Duoflow仪器介绍
DuoFlow 层析系统简明使用教程
鼠标点击该按钮,切换到 Local 位置,分别按 maximizer 上的按钮选择 A1,A2,B1 和 B2 管,分别进行灌注。
4、Maximizer 和 Pathfinder 系统缓冲液自动配制:点击程序 Manual 界面工具栏的右边 Setup 按钮, 进入缓冲液配制界面。
点击该按钮,进入缓冲 液配制界面,如下图
白质具有彼此不同的电荷数目,从而与离子交换层析介质上的配基的相互作用不同,以不同离子
强度或连续离子强度梯度的盐溶液将结合能力不同的蛋白质依次洗脱下来。蛋白质与离子交换介
质之间的相互作用方式是多种多样的,不仅与蛋白质所带的净电荷有关,而且与蛋白质分子的空
间结构和电荷分布等因素有关,每一种蛋白质具有其独特的性质,因此,在分离制备蛋白质时要
选择不同的介质和不同的条件,主要有层析介质及其孔径和载量,如 UNOsphere Q/S,MacroPrep
High Q/S, DEAE 和 CM 等,层析条件主要有缓冲液、pH 值、离子强度等等。
2、凝胶过滤(Gel Filtration Chromatography,GFC):一种纯粹按蛋白质分子在溶液中的体积大小
用的分子不能保留而先流出层析柱,再改变洗脱液的条件,如 pH 值、组成等,把吸附在层析柱 上的蛋白质分子以纯品或较纯的形态洗脱下来。
5、疏水作用层析(hydrophobic interaction chromatography, HIC):蛋白质分子时一个外部有一亲 水层包围、内部有疏水核并具有高级结构的复杂体系。尽管蛋白质表面亲水性很强,但也存在一
将针筒插入 A 泵的 Priming 口,如图所示,逆时 针旋转 Priming 接头 1 圈,用针筒将 A 液抽出管 道,第一次抽出管道时大部分是管道和泵的空气, 将旋转接头顺时针旋紧,拔出针筒,打掉针筒中 的溶液,再如上述操作一次,直到泵和管道充满 溶液;然后按上述操作灌注 B 泵及其管道。
AGA 9 - 多路超声流量计测量技术(第2版)说明书
AN OVERVIEW AND UPDATE OF AGA 9 – ULTRASONIC METERSJim BowenSICK, Inc.A BSTRACTThe American Gas Association published Report No. 9, Measurement of Gas by Multipath Ultrasonic Meters 2nd Edition [Ref 1] in April 2007. Report 9 details recommended practice for using multipath gas ultrasonic meters (USMs) in fiscal (custody) measurement applications. This paper reviews some of history behind the development of AGA Report No. 9 (often referred to as AGA 9), key Report contents, which includes information on meter performance requirements, design features, testing procedures, and installation criteria. This paper also discusses changes that will be incorporated in the next revision. At the time of this paper the expected publication date is spring of 2017.I NTRODUCTION/B ACKGROUNDMembers of the AGA Transmission Measurement Committee (TMC) wrote AGA 9. It started in 1994 with the development of Technical Note M-96-2-3, Ultrasonic Flow Measurement for Natural Gas Applications [Ref 2]. This technical note was a compilation of the technology and discussed how the USMs worked, and is included as Appendix C in the 2007 edition, but it is deleted from the upcoming revision since most of the principles described in it have been adapted to the Report’s text. After competition of the Technical Note, the AGA TMC began the developing a new Report for custody application of gas USM technology. More than 50 contributors participated in its development, and included participants from the USA, Canada, The Netherlands, and Norway, representing a broad cross-section of measurement personnel in the natural gas industry at the time (circa 1997).AGA 9 incorporates many of the recommendations in the GERG Technical Monograph 8 [Ref 3] and certain related OIML [Ref 4 & 5] recommendations. Since USM’s are linear meters, much of the document was patterned around AGA 7, Measurement of Gas by Turbine Meters [Ref 6], another linear device. Most of the performance requirements in revision 1 of AGA 9 were based on the limited test data available at the time, and absent high rate test labs. Where no data was available to support a specific requirement, AGA 9 was silent, or left it up to the manufacturer to specify.R EVIEW OF AGA9§1 I NTRODUCTION (S COPE OF R EPORT)Section 1 of AGA 9 provides information on the scope of the document. It states that it’s for multipath ultrasonic transit-time flow meters that are used for the measurement of natural gas. A multipath meter is defined as having two or more independent acoustic paths used to measure transit time difference of sound pulses traveling upstream and downstream at an angle to the gas flow. Today most users require a minimum of 3 acoustic paths for fiscal measurement. The scope goes on to state “Typical applications include measuring the flow of large volumes of gas through production facilities, transmission pipelines, storage facilities, distribution systems and large end-use customer meter sets.”AGA 9 provides information to meter manufacturers that are more performance-based than manufacturing-based. Unlike orifice meters that basically are all designed the same, USM manufacturers have developed their products somewhat differently from one another: most notably, in path configurations. Thus, AGA 9 does not tell the manufacturers how to build their meter, but rather provides information on the performance the product must meet.§2 T ERMINOLOGYSection 2 discusses terminology and definitions that are used throughout the document. Terms like auditor, designer, inspector, manufacturer, etc. are defined there.§3 O PERATING C ONDITIONSSection 3 discusses operating range conditions over which the USM shall perform with specified accuracy. This includes sub-sections on gas quality, pressures, temperatures (both gas and ambient), gas flow considerations, and upstream piping and flow profiles. The gas quality specifications were based upon typical pipeline quality gas and no discussion was included for sour gas applications other than to consult with the manufacturer. It is important to note that these requirements were based upon the current manufacturer’s specifications in order to not exclude anyone. Based on the current state of AGA 9 revision, there are no significant user impact issues, yet on the table, regarding Section 3.§4 M ETER R EQUIREMENTSSection 4, titled “Meter Requirements”, addresses specific mechanical and electrical reuqirments manufacturers need meet to operate the devices in a hazardous environment. Sub-sections on codes and regulations, meter body markings, ultrasonic transducers, electronics, computer programs, and supporting documentation are included.§4.3 Meter BodyThe section on meter body discusses items such as operating pressure, corrosion resistance, mechanical issues relative to the meter body, and markings. Here is says manufacturers should publish the overall lengths of their ultrasonic meter bodies for the different ANSI flange ratings.External and Internal Corrosion resistance and compatibility with gas mixtures commonly found in today’s pipeline is stipulated.The inside diameter of the ultrasonic meter shall have the same inside diameter as the upstream tube’s diameter and must be within 1%. The value of 1% was based mainly on early European studies and also work performed at the Southwest Research Institute’s MRF (Metering Research Facility) in San Antonio, Texas.AGA 9 discusses the ability to remove transducers under pressure. Experience shows that transducers are rarely extracted under pressure, since many meter stations employ multiple runs, making short term outages possible. This allows de-pressurization and transducer removal after blow-down. Additionally, once the meter run is de-pressurized, the internal condition of the meter and associated piping can be inspected if boroscope and inspection ports are available.Proposed Changes:•Reference to use of extraction tools is eliminated.§4.4 TransducersThe section on transducers discusses a variety of issues including specifications, rate of pressure change, and transducer tests. The intent was to insure the manufacturer provided sufficient information to the end user in order to insure reliable and accurate operation in the field, and also to insure accurate operation should one or more pairs need replacement in the field. Subsections include basic specifications, rate of pressure change, exchange and transducer tests.Proposed Changes:•Hydrostatic test of meter bodies shall not be done with transducers installed if test pressure is above ANSI rating.For higher pressures, transducers need be removed.•§4.4.3, “Exchange”, in reference to transducers, is deleted and replaced with existing §4.4.4, “Transducer Tests” , which itself remains unchanged.§4.5 ElectronicsThe electronics section includes two suggested types of flow output communicated to flow computers: serial and frequency. Serial communication (digital using either RS-232 or RS-485) is suggested because the ultrasonic meter is clearly a very “smart” instrument and much of its usefulness relies on the internal information contained in the meter. The frequency output is a not required but standard on all USM, and is needed in applications where flow computers and Remote Terminal Units (RTUs) do not have the necessary software application to poll the USM using the serial port.A majority of users apply the frequency output as input to flow computers. Most USM manufacturers employ standard Modbus collection of measurement information via a serial link or Ethernet adapter. Additional serial or Ethernet ports are used for local interrogation using the manufacturer’s software.AGA 9 requires the manufacturer to also provide digital outputs (DOs) for flow direction and data valid. A digital out is used for monitoring by the flow computer to determine direction of flow (when a single frequency is used for both forward and reverse flow). Data valid is an indicator that the meter has an alarm condition that may impact its accuracy.AGA 9 requires the meter be electrically rated for a hazardous environment as defined by the National Electrical Code [Ref 12]. The minimum rating for a USM is for Class 1, Division 2, Group D environments. Some users specify a rating of Division 1, and, for the most part, all manufacturers design for the more stringent Division 1 requirement.Proposed Changes:•Elimination of the requirement for a scaled 4-20 ma output, now making it an option.