22.1,22.2多边形和平行四边形
多边形与平行四边形知识点总结
多边形与平行四边形知识点总结
多边形与平行四边形
一、多边形
1.多边形的定义:平面内由若干条线段首尾相接而成的封闭图形。
2.多边形的对角线:n边形的一个顶点可以引出(n-3)条对角线,将多边形分成(n-2)个三角形。
3.多边形的内角和和外角和:n边形的内角和公式为(n-2)×180°,外角和为360°。
4.正多边形:各边相等,各角也相等的多边形。
二、平行四边形的性质
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的性质:
边:两组对边分别平行且相等。
角:对角相等,邻角互补。
对角线:互相平分。
对称性:中心对称但不是轴对称。
3.平行四边形解题模型:
利用平行四边形相邻两边之和等于周长的一半。
利用平行四边形中有相等的边、角和平行关系,结合三角形全等来解题。
过平行四边形对称中心的任一直线等分平行四边形的面积及周长。
三、平行四边形的判定
注意:平行四边形的解题方法有很多种,需要根据具体情况进行选择。
中考数学复习《多边形与平行四边形》
证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
2022-2023 数学浙教版新中考 考点21多边形与平行四边形(解析版)
考点21多边形与平行四边形考点总结1.n 边形以及四边形的性质:(1)n 边形的内角和为(n -2)×180°(n ≥3),外角和为360°,对角线条数为n (n -3)2.(2)四边形的内角和为360°,外角和为360°,对角线条数为 2 .(3)正多边形的定义:各边相等、各内角也相等的多边形叫做正多边形.2.平行四边形的性质及判定:(1)性质:①平行四边形的两组对边分别平行且相等.②平行四边形的对角相等,邻角互补.③平行四边形的对角线互相平分.④平行四边形是中心对称图形.(2)判定:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.3.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.4.在两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离.夹在两条平行线间的平行线段相等.真题演练一、单选题1.(2021·浙江衢州·中考真题)如图,在ABC 中,4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A .6B .9C .12D .15【答案】B【分析】 根据中点的定义可得AD 、AF 的长,根据三角形中位线的性质可得DE 、EF 的长,即可求出四边形ADEF 的周长.【详解】∵4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,∵AD =12AB =2,AF =1522AC =,DE 、EF 为∵ABC 的中位线, ∵EF =12AB =2,DE ==1522AC =, ∵四边形ADEF 的周长=2+2+5522+=9, 故选:B .2.(2021·浙江·中考真题)如图,已知在ABC 中,90ABC ∠<︒,,AB BC BE ≠是AC 边上的中线.按下列步骤作图:①分别以点,B C 为圆心,大于线段BC 长度一半的长为半径作弧,相交于点,M N ;①过点,M N 作直线MN ,分别交BC ,BE 于点,D O ;①连结,CO DE .则下列结论错误的是( )A .OB OC =B .BOD COD ∠=∠C .//DE ABD .DB DE =【答案】D【分析】 首先根据题意可知道MN 为线段BC 的中垂线,然后结合中垂线与中线的性质逐项分析即可.【详解】由题意可知,MN 为线段BC 的中垂线,∵O 为中垂线MN 上一点,∵OB =OC ,故A 正确;∵OB =OC ,∵∵OBC =∵OCB ,∵MN ∵BC ,∵∵ODB =∵ODC ,∵∵BOD =∵COD ,故B 正确;∵D 为BC 边的中点,BE 为AC 边上的中线,∵DE 为∵ABC 的中位线,∵DE ∵AB ,故C 正确;由题意可知DB =DC ,假设DB =DE 成立,则DB =DE =DC ,∵BEC =90°,而题干中只给出BE 是中线,无法保证BE 一定与AC 垂直,∵DB 不一定与DE 相等,故D 错误;故选:D .3.(2021·浙江宁波·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =【答案】A【分析】 根据∵AED 和∵BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,可得出OP ,OQ 分别是∵FHE 和∵EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【详解】解:由题意得,∵AED 和∵BCG 是等腰直角三角形,∵45ADE DAE BCG GBC ∠=∠=∠=∠=︒∵四边形ABCD 是平行四边形,∵AD =BC ,CD =AB ,∵ADC =∵ABC ,∵BAD =∵DCB∵∵HDC =∵FBA ,∵DCH =∵BAF ,∵∵AED ∵∵CGB ,∵CDH ∵ABF∵AE =DE =BG =CG∵四边形HEFG 是矩形∵GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,∵OP //HE ,OQ //EF∵点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∵OP ,OQ 分别是∵FHE 和∵EGF 的中位线, ∵1122OP HE b ==,1122OQ EF c == ∵1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∵BOF AOE S S ∆∆=∵11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===,222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∵13S S ≠,故选项B 不符合题意, 而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意, 故选:A 4.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
平行四边形对边相等对角相等
22.1 平行四边形的性质(2课时)学习目标1.知识目标(1)理解平行四边形的有关概念.(2)探索并掌握平行四边形的对边相等,对角相等,对角线互相平分的性质,(3)通过旋转体会平行四边形的中心对称性.2.能力目标能利用平行四边形的性质解决简单的实际问题.3.情感目标发展学生合理的推理意识,培养其主动探究的习惯.学习重点、难点重点:平行四边形的性质与应用难点:平行四边形性质的探究教师在这一问题中要强调平行四边形的书写符号.让学生通过观察、归纳得到平行四边形的性质,借助测量工具动手进行验证.加深学生对平行四边形的定义、对边相等、对角相等性质的理解.如图,在在教学过程中,一方面,要让学生自己动手,体会平行四边形的中心对称性,强化旋转变换特征的应用,体现前后知识的衔接;另一方面让学生多角度地对运用不同的方法验证得到的结论,并有条理的进行表述.利用平行四形的性质,让学生自主探索,丰富学生独立进行数学活动的经验,形成良好的思维习惯.通过这一组练习,巩固平行四边形:对角相等、对边相等,对角线互相平分等性质.巩固学生对平行四边形的对角线互相平分这一性质的应用,同时也培养学生综合运用数学知识的能力.附:板书设计22.2平行四边形的判定(2课时)学习目标1.知识目标(1)经历平行四边形识别条件的探究过程,使学生逐步掌握探究的方法.(2)掌握平行四边形的识别条件和应用.2.能力目标会综合运用平行四边形的识别方法和性质来解决问题.3.情感目标在学习过程中丰富学生从事数学活动的经验,发展合情推理的意识.学习重点、难点重点:平行四边形的识别方法及应用.难点:平行四边形的识别方法与性质定理的灵活应用.可以让学生用几根小木棒搭建平行四边形,然后于同学进行交流,引出要研究的问题.通过观察,对不同操作方法得到的四边形是否是平行四边形展开思考,让学生经历探索的过程.如图,已知它是平行四边形的性质与判定的综合运用,此题最好发展学生一题多证的发散性思维,•同时将上面的三种平行四边形的判定方法进行应用、归纳,形成切入点,但要注意采用最优证法.通过练习,让学生对平行四边形的识别条件建立比较完整的认识,进一步巩固所学知识.培养学生既动手又动脑的能力.通过本题,深化对本节知识的理解,提高学生的综合分析能力.本环节使知识更加系统化,帮助学生归纳,整理,有利于知识体系的形成.22.3三角形的中位线学习目标1.知识目标(1)了解三角形中位线的概念.(2)探索并掌握三角形中位线的性质.2.能力目标感受三角形与四边形的联系,提高学生分析问题、解决问题的能力.3.情感目标通过学生动手操作、观察、自主探索与合作交流的过程,激发学生的学习兴趣.学习重点、难点重点:三角形中位线性质及其应用.难点:三角形中位线性质的探索过程.课前准备三角形纸片,剪刀这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中。
平行四边形和多边形知识点
平行四边形和多边形知识点一、平行四边形知识点。
1. 平行四边形的定义。
- 两组对边分别平行的四边形叫做平行四边形。
用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。
2. 平行四边形的性质。
- 边的性质。
- 平行四边形的对边平行且相等。
即AB = CD,AD = BC;AB∥CD,AD∥BC。
- 角的性质。
- 平行四边形的对角相等,邻角互补。
即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即AO = CO,BO = DO(设AC、BD相交于点O)。
