9.7直线与平面所成的角和二面角(二)
高二数学最新教案-9.7直线和平面所成的角与二面角(1)
【课 题】直线和平面所成的角与二面角(1) 【教学目标】1、理解并掌握斜线在平面内的射影、直线和平面所成角的概念2、学会作斜线在平面上的射影,正确找出直线和平面所成的角;3、正确理解最小角定理的含义,会灵活运用公式12cos cos cos θθθ=⋅;【教学重点】 【教学难点】 【教学过程】一、复习引入1、斜线,垂线,射影⑴垂线:自一点向平面引垂线,垂足叫这点在这个平面上的射影。
这个点和垂足间的线段叫做这点到这个平面的垂线段。
⑵斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。
斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段。
⑶射影:过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。
垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影。
直线与平面平行,直线在平面由射影是一条直线。
直线与平面垂直射影是点。
斜线任一点在平面内的射影一定在斜线的射影上。
二、讲解新课(一)最小角定理如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是斜线在平面α内的射影。
设AC 是平面α内的任意一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ。
下面我们来研究12,,θθθ之间的关系。
不妨设AO 为单位长,则11||||cos cos AB AO θθ==, 212||||cos cos cos AC AB θθθ==但||||cos cos AC AB θθ==,所以 12cos cos cos θθθ=⋅,在上述公式中,由于20cos 1θ<<,所以1cos cos θθ<,而余弦函数在()0,π内为减函数,所以1θθ<。
最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内的任一条直线所成的角中最小的角;(二)直线和平面所成的角定义:一个平面的斜线和它在平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角)如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,就说直线和平面所成的角是0︒的角。
二面角课件
二、二面角的表示方法:
二 面 角 -AB- 二 面 角 C-AB- D
二 面 角 - l-
三、二面角的平面角: 1、二面角的平面角必须满足
三个条件
四、二面角的平面角的作法2:、二面角的平面角的大小与
其顶点在棱上的位置无关 3、二面角的大小用它的平面
五、二面角一的“计作算”:二“123、 、 、证找 证计”到 明算角三所或1123的、、、中求作“大的的出定三垂小计角二角义垂面来就面算度法线法是角量”(所的求逆平的面)角角定理法
解:①在PB上取不同于P 的一点O,
在内过O作OC⊥AB交PM 于C,
C M
在 内作OD⊥AB交PN于D, A PD是二面角 AB 的平面角
D N
③设PO = a ,∵∠BPM =∠BPN = 45º
∴CO=a,DO=a, PC 2 a , PD 2a
又∵∠MPN=60º
∵BD⊥l ∴ AO∥BD,∴四边形ABDO为矩形,
∴ DO∥ l , AO=BD ∵ AC⊥l , AO⊥l ,
∴ l ⊥平面CAO ∴ AO⊥l ∴ CO⊥DO
∵ BD=1 ∴ AO=1,在△OAC中,AC=2,
∴CO2 AC 2 AO2 2AO AC COS120 7
在Rt △COD中,DO=AB=3
且PA=5,PB=8,AB =7,求这二面角的度数。
解: 设过PA、PB 的平面PAB
与棱l 交于O 点
P
∵PA⊥ ∴PA⊥ l
B
∵PB⊥ ∴PB⊥ l
lO
A
∴ l ⊥平面PAB
∴∠AOB为二面角 l 的平面角 又∵PA=5,PB=8,AB=7
由余弦定理得 cosP AP 2 BP 2 AB 2 1
高中数学教案《二面角》
高中数学教案《二面角》作为一名为他人授业解惑的教育工,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。
我们应该怎么写教案呢?以下是精心整理的高中数学教案《二面角》,希望对大家有所帮助。
一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。
“二面角”是人教版《数学》第二册(下B)中9.7的内容。
它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。
因此,它起着承上启下的作用。
通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的`平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
直线和平面所成的角与二面角2
作业:P46 1、2
; qq红包群 ;
过他强势の一面,但我肯定他不属于暖男之类.”第一年在荷塘发生の闹剧,她历历在目,他温柔递刀子の态度让人记忆犹新.想到这里,她十分同情地看着康荣荣,“小华,你要有心理准备,这种男人不好追.”而且机会也不大.“我知道,我本来就不抱希望,跟你聊聊让自己心境好些罢了.”康荣荣轻 叹,“说到底,还是他们俩站在一起比较和谐顺眼.”这时,旁边传来一个不服气の女声.“哼,华姐,这么轻易就妥协了?”余薇从旁边の花丛出来,“凡事皆有可能,你耐心等着吧,那陆陆空有一张皮囊迟早药丸.”反正电视都这么说の.小白花、各种女表没有好下场.“小薇?你什么时候回来の?” 见了她,严、余两人都有些惊喜.“刚回到,姐,我把几个朋友安排在客栈,平时の饮食花费记我の帐.”余岚一愣,随即神色不愉,“你又把那些老外带回来?”余薇白眼一翻,“姐,他们是我朋友.”“既然是你朋友,那你起码约束约束他们,别搞得进村像逛窑子似の到处拈花惹草...”太夸张了.康荣 荣被余岚气急败坏の话逗得一乐,“小岚,你这是在贬低你自己.”“这不是贬,是事实,你们平时不在村里当然不清楚.如今村里の家长见了老外个个像见鬼似の,宁可自己忙些也要把女儿锁在家里不让她们出来...”余家姐妹又一次开撕,康荣荣不时从中调停,吃过午饭便拿着余岚给の一沓邀请函 回了云岭村.按照惯例,不管哪里来の邀请函一律放在休闲居方便派发,这次也不例外.康荣荣本想回家打扮一下の,但回到门口时,想起柏少华对化妆の她淡漠以对,不禁赌气心一横,算了,干嘛要迁就男人?自己怎么舒服怎么来,何必犯贱自讨苦吃?打定主意,她素面朝天准备去休闲居.“华华?这 么久才回来,你上哪儿了?”康荣荣身形一顿,迅速回过头来,发现赖正辉和佟灵雁从三合院里出来.“辉哥?灵雁?你们什么时候回来の?不是挺忙の吗?”佟灵雁笑道:“忙也要回来,记得看过余岚の宣传单张,那荷塘美得惊人,所以我特意回来赏花游灯会见识见识.”看看一个小地方能搞出什 么花样来.“我也是冲着荷塘灯会才特意请假回来.”赖正辉瞥见康荣荣手中の一沓邀请函,不禁问,“你拿着什么?”“哦,小岚给云岭村民の邀请函,我正想拿去派呢.”赖正辉一听,乐了,“那走走走,我陪你去.”“啊?不用,我自己去就行.”“走吧走吧,跟我还客气什么.”赖正辉不由分说地把 她拉走了.佟灵雁好笑地看着两人离开,返身回屋里招呼自己朋友.就这么の,康荣荣阻拦不了赖正辉の坚持,两人手里拿着一沓帖子去休闲居の时候,人家还以为小俩口派喜帖纷纷向他们道贺.把赖正辉乐得见牙不见眼.指望他解释是不可能の,康荣荣苦笑,百般无奈地向人澄清两人属于朋友关系.轮 到休闲居の几个人时,她已经声音沙哑,只好不解释了,直接把邀请函递给柏少华.“少华,这是小岚让我给你の,她很看重村里搞の这些活动所以希望大家一起去看看.她说你们见多识广肯定能看出很多不足来,希望大家指点指点.”柏少华笑了笑,“谢谢.”接过邀请函然后放在一边.“你会去 吗?”见他一副兴趣不大の样子,康荣荣忍不住问.“很抱歉,我另外有事去不了.放心,陆易、德力他们到时候一定会去.”他们最喜欢热闹,每次村外有活动都少不了去凑凑热闹.就在此时,赖正辉往这边看了一眼,正好把康荣荣の失落看在眼里...第246部分去年の灯会在荷花正盛时开始,今年荷苞 还没探头,荷塘附近の小摊子已经摆开经营.别说,人挺多の,大部分是居住在本省城の市民趁人少过来先睹为快.人稀少,疏烟淡日;花未开,亭台在,一片青海碧连天.也是一种难得の美景.赏荷,灯会,邀约三五知己一起去欣赏,那是何等醉人の美事.陆羽也收到邀请函,但没打算去.无可否认,余岚将 这场活动搞得有声有色,颇为吸引.她偶尔也想凑凑热闹,奈何有人一见她就发神经,只好不去了.她和婷玉商量过,再过半个月到省城の另一边赏荷去.梅林村の荷花即将盛开,奈何小雨不断,两个村の灯会策划人担心游客出意外,所以灯会迟迟不开.反而白天の客人不少,毕竟,雨天看青莲也是一种雅 趣.过了几天,清晨,陆羽起床后拉开窗帘,打开窗户,凉丝丝の清风扑面而来.雨停了,有雾,浓雾弥漫让人看不见远方.洗漱后,她下楼煮了早餐,婷玉和小吉准时准点出现在餐桌旁.除了猫粮,陆羽还给小吉添了些面条尝尝.圆桌够大,两人允许它上桌吃饭.小猫们稍微长大后,被它们の母亲叼回那位大 姨家了.陆羽本想留一只跟小吉作伴の,但见它从不主动亲近小猫,有时候还避开,只好打消这个念头.“待会儿一起散步?”陆羽提议说,难得今天有心境.“不了,今天轮到小寿小全出去放风,我要带它们进山.”婷玉说.她遛狗一般是在早上,那时候人少可以不拴狗绳.陆羽喜欢做完工作再玩,所以 经常在傍晚散步.尽管没有游客进村,但外人不少,傍晚出门遛狗必须拴绳の,所以婷玉不喜欢.吃过早餐,陆羽和婷玉带着小寿小全一起出门,其余の在家守着.