•Added statement that a scaled 4-20 ma output is not to be used for custody measurement.•Delete of the paragraph specifying “significant change” as +/- 0.2% shift in the meter’s output, and new stipulation that Manufacturer’s replacement of cables, electronics, transducers, etc won’t shift meter output more that Manufacturer stated repeatability (0.2%).§4.6 Computer Programs Meter Firmware and SoftwareUSMs typically do not provide a local display or keyboard for communicating with the meter as is traditional with some flow computers. USM Manufacturers provide their meter specific software for meter configuration and diagnostic interrogation. There are few specific diagnostic data requirement in manufacturer’s to have similar looking and functioning software, but Report 9 does cite some in §4.6.4, “Meter Diagnostics”.The velocity data is used to indicate flow profile irregularities and to calculate volume rate from average velocity. The flow rate is determined from by multiplying velocity times the meter’s cross-sectional area of the meter. The speed-of-sound data is used as a diagnostic tool to check for erroneous transit time measurement errors. Other information is required to judge the quality of the data such as percent of accepted ultrasonic pulses, signal to noise ratio and transducer gains. A discussion on these is documented in several papers [Ref 13 & 14].Other meter requirements in this section include anti-roll devices (feet), pressure tap design and location on the meter, and standard meter markings. Many of these requirements are based on field experience and the lessons learned from other metering technologies.§4.7 §6 Individual Meter Testing Requirements Moved to “dimensional measurements” et alSection’s 4.7 discusses how the manufacturer will perform tests on the USM prior to shipment. Many also call this testing dry calibration. In reality dry calibration is simply an assembly process to help verify proper meter operation prior being installed in the field. Since there were no calibration facilities in North America until the late 1990’s, it was felt that if a manufacturer could precisely control the assembly process, flow calibration would not be required. Hence the term dry calibration has often been used to describe this section.AGA 9 requires the manufacturer to document the internal diameter of the meter to the nearest 0.0001 inches. This is to be determined from 12 separate inside diameter measurements. This dimension is to be adjusted back to 68 °F and reported on the documents. Measurements should be traceable to a national standard such as NIST, the National Institute for Standards and Technology.Individual meters are to be tested to strict tolerances for leaks and imperfections. AGA 9 also specifies a Zero-Flow Verification Test and a Flow-Calibration Test procedure (although a flow-calibration is not required).No significant changes have been proposed to §4.7 at this time.§4.8 DocumentationSection 4.7 of Report 9’s 2nd edition discusses the manufacturing and certification documents required to be delivered by USM builders. The section has been significantly reworked to add description of required dimensional measurements, leakage tests, etc.§5.0 Performance Requirements Installation (was §7 in second edition of Report 9)Many of the variables the designer should take into consideration when using USMs are addressed, such as operating conditions, use of flow conditioners and meter tube configurations etc.§5.2 Piping Configuration Metering Package Design CriteriaReport 9’s 1st Edition was developed with only limited empirical data. The 2nd Edition, published in 2007 was not much of an improvement. For instance, Section 5.2 of AGA 9 discusses upstream piping issues. The intent here is to provide the designer with some basic designs that will provide accurate measurement. It states “Recommend upstream and downstream piping configuration in minimum length — one without a flow conditioner and one with a flow conditioner — that will not create an additional flow-rate measurement error of more than +0.3% due to the installation configuration. This error limit should apply for any gas flow rate between q min and q max. The recommendation should be supported by test data.” In other words, the manufacturer is required to let the designer know what type of piping is permitted upstream so that the impact on accuracy will not be greater than 0.3%.In reality this is difficult given the variety of upstream pipe configurations operators use, so the so-called end-treatments (or entrance/exit piping) are often included in the calibration of the “metering package”.Much data has been taken and published since 1998, and, as a consequence of this data, and the desire to provide the highest level of accuracy, most users have elected to use a high-performance flow conditioner with their USM. Testing has shown that the use of a 19-tube bundle, typical with turbine and orifice metering, will not improve the USM performance, and inmost cases actually will degrade accuracy [Ref 7]. However, high performance flow conditioners, usually specified in meter package design, help to obtain a uniform and repeatable flow profile.Proposed Changes:•Process section added to indicate guidance for operating conditions such as pulsating flow and a more detailed discussion of potential noise impacts on USM operation.•Recommended Default Meter Run Configurations (§5.2.3) are modified to eliminate the optional entrance to the meter run through either a tee or elbow, leaving users to their design preference so long a meter performance meets §6 requirements.Corrected flow rate output requires USM metering packages include temperature measurement on the outlet leg of the meter run. AGA 9 recommends the thermowell be installed between 2D and 5D downstream of the USM on a uni-directional installation. It states the thermowell should be at least 3D from the meter on a bi-directional installation. This was based on research done at SwRI sponsored by GRI in the 1990’s. These studies found measurable influence onset at 2D downstream of USMs during and the committee settled on 3D as a reasonable distance.§6.0 Performance RequirementsSince Report 9 is a performance based document, “Performance Requirements” are core to its scope, and it addresses minimum performance requirements the USM’s must meet. It requires flow calibration for fiscal use.AGA 9’s second edition (2007) separates ultrasonic meters into two categories; smaller than 12” and meters that are 12” and larger. This division was created to allow relaxed accuracy requirements for smaller meters where tolerances are more difficult to maintain. All other requirements, including repeatability, resolution, velocity sampling interval, peak-to-peak error and zero-flow readings are the same, regardless of meter size.The edition preparing for release in 2017 will have 3 size ranges and new accuracy limits:•>10” Max Error: +/-0.7% q t≤q i≤q max; +/-1.4% for q min≤q i≤q t with linearity of+/-0.2% for q t≤q i≤q max•3”-8”: Max Error: +/-1.0% q t≤q i≤q max; +/-1.4% for q min≤q i≤q t with linearity of+/-0.2% for q t≤q i≤q max•<3”: Max Error: +/-2.0% q t≤q i≤q max; +/-3.0% for q min≤q i≤q t with linearity of+/-0.2% for q t≤q i≤q maxPer the second edition, the maximum error allowable for a 12-inch and larger ultrasonic flow meter is ±0.7%, and ±1.0% for small meters. This error expands to ±1.4% below Q t, the transition flowrate. Within the error bands, the error peak-to-peak error (also thought of as linearity) must be less than 0.7%. The repeatability of the meters must be with ±0.2% for the higher velocity range, and is permitted to be ±0.4 below Q t. Figure 1 is a graphical representation of these performance requirements as shown in AGA 9.Figure 1 – Performance Specification Summary, 2nd EditionSection 5 also discusses the potential effects of pressure, temperature and gas composition on the USM. Here is states “The UM shall meet the above flow-measurement accuracy requirements over the full operating pressure, temperature and gas composition ranges without the need for manual adjustment, unless otherwise stated by the manufacturer.” There has been some concern about calibrating a USM at one pressure and then operating at a different pressure. Although there are a variety of opinions on this, most believe the meter’s accuracy is not significantly impacted by pressure [Ref 13] since there has not been correlation with significant per pat Speed of Sound measurements (one would expect if the meter were changing dimensions due to pressure change that a path length change would result and turn up in a path SoS deviation).