3. 平行四边形的判定。
- 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
4. 平行四边形的面积。
- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。
二、多边形知识点。
1. 多边形的定义。
- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
2. 多边形的内角和。
- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。
- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。
3. 多边形的外角和。
- 多边形的外角和等于360°,与边数无关。
4. 正多边形。
- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。
- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。
中考总复习:多边形与平行四边形--知识讲解(基础)
中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。
多边形与平行四边形知识点归纳
第 部分 四边形第一单元第1课时 多边形与平行四边形二、知识梳理(一) 多边形1.多边形的概念:(1)多边形:在平面内,由若干条不在同一直线上 的线段首尾顺次相连接组成的封闭图形叫做多边形。
(2)正多边形:在平面内,各内角 都相等, 各边 也都相等的多边形叫正多边形。
各角相等的多边形不一定是正多边形,如矩形;各边相等的多边形不一定是正多边形,如菱形。
正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形。
2.多边形的内角和与外角和:(1)内角和:n 边形的内角和等于(n ─2)∙180 ;正n 边形的一个内角等于nn180)2( .(2)外角和:多边形的外角和等于360°.(注:多边形的外角和是定值,与边数无关). 3.多边形的对角线:(1)概念:在多边形中,连接 互不相邻 的两个顶点的线段叫做多边形的对角线. (2) n 边形有2)3( n n 条对角线 4.平面图形的镶嵌:(1)概念:用形状 、大小 完全相同的一种或几种 平面图形 进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的 镶嵌 . (2)镶嵌的条件:在同一顶点的几个角的和等于360°. (二) 平行四边形1.平行四边形的概念: 两组对边分别平行 的四边形是平行四边形。
2.平行四边形的性质:(1)边:平行四边形的两组对边分别 平行且相等 . (2)角:平行四边形的对角 相等 ,邻角 互补 。
图1图2图4 (3)对角线:平行四边形的对角线 互相平分 。
(4)平行四边形对称性:平行四边形是中心对称图形,其对称中心是 对角线交点 ;经过对称中心的任意一条直线将平行四边形面积平分. 3.平行四边形的判定方法:(1)边:①两组对边分别 平行 的四边形是平行四边形(平行四边形的概念);②一组对边 平行且相等 的四边形是开行四边形; ③两组对边分别 相等 的四边形是平行四边形.(2)角:两组对角分别 相等 的四边形是平行四边形. (3)对角线:对角线 互相平分 的四边形是平行四边形. 4.平行四边形面积:平行四边形面积=底×高.三、课堂训练考查目标:多边形的内角和与外角和 1.已知一个多边形的内角和是外角和的23,则这个多边形的边数是 5 . [举一反三]一个多边形的内角和是720°,则这个多有的边数为 6 . [举一反三]矩形的外角和等于 360° 考查目标:正多边形的概念2.一个正多边形的每一个外角都是40°,这个多边形的边数是 9 .[举一反三]一个正多边形的一个内角是144°,它是一个 10 边形. 考查目标:平面图形的镶嵌3.下列多边形中,不能单独铺满地面的是( C ) (A )正三角形 (B )正方形 (C )正五边形 (D )正六边形[举一反三]现有四种地砖,它们的形状分别为正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地砖密铺地面.选择的方式有( B ) (A )2种 (B )3种 (C )4种 (D )5种 考查目标:平行四边形的性质4.如图1.在□ABCD 中,过点C 的直线CE ⊥AB .垂足为E ,若∠EAD =53°,则∠BCE 的度数为( B )(A )53° (B )37° (C )47° (D )123°[举一反三] 如图2.在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( A )(A )AC ⊥BD (B )AB =CD (C )BO =OD (D )∠BAD =∠BCD5.如图3.在□ABCD 中,AC 平分∠DAB ,AB =3.则□ABCD 的周长( C ) (A )6 (B )9 (C )12 (D )15图5图5 第3题第6题第7题[举一反三]如图4在□ABCD 中,已知AB =6cm ,AD =8cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( A )(A )2cm (B )4cm (C )6cm (D )8cm 考查目标:平行四边形的判定6.不能判定一个四边形是平行四边形的条件是( B )(A )两组对边分别平行 (B )一组对边平行另一组对边相等 (C )一组对边平等且相等 (D )两组对边分别相等 [举一反三]在四边形ABCD 中,已知AB =CD ,再添加一个条件:_AD =BC (答案不唯一)______,使四边形ABCD 成为平行四边形 考查目标:平行四边形的面积 7.平行四边形花坛的底是6m ,高是4m ,则它的面积是 24cm 2[举一反三].如图5,A 、B 、C 为一个平行四边形的三个顶点, 且A 、B 、C 三点的坐标分别为(3,3)、(6,4)、(4、6).(1)请直接写出这个平行四边形的第四个顶点的坐标;(2)求此平行四边形的面积. 解:(1)第四个顶点的坐标为(7,7)或(5,1)或(1,5)(2)把⊿ABC 补成正方形,面积为9,减去三个小直角三角形 的面积可得S ⊿ABC =4,∴平行四边形的面积为8 【达标训练】1.(2013.长沙市)下列多边形中,内角和与外角和相等的是( A ) .(A )四边形 (B )五边形 (C )六边形 (D )八边形 2.(2013.梅州市)已知一个多边形的内角和小于它的外角和.则这个多边形的边数是( A ) (A )3 (B )4 (C )5 (D )63.(2013.襄阳市)如图□ABCD 的对角线相交于点O ,且AB =5, ⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( C ) (A )18 (B )28 (C )36 (D )464.(2013.杭州市)在□ABCD 中,下列结论一定正确的是( B ) .(A )AC ⊥BD (B )∠A +∠B =180° (C )AB =CD (D )∠A ≠∠C5.(2011.泰州)四边形ABCD 中,对角线AC 、BD 相交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( C ) (A )1组 (B )2组 (C )3组 (D )4组6.(2013.江西省)如图. □ABCD 与□DCEF 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 25° .7.(2013.安徽省)如图.P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点.⊿PEF 、⊿PDC 、⊿P AB 的面积分别为S 、S 1、S 2.若S =2.则S 1+S 2= 8 .8.(2013.烟台市)如图.□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BC =12,则⊿DOE 的周长为 15 .C 9.(2013.北京市)如图.在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE、CF.(1)求证:四边形CEDF是平行四边形.(2)若AB=4,AD=6,∠B=60°.求DE的长答案:(1)证明:在□ABCD中AD∥BC,AD=BC.∵F是AD的中点,∴DF=12AD.又∵CE=12BC,∴DF=CE且DF∥CE,∴四边形CEDF为平行四边形.(2)解:过点D作DH⊥BE于H,在□ABCD,AB∥CD.∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=4.∴在Rt⊿CDH中,CH=12CD=2,DH=32.在□CEDF中,CE=DF=12AD=3,∴EH=CE-CH=3-2=1.在Rt⊿DHE中,DE=22HEDH =221)32( =13.10.(2011.常德)如图.已知四边形ABCD是平行四边形(1)求证:⊿MEF∽⊿MBA(2)若AF、BE分别是∠DAB和∠CBA的平分线,求证DF=EC.【答案】(1)证明:在□ABCD中,∵CD∥AB,∴∠MEF=∠MBA,∠MFE=∠MAB,∴⊿MEF∽⊿MBA.(2)证明:在□ABCD中,CD∥AB,∠DF A=∠F AB,又∵AF是∠DAB的平分线,∴∠DAF=∠F AB∴∠DAF=∠DF A,∴AD=DF,同理可得EC=BC,∵在□ABCD中,AD=BC,∴DF=EC.。
中考知识点梳理-多边形与平行四边形思维导图-多边形的内角和、外角
第五单元四边形
第19讲多边形与平行四边形
,每一个外角为
利用平行四边形的性
质解题时的一些常用
到的结论和方法:
(1)平行四边形相邻
两边之和等于周长的
一半.