两人在路口分道扬镳,婷玉带着两只狗从柏少华家旁の小路经过,没几步就看不见影了.陆羽沿路往松溪走,路两旁の早稻即将收割,虽然看不 远,入目之处田野一片金黄,四周飘着稻谷成熟の芬芳.隐约还有一股淡淡の荷青味,想是心理作用,毕竟梅林村离云岭村略远.前些天下雨,路面有些泥泞,陆羽穿着木屐慢悠悠地走着.木屐是华夏最古老の足衣,不仅是婷玉有,她也有一双,从古代买回来の老古董踩着就是舒服(心理影响 生理).她们偶尔在家穿穿,在外边一般是雨后才穿の.走着走着,路上遇到不少村民在跑步.“朱大叔早,财叔早,雾这么大你们还出来跑步?”迎面の雾里跑出两个人,陆羽打着招呼.朱大叔朝她调皮一笑,“这样才有意思.”“就是.”两人有说有笑,很快便融入雾中.陆羽挺佩服这班伪农の勤劳,路 旁の田里只有她家是一片青绿,其余都是按季节来种植.幸亏她在这方面没什么自尊心,被人笑话也是笑嘻嘻地接受了.没办法,她就是懒,如果饿着肚子不会死,她估计连饭都不吃.当然,偶尔嘴馋时例外.不知不觉来到河边,青青杨柳轻点水,树下分别拴着两张竹筏停靠岸边,上次她乘坐の小木船却不 知拴在哪里.看着竹筏,陆羽不由心里一动.车学了,没地方学开船,学学撑船也好.人都是有好奇心の,越怕一样东西便越想尝试.“陆陆?你在干嘛?”她正在犹豫,不远の地方又跑出来几个妇人,以朱阿姨为首の几个女人也在跑步锻炼.“各位大姨早,”打了招呼,陆羽指指竹筏,“知道这竹筏谁家 の吗?”“休闲居の,德力他们几个做了一整天,谁都可以用但要注意安全.你想玩?哎唷,你会玩吗?要不哪天叫少君教会你再玩吧?走,跟大姨做运动去.”陆羽忙笑着踢起脚,“恐怕不行,我穿它出来散步,跑不了.”她穿の是木屐,几位大姨不再勉强,叮嘱她几句便离开了,她们还要上山跳舞呢. 虽说任何人都能用,陆羽还是给德力打电筒确认一下.“你要玩竹排?不是不行,你会不会游泳?”“会,怎么了?”“那没事了,你玩吧.”陆羽:“...”又被人小看了.于是,陆羽在河边扯几根草茎编成一条细长坚韧の绳子,把木屐脱下绑在竹筏上,这样方便自己随时随地穿.撑筏很考验她の胆量, 解开绳子,战战兢兢,小心翼翼地踩上筏子,她の重量让它没入水中.强忍着跳上岸の冲动,陆羽提心吊胆地静等筏子适应她の重量.她也要适应筏子在水里沉浮の恐惧感,不停地自我安慰这是暂时の.就算真の沉了她也能迅速跳上岸,因为速度快,说不定能够练练一苇渡江の技能.适应之后,她开始吃 力地尝试点篙撑驾.河面薄雾弥漫,筏子不受控制飘到中间去了,两边看不到岸.有些心慌,但适应之后の感觉蛮爽の,她有点小兴奋筏前筏后地来回跑,尝试控制它の方向.松溪河绕村而行,等控制自如之后,陆羽任其随波逐流.筏上绑着两张竹凳子,凳面朝上,微湿,她随手擦干然后坐下来歇息,慢慢欣 赏雾江の静态美.她手腕系着一个小布袋,取出收听拍了好些美景上传自己の空间.读书期间,能陪她一起疯玩の好闺蜜不多,除了陈悦然再也没别人.常在欣这种朋友平常不怎么接触,有事或者极度需要才会联系,大家各有圈子各有事忙.所以,自从她の好闺蜜叛变后,在她每一条状态下点赞或评论の 人全是不认识或者不熟の.这不,照片一上传马上就有百条以上の点赞与转发,让她颇惊讶.周围很安静,难得闲情逸致の她随手翻了翻.很多陌生人给她留言求关注求地址,由于她从来不回应,后来大家互动不断猜测她の位置.翻着翻着,忽然手一顿.她看到一个陌生号の恳切留言:陆陆,我是悦然,看 到留言能回复一下吗?我有些话想跟你说.陈悦然被她拉黑之后曾经换号膈应她,被她拉黑几次才罢休,从这时再也没联系.而这个留言の日期居然是一周前.第247部分事到如今两人还有什么话可说の?该不会是发现小姨子和姐夫の风.流艳事打算向她诉苦?算算日期,比她当初发现小三存在の时 间晚了很多,直接跳到小四身上了?有可能,这场四角恋中退出一个,时间链肯定有些错乱.陆羽没打算回复,默默退出自己の空间把收听放好.出来太久,该回去了,雾淡了些依稀能看到岸在哪里,陆羽拿起竹篙准备返航.忽闻河面微风点点,缕缕清香,萦于鼻尖.陆羽怔了下,用力嗅一嗅,确实是荷花香, 而且比之前の更浓.哪儿传来の?莫非附近也有荷塘?怎么没听人说过?因为偏僻所以一直没人知道?如果是就好了,以后又多一个散步の好去处.想罢,她顺水而下.“青山不墨千秋画,绿水无弦万古琴;青山有色花含笑,绿水无声鸟作歌.”撑筏游走河中央,两岸の风景又是另外一种模样,感受也截 然不同.清新芬芳越来越浓,筏子随波逐流,渐渐离开村子岔入另一条大河道.这一带她从未来过,四周の景色十分陌生.不久,她又遇到一左一右の开岔河口.筏子停下,她左右看看不知去哪边好,右边那个还在前边一段距离,但周围全是荷の清香分不清从哪儿来の.正在犹豫间,雾淡了.远远の,她依稀 看到左边の河道漂着几片绿叶子.这回不再犹豫,荷塘肯定就在里边,她撑起竹篙慢慢往左边河道走.没过多久,她果然发现前边一大片绿油油の.密密层层の荷叶中,探出零星点点の白荷宛如沉睡中の仙子静立河中,隔着一层薄雾轻纱,似梦似画.空中本无风,宽大の叶子细微轻摇,方知清风悄然来过. 俏立筏上,陆羽被这一幕惊得目瞪口呆,连拍照都忘了,只顾一脸惊叹地看着眼前这幅水墨青莲画卷,怎么也挪不开眼.这里有一片荷
高二数学教案:9.7直线和平面所成的角与二面角(2)
的树》教学教案一、教学目标【知识与能力】学会本课4个生字,理解文章所讲的故事。
【过程与方法】学生通过自主读文、讨论、交流等过程,感受课文情感。
【情感态度与价值观】培养学生珍惜友谊,信守承诺的良好品质,体会人和物之间的相互依存、和谐发展。
二、教学重难点【重点】理解课文内容,感受童话的趣味以及体会鸟与树的友谊。
【难点】感受鸟儿对树的真挚情谊,体会鸟儿对树的情感。
三、教学过程(一)创设情境,导入新课导入时,让学生们畅所欲言,讲一讲他们熟悉或喜欢的童话故事,这样做一方面是为了激发学生学习童话故事的兴趣;另一方面是为了锻炼学生的口语表达能力。
(板书标题)(二)初读课文,整体感知1.初读课文,解决生字词。
(屏幕出示生字词,指名学生读)(一两个即可)2.学生朗读课文思考:主要讲了一件什么事?可以分为几部分?每部分主要讲了什么内容?明确:①写了一只鸟儿为了实现自己去年的诺言,去寻找好朋友“树”并为它歌唱的事情。
②可分为三个部分,第一部分(第1自然段)树与鸟儿是好朋友,鸟儿天天为树唱歌;第二部分(第2~4自然段)鸟儿离开树到南方过冬,答应明年春天继续为树唱歌;第三部分(第5~17自然段)写鸟儿飞回时不见树的踪影,四处寻找,最终实现了自己的诺言。
(三)抓住重点,理解道理1.这篇童话一共有几次对话?怎样通过对话推动故事的发展的?(小组讨论)明确:共出现四次对话。
第一次对话,鸟与树,约定明年春天相见时鸟再唱歌给树听,第二次对话是鸟与树根,鸟向树根询问树到什么地方去了,树根告诉鸟“伐木人用斧子把他砍倒了,拉到山谷里去了”。
第三次对话是鸟向门打听树的去处,门先生告诉她树根切成细条条儿做成火柴卖到村子里去了。
第四次对话是鸟与小姑娘打听火柴的下落,小姑娘告诉她“火柴已经用光了”,只剩下用火柴点燃的灯光。
这四次对话,分别就是本篇童话的起因、经过和结果。
2.在小鸟与大门的对话中出现了哪些动词?表达了作者怎样的感情?明确:作者运用了“切、做、运、卖”四个动词描述了树的动向。
(新人教A)高三数学教案全集之9.7直线与平面所成的角和二面角(二)
αO A B CαO AB 课 题:9.7直线与平面所成的角和二面角(二)教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法:(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理 教学重点:二面角的概念和二面角的平面角的作法 教学难点:二面角的平面角的一般作法及其寻求 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1 斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中 ⑴射影相交两条斜线相交;射影较长的斜线段也较长⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶垂线段比任何一条斜线段都短⑴OB=OC ⇒AB=AC OB >OC ⇒AB >AC⑵AB=AC ⇒OB=OC AB >AC ⇒OB >OC ⑶OA <AB ,OA <AC3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角.直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角4.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交ϕ2ϕ1cba θPαO ABDCBAE成2角,则有θϕϕcos cos cos 21=.二、讲解新课:1 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示:第一种是卧式法,也称为平卧式:A B CDFGHIJKL第二种是立式法,也称为直立式:l B'O'A'B O A βα2.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180]o o;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 三、讲解范例:例1 在正四面体ABCD 中,求相邻两个平面所成的二面角的平面角的大小解:取BC 的中点E ,连接,AE DE ,∵正四面体ABCD ,∴,BC AE BC ED ⊥⊥于E , ∴AED ∠为二面角A BC D --的平面角, 方法一:设正四面体的棱长为1,1A1A 则,122AE DE AD ===,由余弦定理得1cos 3AED ∠= 方法二:(向量运算)令AB a =u u u r r ,,AC b AD c ==u u u r u u u r r r,棱长为1,∵1111[()][]2224EA ED a b c a b ⋅=-+⋅--=u u u r u u u r r r r r r ,又∵||||EA ED ==u u u r u u u r ,∴1cos 3AED ∠=即相邻两个平面所成的二面角的平面角的大小为1arccos 3. 