与qe是反映过滤介质阻力大小的常数,均称 为介质常数,其单位分别为s及m3/m2,三者总 称过滤常数。
又当介质阻力可以忽略时,qe=0, θe=0,
过滤介质的阻力
设想用Le厚度滤饼代替滤布,设想中 的滤饼就应当具有与滤布相同的阻力, 即: rLe =Rm
过滤基本方程式
五、过滤基本方程式 若每获得1m3滤液所形成的滤饼体积为υ3,
则在任一瞬间的滤饼厚度L与当时已经 获得滤液体积V之间的关系应为:
LA =υV
υ——滤饼体积与相应的滤液体积之比,无因次, 或m3/m3
把过滤介质的阻力视为常数, 写出滤液穿过 过滤介质层的速度关系式:
m
过滤介质的阻力
式中
Δpm —— 过滤介质上、下游两侧的压强差, N/m2
Rm——过滤介质阻力,1/m
过滤操作中总是把过滤介质与滤饼联合 起来考虑。
过滤阻力
滤饼与滤布的面积相同,所以两层中的 过滤速度应相等,则:
式中Δp=Δpc+Δpm ,代表滤饼与滤布两 侧的总压强降,称为过滤压强差。
则生产能力的计算式为
式中
V——一个操作循环内所获得的滤液体积,m3 Q——生产能力,m3/h。
过滤机的生产能力-3
二、连续过滤机的生产能力
过滤机的生产能力-4
恒压过滤方程式
(V+Ve)2=KA2(θ+θe)
可知转筒每转一周所得的滤液体积为
则每小时所得滤液体积,即生产能力为