§7 C OMMISSIONING &F IELD V ERIFICATIONSection 7 briefly discusses field verification requirements. Since each USM provides somewhat different software to interface with the meter, AGA 9 was not too specific about how to verify field performance. Rather they left it up to the manufacturer to provide a written field verification procedure that the operator could follow. The 2nd edition made limited progress on Field Verification, but it is intended the 3rd edition will be much more expansive regarding Field Verification practice. Much debate is occurring on these topics now to insure recommended practice matches Operator requirements, current Field practice and Manufacturer capability, and since this discussion is on-going, it is difficult to state proposed changes due to their number and variety.Typically today the operator would check the basic diagnostic features including velocity profile, speed-of-sound by path, transducer performance, signal to noise ratios and gain. One additional test is to compare the meter’s reported SOS with that computed by a program based upon AGA 8 [Ref 12].At the time of the first release there was no universally excepted document that discussed how to compute SOS. However, in 2003 AGA published AGA Report No. 10, Speed of Sound in Natural Gas and Other Related Hydrocarbon Gases [Ref 13]. This document, based upon AGA 8, provides the foundation for computing SOS that most software uses today, and is incorporated by reference into the 2nd Edition. It will pass that AGA 10 collapses into AGA 8 and that the SoS calculation will be harmonized, to some extent with SGERG, the European consortium’s method to calculate SoS in hydrocarbon mixtures. This effort is nearly complete now and will result in an AGA 8 Equation of State document that includes AGA 10 Detailed and SGERG.R EFERENCES1.AGA Report No. 9, Measurement of Gas by Multipath Ultrasonic Meters, 2nd Edition, April 2007, American GasAssociation, 1515 Wilson Boulevard, Arlington, VA 222092.AGA Engineering Technical Note M-96-2-3, Ultrasonic Flow Measurement for Natural Gas Applications,AmericanGas Association, 1515 Wilson Boulevard, Arlington, VA 222093.GERG Technical Monograph 8 (1995), Present Status and Future Research on Multi-path Ultrasonic Gas Flow Meters,Christian Michelsen Research AS, the GERG Project Group and Programme Committee No. 2 - Transmission and Storage, Groupe Européen De Recherches Gazières4.OIML R 6General provisions for gas volume meters,1989 (E), International Recommendation, OrganizationInternationale de Métrologie Légale, Bureau International de Métrologie Légale, 11, rue Turgot - 75009 Paris - France 5.OIML D 11General requirements for electronic measuring instruments,1994 (E), International Document,Organization Internationale de Métrologie Légale, Bureau International de Métrologie Légale, 11, rue Turgot - 75009 Paris - France6.AGA Transmission Measurement Committee Report No. 7, Measurement of Gas by Turbine Meters, American GasAssociation, 1515 Wilson Boulevard, Arlington, VA 222097.T. A. Grimley, Ultrasonic Meter Installation Configuration Testing, AGA Operations Conference, 2000, Denver, CO8.John Stuart, Rick Wilsack, Re-Calibration of a 3-Year Old, Dirty, Ultrasonic Meter, AGA Operations Conference, 2001,Dallas, TX9.Code of Federal Regulations, Title 49 —Transportation, Part 192, (49 CFR 192), Transportation of Natural Gas andOther Gas by Pipeline: Minimum Federal Safety Standards, U.S. Government Printing Office, Washington, DC 20402 10.NFPA 70, National Electrical Code,1996 Edition, National Fire Protection Association, Batterymarch Park, Quincy,MA 0226911.Umesh Karnik & John Geerlings, Effect of Steps and Roughness on Multi-Path Ultrasonic Meters, ISFFM 2002,Washington, DC12.AGA Transmission Measurement Committee Report No. 8, Compressibility Factors of Natural Gas and Other RelatedHydrocarbon Gases, American Gas Association, 1515 Wilson Boulevard, Arlington, VA 2220913.AGA Report No 10, Speed of Sound in Natural Gas and Other Related Hydrocarbon Gases, July 2002, American GasAssociation, 1515 Wilson Boulevard, Arlington, VA 22209。
SOP-BioLogic DuoFlow 10,40 System
BioLogic DuoFlow 10/40 System标准操作规程1、目的:正确使用DuoFlow层析系统,确保DuoFlow层析系统正常使用。
2、适用范围:BioLogic DuoFlow 10/40 System层析系统。
3、责任人:层析系统操作人员。
4、程序:4.1 准备工作与仪器预查4.1.1 所有用于该层析系统的水,缓冲液等试剂溶液和所有样品在使用前均必须以0.22μm 或0.45μm微孔滤膜过滤,并以真空抽气装置或超声波对以上各试剂溶液和样品脱气,以确保溶液和样品中无微颗粒和溶解气体;由自动进样环进样的少量样品(<5mL)可以以10000rpm离心5分钟后,吸取上清液直接使用。
4.1.2 将输液管路终端浸入各选用的溶液中。
4.1.3 检查层析系统信号线和流通管路等各部分线路是否连接完好,若无异常情况可准备开机。
4.2 开机4.2.1 插上系统各部分电源插头,开启组分收集器开关,然后开启层析系统主机左下方电源开关,再打开电脑监视器的电源开关,进入Windows系统。
用鼠标双击Windows桌面的“BioLogic Configuration”图标,在弹出窗口中确认不选择“Maximizer is install”,选择BioFrac 组分收集器,根据泵头配置选择F10或F40泵头,最后鼠标点击“OK”确认。
4.2.2 鼠标双击Windows桌面的“BioLogic DuoFlow”快捷键,进入层析系统“Manual”监视界面,检查该界面系统各部分和阀门的状态,在“UV Detector”控制面板上点击“ON”,打开紫外灯。
4.2.3 用洁净针筒插入主机A泵前下方的“Priming”接口,旋松该接口,用针筒抽出泵中的溶液,旋紧接口,再重复上述操作,直到抽出溶液不含气泡,最后旋紧接口;B泵也如同上述操作,确保A、B泵中没有气泡。
4.2.4 鼠标选择Manual界面中“Workstation Valves”的A VR7-3阀门的“P”位置,使阀门转到Purge位,打开主机左下方“Purge”下的“A”按钮,开始以所选A液冲洗A泵管道,约2分钟后再按该按钮停止Purge,然后按“B”按钮,以所选B液冲洗B泵管道,同样冲洗2分钟。
多奥掌纹掌脉仪用户手册
掌纹掌脉仪用户手册前言感谢您购买多奥的产品。
请妥善保管本手册,在安装、使用和维护设备前请仔细阅读本手册并遵守相关的规定和注意事项,确保设备性能最佳。
操作不正确可能会对设备造成有害的影响。
设备安全类级别为Ⅲ类设备,即防电击保护是依靠安全特低电压电路供电来实现的,且不会产生危险电压的设备。
本手册包含有掌纹掌脉仪的技术信息:产品概述、安装说明、设备连接、使用指南、日常维护和故障排除。
其它相关手册请查阅门禁管理软件手册,门禁管理软件涵盖了联网门禁系统的运行与管理。
多奥保留对产品进行设计更改或软件升级的权利。
本手册中的信息发生更改,不另行通知。
本手册包含受版权保护的专有信息。
未经我公司的书面许可,本手册或其任何部分不得以任何方式复制或以电子方式传播。
如您在安装、使用或维护当中有任何疑问,请联系多奥的客服代表。
目录一、产品概述 (2)1.1 产品简介 (2)1.2 技术规格 (4)二、安装说明 (5)2.1 安装要求 (5)2.2 安装方法 (6)三、设备连接 (8)3.1 端口介绍 (8)3.2 设备连接 (9)3.3 设备连接至第三方控制器 (9)四、使用指南 (10)4.1 正确使用姿势 (10)4.2 添加用户与编辑用户 (11)五、日常维护 (12)六、故障排除 (13)一、产品概述1.1产品简介产品用途:产品适用于智能楼宇、政府机关、金融银行、工厂、军工、监狱、机场和核电等应用场景的出入口控制系统和身份认证系统。
掌纹掌静脉识别技术:掌纹掌静脉识别技术是新一代多模态、高精度、高安全性和活体生物特征识别技术。
掌纹识别是利用手掌皮肤纹路(包括乳突纹、主线和皱褶等)的唯一性,即人的掌纹千差万别,没有任何两个手掌掌纹是完全相同的。
由于掌纹的这一特点,人们可以利用掌纹进行身份鉴别。
根据手掌掌纹的有效信息判断是否来自同一只手掌,从而达到身份识别的目的。
掌静脉识别是用近红外光源对人体手掌进行照射,利用血液中血红素对近红外光具有较强的吸收特性,使得近红外光照射后的手掌图像会在皮下静脉处呈现较暗的纹路,并且静脉特征在可见光下无法获取,具有较强的隐蔽性和防伪性。
DUO-FLOW中文操作指南
此钮可选择一个组分收集器,可选择的组分收集器包括 BioFrac、2110 型、 2128 型和其它通用型接收器(非本公司产品)。用户可以选择使用中的检测器或电导 检测器作为一个阈值检测器来起动组分收集器。为了能够在 2110 型或其它通用 型接收器中使用收集窗口或阈值收集,必须指定一个 SVT3-2 阀作为组分收集器 的换向阀。 若选用 BioFrac 或 2128 型收集器,则用户可指定接收管架的类型和数目,如果 选择了多个管架,系统会在运行过程中的一个合适时间停止,弹出的黄色信息 提醒用户在继续运行前更换管架。 BioFrac 或 2128 型收集器也让用户指定一个延迟体积。Delay Volume(延迟体积) 功能可精确地使组分接收与在图表记录器中的 UV 信号同步,这个延迟体积即 是从 UV 检测器到接收器滴头之间的管子的体积,如果用户使用的是推荐的 1/16 英寸(1.6mm)外径、0.020 英寸(0.51mm)内径的 Tefzel 管,1cm 长的管子的 体积为 0.2 微升,厂商提供的背压调节器的体积是 146 微升。 z Buffer Blender(缓冲液自动配制):多种缓冲体系可用于 DuoFlow Maximizer 系 统,从 Buffer System 窗口中可选择一个想要的缓冲体系,当一个缓冲体系被选 定后,在下方的窗口中就会显示其 25℃下的 pH 范围、100%B 的摩尔浓度、温度 补偿系数、以及配方,并标明是否要使用一点或二点的 pH 校正,可从 File 菜 单中选择 Print Report 或直接使用 Report 工具按钮来打印缓冲液配方,这个 选择包括一个方法选项。 z Detectors(检测器):DuoFlow 系统提供了 UV 检测器和电导监测器,QuadTec 四波长检测器的介绍请参见其用户手册,SIM/pH 则用于 Bio-Rad 公司的 pH 监 测器和 SIM(信号输入组件),SIM Signal(信号)是用于诸如示差和荧光检测 器等非 Bio-Rad 公司产品的。 z Valves(阀): DuoFlow 系统的自动阀可根据它们在方法中的功能而采取不同的 配置方法,表 7-1 讨论了如何设置每一个阀。 z Gradient Pump(梯度泵):通过改写”Buffer A”和”Buffer B”,入口 A 和 B 被重新 命名,当使用 Maximizer 时,这些入口则变成 A1、A2、B1 和 B2。 阀的功能与命名 DuoFlow 软件最强大的功能之一是能够为自动阀定义其特定用途并为每个阀位命
SKIDA 4 Plus 多通道注射器分析仪说明书