(2)平行四边形中有
相等的边、角和平行
关系,所以经常需结
合三角形全等来解题.
(3)过平行四边形对
称中心的任一直线等
分平行四边形的面积
及周长.
例:
如图,□ABCD中,
EF过对角线的交点
O,AB=4,AD=3,
OF=1.3,则四边形
BCEF的周长为9.6.
:平行四边形的判定
例:如图四边形
ABCD的对角线相交
于点O,AO=CO,请
你添加一个条件
BO=DO或AD∥BC
或AB∥CD(只添加
一个即可),使四边形
ABCD为平行四边形.。
冀教版八年级数学下册第二十二章《四边形》教案设计
第 2 课时 平行四边形的性质定理 2
1.掌握平行四边形对角线互相平分的 性质;(重点)
2.利用平行四边形对角线互相平分解 决有关问题.(难点)
一、情境导入
答即可. 解:∵四边形 ABCD 是平行四边形,
∴OB=OD,AB=CD,AD=BC.∵△AOB 的 周长比△DOA 的周长长 5cm,∴AB-AD= 5cm,又∵▱ABCD 的周长为 60cm,∴AB+
解析:根据三角形内角和定理求出 ∠DAC = ∠ACB , 根 据 平 行 线 的 判 定 推 出 AD∥BC,AB∥CD,根据平行四边形的定义 推出即可.
证明:∵∠1+∠B+∠ACB=180°,∠2 +∠D+∠CAD=180°,∠B=∠D,∠1= ∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1 =∠2,∴AB∥CD,∴四边形 ABCD 是平行 四边形.
AD=30cm,则 AB=CD=325cm,AD=BC=
225cm. 方法总结:平行四边形被对角线分成四
个小三角形,相邻两个三角形的周长之差等 于邻边边长之差.
【类型二】 利用平行四边形对角线互 相平分证明线段或角相等
如图,在平行四边形 ABCD 中,AC,BD 为对角线,BC=6,BC 边上的高为 4,你能 算出图中阴影部分的面积吗?
【类型三】 利用平行四边形的性质证 明有关结论
如图,点 G、E、F 分别在平行四 边形 ABCD 的边 AD、DC 和 BC 上,DG= DC,CE=CF,点 P 是射线 GC 上一点,连 接 FP,EP.求证:FP=EP.
解析:根据平行四边形的性质推出 ∠DGC=∠GCB,根据等腰三角形性质求出 ∠DGC=∠DCG,推出∠DCG=∠GCB,根 据 “ 等 角 的 补 角 相 等 ” 求 出 ∠DCP = ∠FCP,根据“SAS”证出△PCF≌△PCE 即 可得出结论.
人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是
.
2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .
八年级第二学期练习部分22章
第二十二章四边形习题22.1(1)1.填空:(1)十二边形的内角和是__________.(2)一个n边形的内角和是1440°,则n=__________.(3)如果过多边形的一个顶点共有8条对角线,那么这个多边形是_________边形,它的内角和是___________.2.如果多边形的每一个内角都等于144°,那么它的内角和事多少?3.在四边形ABCD中,相对的两个内角互补,且满足∠A:∠B:∠C=2:3:4,求四个内角的度数分别是多少.4.有一块长方形的纸片,把它剪去一个角后,所成的多边形纸片的内角和可能是多少度?习题22.1(2)1.已知一个多边形的每个外角都等于45°,那么这个多边形的边数是_________.2.已知十边形的各个内角都相等,求每个内角、外角的度数.3.如果一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数是多少?4.一个不规则的图形如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.习题22.2(1)1.填空:(1)在ABCD中,如果∠A:∠B=2:3,那么∠C、∠D的度数分别是____________.(2)已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是________________.2.如图,已知ABCD中,AB=8cm,BC=10cm,∠D=30°,求ABCD的面积.3.已知:如图,ABCD中,∠ADC的平分线与AB相交于点E.求证:BE+BC=CD.1.填空:(1)已知O是ABCD的对角线AC与BD的交点,AC=24mm,BD=38mm,AD=28mm,则△OBC的周长等于__________.(2)已知ABCD的对角线AC与BD相交于点O,∠ODA=90°,OA=5cm,OB=3cm,那么AD=__________cm,AC=___________cm.2.已知ABCD的对角线AC与BD相交于点O,这个平行四边形的周长是16,且△AOB的周长比△BOC的周长小2,求边AB和BC的长.3.如图,早ABCD中,已知对角线AC与BD相交于点O,AB=10,AD=8,BD⊥BC.求BC、CD及OB的长.4.已知:如图,四边形ABCD是平行四边形,点O是对角线BD的中点,EF过点O且分别与边AB、CD相交于点E、F.求证:OE=OF.1.已知:如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.2.已知:如图,ABCD中,E、F、G、H分别是边AB、BC、CD、DA上得点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.3.已知:如图,G、H是平行四边形ABCD对角线AC上得两点,且AG=CH,E、F分别是边AB和CD的中点.求证:四边形EFGH是平行四边形.4.已知:如图,在△ABC中,点D、E、F分别为BC、AB、AC上得点,AF∥ED,且AF=ED,延长FD到点G,使DG=FD.求证:ED、AG互相平分.1.已知:四边形ABCD中,AB∥CD,∠B=∠D.求证:四边形ABCD是平行四边形.2.已知:如图,E、F是ABCD的对角线AC的三等分点.求证:四边形BFDE是平行四边形.3.已知:如图,延长ABCD的边AD到点F,使CD=DF,延长CB到点E,使BE=BA. 求证:四边形AECF是平行四边形.4.已知:如图,等腰三角形ABC中,点D是底边BC上任意一点,DE∥AC,交AB于点E,DF∥AB,交AC于点F.求证:DF+DE=AC.习题22.3(1)1.填空:(1)已知菱形ABCD的对角线AC与BD相交于点O,AB=13cm,AO=5cm,那么AC和BD的长分别等于______________.(2)如图,已知点E在矩形ABCD的边AD上,BC=EC=10,∠ABE=15°,那么CD的长等于_________________.2.如图,已知矩形ABCD中,对角线AC与BD相交于点O,AE垂直且平分线段BO,垂足为E,BD=15cm,求AC、AB的长.3.