化工原理中过滤的原理

化工原理中过滤的原理

化工原理中过滤的原理过滤是一种常用的固液分离操作,它在化工生产中被广泛使用。

过滤的原理是通过选择性通透性的过滤介质,将混合液中的固体颗粒物过滤掉,使固体和液体分离,从而实现对溶液、悬浮液或悬浮体的固液分离。

过滤的基本原理是利用过滤介质的孔隙、表面性质和介质层的阻挡作用实现固液分离。

过滤介质可以是各种固体材料,如纸张、纤维、陶瓷、布料、过滤膜等。

根据孔隙大小,过滤可以分为粗过滤、中过滤和细过滤。

在过滤过程中,混合液经过过滤介质,固体颗粒被阻挡在过滤介质上,而溶液或悬浮液则通过过滤介质的孔隙或表面,从而分离出来。

当混合液通过过滤介质时,颗粒物与过滤介质表面发生接触,形成一个颗粒物层。

随着混合液的通过,颗粒物层逐渐增厚,形成一个带有颗粒物的过滤膜。

由于颗粒物层的存在,过滤膜会形成一个阻力,这个阻力被称为阻力梯度,它与颗粒物层的厚度、孔隙度和颗粒物的形状有关。

过滤的主要参数包括过滤速度、过滤精度和过滤阻力。

过滤速度是指单位时间内通过过滤介质的溶液或悬浮液的体积,它取决于过滤介质的孔隙大小和过滤压差。

过滤精度是指过滤介质能够过滤掉的颗粒物的最小直径,它取决于过滤介质的孔隙大小。

过滤阻力是指通过过滤介质时产生的阻力,它取决于过滤介质的孔隙度、厚度和颗粒物层的性质。

过滤的效果受多种因素的影响,包括过滤介质的性质和形状、过滤压差、过滤介质与固体颗粒之间的相互作用力、颗粒物的浓度和颗粒物的形状等。

选择适当的过滤介质和调节过滤条件可以提高过滤效果。

在工业过滤中,根据情况可以采取不同的过滤方式,如常见的压力过滤、层析过滤、吸附过滤、离心过滤等。

这些过滤方式在应用中根据混合液的性质和固体颗粒的特点进行选择,以获得最佳的过滤效果。

总之,过滤是一种常用的固液分离操作,通过过滤介质的孔隙、表面性质和介质层的阻挡作用实现混合液的固液分离。

过滤的效果受多种因素的影响,包括过滤介质的性质和形状、过滤压差、过滤介质与固体颗粒之间的相互作用力等。

化工原理第三章沉降与过滤课后习题包括答案.doc

化工原理第三章沉降与过滤课后习题包括答案.doc

第三章沉降与过滤沉 降【 3-1 】 密度为 1030kg/m 3、直径为 400 m 的球形颗粒在 150℃的热空气中降落,求其沉降速度。

解 150℃时,空气密度0.835kg / m 3 ,黏度 2.41 10 5 Pa s颗粒密度p 1030kg / m3,直径 d p 4 10 4 m假设为过渡区,沉降速度为4 g 2 ( p)214 9 81 2 103013234u td p( . ) ( ) 4 101.79 m / s225225 2.41 10 50.835d p u t44101 79 0.835验算Re=.24 82 41 105..为过渡区3【 3-2 】密度为 2500kg/m 的玻璃球在 20℃的水中和空气中以相同的速度沉降。

解 在斯托克斯区,沉降速度计算式为u td 2ppg / 18由此式得(下标w 表示水, a 表示空气)18pw d pw2( pa )d pa2 u t =gwad pw ( d pa(pa )wpw)a查得 20℃时水与空气的密度及黏度分别为w998 2 3w 1 . 004 10 3 . kg / m , Pa s 1 205 3a1 81 10 5 Pa sa . kg / m , .已知玻璃球的密度为p2500 kg / m 3 ,代入上式得dpw( 2500 1 205 ) 1 . 004 10.d pa( 2500998 2 1 . 81 10. )359.61【 3-3 】降尘室的长度为10m ,宽为 5m ,其中用隔板分为 20 层,间距为 100mm ,气体中悬浮的最小颗粒直径为10 m ,气体密度为1.1kg / m 3 ,黏度为 21.8 10 6 Pa s ,颗粒密度为4000kg/m 3。

试求: (1) 最小颗粒的沉降速度;(2) 若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3) 此降尘室每小时能处理多少m 3 的气体解 已知 d pc10 10 6 m, p4000kg / m 3 ,1.1kg / m 3 ,21.8 10 6 Pa s(1) 沉降速度计算假设为层流区gd pc 2 (p) 9 . 81 ( 10 10 6 2 ( 4000 1 1u t)6 . ) 0.01m / s1818 21.8 10d pc u t10 10 6 0 01 1 1000505. 2 验算 Re21 8 10 6 为层流.(2) 气体的最大流速 umax 。

化工原理第三章---过滤

化工原理第三章---过滤

2、过滤基本方程的推导 简化模型:假定: (1)流体的流动空间等于床层中颗粒之间的全部空隙体积。 (2)细管的内表面积等于全部颗粒的表面积。
u 空床速度(表观速度)
p1
L
u le
de
真 实 速 度
u1
流体在固定床内流动的简化模型
讨论: 设滤饼的体积为Vc,颗粒的比表面积为a
① u1与u的关系
滤饼层的空隙体积
说明:随着过滤过程的进行,滤饼逐渐加厚,过滤阻力不断 增加,可以想见,如果过滤压力不变,即恒压过滤时,过滤 速度将逐渐减小。因此上述定义为瞬时过滤速度。
(二)涉及的几个术语
1. 空隙率: 单位体积床层中的空隙体积,用ε表示。 ε=空隙体积 / 床层体积 m3/m3
2. 颗粒比表面积:单位体积颗粒所具有的表面积,用a表示。 a=颗粒表面 / 颗粒体积
③多孔固体介质:具有很多微细孔道的固体材料,如多孔陶 瓷、多孔塑料、多孔金属制成的管或板,能拦截1-3m的微细 颗粒。
④多孔膜:用于膜过滤的的各种有机高分子膜和无机材料膜。 醋酸纤维素和芳香酰胺系两大类有机高分子膜。可用于截留 1m以下的微小颗粒。
4、滤饼的压缩性及助滤剂
1)滤饼的可压缩性
滤饼
对基本过滤方程积分,得
积分得: V22VV eK2 A

q22qq e K
若过滤介质阻力可忽略不计,则
V2 KA2

q2 K
恒压过滤 方程
△p
u 表观速度
K ——过滤常数 由物料特性及过滤压强差所决定 ,m2/s
复 习:
1. 过滤的定义及相关术语(滤浆;滤液;滤饼;过滤介质)
2. 过滤基本方式(滤饼过滤;深层过滤;膜过滤)