Key features• Tests up to four infusion pumps simultaneously• Compatible with virtually any type of infusion device • Instantaneous and average flow measurement • Occlusion pressure measurements to 45 psi • Single- and dual-flow (piggyback) testing• Full PCA testing (bolus volume, lockout time, and automated external triggering)• Autostart mode enables unit to begin testing only when fluid is detected • On-board graphing of pressure and flow• Built-in memory to save test results for printing or downloading to computer • Hydrograph graphical software to control unit and display results via PC • Automated testing through Fluke Biomedical medTester 5000C (US only)Technical DataIDA 4 Plus Multi-Channel Infusion Device Analyzer maximizes productivity with multiple, independent channels for testing up to four infusion pumps at once.The device measures instantaneous flow, average flow, occlusion pressure, and analyzes patient-control analgesia (PCA) units. An optional PCA trigger box provides automated PCA pump control, allowing technicians to set up tests and walk away.An autostart feature simplifies syringe pump testing or other tests that have long startup times.With built-in memory, the IDA 4 Plus records test results internally and provides easy-to-read test-result graphs right on the analyzer’s screen. The display is so large numbers can be read from across the room.Additionally, the IDA 4 Plus comes withHydrograph PC software for creating full-color graphs and reports. For automated testing, the IDA 4 Plus is compatible with Fluke Biomedical’s medTester 5000C (US only).ElsoPhilipsService,Jilemnického2;91101Trenèín;tel:+421326582410,7431690;fax:+421326582592;email:**************;web:www.fluke.skTechnical specificationsFlow-rate measurementTechnique: Calculated by mea-suring a volume over timeRange: 0.5 ml/hr to 1000 ml/hr Accuracy: 1 % of reading ± 1 LSD for flows of 16 ml/hr to 200 ml/hr for volumes over20 ml; otherwise, 2 % of reading ± 1 LSD after delivery of 10 ml Volume measurementTechnique: Volume measured directly by the transducer in minimum sample sizes of 60 µl Range: 0.06 ml to 9999 ml Accuracy: 1 % of reading ± 1 LSD for flows of 16 ml/hr to 200 ml/hr for volumes over20 ml; otherwise, 2 % of reading ± 1 LSD after delivery of 10 ml PCA bolus measurementTechnique: Volume is measured directly by the transducer in minimum bolus volumes of 0.5 ml. The measurement is made with a continuous rate between 0 ml/hr and 30 ml/hr. The bolus flow rate should be at least four times the basal flow rate for reliable detection of boluses.Minimum bolus volume: 0.5 ml Accuracy: See volume measurementPressure measurementTechnique: Direct occlusion of the infusion line and measure-ment of pressure prior to the glass transducerRange: 0 psi to 45 psi and equivalents in mmHg and kPa Accuracy: 1 % of full scale ± 1 LSDBack pressure: -100 mmHg to 300 mmHgElectrical specificationsSupply voltage: Autoswitching90 V ac to 260 V acSupply frequency: 50 Hz to 60 HzSupply power: < 30 VAFuse: 20 mm 250 V, 1 A (T) (slow blow)Earth leakage current: < 1 mA in single fault condition Environmental conditionsOperating temperature: 15 ˚C to 30 ˚C (59 ˚F to 86 ˚F)2 Fluke Biomedical IDA 4 Plus Multi-Channel Infusion Device AnalyzerStorage temperature: 0 ˚C to 40 ˚C (32 ˚F to 104 ˚F) at 85 % RH or less for storage [Do not leave for more than 48 hours at -20 ˚C (-4 ˚F)]General informationDimensions (WxDxH): 19.05 cm x 18.11 cm x 30.18 cm (7.5 in x 7.2 in x 11.9 in)Weight: 5 kg (11 lb)“demand” signals. With the IDA 4 Plusconnected to the Trigger Box, it will measure,display, and record essential PCA pumpparameters to show bolus and flow characteristics.The PCA Trigger Box can also be used to test the “nurse call” interface of PCA Pumps. Simulate “nurse calls” and look for the response indicated by makers in the flow graph.HydroGraph™Graphics SoftwareUse the moving colorvisual advantage ofHydroGraph to troubleshootup to four infusion pumpsat once. Data is takendirectly off the transducerand transmitted to HygroGraph.The flowing graphs provide anelectronic means to display, store, and recall flow patterns for comparison at a later date. Each test window can display instantaneous and average flow rates, cumulative, and bolus volumes; and occlusion pressure.IDA 4 Plus Multi-Channel Infusion Device Analyzer Fluke Biomedical 3Ordering informationModelsIDA 4 Plus One-Channel Infusion Device Analyzer 2250063 IDA-4P/1-US120V (US)2394575 IDA-4P/1-AUS250V(Australia)2394582 IDA-4P/1-DEN250V(Denmark)2394594 IDA-4P1-SHK250V (Shuko)2394608 IDA-4P/1-ISR250V (Israel)2394613 IDA-4P/1-ITAL250V (Italy)2394624 IDA-4P/1-IND250V (India)2394636 IDA-4P/1-SWZ250V(Switzerland)2394649 IDA-4P/1-UK250V (UK) IDA 4 Plus Two-Channel Infusion Device AnalyzerFull testing for up to two infusion pumps simultaneously2250088IDA-4P/2-US120V (US)2394651IDA-4P/2-AUS250V(Australia)2394660IDA-4P/2-DEN250V(Denmark)2394672IDA-4P/2-SHK250V (Shuko)2394685IDA-4P/2-ISR250V (Israel)2394697IDA-4P/2-ITAL250V (Italy)2394703IDA-4P/2-IND250V (India)2394715IDA-4P/2-SWZ250V(Switzerland)2394726IDA-4P/2-UK250V (UK)IDA 4 Plus Three-ChannelInfusion Device AnalyzerFull testing capability for up to threeinfusion pumps simultaneously2250109IDA-4P/3-US120V (US)2394732IDA-4P/3-AUS250V(Australia)2394744IDA-4P/3-DEN250V(Denmark)2394759IDA-4P/3-SHK250V (Shuko)2394767IDA-4P/3-ISR250V (Israel)2394771IDA-4P/3-ITAL250V (Italy)2394780IDA-4P/3-IND250V (India)2394798IDA-4P/3-SWZ250V(Switzerland)2394800IDA-4P/3-UK250V (UK)IDA 4 Plus Four-ChannelInfusion Device AnalyzerFull testing capability for up to fourinfusion pumps simultaneously2250127IDA-4P/4-US120V (US)2394817IDA-4P/4-AUS250V(Australia)2394821IDA-4P/4-DEN250V(Denmark)2394839IDA-4P/4-SHK250V (Shuko)2394842IDA-4P/4-ISR250V (Israel)2394856IDA-4P/4-ITAL250V (Italy)2394863IDA-4P/4-IND250V (India)2394874IDA-4P/4-SWZ250V(Switzerland)2394888IDA-4P/4-UK250V (UK)Standard accessories2213506Electronic User Manual andHydroGraph Software2238626Serial Communication Cable221723120 ml priming syringe2391750Luerlock-3 way (one foreach channel)2238909 5 foot plastic drain lineXXXXXXX Power cord (countryspecific)Optional accessories2245061 External Mini-Keyboard,83-Key with PS/2Connector and AT Adapter2238072 Parallel Printer Cable(D25M-36M)2209703 PCA Trigger/Nurse Call Box2248899 Printer, Seiko DPU-414-30B(120 V power supply)(additional purchaserequired: Parallel PrinterCable, p/n 2238072)2399531 Printer, Seiko DPU-414-30B(220 V power supply)(additional purchaserequired: Parallel PrinterCable, p/n 2238072)2235375 Printer (120 V powersupply)2235382 Printer (220 V powersupply)2200102 Interface Cable, medTesterto IDA 4 Plus (withoutwedge adapter) (RS-232;female DB25 to female DB9)2201042 Interface Cable, medTesterto IDA 4 Plus (with wedgeadapter) (RS-232; femaleDB9 to female DB25)2245092 Barcode Scanner (withlong-reach coil cable withY connector for keyboardattachment)2238626 Null Modem Cable (femaleDB9 to female DB9)Fluke Biomedical.Better products. More choices. One company.Fluke Biomedical 6045 Cochran RoadCleveland, OH 44139-3303 U.S.A.Fluke Biomedical Europe Science Park Eindhoven 5110, 5692EC Son, The NetherlandsFor more information, contact us:In the U.S.A. (800) 850-4608 or Fax (440) 349-2307In Europe/M-East/Africa +31 40 267 5200 or Fax +31 40 267 5436From other countries +1 (440) 248-9300 or Fax +1 (440) 349-2307Email:*************************Web access: ©2006-2008 Fluke Biomedical. Specifications subject to change without notice. All OEM trademarks are implied. Printed in U.S.A. 3/2008 2804429 D-EN-N Rev Briešenia na presné meranie™Elso Philips Service; tel: +421 32 6582410email: ************; web: www.elso.sk。
duo200产品说明书范文
DUO200说明书1、产品介绍DUO200是一种高性能的微机控制双鉴探测器,他基于两种物理现象,即由人体发出的红外线和人在微波领域内活动产生的多普勒效应。
两种技术组合应用能够互相填充从而保证可靠的探测并防范误报警。
DUO200优于其他双鉴探测器之处在于采用了真实动作辨析系统,这种高级动作解析方法为UDO200供应了差别人的动作和其他可以致误报警搅乱的能力。
DUO200另一个独到的特点是采用了微波摸拟系统,他模拟了人在微波地域中活动产生的影响,这种模拟程序周期执行,可达到自测、监察并保证微波探测的正确工作。
2、规格输入电压:9—16VDC耗电:大体23mA@12VDC精美红外面分(参看视图2)探测器:低噪音双电子热效应感觉器跳闸指示:绿灯闪烁5秒动作计数:可选1或2个动作镜头数据光辉数量:34视角地域:90度最大覆盖区:12*12m垂直赞同:+2度—-12度经过沿角度滑动系统板获得微波部分发生器:微回路静态损坏型频率:美国在英国和欧洲跳闸指示:绿灯发光5秒范围:3m到12m报警、保护和故障数据报警指示:若是所有探测器跳闸,则红灯亮到5秒继电器:常闭,串接18欧姆电阻报警连续:到5秒(红灯亮并且输出继电器打开)防拆继电器:常闭故障输出:三极管导通,最大100mA,串接100欧姆电阻外形尺寸:(高*宽*厚)104*60*32mm重量:80克固定直接:没有附加的支撑直接固定在墙的表面或墙角附件BR-1:表面固定支撑,赞同愿下 30度左右45度调整1BR-2:在BR-1基础上加墙角般配器BR-2:在BR-1基础上加天棚般配器环境条件工作温度:-10度—50度积蓄温度:-20度—60度射频保护:高出30v/m(20MHz—2000MHz) 专利专利号:5,237,3305,693,943Des346,5673、安装3.1安装指南在选择固定地址时必定注意几点重要规则:、微波射线可穿过玻璃和非金属墙,确定微波地域不会高出房间限制。
高等仪器分析课件-1 总论
细胞间使用规范
• 细胞间入口的风淋室是进入细胞间的唯一通道,非紧急情况 下实验者能且只能从风淋室进入。风淋室的风淋时间最低为 10秒钟,严禁随意更改风淋时间。风淋室边的门是出细胞间 的唯一通道,非紧急情况下实验者能且只能从该通道出来, 尤其提示,绝对禁止从这道门进入细胞间,违者必追究其责 任! • 为保障自身安全,进入细胞间后需观察细胞间内的紫外灯已 全部处于关闭状态。若需对细胞间进行紫外消毒,需要确认 细胞间内所有实验人员都已退出,确保他人人生安全。 • 为防止细胞间出现不必要的污染情况,出入细胞间每道门都 必须确认门已经重新关闭,并且电磁阀也处于锁闭状态。
厦门大学药学院分析测试中心 规章制度
厦门大学药学院分析测试中心规章制度
• 1、学院分析测试中心的仪器由专人负责管理和维护,需要 使用本中心仪器的人员必须持有本中心授权的ID方能上机 使用(初次使用实验仪器人员,必须经过管理人员的培训 并获得上机ID); • 2、院内所有大型公用仪器的使用必须在预约系统内进行登 记,若不进行预约,管理者有权拒绝开放该仪器。小型仪 器使用原则上也应先进行预约登记,若遇使用时间冲突, 有预约的具有优先使用权。(详见预约管理制度); • 3、使用设备前,首先检查仪器周边卫生情况,若未检查实 验室环境卫生不达标时,请先向管理人员汇报或自行整理 、清扫,否则该室的卫生将由正在进行实验的人员负责;
厦门大学药学院仪器分析测试中心简介
• 厦门大学药学院分析测试中心成立于2012年,旨在为药学及相 关学科高层次人才的培养和药物的研究与开发,提供优良的实验 环境和技术条件。 “中心”侧重于大型仪器的资源共享和各学科 项目的交叉研究 ,是学校公共仪器服务平台重要的组成部分。 • “中心”占地700多平方米,拥有各类大型分析仪器40余台,总 价值3000多万元。仪器分析中心现有专职技术人员6人,负责大型 仪器的日常维护和使用。“中心”实行“专管共用,开放共享” 的管理模式,建立网上机时预约统计系统,FTP数据统计体系,实 现了管理的自动化,网络化。在充分满足学校师生科研测试需求 的同时,也面向国内外的各企业及事业单位开放,提供优质的测 试服务。
VersaFlow TWM 9000 电磁流量转换器说明书