例2.在棱长为1的正方体1AC 中, (1)求二面角11A B D C --的大小;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小解:(1)取11B D 中点1O ,连接11,AO CO, ∵正方体1AC ,∴111111,B D AO CO B D ⊥⊥, ∴1AO C ∠即为二面角11A B D C --的平面角, 在AOC ∆中,11AO CO AC ===, 可以求得11cos 3AO C ∠=即二面角11A B D C --的大小为1arccos 3. (2)过1C 作1C O BD ⊥于点O , ∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD与平面ABCD 所成二面角1C BD C --的平面角,可以求得:1tan COC ∠=所以,平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小为. 说明:求二面角的步骤:作——证——算——答例3.已知:二面角l αβ--且,A A α∈到平面β的距lBOAβαD CBPA离为23,A 到l 的距离为4,求二面角l αβ--的大小解:作AO l ⊥于点O ,AB ⊥平面β于点B ,连接BO , ∵AB β⊥于点B ,AO l ⊥于点O ,∴l OB ⊥,∴AOB ∠即为二面角l αβ--的平面角, 易知,23,4AB AO ==,∴60AOB ∠=o 即二面角l αβ--的大小为60o.说明:利用三垂线定理作二面角的平面角是解决二面角问题中一种重要的方法,其特征是其中一个平面内一点作另一个平面的垂线则已经有三种作二面角的平面角的方法,即:定义法、垂面法、三垂线法例4.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角解:过D 作DE AC ⊥于E ,过E 作EF AC ⊥交BC 于F ,连结DF , 则C 垂直于平面DEF ,FED ∠为二面角B AC D --的平面角, ∴AC DF ⊥,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥,∴DF ⊥平面ABC ,∴DF EF ⊥,DF BC ⊥, 又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥, 设BD a =,则2AB BC a ==, 在Rt BCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴3DF a =, 同理,Rt ACD ∆中,1522DE a =, ∴3102sin 1522aDF FED DE a ∠===, 所以,二面角B AC D --的正弦值为10. 四、课堂练习: 1如图所示,已知PA ⊥面ABC ,,PBC ABC S S S S ∆∆'==,二面角P BC A --的平面角为θ,A BC D E FD CFHBAE 求证:cos S S '⋅=证明:过P 作BC 的垂线,垂足为D ,连接AD ∵PA ⊥平面ABC ,BC ⊂平面ABC ,BC PD ⊥ ∴BC AD ⊥∴PDA ∠为二面角P BC A --的平面角, 即PDA θ∠=∵PA ⊥面ABC ∴PA AD ⊥ ∵PAD ∆是直角三角形 ∴cos ADPAD PD∠= 又∵11,22PBC ABC S BC PD S S BC AD S ∆∆'=⋅==⋅= ∴cos S PAD S '∠= ∴cos S Sθ'=即cos S S θ'⋅=说明:这是推广的射影定理,也是求二面角平面角的一种方法2.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD ∆是等腰直角三角形,且90BAD ∠=o ,又二面角A BD C --为直二面角,求二面角A CD B --的大小解:过A 作AH BD ⊥于H∵二面角A BD C --为直二面角 ∴AH ⊥面BCD 取CD 中点E ,F 为DE 中点,连接,HF AF ∵BE CD ⊥ ∴//HF BE ∴EF CD ⊥ ∴HF CD ⊥∴AFH ∠为二面角A BD C --的平面角 令ABa =,则,2AH a BE a ===∴HF =∴在Rt AHF ∆中tan AH AFH HF ∠==∴arctan3AFH ∠= 即二面角A CD B --的大小为33.设A 在平面BCD 内的射影是直角三角形BCD 的斜边BD 的中点O ,1,AC BC CD ===1)AC 与平面BCD 所成角的大小;(2)二面角A BC D --的大小;(3)异面直线AB 和CD 的大小解:(1)∵AO ⊥面BCD ∴AO CO ⊥ ∴ACO ∠为AC 与面BCD所成角∵1,BC CD ==∴BD =O EDCFBA∴122CO BD ==∴cos 2ACO ∠= ∴6ACO π∠=即AC 与平面BCD 6(2)取BC 中点E ,连接,OE AE ∴//OE CD ∵CD BC ⊥ ∴OE BC ⊥ 又∵AO ⊥面BCD ∴AE BC ⊥∴AEO ∠为二面角A BC D --的平面角又∵1122OE CD AO === ∵AO OE ⊥∴tan 2AO AEO OE ∠==∴arctan 2AEO ∠= 即二面角A BC D --的大小为2(3)取AC 的中点E ,连接,EF OF ,则//,//EF AB OE CD ∴OE 与EF 所成的锐角或直角即为异面直线AB 和CD 所成角 易求得45OEF ∠=即异面直线AB 和CD 所成角为45五、小结 :1.二面角的定义、画法.2.二面角的平面角的定义、作法.3.求简单的二面角的大小. 六、课后作业: 七、板书设计(略)八、课后记:。
9.7《直线和平面所成的角与二面角》课件3
由于AB⊥平面 在平面AD 由于 ⊥平面AD1,BD1在平面 1上的 F 射影为AD 过点P作 ⊥ 射影为 1,过点 作PF⊥AD1于F,则 则 PF⊥平面 ⊥平面ABD1,过F作FE⊥BD1于E, 过 作 ⊥ , 连结PE, 即为二面角A 连结 ,∠PEF即为二面角 _BD1_P 即为二面角 A 的平面角。 的平面角。
A
D
B
D
C
C B
二面角平面角的小结
1.二面角的定义; 2.二面角的平面角的求法; 三 线 垂 法
谁能小结一下用三垂线求二面角的过程?其中关键是什么? 一找:找二面角的平面角,用三垂线定理求的关键在 于找“撑柱子”; 二证:证明找到的角就是二面角的平面角; 三求:求出找到的平面角的大小,这里用到平面 几何的一些定理。
A
∴AO=2
α
3
,AD=4
在Rt △ADO中,
AO ∵sin∠ADO= ∠ AD ∴ ∠ADO=60° °
β
2 3 3 = = 2 4
D
O
l
∴二面角 α- l- β 的大小为60 °
A
练习: 练习:
二面角A--BC--D 二面角 1 D1 B 2 C B E
A
D O C
二面角B--AD--C 二面角 D’ A’ D A
β C A α E D B l
在三棱锥A—BCD中,侧面 例1 在三棱锥 中 侧面ABC⊥底面 ⊥底面BCD, , 。, AB﹦BC﹦BD﹦1,∠CBA﹦∠CBD﹦120 ﹦ ﹦ ﹦ , ﹦ ﹦ 求二面角A—BD—C的大小。 的大小。 求二面角 的大小 同学们思考以下 问题: 1.由已知条件怎样找 1.由已知条件怎样找 垂线? 垂线 2.通过垂线怎样找二 通过垂线怎样找二 面角的平面角. 面角的平面角
直线和平面所成的角与二面角
直线和平面所成的角与二面角知识要点1.直线与平面所成角的范围若θ表示直线与平面所成的角,则0°≤θ≤90°。
2.公式cosθ=cosθ1·cosθ2。
斜线AB与平面α所成的角为θ1,A为斜足,AC在α内,且与AB的射影成θ2角,∠BAC=θ, 则有cosθ=cosθ1·cosθ2。
3.公式。
如图所示,在二面角α-l-β中,A∈平面β,B∈平面α,AD⊥l于D,BC⊥l于C,AD=m,BC=n, CD=d, AB=l, 二面角α-l-β的平面角为φ,则有:。
4.公式S'=Scosθ。
如果平面多边形所在平面与平面所成角为,这个平面多边形及其在平面内的射影的面积分别为S、S',那么S'=Scosθ。
5. 向量知识(1);(2)(3)a·b=|a|·|b|cosθ (其中θ是a与b的夹角)(4)若a=(x1,y1,z1), b=(x2,y2,z2), 则:a·b=x1x2+y1y2+z1z2。
典型题目例1.如图,在棱长为a的正方体OABC-O'A'B'C'中,E、F分别是棱AB、BC上的动点,且AE=BF。
(1)求证:A'F⊥C'E;(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF'B的大小。
(结果用反三角函数表示)。
(1)证明:如图所示,以O为原点建立空间直角坐标系,设AE=BF=x, 则A'(a,0,a), F(a-x,a,0), C'(0,a,a,), E(a,x,0)。
∵,∴ A'F⊥C'E。
(2)解:记BF=x, BE=y, 则x+y=a, 三棱锥B'-BEF的体积,当且仅当,时,取得最大值。
过B作BD⊥EF交EF于D,连B'D,B'D⊥EF,∴∠B'DB是二面角B'-EF-B的平面角。
高三数学下9.7直线和平面所成的角与二面角2教案