化工原理第三章过滤

化工原理第三章过滤

对于不可压缩滤饼:
r仅取决于悬浮液的物理性质,
对于可压缩滤饼:
Δψ↑,r↑
r r(0 )s
s—压缩指数 不可压缩滤饼s=0 可压缩滤饼s=0.2~0.8
2).过滤介质的阻力
(Resistance of Medium)
过滤介质阻力的大小可视为通过单 位 的虚过拟滤滤面饼积层获的得阻某力当。量滤液量qe所形成 通过过滤介质层的过滤速率:
L
K'
a2 1
3
2
u
3 、床层特性ε和a
其中影响最大的是ε
数学模型法
主要步骤:
1. 将复杂的真实过程简化成易于用数学方程式 描述的物理模型
2. 建立数学模型
3. 通过实验对数学模型的合理性进行检验并测 定模型参数
关键:在于合理简化,具体问题具体分析
必须对于过程的内在规律特别是过程的 特殊性有着深刻的理解。
上节重点内容回顾:
2. 板框压滤机的特点: 结构紧凑,过滤面积大,操作压差高,
可过滤细小颗粒或粘度较大的物料。 劳动强度大,操作环境差。
3. 过滤速率u的定义 单位时间、单位过滤面积所得的滤液量
4、请说出下式中每一个符号的物理含义
K 2 r
4)过滤速率基本方程式(The Base Equation)
结构:网状框架,外面套一层滤布袋, 多个框架连接于滤液总管。
操作:预涂,过滤,排浆,卸渣,清洗(再生)。
4.转筒过滤机(Rotray Drum Filter)
结构(Constraction): 转鼓,分配头,滤浆槽,驱动装置。
特点:
自动连续操作, 过滤速率较大。但过滤 面积较小,过滤压差不 大,附属设备较多,流 程复杂。

化工原理3 过滤

化工原理3 过滤

3.1.2 过滤设备
② 流程
装合、过滤、洗涤、卸渣、整理,1232123212321……
3.1.2 过滤设备
③ 特点
优点:结构简单,过滤面积大(100×100mm~1500 × 1500mm)而占地省,过滤压力高(可达1.5MPa),操作灵 活,便于用耐腐蚀材料制造,所得滤饼水分含量少,又能充 分地洗涤。
d
2 e
式中 l'—— 滤饼孔道的平均长度,m;
u'——为滤饼孔道中滤液的流速, m/s;
de —— 为孔道的当量直径,m。
de

4

流通截面积 润湿周边

4

流通截面积 l 滤饼层体积 润湿周边 l 滤饼层体积

4
aB

4
1 S0
u
体积流量 流通截面积
体积流量 滤饼层截面积 流通截面积 滤饼层截面积
3.1.2 过滤设备
(3)转筒真空过滤机(Rotary vacuum drum filter) ① 结构与工作原理:
3.1.2 过滤设备
3.1.2 过滤设备
②流程 过滤、洗涤、吸干、吹松、卸渣
③特点 优点:操作连续、自动 缺点:设备体积庞大,过滤面积相对较小,过滤、洗涤
推动力小,洗涤不充分,适用于处理量大而容易过滤的悬浮 液分离。
aB 滤饼层体积
颗粒总表面积 S0 颗粒总体积
颗粒总体积
滤饼层体积 1


滤饼层体积 颗粒总体积 滤饼层体积
aB 1
S0
aB 1 S0
3.1.3 过滤基本理论
3.1.3.2 滤液通过滤饼层的流动
流动阻力可用哈根—泊谡叶方程表示:

化工单元操作任务三_过滤操作技术

化工单元操作任务三_过滤操作技术
dt
引入比例因数K’过滤速度为: dV K'u K' d12pc
Adt
32L
另:1 K ' d12
r' 32
则有: dV

pc
Adt r' L
式中 V —— 滤液量,m3; t —— 过滤时间,s; A —— 过滤面积,m2。 r’—滤饼参量,m-2
4、比阻r
单位厚度滤饼的阻力; 在数值上等于粘度为1Pa·s的滤液以1m/s的平均流速通过 厚度为1m 的滤饼层时所产生的压强降;
⑤多孔塑料过滤介质。 ⑥垂熔玻璃过滤介质。 ⑦多孔陶瓷。 ⑧微孔滤膜。
滤饼的压缩性和助滤剂
随着过滤的进行,滤饼的厚度增大,滤液的流动阻力亦逐 渐增大,导致滤饼两侧的压强差增大。滤饼的压缩性对压强差 有较大影响。
不可压缩滤饼:若颗粒由不易变形的坚硬固体组成,则当
压强差增大时,滤饼的结构不发生明显变化,单位厚度滤饼 的流动阻力可视作恒定,这类滤饼称为不可压缩滤饼。
V V 0
Ve d V kA2 p1s
t
dt
0
令K=2kp1-s
V 2 +2Ve V=KA2t
(1)
又令 q=V/A,qe=Ve/A
若忽略过滤介质阻
q 2 +2qqe =Kt
(2)
力,Ve=0
V2=KA2t
(1)和(2)式都称为恒压过滤方程式。
(三) 恒速过滤
若维持过滤速率恒定,这样的过滤操作方式称为恒速过滤。
2 、颗粒床层的特性
颗粒床层的特性可用空隙率、当量直径等物理量来描述。
空隙率:单位体积床层中的空隙体积称为空隙率。
床层空隙体积
床层总体积

化工原理 第三章 沉降与过滤

化工原理 第三章 沉降与过滤
(1)作用:防止滤饼压缩及细小颗粒堵塞过滤介质的孔隙。 (2)使用方法: A . 在悬浮液中加入助滤剂后一起过滤。 B. 先把助滤剂配成悬浮液并过滤,形成助滤剂层后,才正式过滤。 应予注意,一般以获得清净滤液为目的时,采用助滤剂才是适宜的。 (3)要求 A.能形成多孔饼层刚性颗粒 B.物理、化学性质稳定 c.具有不可压缩性(在使用的压力范围内)
二.过滤基本方程
1. 定义 (1)空隙率:单位体积床层中的空隙体积,,m3/m3。 (2)比表面:单位体积颗粒所具有的表面积,a,m2/m3。 2. 孔道当量直径
(1)
3. 过滤速度: 由 所以
(2)

u1 u /
(3)
过滤介质层相垂直的方向上床层空隙中的滤液流速u1 按整个床层截面积计算的滤液平均流速u
1.降尘室的总高度H,m;
2.理论上能完全分离下来的最小颗粒尺寸;
解:1)降尘室的总高度H
273 t 273 427 VS V0 1 2.564m3 / s 273 273
VS 2.564 H bu 2 0.5
2.564m
2)理论上能完全出去的最小颗粒尺寸
Vs 2.564 ut 0.214m / s bl 2 6
将(1)、(3)代入(2)并写成等式
pc 1 3 u ' 2 ( ) 2 K a (1 ) L
层流流动,K’值可取为5。
Pc u 2 ( ) 2 5a (1 ) L
3
——过滤速度表达式
4. 过滤速率(体积流量):单位时间内获得的滤液体积
显然
所以
5. 滤饼的阻力 令 — 滤饼的比阻
t
Vs blu t
——降尘室的生产能力