已知:如图,点M是矩形ABCD的边BC的中点,BC=2AB.求证:MA⊥MD.4.如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E,求∠BCD的度数.5.如图,把一张长方形的纸片ABCD沿着EF折叠后,点D、C分别落在D’、C’的位置,ED’与BC的交点为G.若∠EFG=65°,求∠1和∠2的度数.1.填空:(1)已知矩形ABCD的对角线AC与BD相交于点O,△OAB是等边三角形,如果AB=4cm,那么矩形ABCD的面积是_____________cm.(2)已知菱形的两条对角线的长分别是6和8,那么它的周长和面积分别等于_________ ___________.2.已知:如图,矩形ABCD的对角线AC与BD相交于点O,AC=2AB.求证:∠AOD=120°.3.已知菱形的一条边与它的两条对角线所成的两个角的大小的比为3:2,求这个菱形的各个内角的度数.4.已知:菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形.1.证明:如果平行四边形四个内角的平分线能够围城一个四边形(如图),那么这个四边形是矩形.2.已知:如图,△ABC中,AB=AC,点M为BC的中点,MD⊥AC,MG⊥AB,DE ⊥AB,GF⊥AC,垂足分别为点D、G、E、F,GF、DE交于点H.求证:四边形HGMD是菱形.3.已知:如图,在ABCD中,AD=2AB,E、F分别是线段BA、AB的延长线上的点,且AE=BF=AB,M、N、G分别是CE与AD、DF与BC、CE与DF的交点.求证:EC⊥FD.4.如图,在△ABC中,BC边上是否存在点P,过点P分别作AB和AC的平行线,分别交AC、AB于点D、E,使四边形AEPD为菱形?若不存在,说明理由;若存在,作出点P(保留作图痕迹)并加以证明.习题22.3(4)1.如图,已知点E是正方形ABCD的边BC延长线上得一点,且CE=AC,AE与CD相交于点F.求∠AFC的度数.2.如图是一块正方形草地ABCD,在上面有两条交叉的小路AE和DF,已知DE=FC,那么AE和DF有什么位置关系和数量关系?试对结论加以证明.3.已知:如图,正方形ABCD的对角线AC与BD相交于点O,E是OB上一点,DG ⊥CE,垂足为点G,DG与OC相交于点F.求证:OE=OF.4.如图,已知正方形ABCD中,点E是对角线AC上得一点,EF⊥CD,EG⊥AD,垂足分别为点F、G.求证:BE=FG.习题22.3(5)1.已知:如图,矩形ABCD的外角平分线分别交于点E、F、G、H.求证:四边形EFGH是正方形.2.已知:如图,点E 在正方形ABCD 的对角线BD 上,且BE=AB ,EF ⊥BD ,EF 与CD相交于点F.求证:DE=EF=FC.3.已知:如图,点A ’、B ’、C ’、D ’分别在正方形的边AB 、BC 、CD 、DA 上,且AA ’=BB ’=CC ’=DD ’.求证:四边形A ’B ’C ’D ’是正方形.4.在第3题中,当点A ’、B ’、C ’、D ’处在什么位置时,正方形A ’B ’C ’D ’的面积是正方形ABCD 面积的95?请写出计算过程.习题22.41填空:(1)一组对边平行,__________________________的四边形是梯形(添加一个条件,使这个命题是真命题).(2)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=235,CD=5,那么∠D的度数是______________.2.如图,已知梯形ABCD中,AD∥BC,∠A=90°,AD=AB=1cm,CD=3cm.求梯形ABCD的面积.3.如图,已知梯形ABCD中,AD∥BC,AD=3,BC=8,∠B=55°,∠C=70°.求DC 的长.4.如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=3,BC=4,DE⊥AC,垂足为点E.求DE的长.习题22.5(1)1.填空:(1)已知等腰梯形的一个底角是60°,它的上、下底分别是8cm和18cm,那么这个梯形的腰长等于______________,面积等于_______________.(2)已知等腰梯形的上底等于高,下底是上底的3倍,那么这个梯形的四个内角的度数分别等于_____________________.(3)已知等腰梯形的一条对角线与一腰垂直,上底与腰长相等,那么这个梯形的各个内角的大小分别等于___________________________.2.求证:等腰梯形上底的中点到下底的两个端点的距离相等.3.已知:如图,梯形ABCD中,AB∥CD,AD=BC,点E在AB的延长线上,且BE=DC.求证:AC=CE.4.已知:如图,等腰梯形ABCD中,AB∥CD,AD=BC,对角线AC与BD交于点O,点E、F分别在OA、OB上,且OC=OE,OD=OF.求证:四边形DEFC是矩形.习题22.5(2)1.判断题(正确的打“√”,错误的打“×”):(1)有两个角相等的梯形是等腰梯形. ()(2)如果梯形ABCD中,AD∥BC,∠A=100°,∠C=80°,那么这个梯形是等腰梯形. ()(3)如果梯形ABCD中,AD∥BC,∠ACB=∠DBC,那么这个梯形是等腰梯形.()2.已知:如图,矩形ABCD的对角线AC与BD相交于点O,点E、F分别在OA、OD 上,且AE=DF.求证:四边形EBCF是等腰梯形.3.已知:如图,在△ABC中,AB=AC,BD、CE是这个三角形的底角的平分线.求证:四边形EBCD是等腰梯形.4.作一个等腰梯形,使它的上、下底的长分别为5cm、11cm,高为4cm,并计算这个等腰梯形的周长和面积.习题22.6(1)1.填空:(1)联结三角形各边中点得到的三角形,它的周长为原三角形周长的__________,面积为原三角形面积的_____________.(2)三角形的一条中位线分原三角形所成的一个小三角形与一个梯形的面积的比是__________________.(3)以等腰梯形两底的中点及两对角线的中点为顶点的四边形是_________________.(4)如果一个四边形的两条对角线互相垂直,那么顺次联结这个四边形四边的中点所成的四边形是_______________.2.已知一个三角形各边的比为3:4:6,联结各边的中点所得的三角形的周长为52cm,求原三角形各边的长.3.已知:在四边形ABCD中,AD=BC,E、F、G分别是BD、AB、DC的中点.求证:△EFG是等腰三角形.4.已知:梯形ABCD中,AD∥BC,AB=CD,点M、N、E、F分别是边AD、BC、AB、DC的中点.求证:四边形MENF是菱形.习题22.6(201.填空:(1)如果一个梯形的中位线的长是6cm,高是5cm,那么它的面积等于_______cm².(2)如果一个等腰梯形中位线的长是5cm,腰长是4cm,那么它的周长是______cm.