VersaFlow TWM 9000 Electromagnetic Flow Converter Specifications34-VF-03-02 September 2015The High-Performance SolutionThe TWM 9000 is the only electromagnetic flow converter with diagnostics for the instrument and application. TWM 9000 is compatible with all electromagnetic flow sensors and is suitable for all applications.Highlights•Complete Diagnostics of the application and instrument •Quick to install and easy to operate•Excellent long-term stability•Optimal zero point stability independent from process properties•One converter for all applications; helps facilitate procurement, engineering and inventory management. •Exceeds requirements VDI / VDE/ WIB 2650 and NAMUR NE 107•Integrated temperature and conductivity measurement •Suitable for Custody TransferIndustries•Chemicals•Food & Beverage•Minerals & Mining•Oil & Gas•Pharmaceuticals•Power Plants•Pulp & Paper•Water•Wastewater•MachineryFigure 1 – VersaFlow Electromagnetic Flow ConverterElectromagnetic Product RangeVersaFlow converters are compatible with all sensorsAll meters consist of a sensor and a converter. Theconverter may be mounted integral to the sensor, or remotely, either with a field mounting kit or a wall-mounted housing. See sensor specification for details.Applications•Products with low conductivity, high solid contents or entrained air•Inhomogeneous, abrasive and corrosive products •Quick media changes•Abrupt changes of pH value•Pulsating or turbulent flowsModelC (compact) (Integrally Mounted) TWM 9000 CF (field), W (wall), R (19" rack) (Remote Mounted) TWM 9000 F, TWM 9000 W, TWM 9000 RPerformanceMaximum measuring error See Accuracy CurvesRepeatability ±0.06% to OIML R117Full-scale range (see flow table) v = 0.3...12 m/s / 1...40 ft/sConductivityMin. process liquid conductivity (non-water) As low as 1 µS/cm (see flow sensor ) Min. process liquid conductivity (water) 20 µS/cmContent of solidsMaximum percentage (by volume) 30%DisplayWith local display (2 meas. pages: 1 status page, 1 graphical page) StandardLanguagesEnglish, French, German, Dutch, Polish, Portuguese, Danish ,StandardSpanish, Swedish, Slovenian, ItalianCombinationsVersaFlow Mag 100 Specification 34-VF-03-08 DN10...150 (3/8” to 6”)VersaFlow Mag 1000 Specification 34-VF-03-16 DN25...3000 (1” to 120”)VersaFlow Mag 4000 Specification 34-VF-03-01 DN2.5...3000 (1/10” to 120”)VersaFlow Mag 2000 Specification 34-VF-03-21(F), 34-VF-03-22(SW) DN2.5...250 (1/10” to 10”)VersaFlow Mag 3000 Specification 34-VF-03-23 DN2.5...150 (1/10” to 6”)CommunicationCurrent, pulse & status output, frequency output, limit switch StandardHART communication, control input, 3 counters StandardEx-i OptionFoundation Fieldbus OptionModbus OptionVerificationIntegrated verification, diagnostics: Standard- instrument / process / measurement Standard- empty pipe indication / stabilization StandardCustody TransferWithout StandardCold potable water (OIML R-49, KIWA K618) Option1Other than water (OIML R-117) Option1Power SupplyVoltage Power Consumption Standard/Option 100…230 VAC (-15% / +10%), 50/60 Hz 22 VA Standard24 VDC (-55% / +30%) 12 W Option24 VAC/DC (AC: -15% / +10%; DC: -25% / +30%) AC 22 VA; DC: 12 W OptionApprovalNon Ex StandardEEx - zone 1 Option 2FM - Class I DIV 2 Option 2CSA - Class I DIV 2 Option 2NEPSI zone 1 Option 2SAA – Aus Ex zone 1 / 2 (pending) Option 2Protection category (according to IEC 529 / EN 60 529)C (compact) IP 66 / 67 (eq. to NEMA 6)F (remote) IP 66 / 67 (eq. to NEMA 6)W (wall) IP 65 (eq. to NEMA 4/4X)R (19" rack) IP 20 (eq. to NEMA 1)TemperatureProcess temperature See flow sensorAmbient temperature -40…+65°C / -40…+149°FStorage temperature -50…+70°C / -58…+158°FSignal CableSeparate - DS (dep. on measuring sensor and conductivity) 5...600 m / 15...1950 ftSeparate - BTS (dep. on measuring sensor and conductivity) 5...600 m / 15...1950 ftSeparate - LIYCY (Class 1 Div. 2 only) (dep. on measuring sensor and5...100 m / 15...330 ftconductivity)1pending2only for C and F versionCable ConnectionM20 x 1.5 Standard ½" NPT Option PF ½ OptionMaterials UsedDie-cast aluminum (polyurethane coated); C and F version only Standard Polyamide - polycarbonate; W version only Standard Stainless steel 316 L (1.4404); C and F version only Option Custody transfer lead & sealing; C and F version only Option 11 pendingDimensions and Weights1 Compact version (TWM 9000 C)2 Field housing (TWM 9000 F) - remote version3 Wall-mounted housing (TWM 9000 W) - remote version4 19" rack (TWM 9000 R) - remote versionDimensions and Weights in mm and kgVersionDimensions mm [inches]Weights kg[lbs]ab c d e fghTWM 9000 C 202 (7.95) 120 (4.75) 155 (6.10) 260 (10.20)137 (5.40)---4.2 (9.30) TWM 9000 F 202 (7.95) 120 (4.75) 155 (6.10) - - 140.5 (5.50) 295.8 (11.60) 277 (10.90) 5.7 (12.60) TWM 9000 W 198 (7.80) 138 (5.40) 299 (11.80) - - - - - 2.4 (5.30) TWM 9000 R142 (5.60)129 (5.08)195 (7.68)--140.5 (5.53)295.8 (11.65)277 (10.90)1.2 (2.65)I/O SpecificationsOverall FunctionalityFunction Continuous measurement of actual volume flow rate, flow velocity, conductivity,massflow (at const. density), coil temperature. Integrated batch controllerBidirectional flow measurement and totalisationFlow direction identified via status or current outputDiagnostics: Accuracy, linearity, electrode contamination, noise, flow profile, fieldcurrent, coil resistance and temperature, empty or non-full pipe + derived functionsCurrent OutputFunction Measurement of volume and mass (at constant density), HART® communication Settings With HART®Without HARTQ = 0%: 4…15 mA Q = 0%: 0…15 mAQ = 100%: 10…21.5 mA Q = 100%: 10…21.5 mAError identification: 3.5…22 mA Error identification: 0…22 mA Operating data Basic I/Os Modular I/Os EEx-iActive Uint,nom = 24 VDCI ≤ 22 mARL ≤ 1 kΩUint,nom = 20 VDCI ≤ 22 mAR L≤ 450 ΩU0 = 21 VI0 = 90mAP0 = 0.5WC0 = 90 nF / L0 = 2 mHC0 = 110 nF / L0 = 0.5mHPassive Uext ≤ 32 VDCI ≤ 22 mAU0 ≤ 1.8 V at I = 22 mA Uext = 32 VDCI ≤ 22 mAU0≤ 4 V at I = 22 mA U i = 30 VI i = 100 mAP i= 1WC i = 10 nFL i ~ 0 mHPulse or Frequency OutputFunction Can be set as a pulse output (e.g.- for volume or mass counting) or frequency output Settings For Q = 100%: 0.01...10000 pulses per second or pulses per unit volumePulse width: setting automatic, symmetric or fixed (0.05...2000 ms)Operating data Basic I/Os Modular I/Os EEx-iActive-U nom = 24 VDC-f max ≤100 Hz:I ≤20 mAopen: I ≤0.05 mAclosed:U0,nom = 24 V at I = 20 mA100 Hz < f max ≤10 kHz:I ≤20 mAopen: I ≤0.05 mAclosed:U0,nom = 22.5 V at I = 1 mAU0,nom = 21.5 V atI = 10mAU0,nom = 19 V at I = 20 mAPassive U ext ≤32 VDC -f maxδ100 Hz:I ≤100 mAopen:I ≤0.05 mA at U ext = 32 VDCclosed:U0 ≤0.2 V at I = 10 mAU0 ≤2 V at I = 100mA100 Hz < f max δ10 kHz:I ≤20 mAopen:I ≤0.05 mA at U ext = 32 VDCclosed:U0 ≤1.5 V at I = 1 mAU0 ≤2.5 V at I = 10 mAU0 ≤5.0 V at I = 20 mANAMUR-Passive to EN 60947-5-6open: I nom = 0.6mAclosed: I nom = 3.8mA Passive to EN 60947-5-6open: I nom = 0.43 mA closed: I nom = 4.5mA U i = 30 VI i = 100 mAP i = 1 WC i =10 nFL i ~ 0 mHStatus Output/Limit SwitchFunction and settings Settable as automatic measuring range change, indicator for direction of flow, overflow,error, operating point or empty pipe detectionValve control with activated dosing functionStatus and/or control: ON or OFFOperating data Basic I/Os Modular I/Os EEx-iActive - U int = 24 VDCI ≤20 mAopen: I ≤0.05 mAclosed:U0,nom = 24 V at I = 20 mA-Passive Uext ≤32 VDCI ≤100 mAopen:I ≤0.05 mA atUext = 32 VDCclosed:U0 ≤0.2 V at I = 10 mAU0 ≤2 V at I = 100mA U ext = 32 VDCI ≤100 mAR L≤47 k∧open:I ≤0.05 mA atU ext = 32 VDCclosed:U0≤0.2 V at I = 10 mAU0≤2 V at I = 100 mA-NAMUR - Passive to EN 60947-5-6open: I nom = 0.6 mAclosed: I nom = 3.8mA Passive to EN 60947-5-6 open: I nom = 0.43 mA closed: I nom = 4.5mAU i = 30 VI i = 100 mAP i = 1 WC i =10 nFL i = 0 mHControl InputFunction Hold value of the outputs (e.g. for cleaning counter and error reset, range change).Start of dosing when dosing function is activated.Operating data Basic I/Os Modular I/Os EEx-i Active-U int = 24 VDCTerminals open:U0,nom = 22 VTerminals bridged:I nom = 4 mAOn:U0 ≥12 V withI nom = 1.9mAOff:U0 ≤10 V withI nom = 1.9mA-Passive U ext ≤32 VDCI nom = 6.5 mAat U ext = 24 VDCI nom = 8.2 mAat U ext = 32 VDCOn: U0 ≥8 Vwith I nom = 2.8mAOff: U0 ≤2.5 Vwith I nom = 0.4mA U ext ≤32 VDCI ≤9.5 mA at U ext = 24 VI ≤9.5 mA at U ext = 32 VOn:U0 ≥3 V with I nom = 1.9mAOff:U0 ≤2.5 Vwith I nom = 1.9mAU ext δ 32 VDCI ≤6 mA at U ext = 24VI ≤6.6 mA at U ext =32 VOn:U0 ≥5.5 V or I ≥4mAOff:U0 ≤3.5 V or I ≤0.5mAU i = 30 VI i = 100 mAP i = 1 WC i = 10 nFL i = 0 mHNAMUR-Active to EN 60947-5-6Terminals open:U0,nom = 8.7 VTerminals bridged:I nom = 7.8 mAOn/off: U0, nom = 6.3 Vwith I nom = 1.9 mAIdentification for openterminals:U0 ≥8.1 V with I ≤0.1 mAIdentification for bridgedterminals:U0 ≤1.2 V with I ≥6.7 mA-Low Flow Cut-OffOn 0...±9.999 m/s; 0...20.0%, settable in 0.1% steps, separately for each current and pulse output Off 0...