化工原理上第3章过滤3

化工原理上第3章过滤3

▲ 洗涤时间τ w的计算 洗涤条件:洗涤压差=过滤最终压差 洗涤时,滤饼厚度不变 洗涤液粘度与滤液相近 采用方法:横穿洗涤法
推动力 滤液穿过 滤饼厚度 流通截面 过滤终了Δp L/2 2A(A框面积) 洗涤Δp L A
过滤 L
洗涤
L
速率
dV d E
dV d w
影响因素: Vh f (n, , A, K )
n: 0.1-3 rpm,过高,滤饼薄,不易卸料;
:过滤面积为转筒总面积的30%- 40% 为宜。
(4) 其它过滤设备
自学
3.6.7 离心过滤
(1) 工作原理 过滤推动力:离心力
(2) 离心过滤的计算
忽略介质阻力, 离心过滤的基本方程式为:
(1) 板框式压滤机 ① 结构和工作原理 滤框、滤板---洗涤板,非洗涤板
1钮 2钮 3钮 料液通道 洗涤液通道
非洗涤板

洗涤板
排列方式:
板、框交替,个数可调。
操作方式:间歇操作
操作周期:装合→过滤→洗涤→卸渣→整理
滤浆 过滤 优点:操作灵 活,过滤面积 大,可承受较 大压力; 缺点:劳动强度大, 操作不连续,生产效 率低。 废洗液
(2) 聚式流化:气-固系统常见,分散程度不大 (3) 腾涌
(4) 沟流现象
(a)
(b)
(c)
(d)
(e)
L
Lm
气体或液体 (低速)
Lmf
L
气体或液体
液体
气体
气体或液体 (高速)
图3-30 不同流速下床层状态的变化:(a)固定床(b)流化开始 (c)散式流化床(d)聚式流化床(e)水力或气力输送
3.7.5 流化床的操作范围 (1) 临界流化速度umf 临界流化状态:可按固定床计算 (2) 带出速度 ut