(3)如果一个梯形的上底与下底之比等于1:3,那么这个梯形的中位线把梯形分成的两部分的面积比等于________.2.已知等腰梯形的腰长等于它的中位线的长,梯形的周长为24cm,求这个梯形的腰长.3.如图,A1B1、A2B2、…、A5B5是斜拉桥上的钢索,它们在一个平面上,A1、A2、A3、A4、A5是间隔均匀地固定在高塔上的断点,B1、B2、B3、B4、B5是间隔均匀地固定在桥面上的端点,A1B1∥A5B5.如果最长的钢索A1B1=80米,最短的钢索A5B5=20米,试求钢索A2B2、A3B3的长.4.已知:如图,梯形ABCD中,AD∥BC,∠ABC=90°,E为CD的中点.求证:EA=RB.习题22.7(1)1.用有向线段(比例尺选用1:100)表示两个点的位置差别:(1)点P在点A的正北3m处.(2)点B在点A的西北4m处.(3)点M在点N的北偏东30°方向的4m处.2.如图,已知梯形ABCD中,AD∥BC,AB=DC,AB<AD,BC<2AD,DE∥AB.在以图中字母标注的点为起点和终点的有向线段中,将满足以下各题所列条件的所有有向线段用符号表示出来.(1)与有向线段AB方向相同且长度相等.(2)与有向线段AB方向不同但长度相等.(3)与有向线段AD方向相反且长度相等.(4)与有向线段AD方向相反且长度不等.(5)与有向线段AD方向相同但长度不等.(6)与有向线段AD方向不同且长度不等.习题22.7(2)1.如图,平行四边形ABCD中,如果把图中线段都画成有向线段,那么在这些有向线段所表示的向量中,用符号把符合下列要求的向量表示出来:(1)所有与DC相等的向量.(2)所有与AB互为相反向量的向量.(3)所有与AD平行的向量.2.如图,已知四边形ABCD是梯形,ABED是平行四边形.下列说法中哪些不正确?如不正确,请改正.(1)AB与DE是相等的向量.(2)AD与EB不是平行向量.(3)AD与EB是相反向量.(4)若AB=DC,则AB=DC.3.如图,点B、D在平行四边形AECF的对角线EF上,且EB=DF.设EC=a,AE=b,AD=c,再用图中的线段作向量.(1)写出与a相等的向量.(2)写出与b相反的向量.(3)写出与c平行的向量.习题22.8(1)1.如图,已知向量a 、a 、a ,求作(只要求画图表示,不必写做法,下同):(1)b a +、c b +.(2))(c b a ++.(3))(c a b ++.2.如图,已知平行四边形ABCD ,设AB =a ,AD =a ,试用a 、b 表示下列向量:(1)CA ,BD .(2)BD AC +.3.如图,已知向量a 、b ,且a ∥b ,求作:b a +.4.如图,点B 、D 在平行四边形AECF 的对角线EF 上,且EB=DF ,设EC =a ,EA =b ,AD =c .(1)填空:b a +=____________,c b +=_____________.(2)求作:c a +.习题22.8(2)1.如图,已知向量a 、b 、c 、d ,求作:(1)c a +.(2)d c a ++.(3)d c b a +++.2.画图验证:AE DE CD BC AB =+++.3.如图,平行四边形ABCD 中,对角线AC 与BD 相交于点O ,在以A 、B 、C 、D 、O 中的两点分别为始点和终点的向量中,(1)写出五对相等的向量.(2)求作:OB OC +.(3)求作:OB BC AO ++.4.判断下列灯饰是否正确,并说明理由.(1)CE DC ED FA BF AB ++=++.(2)DA CD BC AB =++.5.如图,已知AB =a ,BC =b ,CD =c ,DE =d ,试用向量a 、b 、c 、d 表示下列向量:(1)AE . (2)DA . (3)EB .习题22.9(1)1.如图,已知向量a 、b 、c ,求作:(1)a b -.(2))(c b a --.2.如图,已知向量a 、b 、c 、d ,其中a ∥c .求作:(1)c b a -+)(.(2)d b -.3.画图表示:(1)BC AC -. (2)BE CD DE AB +--.4.下列等式是否正确?如有错误,请改正.(1)AC BC AB =-.(2)0=-+CA BC AB .5.如图,在平面直角坐标系中,O 为原点,点P (1,1)关于原点的对称点为R ,点Q (3,2)关于x 轴的对称点为K.(1)求作向量OR 、RK .(2)求作:OQ OP -.(3)求作:OK OQ -.习题22.9(2)1.如图,已知平行四边形OACB 与ODEA ,OA =a ,OB =b ,OD =b -.试用向量加法法则解释减法法则的合理性.2.已知平行四边形ABCD ,试用画图的方法求BC AD AB +-(用两种方法).3.如图,已知菱形ABCD.(1)试分别用两个向量的和、两个向量的差表示AC .(2)如果∠ABC=120°,1=AB ,求AC .4.化简:(1)CD BD AC AB -+-.(2)AD OD OA +-.(3)DC AD AB --.5.如图,已知AB =a ,BC =b ,CD =c ,DE =d ,试用向量a 、b 、c 、d 表示下列向量:(1)AC AB -.(2)AE AB -.复习题A 组1.填空:(1)一个多边形的内角和等于1260°,它的边数是________;从一个顶点出发的对角线将这个多边形分成了_________个三角形.(2)已知菱形有一个内角为60°,一条对角线长为6,那么菱形的边长为________.(3)在下列空格内填上恰当的特殊四边形:①顺次联结四边形各边中点所得的四边形是_______________________;②顺次联结矩形各边中点所得的四边形是___________________;③顺次联结菱形各边中点所得的四边形是_______________________;④顺次联结等腰梯形各边中点所得的四边形是_________________________.(4)如果一个平行四边形的周长为50,那么它的对角线长x的取值范围是__________.(5)直角梯形的一条对角线把梯形分成两个三角形,已知有一个是边长为8的等边三角形,那么这个直角梯形的中位线长为_________,梯形的高为____________.2.如图,已知ABCD的对角线AC与BD相交于点O,AE⊥BD于点E,∠DAE=60°,AE=2cm,AC+BD=12cm.求△BOC的周长.3.如图,已知ABCD中,AE⊥BC,点E是垂足,AE与BD交于点G,且DG=2AB,∠DBC=25°.求∠ABD的度数.4.如图,已知ABCD,点P在对角线BD上,EF∥BC,GH∥AB,点E、H、F、G 分别在边AB、BC、CD、AD上.图中哪两个平行四边形的面积相等?试证明你的结论.5.已知:如图,ABCD中,CN=AM,AE=CF.求证:EN∥MF.6.如图,已知点E在矩形ABCD的边DC上,且AB=AE=2AD.求∠EBC的度数.7.