课 题:9.7直线与平面所成的角和二面角(二)教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法:(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理 教学重点:二面角的概念和二面角的平面角的作法 教学难点:二面角的平面角的一般作法及其寻求 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,个平面的斜线斜线和平面的交点叫斜足段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中 ⑴射影相交两条斜线相交;射影较长的斜线段也较长⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶垂线段比任何一条斜线段都短⑴OB=OC ⇒AB=AC OB >OC ⇒AB >AC⑵AB=AC ⇒OB=OC AB >AC ⇒OB >OC ⑶OA <AB ,OA <AC3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角.直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角4.公式:已知平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=.二、讲解新课:1二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示:第一种是卧式法,也称为平卧式:J第二种是立式法,也称为直立式:l B'O'A'B O A βα2.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角DC BAE1A 说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 三、讲解范例:例1在正四面体ABCD 中,求相邻两个平面所成的二面角的平面角的大小 解:取BC 的中点E,连接,AE DE ,∵正四面体ABCD ,∴,BC AE BC ED ⊥⊥于E , ∴AED ∠为二面角A BC D --的平面角, 方法一:设正四面体的棱长为1, 则1AE DE AD ===,由余弦定理得1cos 3AED ∠=方法二:(向量运算)令AB a =,,AC b AD c ==,棱长为1, ∵1111[()][]2224EA ED a b c a b ⋅=-+⋅--=, 又∵3||||EA ED ==,∴1cos 3AED ∠=即相邻两个平面所成的二面角的平面角的大小为1arccos 3. 例2.在棱长为1的正方体1AC 中, (1)求二面角11A B D C --的大小;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小 解:(1)取11B D 中点1O ,连接11,AO CO , ∵正方体1AC ,∴111111,B D AO CO B D ⊥⊥, ∴1AO C ∠即为二面角11A B D C --的平面角,1A在AOC ∆中,112AO CO AC ===, 可以求得11cos 3AO C ∠=即二面角11A B D C --的大小为1arccos 3.(2)过1C 作1C O BD ⊥于点O ,∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角,可以求得:1tan COC ∠=所以,平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小为说明:求二面角的步骤:作——证——算——答例3.已知:二面角l αβ--且,A A α∈到平面β的距离为A 到l 的距离为4,求二面角l αβ--的大小解:作AO l ⊥于点O ,AB ⊥平面β于点B ,连接BO , ∵AB β⊥于点B ,AO l ⊥于点O ,∴l OB ⊥,∴AOB ∠即为二面角l αβ--的平面角, 易知,4AB AO ==,∴60AOB ∠=即二面角l αβ--的大小为60.说明:利用三垂线定理作二面角的平面角是解决二面角问题中一种重要的方法,其特征是其中一个平面内一点作另一个平面的垂线则已经有三种作二面角的平面角的方法,即:定义法、垂面法、三垂线法例4.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角lBOAβαD CBPAB ACD --的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角解:过D 作DE AC ⊥于E ,过E 作EF AC ⊥交BC 于F ,连结DF , 则C 垂直于平面DEF ,FED ∠为二面角B AC D --的平面角, ∴AC DF ⊥,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥,∴DF ⊥平面ABC ,∴DF EF ⊥,DF BC ⊥, 又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥,设BD a =,则2AB BC a ==,在Rt BCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴2DF =, 同理,Rt ACD ∆中,DE =,∴sin DF FED DE ∠=== 所以,二面角B AC D --四、课堂练习: 1如图所示,已知PA ⊥面ABC ,,PBC ABC S S S S ∆∆'==,二面角P BC A--的平面角为θ, 求证:cos S S '⋅=证明:过P 作BC 的垂线,垂足为D ,连接AD ∵PA ⊥平面ABC ,BC ⊂平面ABC ,BC PD ⊥ ∴BC AD ⊥∴PDA ∠为二面角P BC A --的平面角, 即PDA θ∠=∵PA ⊥面ABC ∴PA AD ⊥ ∵PAD ∆是直角三角形 ∴cos ADPAD PD∠=A BC D E FD CFHBAE 又∵11,22PBC ABC S BC PD S S BC AD S ∆∆'=⋅==⋅= ∴cos S PAD S '∠= ∴cos S Sθ'=即cos S S θ'⋅=说明:这是推广的射影定理,也是求二面角平面角的一种方法2.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD ∆是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CDB --的大小解:过A 作AH BD ⊥于H∵二面角A BD C --为直二面角 ∴AH ⊥面BCD取CD 中点E ,F 为DE 中点,连接,HF AF ∵BE CD ⊥ ∴//HF BE ∴EF CD ⊥ ∴HF CD ⊥∴AFH ∠为二面角A BD C --的平面角 令ABa =,则,2AH a BE a ===∴HF a =∴在Rt AHF ∆中tan AH AFH HF ∠==∴AFH ∠= 即二面角A CD B --的大小为arctan33.设A 在平面BCD 内的射影是直角三角形BCD 的斜边BD的中点O ,1,AC BC CD ===1)AC 与平面BCD 所成角的大小;(2)二面角A BC D --的大小;(3)异面直线AB 和CD 的大小解:(1)∵AO ⊥面BCD ∴AO CO ⊥ ∴ACO ∠为AC 与面BCD所成角∵1,BC CD ==∴BD∴12CO BD ==∴cos ACO ∠=O EDCFBA∴6ACO π∠=即AC 与平面BCD 所成角的大小为6π(2)取BC 中点E ,连接,OE AE ∴//OE CD ∵CD BC ⊥ ∴OE BC ⊥ 又∵AO ⊥面BCD ∴AE BC ⊥∴AEO ∠为二面角A BC D --的平面角又∵1122OE CD AO === ∵AO OE ⊥∴tan AO AEO OE ∠==∴arctan AEO ∠=即二面角A BC D --的大小为arctan2(3)取AC 的中点E ,连接,EF OF ,则//,//EF AB OE CD ∴OE 与EF 所成的锐角或直角即为异面直线AB 和CD 所成角 易求得45OEF ∠=即异面直线AB 和CD 所成角为45 五、小结 :1.二面角的定义、画法.2.二面角的平面角的定义、作法.3.求简单的二面角的大小. 六、课后作业:七、板书设计(略) 八、课后记:。
答案:第十二讲 直线与平面成角及二面角专题
高考复习资料第十二讲 直线与平面成角及二面角专题知识点一、直线和平面所成的角(1)定义平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行或在平面内,我们说它们所成的角是0°的角。
两个结论:①斜线和平面所成的角,是这条斜线和这个平面内经过斜足的直线所成的一切角中最小的角. ②斜线和平面所成的角,是这条直线和这个平面内的直线所成的一切角中最小的角. (2)直线与平面所成角的求法几何法求斜线和平面所成角的步骤:①作出(或找到)斜线与平面所成的角;②证明且指出所作出的角符合定义;③放在直角三角形中计算,简称为一作二证三求。
例题1、正方体1111ABCD A B C D -中,求1A B 与平面11BB D D 所成的角。
例2、直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45 ,CD 是斜边AB 上的高,求CD与平面α所成角的正弦值。
CA B专题二第十二讲例题3、 如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,(1)证明:PA ∥平面EDB (2)求EB 与底面ABCD 所成的角正切值。