±9.999 m/s; 0...19.0%, settable in 0.1% steps, separately for each current and pulse outputTime ConstantFunction Can be set together for all flow indicators and outputs, or separately for: current, pulse and frequency output, and for limit switches and the 3 internal counters Time setting0…100 seconds, settable in 0.1 second stepsI/O-Module Combination PossibilitiesCommunicationB a s i c I /OE x -i I /O M o d u l a r I /OCurrent OutputActive / passive HARTPulse and Status OutputActive PassiveNamur (acc. to EN 60947-5-6)Control InputActive PassiveNamur (acc. to EN 60947-5-6)Foundation FieldbusFoundation Fieldbus (pending)ModbusModbusProtectionEx-d / estandard optional on requestNote:Ex-i I/O: up to 1 additional in-/output module possible (see I/O-module combinations) Modular I/O: up to 2 additional in-/output module possible (see I/O-module combinations)I/O ModulesI/O1st module2nd module1Basic0no module possible0no module possible2Ex-i (Ia + Pp)1Ex-i (Ia + Pp/Cp)3Ex-i (Ip + Pp)2Ex-i (Ip + Pp/Cp)4Modular (Ia + Pa)8no module8no module6Modular (Ia + Pp)A Ia A Ia Ia = current output - active7Modular (Ia + Pn)B Ip B Ip Ip = current output - passive 8Modular (Ip + Pa)C Pa/Sa C Pa/Sa Pa/Sa = pulse/status output -active, high currentB Modular (Ip + Pp)E Pp/Sp E Pp/Sp Pp/Sp = pulse/status output -passive, high currentC Modular (Ip + Pn)F Pn/Sn F Pn/Sn Pn/Sn = pulse/status output -passive, NamurE Foundation Fieldbus H Cn H Cn Cn = control input - active,NamurG RS485 ModbusH RS485 Modbus withinteractive terminationThe TWM 9000 with standard basic I/O covers almost all applications, having 4 I/Os:•active/passive current output (+HART)•passive pulse/status output•passive status output•passive status output / control inputThe I/O-module combination is thus 1-0-0 (see above).The TWM 9000 with modular I/O can be tailor-made to any application:•Suppose you require a converter with passive pulse output and 3 passive current outputs. The I/O-module combination then becomes B-B-B.•Suppose you require a converter with 2 active pulse/status outputs. The I/O-module combination then becomes either 4-C-8 or 8-C-8 (depending on whether active or passive current output is required). The latter ’8’ indicates that1 additional module can be added in the future.For I/O-module combinations, not described in the overview on the right, please consult HONEYWELL.Example for Combination of I/O’sBasic I/O2 3 1 0 0Modular I/OModular I/OModular I/OModular I/OComm 1st 2nd Comm 1st 2nd Comm 1st 2nd Comm 1st 2nd4 8 8 6 8 8 7 8 8 8 8 8 A 8 A 8 A 8 B 8 A A A B C E F C G K H G C 8 E 8 F 8 C 8 C E F C G K H G G 8 K 8 H 8 G 8GKHGD 8 8E 8 8 G 8 8 H 8 8 A 8 A 8 A 8 A 8 A A A A C C C C K K K K C 8 C 8 C 8 C 8 C C C C K K K K K 8 K 8 K 8 K 8KKKKB 8 8C 8 8 F8 0 B 8 B 8 A 0 B B B 0 E F C 0 K H E 0 E 8 F 8 F 0 E F G 0 K H H 0 K 8 H 8 KKHEx- I/O 1 2 3 2 0 0 1 2 3 0 0 1 2 D 0 0 1 2 E 0 0 12Full-Scale FlowratesFlowrates in m/s and m 3/hQ 100% in m 3/hv [m/s]0.3312DN [mm] minimumnominalmaximum2.5 0.01 0.05 0.21 4 0.01 0.14 0.54 6 0.03 0.31 1.22 10 0.08 0.853.39 15 0.19 1.91 7.63 20 0.34 3.39 13.57 25 0.53 5.30 21.21 32 0.87 8.69 34.74 40 1.36 13.57 54.29 50 2.12 21.21 84.82 65 3.58 35.84 143.35 80 5.43 54.29 217.15 100 8.48 84.82 339.29 125 13.25 132.54 530.15 150 19.09 190.85 763.40 200 33.93 339.30 1357.20 250 53.01 530.13 2120.52 300 76.34 763.41 3053.64 350 103.91 1039.08 4156.32 400 135.72 1357.17 5428.68 450 171.77 1717.65 6870.60 500 212.06 2120.58 8482.32 600 305.37 3053.70 12214.80 700 415.62 4156.20 16624.80 800 542.88 5428.80 21715.20 900 687.06 6870.60 27482.40 1000 848.22 8482.20 33928.80 1200 1221.45 12214.50 48858.00 1400 1433.52 14335.20 57340.80 1600 2171.46 21714.60 86858.40 1800 2748.27 27482.70 109930.80 2000 3393.00 33930.00 135720.00 2200 4105.50 41055.00 164220.00 2400 4885.80 48858.00 195432.00 2600 5733.90 57339.00 229356.00 2800 6650.10 66501.00 266004.00 30007634.1076341.00305364.00Flowrates in ft/s and gallons/minQ 100% in US gallons/minv [ft/s] 1 10 40 DN [inch]minimumnominalmaximum1/10 0.02 0.23 0.93 1/8 0.06 0.60 2.39 1/4 0.13 1.34 5.38 3/8 0.37 3.73 14.94 1/2 0.84 8.40 33.61 3/4 1.49 14.94 59.76 1 2.33 23.34 93.36 1.25 3.82 38.24 152.97 1.5 5.98 59.75 239.02 2 9.34 93.37 373.47 2.5 15.78 159.79 631.16 3 23.90 239.02 956.09 4 37.35 373.46 1493.84 5 58.35 583.24 2334.17 6 84.03 840.29 3361.17 8 149.39 1493.29 5975.57 10 233.41 2334.09 9336.37 12 336.12 3361.19 13444.77 14 457.59 4574.93 18299.73 16 597.54 5975.44 23901.76 18 756.26 7562.58 30250.34 20 933.86 9336.63 37346.53 24 1344.50 13445.04 53780.15 28 1829.92 18299.20 73196.79 32 2390.23 23902.29 95609.15 36 3025.03 30250.34 121001.37 40 3734.50 37346.00 149384.01 48 5377.88 53778.83 215115.30 56 6311.60 63115.99 252463.94 64 9560.65 95606.51 382426.03 72 12100.27 121002.69 484010.75 80 14938.92 149389.29 597557.18 88 18075.97 180759.73 723038.90 96 21511.53 215115.30 860461.20 104 25245.60 252456.02 1009824.08 112 29279.51 292795.09 1171180.37 12033611.93336119.311344477.23AccuracyReference conditions Medium: WaterTemperature: 20°C / 68°F Pressure: 1 bar / 14.5 psi Inlet: ≥ 5DNVersaFlow versionDN [mm]DN [inches]AccuracyCurveMag 200010….100 3/8…10 0.15% of MV + 1 mm/s 1 Mag 1000, 3000, 4000 10….1600 3/8…80 0.2% of MV + 1 mm/s 2 Mag 100 10…150 3/8…6 0.3% of MV + 2 mm/s 3 Mag 1000, 4000 >1600 >64 0.3% of MV + 2 mm/s 3 Mag 2000, 3000, 4000<10<3/80.3% of MV + 2 mm/s3For More InformationLearn more about how Honeywell’s VersaFlow TWM 9000 Electromagnetic Flow Converter can help facilitate procurement, engineering and inventory management, visit our website /ps/hfs or contact your Honeywell account manager.Honeywell Process Solutions 1860 West Rose Garden Lane Phoenix, Arizona 85027Tel: 1-800-423-9883 or 1-800-343-0228 /psSpecifications are subject to change without notice.34-VF-03-02September, 2015© 2015 Honeywell International Inc.。
流通池法溶出仪工作原理
流通池法溶出仪工作原理
溶出仪是一种用于测量药物释放速率的仪器,其工作原理基于药物的溶出和扩散过程。
溶出仪主要由样品舱、溶出介质、溶出槽、计时器、温控装置、采样器等组成。
在使用过程中,将药物样品放入样品舱中,与溶出介质接触。
溶出介质可以是仿体液或其他适当的介质,其选择要根据药物的特性和使用要求进行选择。
然后将样品舱放入溶出槽中,通过计时器控制溶出时间和采样时间,并通过温控装置控制溶出介质的温度,使其保持恒定。
在溶出过程中,药物分子会逐渐从样品舱中溶解到溶出介质中,形成药物溶液。
药物分子在溶出介质中进行扩散,从而实现药物的释放。
通过采样器采取一定时间间隔的溶出液样品,测量药物的释放速率。
溶出仪的测量精度取决于多种因素,例如溶出介质的选择、溶出速度的控制、采样时间的选择等。
为了提高测量精度,可以选择适当的溶出介质,控制溶出速度,选择合适的采样时间等。
溶出仪可以广泛应用于制药工业、生物医学研究等领域,用于测量药物的释放速率和扩散性能,从而评估药物的性能和质量。
通过溶出仪的测量结果,制药企业可以优化药物配方和生产工艺,提高药物的质量和疗效。
Surtronic Duo 肤深度测试仪说明书
Surtronic® DuoPortable surface roughness testers2USB Mini chargingThe mini USB port can be used for charging with the included mains charger (or with any standard USB charger).Bluetooth technology Quick, reliable communication between traverse and display/control unit.MeasureT actile measurement button great forchallenging orientationsLi-Poly batteryMost advanced rechargeable battery technology for unrivalled reliability and battery life.Surtronic ® DuoDiamond stylus and piezoelectric pick-upThe hard wearing, robust piezo-electric pick-up stylus withdiamond tip assures very reliable measurement.Profile graphClear detailed graph showingmeasurement area – excellentfor visually identifying defects.Rubberised mouldingEnhanced durability and improvedgrip provides unbeatable protectionin harsh shop floor environments.USB mini charging portCharge from mains or anystandard USB charging port.Simple 3-button navigationInstant access to menu optionsand settings.00262624Tough, fast and reliable handheld roughness testers…Durable roughness testers for shop floor, industrial & inspection room applicationsFast and reliableSimply press the measurement button and in a few seconds a full set of traceable measurement results including a detailed profile graph is displayed. Built to last, by design…Impact resistant rubberised mouldings surrounda recessed,Mylar protected high durability screen making the unit robust enough for even the most demanding industrial environments. InstantOnBy utilising InstantOn technology these instruments are ready to measure in less than 5 seconds from switching on!In situ measurementsMonitor wear and roughness changes in situ during product’s life.E.g.monitoring changes in turbine blade roughness as an early warning sign for defects and efficiency losses.User-friendly, not user-hostile!The Surtronic Duo are as simple and easy-to-use as any ers have the advantage of the intuitive quick access 3-button menu and its crisp 2.4" daylight readable industrial colour LCD screen Bluetooth connectivityThis next generation bluetooth technology boasts super efficient connectivity allowing wireless communication between the display unit and traverse unit.Built for power…Powered by heavy duty reliable Li-Poly technology, the Surtronic Duo operates 24/7 with over 2000measurements from a single charge.45ApplicationsSheet steelT urbinesMillingGrindingAerospaceFlooringT urning HoningGlass and