已知菱形的周长为24cm,一个内角为120°.求这个菱形的面积.8.四边形ABCD是一张矩形纸片,已知AB=15cm,BC=25cm,以对角线BD为折痕,把它折叠成如图所示的图形,点C落在点C’上,E是BC’与AD的交点.求AE的长.9.已知:如图,点E、F分别是ABCD的边AD、BC的中点,且AD=2AB,分别联结AF、DF、BE、CE,AF与BE相交于点G,DF与CE相交于点H.求证:四边形EFGH为矩形.10.已知:如图,在Rt△ABC中,∠A=90°,AE是高,BD是∠ABC的平分线,AE与BD相交于点F,DH⊥BC,垂足是H.求证:四边形AFHD是菱形.11.已知:如图,分别以△ABC 的边AC 、AB 为边向三角形外作正方形ACDE 、BAFG . 求证:(1)EB=FC.(2)FC ⊥EB.12.已知:如图,∠ABE=∠EBC ,AE ⊥BE ,F 是AC 的中点.求证:EF=21(BC-AB ).13.如图,已知向量a 、b 、c 、d ,求作:(1)b c a -+.(2)c b a -+.(3))()(d c b a +-+.B 组1.如图,用两张等宽的长方形纸条,随意交叉放在一起,重合部分构成了一个四边形ABCD ,试证明四边形ABCD 是菱形.2.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,给出下列六个条件:①AB ∥DC ; ②AB=DC ; ③AC=BD ;④∠ABC=90°; ⑤OA=OC ; ⑥OB=OD.请从中选取3个条件,使四边形ABCD 为矩形,并加以证明.3.如图,已知点E 在平行四边形ABCD 的边AB 上,设a AE =,b AD =,c DC =.(1)试用向量a 、b 、c 表示向量DE 、EC .(2)求AD EC DE ++(画图表示).4.如图,一块矩形草坪ABCD 的四个顶点处各有一棵树.现要扩大草坪的面积,方案是过点A 、C 分别作BD 的平行线,过点B 、D 分别作AC 的平行线,则这两组平行线所围成的四边形EFGH 就是新草坪.试问新草坪是什么图形,为什么?新草坪的面积是原来的几倍?5.已知:如图,正方形ABCD 中,∠1=∠2,CE ⊥AF ,垂足为点E.求证:CE=21AF.6.已知:如图,等腰梯形ABCD 中,M 、N 分别是两底AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.求证:四边形MENF 是菱形.7.已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形.(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.8.已知:如图,等腰梯形ABCD的中位线EF的长为6cm,对角线BD平分∠ADC,下底BC的长比等腰梯形的周长小20cm.求上底AD的长.9.如图,已知C是线段AB上的一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形CBGF,分别联结AF、BD.(1)AF与BD是否相等?为什么?(2)如果点C在线段AB的延长线上,那么(1)中的结论是否成立?请作图,并说明理由.10.如图,已知点O事△ABC的边AC上的任意一点(不与A、C重合),过点O作直线l∥BC,直线l与∠BCA的平分线相交于点E,与∠BCA的外角平分线相交于点F.(1)OE与OF是否相等?为什么?(2)探索:当点O在何处时,四边形AECF为矩形?请说明理由.。
第1部分 第22讲 多边形与平行四边形
☞ 方法指导
• 利用平行四边形性质进行有关计算时,一般 运用平行四边形的性质将问题转化为角度或 线段之间的等量关系: • (1)对边平行可得相等的角,进而可得相似三 角形; • (2)对边相等、对角线互相平分可得相等的线 段; • (3)当有角平分线的条件时,可利用“平行+ 角平分线⇒等腰三角形”的结论得到等角、 等边.
第 12 页
☞ 方法指导
已知一组 证这组对边平行 对边相等 证另一组对边相等 平行 已知一组 证这组对边相等 四边 对边平行 证另一组对边平行 形的 判定已知一组对角相等,证另一组 思路对角相等 已知一条对角线平分另一条 对角线,证对角线互相平分
第3页
知识点二
平行四边形的性质
字母表示(如图)
文字描述
相等 (1)对边平行且①__________ 相等 (2)对角②__________
AB CD,AD BC ∠DAB=∠BCD,∠ABC=∠ADC ∠DAB+∠ABC=180° ,∠DAB+∠ADC= 180° ,∠ABC+∠BCD=180°
(3)邻角互补
过 n(n>3)边形的一个顶点可引(n-3)条对角线,n 边形共 nn-3 有 条对角线 2
第2页
正n 边形 (n≥3) 性质
(1)各边相等,各内角相等,各外角相等; n-2· 180° (2)正 n 边形的每一个内角为③_______________ ; n 360° (3)正 n 边形的每一个外角为 n ; (4)当正多边形为(2n-1)边形时,正多边形是轴对称图形, 不是中心对称图形,对称轴有(2n-1)条;当正多边形为 2n(偶数)边形时,正边形既是轴对称图形,又是中心对称图 形,对称轴有 2n 条
第 13 页
第22课 多边形和平行四边形
按时完成“B本”课后强化训练22,全面提升自我!
单击此处进入课后强化训练22
图 22-5
(典例 1 解)
【解析】 如解图,连结 AD. ∵AB⊥BC,∴∠B=90°. 又∵∠C=120°,∴∠BAD+∠ADC=360°-∠B-∠C=360°-90°- 120°=150°. ∵CD∥AF,∴∠ADC=∠DAF. 又∵∠CDE=∠BAF,∴∠EDA=∠BAD, ∴∠EDA+∠DAF=∠BAD+∠ADC=150°, ∴∠F+∠E=360°-(∠BAD+∠ADC)=360°-150°=210°.
题型一 多边形
如果已知 n 边形的内角和,根据公式“n 边形的内角 和=(n-2)·180°”可以求出它的边数 n.多边形的外角和 360°与边数 n 无关.正多边形问题常转化为三角形问题解 决.
【典例 1】 如图 22-5,CD∥AF,∠D=∠A,AB⊥BC,∠C=120°, ∠E=80°.求∠F 的度数.
【答案】 21°
4.如图 22-15,在▱ ABCD 中,
AE⊥BC 于点 E,AF⊥CD
于点 F.若∠EAF=60°,则
∠B=
.
【解析】 ∵AE⊥BC,AF⊥CD,∠EAF=60°,∴∠C=360°- 90°-90°-60°=120°. ∵AB∥CD,∴∠B=180°-∠C=60°.
【答案】 60°
1.如果一条直线过平行四边形的对角线的交点,那么这条直线被 一组对边截下的线段以对角线的交点为对称中心,且这条直线 等分平行四边形的面积.
2.四边形中四种常用的辅助线: (1)常用连结对角线的方法把四边形问题转化为三角形问题.