评析:求直线和平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常以以下步骤:①构造——作出或找出斜线与射影所成的角,②设定——论证拟作或所找的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角值. 在求解斜线和平面所成角的过程中,确定点在直线或平面上的射影是关键,确定点在平面上射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面上的射影上;②利用垂直关系得出线面垂直,确定射影。
例4 如图,已知正方体1111ABCD A B C D 中,M 、N 分别是AB 、11C D 的中点,求11A B 与平面1A MCN 所成的角的正切值。
直线和平面所成的角与二面角
直线和平面所成的角与二面角【高考导航】立体几何中的角大致可分为三种,即线线角,线面角,平面与平面所成的二面角.立体几何计算问题几乎都与三种空间角的计算有关,是高考立体几何检测的热点内容,题型上一般以解答题进行考查,难度适中,如1993全国理5分;1995全国文5分;1996全国4分;2002北京4分;1996上海12分;2002全国理12分;2002新课程12分;2002上海春12分;2003北京春5分;2004北京14分;2004广东12分等.【学法点拨】本节内容有斜线在平面上的射影,斜线与平面所成的角,公式cosθ=cosθ1·cosθ2,最小角定理,二面角的概念,二面角的平面角,两个平面垂直的判定定理及性质定理,对于本节知识的学习要了解线面角、半平面与半平面所成二面角以及异面直线所成角,在求法上一般都是转化为平面的角,具体地,通常应用“线线角抓平移,线面角抓射影,面面角抓平面角,利用向量抓法向量”而达到化归的目的.要注意对平面角的拼求和各种角的定义及取值范围.空间角的计算步骤是“一作,二证,三计算”.“作”即在图形中若无所求空间角的平面角,应先作出来;“证”指明自己所找或所作的角即为所求角;“计算”在平面几何图形内把角求出.在三种角的计算中要特别注意二面角的作法及求法,注意cosθ=cosθ1·cosθ2在线面角求值中的应用,注意利用射影面积公式S′=S·cosθ求二面角,对于平面与平面垂直的判定与性质的学习,可以与直线与直线垂直,直线与平面垂直的判定与性质联系起来,应用时注意三种垂直之间的相互转化.同时在学习中培养空间的想象能力、解决问题的能力以及逻辑推理能力和运算能力.【基础知识必备】一、必记知识精选平面的斜线和平面所成的角.(1)直线与平面所成角①范围:0°≤α≤90°当α=0°时,直线在平面内或直线平行于平面;当α=90°时,直线垂直于平面;当0°<α<90°时,直线与平面斜交.②最小角定理:直线与平面斜交,过斜足在平面内作直线,这些线与斜线所成角中射影与斜线所成角最小.③cosθ=cosθ1·cosθ2.④作法:作出直线和平面所成角,关键是作垂线,找射影.(2)二面角①定义:由一条直线出发的两个半平面组成的图形叫二面角.②二面角的平面角:定义:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.对概念的理解要注意:平面角的两边分别在二面角的两个半平面内;平面角的二边都和二面角的棱垂直.③二面角平面角的求法:直接法:所谓直接法即先作出二面角的平面角,经过证明后再进行计算,常用的直接法有三:(a)利用平面角的定义;(b)利用三垂线定理;(c)过一点作棱的垂面.间接法:所谓间接法,就是不作出二面角的平面角,而利用公式cos θ=S S 射影.此方法也叫射影法.也可利用两半平面法向量的夹角求二面角.注意当直接作出二面角的平面角有一定难度时,一般才采用间接法求二面角大小. ④二面角的范围是0°≤θ≤180°,可从两个半平面“重合”、“相交”和“共面”各种情况考虑,重合时θ=0°;相交时,0°<θ<180°;共面时,θ=180°.(3)两个平面垂直的判定①定义:如果两相交平面所成二面角是直二面角,那么这两个平面互相垂直.两个平面互相垂直是两个平面相交的特殊情况,若两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直,它和平面几何里两条直线互相垂直的概念类似.②判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.即⎭⎬⎫⊂⊥βαl l ⇒β⊥α.简言之,“线面垂直⇒面面垂直”.(4)两个平面垂直的性质①如果两个平面互相垂直,那么它们所成二面角的平面角是直角.②性质定理:如果两个平面互相垂直,那么一个平面内垂直于交线的直线垂直于另一个平面.即⎭⎬⎫⊥⊂=⊥l a a l ,,ββαβα ⇒a ⊥α.简言之,“面面垂直⇒线面垂直”. ③如果两个平面互相垂直,那么过一个平面内一点和另一个平面垂直的直线,必在此平面内.④如果一个平面和二个相交平面都垂直,那么它就和它们的交线垂直.(5)从两个平面垂直的判定定理和性质定理中可看出,平面与平面的垂直问题可转化为直线与平面的垂直问题,即从线面垂直可推出面面垂直,反过来,由面面垂直又可推出线面垂直,这说明线面垂直与面面垂直之间有密切关系,可以互相转化.二、重点难点突破本节的重点是斜线在平面上射影的概念,斜线与平面所成角的概念,二面角的概念,两个平而垂直的判定定理.对于斜线在平面上的射影可通过具体作图具体体验,要注意O 点选取的任意性及斜线在平面上的射影是直线不是线段,斜线与平面所成角要紧扣概念,了解范围.本节的难点是cos θ=cos θ1·cos θ2的灵活应用,二面角的平面角.对于二面角的平面角和平面中角的概念作类比,注意化归思想的应用,二面角的考查在1993至2004高考十一年间有十年都有涉及,是考试热点,应重视.三、易错点和易忽略点导析在求二面角时,忽略二面角的范围,用反三角函数表示角出现错误或确定平面角出现错误.【例】 已知∠AOB=90°,过O 点引∠A O B 所在平面的斜线O C ,与O A 、O B 分别成45°、60°角测以O C 为棱的二面角A-O C-B 大小为________.错解:如图9-7-1所示,在O C 上取一点C ,使O C=1.过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B.则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6.在△ABC 中,由余弦定理,得cos ∠ACB=-33.∴∠ACB=arccos 33,即二面角A-O C-B 为arccos 33.正确解法:如图9-7-1所示,在O C 上取一点C ,使O C=1,过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B ,则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6,得cos ∠ACB=-33.∴∠ACB=π-arccos 33.即二面角A-O C-B 为π-arccos 33.错解分析:混淆了二面角的范围[0,π]与异面直线所成角的范围(0,2π],且对于反三角函数的表示不熟悉.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知D 、E 分别是正三棱柱ABC 一A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面所成二面角的大小.思维入门指导:在图9-7-2上,过D 、E 、C 1的面与棱柱底面只给出一个公共点C 1,而没有画出它与棱柱底面所成二面角的棱,因此还需找出它与底面的另一个公共点,进而再求二面角的大小.解:在平面M 1B 1B 内延长DE 和A 1B 1交于F ,则F 是面DEF 与面A 1B 1C 1的公共点,C 1也是这两个面的公共点,连结C 1F ,C 1F 为这两个面的交线,所求的二面角就是D-C 1F-A 1.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1F=B 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥面A 1B 1C 1,FC 1在面A 1B 1C 1内,∴FC 1⊥面AA 1C 1C.而DC 1在面AA 1C 1C 内,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角.由已知A 1D=B 1C=A 1C 1,∴∠DC 1A 1=4π.故所求二面角的大小为4π.点拨:当所求的二面角没有给出它的棱时,可通过公理1和公理2,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小.需要注意的是,若利用cos θ=1111DEC C B A SS △△求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.【例2】 设△ABC 和△DBC 所在的两个平面互相垂直,且AB=BC=BD ,∠ABC=∠DBC=120°.求:(1)直线AD 与平面BCD 所成角的大小;(2)异面直线AD 与BC 所成的角的大小;(3)二面角A-BD-C 的大小.思维入门指导:本题主要考查对空间三种角的“作一证一求”.在解题时要合理利用题中条件.解:(1)如图9-7-3所示,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,连结DH ,故∠ADH 为直线AD 与平面BCD 所成的角.由题设知,△AHB ≌△DHB ,则DH ⊥BH ,AH=DH.∴∠ADH=45°为所求.(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影,∴BC ⊥AD ,故AD 与BC 所成的角为90°.(3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知AR ⊥BD ,故∠ARH 为二面角A-BD-C 的平面角的补角.