constructionand many more...Technical specification6Surtronic®D uo dimensions7Amplitude parameters* M ost parameters are defined over one sample length,however in practice more than one sample length isassessed (usually five) and the mean calculated. Thisprovides a better statistical estimate of the parameter'smeasured value.8Surface finish fundamentalsThe surface of every component has some form of texture which varies according to its structure and the way it has been manufactured.These surfaces can be broken down into three main categories:Roughness,Waviness and Form.In order to control the manufacturing process or predict a component’s behaviour during use,it is necessary to quantify surface characteristics by using surface texture parameters.Surface texture parameters can be separated into three basic types:Amplitude parameters –Measurement of the vertical characteristics of the surface deviationsSpacing parameters –Measurement of the horizontal characteristics of the surface deviationsHybrid parameters –Combinations of spacing and amplitude parametersSample length – The profile is divided into sample lengths l,which are long enough to include a statistically reliable amount of data.For roughness and waviness analysis,the sample length is equal to the selected cut-off.Cut-off (Lc) – A cut-off is a filter that uses either electronic or mathematical means to remove or reduce unwanted data in order to look at wavelengths in the region of interest.The sample length is also known as the cut-off length. Evaluation length – The length in the direction of the X axis used for assessing the profile under evaluation.The evaluation length may contain one or more sample lengths.For the primary profiles the evaluation length is equal to the sample length.Standards – Where appropriate T aylor Hobson equipment follows procedures as determined in ISO 3274-1996,ISO 4287-1997,ISO 4288-1996, ISO 11 562 and other international standards. All parameters using either Roughness,Waviness or Primary Profiles conform to the following assumptions:T = T ype of profile,either R (Roughness) or W (Waviness) or P (Primary)n = Parameter suffix,e.g.q,t,p,v,etc.N = N umber of measured samplinglengthsWhen a parameter is displayed as Tn (e.g.Rp), then it is assumed that the value has been measured over 5 sampling lengths.If the number of measured sampling lengths is other than 5 sampling lengths,then the parameter shall display this number thus TnN,e.g.Rp2.Max rule – If a parameter also displays max (e.g.Rz1max) then the measured value shall not be greater than the specified tolerance value.If max is not displayed (e.g.Rp) then 16% of the measured values are allowed to be greater than the specified tolerance value.See ISO 4288-1996 for more details of the Max and 16% rules.910Accessories and sparesPortable power bank for charging on the go. Can be charged by USB, 5.81 μm (229 μin)Magnetic base*Lightweight compact base specially designed to allow for measurements in multiple orientations including upside down on metallic B chargerHard transport case**N ot supplied as standard with Surtronic Duo All accessories listed above are available for order. Please contact your local T aylor Hobson representative for additional or special requirements.11Surtronic ® product rangeSurtronic ® S100-series offers high speed roughness with a largedisplay and simple menu structure. Battery powered and offering total portability with a built-in memory for up to 100 readings.• U nique stylus lift for total flexibility • L ong traverse length & extended pick-up reach •Powerful PC software included*Centering attachment is supplied as standard with R-120 / R -125 models, or available to purchase as an accessory on other models.The Metrology ExpertsEstablished in 1886, Taylor Hobson is the world leader in surface and form metrology anddeveloped the first roundness and surface finish measuring instruments.Service departmentEmail: taylor-hobson.service @ T el: +44 (0) 116 246 2900• P reventative maintenance – protect your metrology investment with an AMECare support agreement.Sales departmentEmail: taylor-hobson.sales @ T el: +44 (0) 116 276 3771•D esign engineering – special purpose, dedicated metrology systems for demanding applications.•P recision manufacturing – contract machining services for high precision applications and industries.Centre of Excellence departmentEmail: t aylor-hobson.cofe @T el: +44(0) 116 276 3779• I nspection services – measurement of your productionparts by skilled technicians using industry leading instruments in accord with ISO standards.• M etrology training – practical, hands-on training courses for roundness and surface finish conducted by experienced metrologists.•O perator training – on-site instruction will lead to greater proficiency and higher productivity.• U KAS calibration and testing – certification for artifacts or instruments in our laboratory or at customer’s site.2624aylor Hobson China************************************T aylor Hobson SingaporeAMETEK singapore,No. 05-12 T echpoint,0026© T aylor Hobson Ltd. 2018。
意大利Flowsys多通道连续流动分析仪
深圳市朗诚实业有限公司 朗诚分析技术研发中心
FLOWSYS连续流动分析仪
• 公司概况 • 流动分析技术 • 仪器结构 • 仪器特点 • 应用领域 • 应用举例
意大利SYSTEA公司
意大利SYSTEA公司成立于1988年,致力于开发、生 产和销售自动湿化学法分析仪,用于环保、烟草、工业 等方面检测。
硫酸盐
六价铬 硅酸盐 尼古丁 还原糖 烟草硝酸盐
甲基百里酚蓝显色
二苯碳酰二肼显色 钼酸铵加抗坏血酸显色 对氨基苯磺酸和氯化氰反应显色 对羟基苯甲酸酰肼反应显色 硫酸肼还原, NEDD显色 353.1 370.1
ISO 22743
ISO 23913 ISO 16264 ISO 15152 ISO 15154 ISO 15157
●制药类:青霉素、链霉素、烟酸、总还原
糖、头孢霉素、吡哆醇等 ●血/尿:酒精、肌氨酸肝 ●生命科学类:谷氨酸盐、乳酸、氨基酸、 酒精、氨氮、总凯氏氮、氯酸盐、二氧化 碳、电导率、色度、葡萄糖/果糖/蔗糖、 磷酸盐、蛋白质、总糖等 ●清洁剂:淀粉酶 、磷酸盐、蛋白酶、硅酸 盐等
方法 氨氮
FLOWSYS III流动分析仪的应用方 法
FLOWSYS主要特点(二)
• 独立的触摸式液晶显示屏,可实现仪器在离线状态 下的功能操作。
• 进样器附带蠕动泵,清洗液能以稳定的流速注入清 洗池,避免清洗液流速不稳对实验造成的影响。
• 稀释器最大体积为10ml,有效提高稀释倍数及稀释 的精确度。
• 微流分析技术,分析速度快,消耗试剂少
• 泵速可调常规双泵速设计,最大程度上提高分析效 率,减少样品的前准备时间。 • 校准功能完善,减少外部条件对实验造成的影响, 提高数据的科学性及稳定性。
duoflow-亲和层析实验讲义
亲和层析分离原理
利用生物大分子和固定相表面存在的某种特异性亲和力, 进行选择性分离。
先在载体 表面键合上一种具有一般反应性能的
所谓间隔臂(环氧、联胺等),再连接上配基 (酶、抗原 等),这种固定化的配基将只能和具有亲和力特异性吸附的生 物大分子 作用而使其被保留,改变淋洗液后可将其洗 脱。
层析柱管
平衡
上样
洗去未吸附杂质
洗脱
收集洗脱峰
亲和吸附剂的再生
思考题
1. 上样体积对亲和层析分离的影响?
2. 上样流速对亲和层析分离有何影响? 3. 上样或洗脱缓冲液为什么要脱气?
4. 该实验中采用哪种方式进行洗脱?有何特点。
注 意
1. 分组上楼参观层析仪,请大家保持安静和 秩序。 2. 回去以后写实验报告,下次实验课交。
3.SIM(Signal import module)信号输入口,可外接其它种类 的检测器,如:荧光检测器,折光检测器。
4.由于底座能吸收噪音,所以在操作时声音特别轻,<70dBa。 5.整个系统各部件的设计都十分紧凑,节省安置面积。
duoflow技术参数
四、 BioFrac组份收集器
1.具有冷藏冰浴功能(0-4℃),保持样品生物活性,不需将整个 系统放入庞大的层析柜中操作。 2.具有独立可编程功能,四种模式功能(全收集;UV阈值收 集;时间窗收集;时间窗加UV阈值收集)能满足您的需求。 3.多种架板类型,可配放各种大小和规格的收集管或收集瓶 (1.5ml-1000ml)。
3.运行当前程序的同时,可进行方法编辑或分析前一个运行结 果,也可实现运行中当前程序的修正编辑。
ቤተ መጻሕፍቲ ባይዱ
4.具有多个实验结果比较功能,可从中选出最佳工艺路线。
全自动分液器
MultiFlo 微孔板分液器液体处理 > 微孔板分液器概览:BioTek公司最新推出的MultiFlo TM自动分液系统采用最先进的分液技术,一套小巧的系统可以兼容4种不同试剂的分液操作。
MulitFlo为客户提供了蠕动泵或注射器泵两种不同的分液技术来完成大量分液。
用户首次如果只选择1 个分液模块,可以在将来升级至多个分液模块。
MultiFlo 的分液范围广泛,可完成1μL-3mL的精准分液,从6孔到 1536孔等多种制式的微孔板均可兼容。
并可进行全部分液模块的升级。
BioTek的成角度分液头设计,可以满足各种分液程序的需求,包括单层半贴壁细胞的培养基更换等。
对于试剂量较少的分析实验,MultiFlo的预充量可以低于1mL,节省宝贵试剂。
内置的预充槽设计,方便试剂回收及废液的收集倾倒。
MultiFlo体积小巧,基本型号高度小于8英寸,适合与自动化系统整合以及常规实验台操作。
MultiFlo还可以和BioStack TM微孔板储板器进行整合,全自动完成75块微孔板的分液工作,并可以通过Liquid Handling Control TM软件与第三方自动化系统实现无缝对接。
LHCTM 软件方便用户通过电脑编辑和运行分液程序并可以将程序下载至机载软件中使用。
产品特点:∙分液范围广泛 1 µL-3 mL∙兼容6- 1536-孔标准微孔板,浅孔板、深孔板以及微试管∙最多可进行4种试剂分液操作∙可选1或2个蠕动泵分液器,2个注射器分液器,或其他组合∙全模块化可升级设计∙快速分液,7秒钟即可完成1536孔板分液操作∙体积小巧,基本型号系统高度仅8英寸∙7° 成角度分液头,充分保护贴壁不牢的细胞∙分液管路可高压消毒,质量保证∙Confidence-Plus™ 无条件质量保证∙可选简单易用的机载软件或LHC PC 软件进行仪器控制∙BioStack自动化系统兼容∙可选3位板架,与自动化系统对接型号:InstrumentsMF - MultiFlo™ 分液器MultiFlo 基本型号, 无其他配置. 硬件高度47 mmMFP - Multi Flo™ 分液器MultiFlo 基本型号, 带1个内置蠕动泵分液器. 兼容6-1536-孔板,硬件高度47 mm . 含1个塑料头分液卡夹分液器型号(可单独购买)7210010 - 内置蠕动泵分液器可在MultiFlo基本型号上添加1个蠕动泵分液器. 兼容 6- to 1536孔板. 含一个塑料头分液卡夹.7210008 - 外置双注射器泵分液器, 可高压灭菌可在MultiFlo 基本型号的基础上添加2个注射器泵分液模块.7210009 - 外置双注射器分液模块, 不可高压灭菌可在MultiFlo 基本型号的基础上添加2个注射器泵分液模块.注射器泵分液头(可单独购买)7180548S - 2x8-道分液头, 96-/384-孔板可进行96-384孔板分液, 包括半面积板和96孔PCR 板. 不锈钢分液头. 双注射器泵分液模块需要配备1个该分液头非高压灭菌.7180543S - 1x16-道分液头, 96-/384-孔板可进行96-384孔板分液, 不锈钢分液头. 双注射器泵分液模块需要配备2个该分液头7180552S - 1x32-道大孔径分液头,1536孔板可进行1536-孔板分液. 不锈钢分液头. 推荐用于不含表面活性剂的试剂分液双注射器泵分液模块需要配备2个该分液头7180553S - 1x32-道小孔径分液头,1536孔板可进行1536-孔板分液. 不锈钢分液头. 适用于所有试剂分液,双注射器泵分液模块需要配备2个该分液头注: P/N MFP 和7210010 均包含任一一款塑料分液卡夹参数:全自动分液器【性能参数】性能参数:体积范围:5ul-2.5mlλ体积增量:5ul(标准增量),其它可选λ准确度:+/-1.5%(V/V)λ精确度: +/-0.5%λ死体积:λ<2.5ml起始/终止位置:可编程λ加液头管路液体的扣除:程序化自动扣除λ加液速度:14秒,100ul/孔(96孔板);16秒, 20ul/孔(384孔板);λλ电脑接口:RS232加液板数量:1-2块板λ板的类型:96孔、384孔、浅孔或深孔λ储存程序数目:15个λλ尺寸:550x440x220mm( 长x宽x高)重量:11kgλ电源:85-260VAC,47-440Hz,70瓦特λλ工作环境:5-90%湿度(蒸气不凝结);温度:5-40℃最大高度:2000米.λ特点:加液头高度可调;λλ深孔板、标准板、浅孔微板均可使用;泵可反抽,死体积小;λ加液体积可选;λλ可编程:灵活多样的加液模式、起始或终止位置、加液头管路液体的扣除自动化、可重复、精确加液;λ长寿命柱塞泵;λλ操作简便,易程序化;完全内置式液路---仅有聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、玻璃、陶瓷接触到液体;λλ1-2块板快速加液:96孔板,<14秒;384孔板,<20秒;四种语言格式供使用者选择.λ仪器介绍Ultraspense2000 是提高使用者对96孔/384孔微板加液的精确、可靠的理想方案。
全自动分杯系统集锦,速览15款新品!