(2)有平行线时,常作另一组平行线构造平行四边形. (3)有中线时,常用倍长中线法构造平行四边形. (4)图形具有等邻边特征时(如:等腰三角形、等边三角形、菱形、
多边形与平行四边形
多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正几边形的每个外角的度数是,每个内角的度数是3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从几边形的一个顶点出发有条对角线,将多边形分成个三角形,一个几边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间地铺成一起,这就是平面图形的密铺,称作平面图形的2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两正多边形密铺,组合方式有:和、和、和合等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可写成2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对它的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式X同底(等底)同边(等边)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .对应训练1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.考点二:平面图形的密铺例 2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形对应训练考点三:平行四边形的性质例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8例4 (2012•广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.对应训练3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.考点四:平行四边形的判定例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的四边形是矩形例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.对应训练5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.1.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为度(不取近似值)。
多边形的内角和-教案
22. 1多边形的内角和教学目标:1.知道多边形的定义及其边.顶点、对角线等概念,会判断一个多边形是否是凸多边形.2•经历探索多边形内角和定理的过程,学握炙边形内角和定理,会运用定理进行有关汁算.3•初步感受化归、类比.从特殊到一般等数学思想.发展合情推理意识,提商主动探索能力.教学重点:多边形内角和定理的探索、归纳及运用定理进行简讥计算.教学难点:通过动于•实践.观察分析.探索并归纳幺边形内角和定理.【教学过程】复习引入:师:同学们三角形是我们极为熟悉的图形,请问三角形的定义是什么?生:平面内由不在同一直线上的三条线段首尾顺次联结所组成的封闭图形叫做三角形.二、新授:师:这是几边形?r \ / /师:我们能否参照三角形的定义,尝试给多边形下个定义?生:平血内由不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形.师:一些线段至少有几条呢?生:三条.师:三角形是昴简单•的女边形•由n条线段组成的多边形就称为n边形.如由四条线段组成的女边形就称为四边形.由五条线段组成的多边形就称为五边形.生活举例(展示生活中含多边形的图片)师:可见在我们生活中多边形无处不在.凸多边形与凹多边形:对干一个多边形画出它任总一边所在的直线,如果其余各边都在这条直线的一侧,那么这个藝边形叫做凸女边形,否则叫做凹多边形.4・师^三角形的内角和是几度?生:180°・师:那么四边形.五边形.n边形的内角和呢?(连问不答)今天这节课.我们就來研尤多边形的内角和.(板书滦题)多边形中的有关概念:概念1:多边形的边:组成多边形的每一条线段叫做女边形的边.概念2:笫边形的顶点:相邻的两条线段的公共端点叫做女边形的顶点.概念3:多边形的内角:多边形相邻两边所在的射线组成的角叫做多边形的内角.概念4:多边形的对角线:联结女边形的两个不相邻顶点的线段叫做女边形的对角线.师:三角形有对角线吗?1川边形的对角线共有几条?五边形的对角线共有几条?师:五边形中,从一个顶点出发有几条对角线?(如果学生答对.则问是如何考虑的)师:这些对角线把五边形分割成了几个三角形?师:那么八边形.七边形……n边形从一个顶点出发共有几条对角线呢?三.探究定理:师:接下來我们來探尤一下多边形的内角和是多少.请大家独立完成下表。
第22讲 多边形与平行四边形(可编辑PPT)
夯基础·学易 栏目索引
1.(2018·济宁,8,3分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别 平分∠EDC,∠BCD,则∠P的度数是 ( C ) A.50° B.55° C.60° D.53°
2.(2018·白银,13,3分)若正多边形的内角和是1 080°,则该正多边形的边数是8.
图1
图2
研真题·优易 栏目索引
命题亮点 本题主要考查多边形外角和定理,并且符合PISA理念测试,提升学生对数学 美的认识. 解题思路 能将实际问题转化为数学问题,知道多边形外角和定理是解决本题的关键.
研真题·优易 栏目索引
1.一个正多边形,它的每一个内角是135°,则该正多边形是 A.正六边形 B.正七边形 C.正八边形 D.正九边形
夯基础·学易 栏目索引
学法提点 (1)平行四边形的定义既是性质又是判定; (2)平行四边形是中心对称图形,但不一定是轴对称图形; (3)平行四边形的对角线不一定平分一组对角; (4)四边形具有不稳定性.
•
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.521.9.5Sunday, September 05, 2021
探难疑·知易 栏目索引
探难疑·知易 栏目索引
由图①得CD=DE+CF-EF=2+2-1=3, ∴▱ABCD的周长为10; 由图②得CD=DE+CF+EF=2+2+1=5, ∴▱ABCD的周长为14. ∴▱ABCD的周长为10或14.
探难疑·知易 栏目索引
答案 10或14 错解 10 错误鉴定 没有图形的题目要画图分析,注意分类讨论是解决本题的关键.
数学八下22.1~22.3多边形和平行四边形-知识点
数学八下22.1~22.3多边形和平行四边形-知识点
1、画任意一边所在的直线,其余各边都在这条直线的同一侧,这样的多边形叫做凸多边形,否则,就叫凹多边形。
2、n边形的内角和等于(n-2)×180°;n边形的外角和是一个定值,等于360°。
从n边形的一个顶点出发有(n-3)条对角线,n边形共有2)3
(
n
n
条对角线。
3、平行四边形的性质:①两组对边分别平行,②两组对边分别相等,
③两组对角分别相等,④对角线互相平分,⑤是中心对称图形,且对称中心是对角线的交点。
4、平行四边形的判定:①两组对边分别平行,②两组对边分别相等,
③一组对边平行且相等,④两组对角分别相等,⑤对角线互相平分。
5、矩形的性质:①具有平行四边形的所有性质,②四个角都是直角,③两条对角线相等。
6、矩形的判定:①证三个内角90°,②先证平四,再证一个内角90°,
③先证平四,再证对角线相等。
7、菱形的性质:①具有平行四边形的所有性质,②四条边都相等,③两条对角线互相垂直,且每一条对角线平分一组对角。
8、菱形的判定:①证四条边都相等,②先证平四,再证一组邻边相等,
③先证平四,再证对角线互相垂直。
9、正方形的性质:具有平行四边形、矩形和菱形的所有性质。
10、正方形的判定:①先证矩形,再证含有菱形的特性(邻边相等或对角线互相垂直);②先证菱形,再证含有矩形的特性(有一个内角90°或对角线相等)。
小初高个性化辅导,助你提升学习力! 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判定定理2:一组对边平行且相等的四边形是平行四边形。
判定定理3:对角线互相平分的四边形是平行四边形。
判定定理4:两组对角分别相等的四边形是平行四边形。
说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。
同时又是证明线段相等,角相等或两条直线互相平行的重要方法。
(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。
热身练习一、判断题1.一组对边平行,另一组对边相等的四边形一定是平行四边形。
( × )2.在四边形ABCD 中,如果AB=BC ,CD=AD,那么四边形ABCD 一定是平行四边形。