化工原理单元操作——过滤原理及设备

化工原理单元操作——过滤原理及设备

化工原理单元操作——过滤原理及设备一.过滤原理(1)过滤是利用可以让液体通过而不能让固体通过的多孔介质,将悬浮液中的固、液两相加以分离的操作。

(2)过滤方式①滤饼过滤过滤时悬浮液置于过滤介质的一侧。

过滤介质常用多孔织物,其网孔尺寸未必一定须小于被截留的颗粒直径。

在过滤操作开始阶段,会有部分颗粒进入过滤介质网孔中发生架桥现象,也有少量颗粒穿过介质而混与滤液中。

随着滤渣的逐步堆积,在介质上形成一个滤渣层,称为滤饼。

不断增厚的滤饼才是真正有效的过滤介质,而穿过滤饼的液体则变为清净的滤液。

通常,在操作开始阶段所得到滤液是浑浊的,须经过滤饼形成之后返回重滤。

②深层过滤颗粒尺寸比介质孔道小的多,孔道弯曲细长,颗粒进入孔道后容易被截留。

同时由于流体流过时所引起的挤压和冲撞作用。

颗粒紧附在孔道的壁面上。

介质表面无滤饼形成,过滤是在介质内部进行的。

(3)过滤介质①织物介质:即棉、毛、麻或各种合成材料制成的织物,也称为滤布。

②粒状介质:细纱、木炭、碎石等。

③多孔固体介质(一般要能够再生的才行):多孔陶瓷、多孔塑料、多孔玻璃等。

二.过滤设备——板框过滤机(1)结构与工作原理:板框过滤机由多块带凸凹纹路的滤板和滤框交替排列于机架而构成。

板和框一般制成方形,其角端均开有圆孔,这样板、框装合,压紧后即构成供滤浆、滤液或洗涤液流动的通道。

框的两侧覆以滤布,空框与滤布围成了容纳滤浆和滤饼的空间。

悬浮液从框右上角的通道1(位于框内)进入滤框,固体颗粒被截留在框内形成滤饼,滤液穿过滤饼和滤布到达两侧的板,经板面从板的左下角旋塞排出。

待框内充满滤饼,即停止过滤。

如果滤饼需要洗涤,先关闭洗涤板下方的旋塞,洗液从洗板左上角的通道2(位于框内)进入,依次穿过滤布、滤饼、滤布,到达非洗涤板,从其下角的旋塞排出。

板框过滤机如果将非洗涤板编号为1、框为2、洗涤板为3,则板框的组合方式服从1—2—3—2——1—2—3之规律。

组装之后的过滤和洗涤原理如图所示。

化工原理——过滤

化工原理——过滤
实验原理:过滤是以某种多孔物质作为介质来处理悬浮液的操作。在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。
影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为:
4.等配料槽料液搅拌均匀后,关闭阀3,打开阀5及压力料槽上的排气阀,使料浆自动由配料桶流入压力料槽至其视镜2/3处,关闭阀2、阀5。
5.打开阀4,通压缩空气至压力料槽,使容器内料浆不断搅拌。压力料槽的排气阀应不断排气,但又不能喷浆。
6.调节压力料槽的压力到需要的值。主要依靠调节压力料槽出口处的压力定值调节阀来控制出口压力恒定,压力料槽的压力由压力表读出。压力定值阀已调好,从左到右分别为1#压力:0.1MPa;2#压力:0.2MPa;3#压力:0.3MPa。考虑各个压力值的分布,从低压过滤开始做实验较好。
2.影响过滤速率的主要因素有哪些?
答;影响过滤速率的主要因素有过滤面积、.压强降、.滤液粘度。滤液的粘度越大,过滤速率越快;压强降越大,过滤速率越快;滤饼的厚度越厚,滤饼的比阻越大,过滤面积越大,过滤速率越小。
3.为什么过滤开始时,滤液常常有点浑浊,而过段时间后才变清?
答;开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,而过段时间后滤饼形成且形成较密的滤饼,使颗粒不易通过,所以滤液变清。
7.放置好电子天平,按下电子天平上的“on”开关,打开电子天平,将料液桶放置到电子天平上。打开并运行电脑上的“恒压过滤测定实验软件”,进入实验界面,做好准备工作,可以开始实验。
8.做0.1MPa压力实验:打开阀6、阀9及阀12、阀13,开始加压过滤。做0.2MPa压力实验:打开阀7、阀10及阀12、阀13,开始加压过滤。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:重力、压力(或压差)和离心力;
获得清净的液体产品,或者得到固体产品;
浓缩液
进料液渗透液
直径大多要比过滤介质的孔道大
滤的进行,固体颗粒沉积于过滤介质表面而形成滤饼。

固相含量稍高(固相体积分率在
饼层过滤(b) 架桥现象
图3-18 饼层过滤
颗粒尺寸比介质的孔道小很多,但孔道弯曲细长,颗粒进入后很容易被截流,同时这种过滤是在过滤介质内部进行的,介质表面无滤饼形成。

过滤用的介质为粒状床层或素烧(不上釉的)陶瓷筒或板。

很小量的固体微粒,例如饮
②堆积介质:由各种固体颗粒(砂、木碳、石棉、硅藻土)或非纺织纤维等堆积而成,多用于深床过滤中。

恒压过滤方
洗非洗横穿洗涤法:
,先将洗涤板上的滤液
叶滤机由许多滤叶组成。

滤叶内有空间,外包滤布,将滤叶装在密闭的机壳内,为滤浆所浸没。

1)滤浆中的液体在压力作用下穿过滤布进入滤叶内部,成为滤液后从其一端排出(过滤)。

2)过滤完毕,机壳内改充清水,使水循着与滤液相同的路径通过滤饼进行洗涤,故为置换洗涤(洗涤)。

3)最后,滤饼可用振动器使其脱落,或用压缩空气将其吹下(卸渣)。

滤叶可以水平放置也可以垂直放置,滤浆可用泵压入也可用真空泵抽入。

2、加压叶滤机
滤浆
滤液
滤叶的构造。

相关文档
最新文档