设BC=a ,则由题设得AH=DH=23a ,BH=21a ,BD=BC=a.在△HDB 中,求得HR=43a.∴tan ∠ARH=HR AH =2.故二面角A-BD-C 的大小为π-arctan2.点拨:本题是一道中档难度的立体几何综合题.这种试题命题的目的是考查立体几何重点知识,并且使之能覆盖较多的知识点.二、应用思维点拨【例3】 如图9-7-4所示,边长AC=3,BC=4,AB=5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角.试问:遮阳棚ABC 与地面成多大角度时,才能保证遮影面ABD 面积最大?思维入门指导:太阳影子实质可理解为射影面积,从而本题可转化为二面角的有关问题进行探讨,那么首先应作出纯数学图形,结合图形进行分析求解.解:易知△ABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,连结DQ ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图9-7-5.∵太阳光与地面成30°角,∴∠CDQ=30°.在△ABC 中,可算得CQ=512,在△CQD 中,由正弦定理,有︒30sin CQ =QCD QD ∠sin .即QD=524sin ∠QCD.为了使平面ABD 的面积最大,需QD 最大,这只有当∠QCD=90°时才可达到.从而∠CQD=60°.故当遮阳棚ABC 与地面成60°角时,才能保证遮影面ABD 面积最大.点拨:从研究中可看出只有当遮阳棚所在平面与太阳光线垂直时,才能挡住最多的光线,被遮阳的地面面积才能获得最大值.利用这个结论,也很容易得出所求值为60°,参看图9-7-6.三、创新思维点拨【例4】 如图9-7-7,在四面体ABCD 中,AB=AD=3,BC=CD=3,AC=10,BD=2.(1)平面ABD 与平面BCD 是否垂直,证明你的结论;(2)求二面角A-CD-B 的正切值;(3)求异面直线BC 与AD 所成角的余弦值.思维入门指导:(1)判断垂直需要寻找符合面面垂直判定定理的条件.(2)(3)求空间的角要先转化为平面相交直线所成角,然后进行求解.解:(1)平面ABD ⊥平面BCD.证明如下:设BD 的中点为E ,连AE 、CE.∵AB=AD ,∴AE ⊥BD.同理CE ⊥BD.∴AE=22BE AB -=13-=2, CE=22BE BC -=19-=22. 又AC=10,∴AC 2=AF 2+CE 2.∴∠AEC=90°.∴AE ⊥EC.又AE ⊥BD ,∴AE ⊥平面BCD.又AE ⊂平面ABD ,∴平面ABD 上平面BCD.(2)作EF ⊥CD 于F ,连AF.∵AE ⊥平面BCD ,由三垂线定理得,AF ⊥CD ,∴∠AFE 就是二面角A-CD-B 的平面角,EF=ED ·sin ∠EDF=ED ·CD EC=1×322=322.∴tan ∠AFE=EF AE =3222=23.即二面角A-CD-B 的正切值为23.(3)解法一:取AB 的中点M ,AC 的中点N ,连MN 、ME 、NE.则ME ∥21AD ,MN ∥21BC. ∴∠NME 是异面直线BC 与AD 所成角或其补角.∵MN=21BC=23, ME=21AD=23, NE=21AC=210,由余弦定理,cos ∠NME=ME MN NE ME MN ∙-+2222=93>0.∴∠NME 为锐角.∴∠NME 就是异面直线BC 与AD 所成角,其余弦值为93.解法二:在平面BCD 内作□BCGD(如图9-7-8),连结AG ,则DG ∥BC ,∴∠ADG 是直线BC 与AD 所成角或者其补角.∵BD ∥CG ,EC ⊥BD ,∴EC ⊥CG.又∵AE ⊥平面BCD ,∴AC ⊥CG ,CG=BD=2,DG=BC=3.在Rt △ACG 中,AG=22CG AC +=14,cos ∠ADG=DG AD AG DG AD ∙-+2222=3321493∙-+=93.∴直线BC 与AD 所成角的余弦值为93.点拨:本题的(1)设问新颖,属开放式,增加了问题的灵活度,对空间想象能力、推理、判断能力要求更高,近年高考中像这样开放式设问题的试题较多,是高考命题的一个热点.本题的(3)求异面直线所成角,要化归为相交线所成角,解法一利用中位线性质将两异面直线所成角转化为相交直线所成角,解法二过一直线上一点作另一直线的平行线.应注意异面直线所成角一定是锐角或直角.四、高考思维点拨【例5】 (2002,河南、江苏)四棱锥P —ABCD 的底面是边长为a 的正方形PB ⊥面ABCD.(1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明:无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°. 思维入门指导:解答第(1)问,基本思路是寻找面PAD 与底面ABCD 所成的二面角的平面角,进而求棱锥的高和体积;也可以通过侧面△PDA 在底面的射影面积与二面角的关系求解;还可以补形为正四棱柱求解,但此法较繁琐.解答第(2)问,首先要找出面PAD 与面PCD 所成的二面角的平面角,也即找出一个垂直于PD 的平面,转化为在平面上研究该平面角的大小.(1)解法一:∵PB ⊥面ABCD ,∴BA 是PA 在面ABCD 上的射影.又DA ⊥AB ,∴PA ⊥DA.∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角.∴∠PAB=60°.而PB 是四棱锥P —ABCD 的高,PB=AB ·tan60°=3a ,∴V 锥=31·3a ·a 2=33a 3.解法二:如图9-7-9,∵PB ⊥面ABCD ,连结BD ,则△ABD 是△APD 在面ABCD 上的射影, ∴APD ABDS S △△=cos60°.又S △ABD =21a 2,∴S △APD =21212a =a 2.由PB ⊥AD ,AD ⊥AB ,得AD ⊥面PAB.∴AD ⊥AP.∴PA=AD S APD 21△=a a 212=2a.在Rt △PAB 中,PB=22)2(a a -=3a ,∵PB 是四棱推P —ABCD 的高,∴V 锥=31·3a ·a 2=33a 3. (2)证法一:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连结EC ,如图9-7-10,则△ADE ≌△CDE ,∴AE=CE ,∠CED=90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与DB 相交于点O ,连结E O ,则E O ⊥AC ,22a=O A <AE <AD=a ,且AD=2O A.在△AEC 中,cos ∠AEC=EC AE OA EC AE ∙∙-+2)2(222=2)2)(2(AE OA AE OA AE -+<0.所以,面PAD 与PCD所成的二面角恒大于90°.证法二:如图9-7-10,同证法一,得∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设PB=h ,则PA 2=h 2+a 2,PD 2=h 2+2a 2.在Rt △PAD 中,AE=PD ADPA ∙=22222a h a h a ++. 在△AEC 中,∵AE=EC ,∴cos ∠AEC=EC AE AC EC AE ∙-+2222=222AE a AE -=1-22AE a =1-22222a h a h ++=-222a h a +<0.∴∠AEC 是钝角.即面PAD 与面PCD 所成的二面角恒大于90°.点拨:本题以《立体几何》课本的一道复习题为基础,通过题中某个元素的变动,导出某个“恒定”的结论,创设出一个新的问题,与课本的习题一气呵成,构成一个完美的题组,给人以完整、清新、自然的感觉,是一道颇具创意的试题.本题的第(1)题,出自于课本复习参考题九B 组第6组,它只改变问题的表述,并不改变问题的本质,考查线面、线线垂直关系的逻辑推理和解直角三角形、求棱锥体积的运算,是对考生的基本要求.五、经典类型题思维点拨【例6】 如图9-7-11,三棱柱O AB -O 1A 1B 1,平面O BB 1O 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2, O A=3.求:二面角O 1-AB-O 的大小;思维入门指导:根据题意利用二面角的定义,找出二面角的平面角,运用解三角形的知识求出.解:取O B 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面O BB 1O 1⊥平面O AB ,∴O 1D ⊥平面O AB.过点D 作AB 的垂线,垂足为E ,连结O 1E ,则O 1E ⊥AB.∴∠DE O 1为二面角O 1-AB-O 的平面角.由题设得O 1D=3,sin ∠O BA=22OB OA OA +=721. ∴DE=DB ·sin ∠O BA=721.∵在Rt △O 1DE 中,tan ∠DE O 1=DE DO 1=7.∴∠DE O 1=arctan 7.即二面角O 1-AB-O 的大小为arctan 7.六、探究性学习点拨【例7】 在直角梯形ABCD 中,∠D=∠BAD=90°,AD=DC=21AB=a(如图9-7-12(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为λ.(1)若二面角α-AC-β为直二面角(如图9-7-12(2)),求二面角β-BC-λ的大小;(2)若二面角α-AC-β为60°(如图9-7-12(3)),求三棱锥D ′一ABC 的体积.思维入门指导:本题是一道由平面图形折叠形成的立体几何问题.主要考查空间想象力和图形对应关系,也考查了立体几何的常规计算——二面角计算和体积计算.解:(1)在直角梯形ABCD 中,由已知△DAC 为等腰直角三角形,∴AC=2a ,∠CAB=45°. 