( × )3.如果在四边形中,有一组对边平行且相等,那么这个四边形一定是平行四边形。
(√ )4.若在四边形中,一组对边相等,另一组对角相等,那么此四边形一定是平行四边形。
( √ )5.如果四边形的一条对角线把四边形分成两个全等的三角形,那么此四边形一定是平行四边形。
( × )6. 有两组内角分别相等的四边形一定是平行四边形。
( × ) 二、填空题:1.四边形任意相邻内角互补,那么四边形是 平行四边形 。
2.一个四边形的四边长分别是a,b,c,d ,且有)(22222bd ac d c b a +=+++,则此四边形是 平行四边形 。
3. 一个多边形的内角和为1440°,则它的边数为 84.若平行四边形中有一个内角为90°,则其余三个角的度数之比为: 1:1:1 。
5. 如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= 4 cm ,BC= 10 cm ,CD= 4 cm ,AD= 10 cm . 三、解答题1、已知一个多边形的内角和与一个外角的差为1560°,求这个多边形的边数和这个外角的度数。
解:设这个多边形为n ,外角度数为a ,则 (n-2)180°=1560°+aa=(n-2)180°-1560 ∵0<a <180° 所以 3211n 3210ππ 所以n=11,a=60°2、如图,在中,点、、分别在、、上,,,且是的中点.求证:证明:∵,∴四边形DBFE 是平行四边形 ∴ DE=BF,∵ 是的中点.∴BF=CF ∴精解名题例1、已知一个多边形的每个内角都相等,且一个内角比一个外角大36°,求这个多边形的边数。
解:5=n例2、如图,在□ABCD 中,∠DAB=60°,点E 、F 分别在CD 、AB 的延长线上,且AE=AD ,CF=CB . 求证:四边形AFCE 是平行四边形.证明△ADE ≌△CBF 对角相等的四边形是平行四边形。
思考:若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程; 若不成立,请说明理由. 解:成立。
例3、如图,在ABCD 中,AE=CF ,点M 、N 分别是DE 、BF 的中点,求证:FM=EN 。
解:由BE 平行且等于DF ,所以EBFD 是平行四边形所以ME 平行且等于FN ,所以MENF 是平行四边形 所以FM=END EBF A MNC例4、如图,在Rt △ABC 中, ∠BAC=90°,延长BA 到D ,使AD=AB 21,点E,F 分别为边BC ,AC 的中点。
(1)求证:四边形AEFD 是平行四边形。
(EF 平行等于AD ) (2)若BC=10cm,求DF 的长。
(5cm )(3)若BC=10cm ,且∠C=30°,求四边形AEFD 的面积。
(2cm 3425)例5、已知如图,在平行四边形ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN.(1)求证:△AEM ≌△CFN ;(2)求证:四边形BMDN 是平行四边形.证明:(1) ∵四边形ABCD 是平行四边形∴∠DAB=∠BCD ∴∠EAM=∠FCN又∵AD ∥BC ∴∠E=∠F ∵AE=CF ∴△AEM ≌△CFN(2) 由(1) 得AM=CN ,又∵四边形ABCD 是平行四边形∴AB CD ∴BM DN ∴四边形BMDN 是平行四边形备选例题例1、如图所示,在矩形中,,两条对角线相交于点.以、为邻边作第1个平行四边形,对角线相交于点,再以、为邻边作第2个平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形……依次类推.(1)求矩形的面积;(2)求第1个平行四边形、第2个平行四边形和第6个平行四边形的面积.巩固练习1、已知下列命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形(2)一组对边平行,另一组对角相等的四边形是平行四边形;(3)两组邻角互补的四边形是平行四边形;(4)有一个角与相邻两角都互补的四边形是平行四边形。
其中真命题的个数是( B )A. 1B. 2C. 3D. 42、 平行四边形的两条对角线长和一条边的长可以依次为 ( B ) A.4 ,4,4 B. 6,4,3 C.6,4,6 D. 3,4,53、 在下列图形的性质中,平行四边形不一定具有的是( B ).A .对角相等B .对角互补C .邻角互补D .内角和是︒3604、如图,已知长方形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,那么下列结论成立的是 ( C )。
A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定5、如图 ,四边形ABCD 为平行四边形,蚂蚁甲沿A -B -C 从A 到C ,蚂蚁乙沿B -C -D 从B 到D ,两只蚂蚁速度相同且同时出发,则下列结论中,错误的是( C ) A. 甲到达B 点时,乙也正好到达C 点 B. 甲、乙同时到达终点 C. 甲、乙所经过的路程相同 D. 甲、乙所用的时间相同6、如图,O 是□ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若S□ABCD=16. 则S △DOE 的值为 ( C )。
A .1B .C .2D .7、平行四边形ABCD 中,∠A =45°,BC =2 ,则AB 与CD 之间的距离是 1 ;若AB =3,四边形ABCD 的面积是 3 , ΔABD 的面积是 1.5 。
8、在平行四边形ABCD 中,ABC BC AB ∠==,3,1与BCD ∠的平分线分别交AD 于E 、F ,则EF 的长为___1 __。
(4题) (5题) (6题)B CDA9、如图,O是ABCD对角线的交点.△OBC的周长为59,BD=38,AC=24,则AD=_28;若△OBC与△OAB的周长之差为15,则AB=_13___,ABCD 的周长=__ 82 .10、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
△BOM≌△DON(SAS11、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。
求证:四边形AECF是平行四边形。
证明:△AOE≌△COF(ASA)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)自我测试1、判断题(1)相邻的两个角都互补的四边形是平行四边形。
(√ )(2)两组对角分别相等的四边形是平行四边形。
(√ )(3)一组对边平行,另一组对边相等的四边形。
(×)(4)一组对边平行且相等的四边形是平行四边形。
(√ )(5)对角线相等的四边形是平行四边形。
(×)(6)对角线互相平分的四边形是平行四边形。
(√ )2、下列条件中,能确定一个四边形是平行四边形的是(D )A.一组对边相等B.一组对角相等C.两条对角线相等D.两条对角线互相平分3、如图所示,已知△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE 交于点O,则下列结论中,不一定成立的是( B )A . AC=DE B. AB=AC C. AD∥EC且AD=EC D. OA=OE4、如图所示,在ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有(C )个。
A. 7B. 8C. 9D. 115. 如图所示,在ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+F=(D )A. 110°B. 30°C. 50°D. 70°D H CA BE FGOA BCDFE6. 如图所示,E、F是ABCD对角线上两点,且AE=CF,连结DE、BF,则图中共有全等三角形的对数是(C )对。
A. 1B. 2C. 3D. 47. 如右图所示,在ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE= 20°.8. 如右图,已知:点O是ABCD中的对角线的交点,AC=38mm,BD=24mm,AD=14mm,那么△OBC的周长等于45 mm.9. 平行四边形两邻边分别为20和16,若两长边间距离为8,则两短边间的距离为10 .10. 已知,如图所示,在ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF= 3 cm.11.如图所示:四边形ABCD是平行四边形,DE平分BFADC,∠平分ABC∠.试证明四边形BFDE 是平行四边形.12.已知:如图,在中,是边的中点,是的中点,连接并延长到点,使EF=BE,连结AF、。
(1)试说明ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形是矩形,并说明你的理由.证明:(1)证AEF≌△DEB, ∴AF∥BD AF=BD∵BD=CD∴AF=DC AF∥DC, ∴四边形ADCF是平行四方形A BCDEFAB CDOF~ 11 ~。