全自动分杯系统集锦,速览15款新品!全自动分杯系统是此次疫情期间兴起的一款IVD相关产品,它的走红是因为能够完成样本的开盖和加样过程,尤其对于新冠病毒这种传染性比较强的病原体具有非常大的优势。
从仪器功能上来讲,全自动分杯系统的价值在于承接了分子诊断样本前处理的全部手工动作,成为了“组合流水线”的一环。
全自动分析系统一般走地方药监局的一类或者二类备案即可,因此产品研发和创新的速度也是比较快的,目前市面上已经有几十款同类型的设备,但是因为材料、工艺和设计的不同,其在使用的过程当中,也是千差万别,在此也是提醒广大用户,尽量选择大厂生产的全自动分杯系统,或者专注于做这一块、口碑比较好的小厂,不然买到残次品的概率还是非常大的,其中气溶胶的防污染设计就是比较关键的一环。
IVD从业者网整理了一些市面上能够查询得到的全自动分杯系统,给大家做个参考,也欢迎我们未检索到的品牌和产品在文末留言。
第一款:罗氏 cobas p 612简介:罗氏的这款分杯系统还是蛮好玩的,如果搭配cobas 6800和8800使用,效果更佳,从运作时间上来看,一台分杯系统供应好几台cobas 6800和8800也不成问题。
如果再使用防污染轨道连接起来,那可就真正的实现了“全自动分子诊断流水线”的终极构象了。
第2款:伯杰 ES96简介:伯杰这个也挺不错,我记得在宁波的一次招标中好像连中好几台,一次可以处理96个标本,因为没有实际操作过,具体的性能不太清楚,但是这种差异一般不大,就看通量和处理时间就行。
第3款:之江生物 AutraMate简介:之江这款全自动分杯系统也是一次可以处理96个标本,相对来说体积要比一般的仪器小一些,其还设计了混样的程序,能够完成10混1的操作。
关于防污染这块,这个机器也是有不少看点,有兴趣的同学可以去之江微信官网查看。
第4款:华大智造 MGISTP-3000/7000简介:华大智造这个分杯系统有三个独立的上样板,能够兼容多种管型,96个标本处理时间差不多在40分钟左右,也能够10混1,更好玩的是如果管盖拧不开或者滑丝,会自动记录位置,不会影响别的样本管,还有一些数据管理和信息交互上的优势,有兴趣的可以去了解一下。
多通道全自动流动注射分析仪
疾控中心全自动多通道流动注射分析仪技术参数1、用途:用于测定地表水、地下水、饮用水和环境水中的氰化物、挥发酚、阴离子表面活性剂等成分。
★2.分析项目的具体技术性能指标:所有化学方法模块无需使用压缩气体操作;所有管道必需使用PTFE塑料管, 用户可自行更换。
★2.1分析项目:挥发酚(含蠕动泵、六通阀、化学分析模板、双光束检测器、温控仪)2.1.1方法原理:在线蒸馏4-氨基安替比林光度法★2.1.2特别要求:膜分离在线蒸馏模块,在线电冷凝模块2.1.3 MDL: < 0.0003 mg/L2.1.4样品分析频率:18样/小时2.1.5精密度:< 3%2.1.6准确度:误差在±3% 以内★2.2分析项目:氰化物(总氰)(含蠕动泵、六通阀、化学分析模板、双光束检测器、在线加热装置、在线消解装置)2.2.1方法原理:在线蒸馏异烟酸-巴比妥酸光度法★2.2.2特别要求:膜分离在线蒸馏模块、在线消解模块2.2.3 MDL:< 0.001mg/L2.2.4样品分析频率:16样/小时2.2.5精密度:< 5%2.2.6准确度:误差在±5% 以内★2.3分析项目:阴离子表面活性剂(含蠕动泵、六通阀、化学分析模板、双光束检测器)2.3.1方法原理:在线萃取亚甲基蓝光度法★2.3.2特别要求:膜分离在线蒸馏模块2.3.3 MDL:< 0.005mg/L2.3.4样品分析频率:18样/小时2.3.4精密度:< 5%2.3.5准确度:误差在±3% 以内2.4每个通道均含有一个独立的蠕动泵,3个通道所含蠕动泵数量不少于3个。
每个蠕动泵10个通道,泵速由计算机设定,在5-75转/分钟连续可调。
每个通道均含有一个独立的检测器,3个通道所含检测器数量不少于3个。
包含3个分析主机 .要求确保可进行3个项目同时检测3. 160极坐标自动进样器4.检测器:检测波长: 340-1050nm,高精度数字式双光束吸光度检测器,稳定度优于0.01%,24位的A/D转换器能提供不小于三个数量级的动态范围,密集型设计以便有效地利用实验台的空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DuoFLow
软件系统
DuoFLow
软件系统
Manual Screen
DuoFLow
软件系统
Protocol – enter method
DuoFLow
软件系统
Post Run Options - Activity
DuoFLow
DuoFLow
PH检测器
检测范围:pH0-14 检测灵敏度:0.01
Peek材质,良好化学稳定性 密封的甘汞电极防止电极液干涸 甘汞不与混冲液中的金属离子结合 ,防止堵塞 响应时间提高,检测结果更加准确 和精确
功能组件
BioFrac Fraction 组分收集器
14种可选收集架,可以放冰浴,保 证样品活性 整合在duoflow中,多种程序(窗 口和阀限)收集 可用在HR, LP, Econo中
中压高流速的泵头可满足大规模制备,包括中 试和生产的要求
DuoFlow可将高压中流速和中压高流速两种仪器的 性能通过独特的泵头更换技术整合在一台仪器中。
DuoFLow
只要旋下泵头前的4根螺丝, 将另一泵头安上即可实现高压 中流速和中压高流速的切换
功能组件
Maximizer
DuoFLow
使F10和F40梯度泵流速增加一倍,压力不变情况下达到20 ml/min or 80 ml/min ,用于工艺优化、中试放大 四元缓冲液梯度混合,寻找最佳PH和离子强度以优化工艺 增加阀的数量,达到6低压6高压阀,灵活配置你的层析系统 连接第三方检测器
Barrel Extender 263ul 750uห้องสมุดไป่ตู้ 2.0 ml 5.0 ml 12.0 ml
功能组件
波长范围:190-740nm 四波长同步检测 波长精确性:1nm
DuoFLow
QuadTec UV/Vis 检测器
同时四波长检测——
DNA, peptides, Proteins……
功能组件
功能组件
Maximizer
DuoFLow
功能组件
DuoFLow
MX-1, Maximizer Mixer
根据不同流量精确混合
Flow Rate Range Recom. Mixer 0.01 - 5.00 ml/min MX-1 Mixer 5.00 - 20.00 ml/min Maximizer Mixer 20.00 - 40.00 ml/min MX-1 Mixer 40.00 - 60.00 ml/min Maximizer Mixer 60.00 - 80.00 ml/min Maximizer Mixer
DuoFLow
功能组件
DuoFLow
BioFrac Fraction 组分收集器
功能组件——阀系统
Make-before-break 高压阀
AVR7-3 高压上样阀 AVR9-8 高压转换阀
各种低压阀
SV5-4低压阀,缓冲液选择 SVT3-2低压阀,溶液选择 或转向
灵活应用各种阀和辅助泵构建 随意层析系统
USB Bitbus 信号转换器
转向阀门 主泵 F10/F40泵头
工作流程
DuoFLow
功能组件 主泵
F10梯度泵:20.0 ml/min at
3500psi (233 bar, 23MPa)
高压中流速的泵头可满足HPLC高压液相分析 和小规模制备的要求
F40梯度泵:80 ml/min
at 1000psi (66bar, 6.6 MPa)
仪器介绍及层析操作
DuoFLow
QuadTec四波长 紫外/可见检测器 电导检测器
SV5-4 阀 液晶显示器
电脑
DuoFlow中高压层析系统
三层支架
AVR7-3 样品进样阀
AVR9-8 阀
Maximizer 混合器
BioFrac方形 组分收集器
DuoFlow 软件
pH 检测器 Maximizer阀系统