由AB=2a ,可推得BC=AC=2a ,∴AC ⊥BC.取AC 的中点E ,连结D ′E ,如图9-7-13,则D ′E ⊥AC.∵二面角α-AC-β为直二面角,∴D ′E ⊥β.又∵BC ⊂平面β,∴BC ⊥D ′E.∴BC ⊥α.而D ′C ⊂α,∴BC ⊥D ′C.∴∠D ′CA 为二面角β-BC-λ的平面角.由于∠D ′CA=45°,∴二面角β-BC-λ为45°.(2)如图9-7-14,取AC 的中点E ,连结D ′E ,再过D ′作D ′O ⊥β,垂足为O ,连结O E.∵AC ⊥D ′E ,∴AC ⊥O E.∴∠D ′E O 为二面角α-AC-β的平面角.∴∠D ′E O =60°.在Rt △D ′OE 中,D ′E=21AC=22a ,D ′O =D ′E ·sin60°=22a ·23=46a.∴V D ′-ABC =31S △ABC ·D ′O =31×21AC ·BC ·D ′O =61×2a ×2a ×46a=126a 3.点拨:本题立意简明,考查了空间图形的基本推理和运算,对于折叠问题,空间图形中大多数数据靠平面图形计算去赋值,这是解决这类问题的通常思考方法,题目难度中档,有一定的区分度.【强化练习题】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.在正三棱柱ABC -A 1B 1C 1中,若AB=2BB 1;则AB 1与C 1B 所成角的大小为( )A.60°B.90°C.105°D.75°2.直线l 与平面α斜交成n °角,则l 与α内任意直线所成角中,最小与最大的角分别是( )A.n °与90°B.180°-n °与n °C.n °与180°-n °D.以上都不是3.PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A.21 B.22C.33D.364.二面角α-AB-β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么( )A.∠CEB=∠DEBB.∠CEB >∠DEBC.∠CEB <∠DEBD.∠CEB 与∠DEB 的大小关系不能确定5.在空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,且AD=4,BC=6,MN=19,则AD 与BC 所成角的余弦值和所成角分别为( ) A.-21,32π B.-21,3π C.21,3π D.21,32π6.已知a 、b 是异面直线,A ,B ∈α,A 1,B 1∈b ,AA 1⊥α,AA 1⊥b ,BB 1⊥b ,且AB=2,A1B1=1,则α与b所成的角等于()A.30°B.45°C.60°D.75°二、填空题(每小题4分,共16分)7.在正方体ABCD--A1B1C1D1中,BD1与平面A1B1C1D1所成角的正切值为________.8.AB∥平面α,AC⊥α于C,BD是α的斜线,D是斜足,若AC=9,BD=63,则BD与α所成的角为________.9.过一个平面的垂线和这个平面垂直的平面有________.10.一条长为a的线段夹在互相垂直的两平面之间,它和这两个平面所成角分别为45°和30°,由这线段的两个端点向两个平面引垂线,那么垂足间的距离是________.三、解答题(每小题7分,共14分)11.如图9-7-15,A是△BCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°.E是BD的中点.求证:平面AEC⊥平面ABD,平面AEC⊥平面BDC.12.设E为正方体ABCD—A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成角的余弦值.B卷:综合应用创新练习题(90分 90分钟)一、学科内综合题(10分)1.如图9-7-16,以正四棱锥V—ABCD底面中心O为坐标原点建立空间直角坐标系O一xyz,其中O x∥BC,O y∥AB,E为VC中点,正四棱锥底面边长为2a,高为h.(1)求cos<BE,DE>;(2)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求∠BED.二、应用题(10分)2.一个气象探测气球以14m/min的垂直分速度由地面上升,经过10min后,由观察点D测得气球在D的正东,仰角为45°;又过10min后,测得气球在D的北偏东60°,仰角为60°.若气球是直线运动,求风向与风速.三、创新题(60分)(一)教材变型题(10分)3.(P46习题9.7第4题变型)山坡与水平面成30°角,坡面上有一条与山底水平线成30°角的直线小路,某人沿小路上坡走了一段路程后升高了100米,则此人行走的路程为________.(二)一题多解(15分)4.如图9-7-17,在正方体ABCD-A1B1C1D1中,E、F分别为AA1、AB之中点,求EF和平面ACC1A1所成角的大小.(三)一题多变(15分)5.如图9-7-18,过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,设PA=AB=a. ①求二面角B-PC-D 的大小;②求平面PAB 和平面PCD 所成二面角的大小.(1)一变:四边形ABCD 是菱形,且∠ABC=60°,其他条件不变,求二面角B-PC-D 的大小.(四)新解法题(1O 分)6.△ABC 的边BC 在平面α内,A 在平面α上的射影为A ′,当∠BAC=60°,AB 、AC 与平面α所成角分别为30°和45°时,求cos ∠BA ′C 的值.(五)新情境题(10分)7.如图9-7-19,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=21.(1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. 四、高考题(10分)8.(2001,京、蒙、皖春)已知VC 是△ABC 所在平面外的一条斜线,点N 是V 在平面ABC 上的射影,如图9-7-20,且在△ABC 的高CD 上,AB=a ,VC 与AB 之间的距离为h ,点M ∈VC.(1)求证:∠MDC 是二面角M-AB-C 的平面角; (2)当∠MDE=∠CVN 时,求证:VC ⊥平面AMB ;(3)若∠MDC=∠CVN=θ(0<θ<2π),求四面体MABC 的体积.加试题:竞赛趣味题(10分)已知正方体ABCD -A ′B ′C ′D ′的棱长为1,在AC 上取一点P ,过P 、A ′,B ′三点作的平面与底面所成二面角为α,过P 、B ′、C ′三点作的平面与底面所成的二面角为β,求α+β的最小值.【课外阅读】巧用向量法求空间角众所周知,解决立体几何问题,“平移是手段,垂直是关键”,向量的运算中:两向量的共线易解决平行问题,向量的数量积则易解决垂直、两向量所成角及线段的长度等问题.一般来说,当掌握了用向量的方法解决立体几何问题这套强有力的工具时,应该说不仅会降低学习的难度,而且增强了可操作性,为学生提供了崭新的视角,丰富了思维结构,消除了学生对立体几何学习所产生的畏惧心理,更有利于新课改、新理念、新教材的教学实验.本文主要是谈利用向量法求解空间角的问题.角这一几何量本质上是对直线与平面位置关系的定量分析,其中转化的思想十分重要,三种空间角都可转化为平面角来计算,可以进一步转化为向量的夹角求解.1.求两条异面直线所成的角异面直线所成的角α利用与它们平行的向量,转化为向量的夹角θ问题,但θ∈[0,π],α∈(0,2π],所以cos α=|cos θ|=ba ba ∙.【例1】 (2002,上海春季)如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小.思维入门指导:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算.解:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0).∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3).设异面直线所成的角为α,则cos α=71.故异面直线A 1B 与A O 1所成的角的大小为arccos 71.点拨:(1)以向量为工具,利用空间向量的坐标表示,空间向量的数量积计算公式,异面直线所成角问题思路自然,解法灵活简便;(2)也可以直接用自由向量OA =a ,OB =b ,1OO =c 表示1OA 与A 1,然后再来解.2.求直线与平面所成的角在求平面的斜线与平面所成的角时,一般有两种思考的途径,如图9-7-22,一种是按定义得∠P O H=<OP ,OH >;另一种方法是利用法向量知识,如图9-7-22,平面α的法向量为n ,先求OP 与n 的夹角,注意P O 与α所成角θ与<OP ,n >的关系,于是就有sin θ=|cos<OP ,n>|.【例2】 (2002,天津、山西、江西)如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小.思维入门指导:利用正三棱柱的性质,建立适当的空间直角坐标系,写出有关点的坐标,求角时有两种思路,一是由定义找出线面角,取A 1B 1中点M ,连结C 1M ,证明∠C 1AM 是AC 1与面A 1B 所成的角;另一种是利用平面AB 1的法向量n =(λ,x ,y ),求解.解法一:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(-23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23a ,0,0),=(0,a ,0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ.∵1AC =(-23a ,2a ,2a),AM =(0,2a ,2a),∴1AC ·AM =0+42a +2a 2=492a .而|1AC |=2222443a a a ++=3a ,||=2224a a +=23a ,∴cos<1AC ,AM >=233492a a a ∙=23.∴<1AC ,>=30°,即AC 1与侧面AB 1所成的角为30°.解法二(法向量法):(接法一)1AA =(0,0,2a ).设侧面A 1B 的法向量n =(λ,x ,y).所以n ·AB =0,且n ·1AA =0,∴ax=0,且2ay=0.∴x=y=0,故n =(λ,0,0).∵1AC =(-23a ,2a ,2a),∴cos<1AC ,n >=1=a a 3||23∙∙-λλ=-||2λλ.∴sin θ=|cos<1AC ,n >|=21.∴θ=30°.点拨:充分利用图形的几何特征建立适当的空间直角坐标系.再用向量有关知识求解线面角.解法二给出了一般的方法,先求平面法向量与斜线夹角,再进行换算.3.求二面角利用向量法求二面角的平面角有两种途径,一是根据二面角的平面角的定义,如图9-7-24,AB ⊥l ,CD ⊥l ,AB ⊂α,CD ⊂β,则二面角α- l -β的大小为<AB ,CD >.另一种方法是利用两平面的法向量的夹角求解,但应注意法向量n 1、n 2的夹角与二面角的大小是相等或互补的.【例3】 (2001,全国)如图9-7-25,在底面是一直角梯形的四棱锥S 一ABCD 中,AD∥BC ,∠ABC=90°,SA ⊥平面AC ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成的角.思维入门指导:本题是“无棱”的二面角,利用向量法求二面角大小更显示了向量工具的魅力.抓住AD 、AB 、AS 两两互相垂直建立坐标系,用待定系数法求出面SAB 、面SCD 的法向量,再求其夹角.解:如图9-7-25,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,1,0),得DC =(21,1,0),SD =(21,0,-1),SC =(1,1,-1).设平面SDC 的法向量为n 1=(x 1,y 1,z 1).∵n 1⊥面SDC ,∴n 1⊥DC ,n 1⊥SD ,n 1⊥SC .设平面SAB 的法向量为n 2=(x 2,y 2,z 2),则 SA =(0,0,-1),SB =(0,-1,1).∴⎪⎩⎪⎨⎧=∙=∙.0,022SA n n ∴⎩⎨⎧=+-=-.0,0222z y z∴x 2=y 2=0.∴n 2=(x 2,0,0). ∴cos<n 1,n 2>=||||2121n n n n ∙=||414100221212121x x x x x x ∙++++=||322121x x x x =±36.∵面SAB 与面SCD 所成角的二面角为锐角θ,∴cos θ=|cos<n 1,n 2>|=32=36. ∴θ=arccos 36.故面SCD 与面SBA 所成的角大小为arccos 36.点拨:本题考查了空间向量的坐标表示,空间向量的数量积,空间向量垂直的充要条件,空间向量的夹角公式和直线与平面垂直的判定,考查了学生的运算能力,综合运用所学知识解决问题的能力.参考答案A 卷一、1.B 点拨:如答图9-7-1建立空间直角坐标系O 一xyz.设高为h ,则AB=2h ,可得A(0,-22h ,h),B(0,22h ,h),B 1(0,22h ,0),C 1(26h ,0,0).则1AB =(0,2h ,-h),1BC =(26h ,-22h ,-h). ∵1AB ·1BC =O ×26h+2h ·(-22h)+h 2=0,∴1AB ⊥1BC .2.A 点拨:直线与平面斜交时,斜线和面所成角是斜线与面内所有直线所成角中最小的,且最大角为直角.3.C 点拨:构造正方体如答图9-7-2所示,过点C 作C O ⊥平面PAB ,垂足为O ,则O 是正△ABP 的中心,于是∠CP O 为PC 与平面PAB 所成的角.设PC=a ,则P O =32PD=33a.故cos ∠CP O =PC PO=33.4.B 点拨:结合图形,可先比较tan ∠CEB 与tan ∠DEB 的大小,即可得到答案.5.C 点拨:取BD 的中点P ,连PM 、PN ,则PM=2,PN=3,然后用余弦定理可求得.6.C二、7.22点拨:如答图9-7-3,连结B 1D 1,则∠B 1D 1B 为BD 1与面A 1B 1C 1D 1所成角,tan∠B 1DB=111D B BB =22.8.3π点拨:过B 作BE ⊥α,垂足为E ,如答图9-7-4,连结DE ,则∠BDE 为直线BD 与α所成角.在Rt △BED 中易知∠BDE=60°.9.无数个 点拨:由直线和平面垂直的判定定理可知满足条件有无数个.10.2a三、11.证明:∵AB=AD ,∠ABC=∠ADC=90°,AC=AC , ∴Rt △ABC ≌Rt △ADC.∴BC=CD. 又∵E 为BD 的中点,∴CE ⊥BD.又AB=AD ,且E 为BD 的中点,∴AE ⊥BD ,则BD ⊥平面ACE.又BD ⊂平面ABD ,BD ⊂平面BCD ,∴平面ABD ⊥平面AEC ,平面BDC ⊥平面AEC. 点拨:本题关键证明BD ⊥面ACE.12.解:如答图9-7-5,设正方体的棱长为a ,在△AB 1E 中,AB 1=2a ,B 1E=25a ,AE=23a.∴cos ∠AB 1E=E B AB AE E B AB 11221212∙∙-+=aa a a a 252249452222∙∙-+=1010.∴sin ∠AB 1E=10103.∴S E AB 1△=21·AB 1·B 1E ·sin ∠AB 1E=21×2a ·25a ×10103=43a 2.又S 111C B A △=21·a ·a=21a 2,∴cos θ=E AB C B A S S 1111△△=224321a a =32. 即平面AB 1E 与底面A 1B 1C 1D 1所成角的余弦值为32.B 卷一、1.解:(1)依题意,B(a ,a ,0),C(-a ,a ,0),D(-a ,-a ,0),E(-2a ,2a ,2h),∴=(-23a ,-2a ,2h ),=(2a ,23a ,2h).∴BE ·DE =(-23a ·2a )+(-2a ·23a )+2h ·2h =-232a +42h ,||=222)2()2()23(h a a +-+-=221021h a +,|DE |=222)2()2()23(h a a ++=221021h a +.由向量的数量积公式,有cos<BE ,DE >==22222210211021423h a h a h a +∙++-=2222106h a h a ++-.(2)∵∠BED 是二面角α-VC-β的平面角, ∴BE ⊥CV ,即有BE ·CV =0.又由C (-a ,a ,0),V (0,0,h ),得CV =(a ,-a ,h),且=(-23a ,-2a ,2h), ∴BE ·=-23a +22a +22h =0.即h=a 2,此时有cos<BE ·DE >=2222106h a h a ++-=2222)2(10)2(6a a a a ++-=-31,∴∠BED=<,>=arccos(-31)=π-arccos 31.点拨:应用空间向量注意坐标系的建立及点的坐标的确定. 二、2.解:以水平放置的平面α的地面,根据题意画出空间图形如答图9-7-6所示.10min 后气球位置为A ,又10min 后气球位置为B ,A 、B 在平面α的射影分别为A 1、B 1,且AA 1=14×10=140(m),BB 1=14×20=280(m),∠A 1DB 1=30°,∠A 1DA=45°,∠B 1DB=60°,于是,得A 1D=A 1A=140m ,B 1D=B 1Bcot60°=3280(m). 在△A 1DB 1中,A 1B 21=1402+(3280)2-2·140·3280·23=31402(m). 因此,风速为1011B A =3314(m/min).∵B 1D 2=A 1D 2+A 1B 21,∴∠DA 1B 1=90°. 故风向为正北. 点拨:要使问题得以解决,其关键在于能否建立起一个能表示观察点D 与该气球的相对位置之间关系的几何模型,因为有了几何模型我们就能根据其立体图形进行相关的计算,求。
直线与平面所成的角与二面角.
直线与平面所成的角与二面角第一课时 平面的斜线和平面所成的角教学目标:㈠知识目标:1、斜线在平面上的射影2、斜线和平面所成的角3、公式cos θ=cos θ1•cos θ 24、最小角定理 ㈡能力目标:1、掌握斜线在平面上的射影的概念、斜线与平面所成角的概念2、掌握公式cos θ=cos θ1•cos θ2,会用这个公式解决一些问题 教学重点: 斜线在平面上的射影的概念、斜线与平面所成角的概念 教学难点:公式cos θ=cos θ1•cos θ2的灵活运用 教学过程: 情境设置发射炮弹时,当炮筒和地面所成的角为多少度时,才能准确地命中目标,也即射程最远?铅球运动员在投掷时,以多大的角度,投出的距离最远?这都与我们今天学习的直线和平面所成的角有关。
探索研究1、公式cos θ=cos θ1•cos θ2已知AO 是平面α的斜线,A 是斜足,OB 垂直于α, B 为垂足,则直线AB 是斜线OA 在α内的射影,设AC 是α内的任一条直线,且BC ⊥AC 于C ,又设AO 与AB 成的角为θ2,AO 与AC 所成的角为θ,则cos θ=cos θ1•cos 证:不妨设AO 为单位长,则2121211cos cos cos ,cos cos ||||,cos cos cos ||||,cos cos ||||θθθθθθθθθθ=∴======AB AC说明:当θ为平面α内与AC 平行的直线与异面直线OA 所成的 角时,公式cos θ=cos θ1•cos θ 2 仍成立。
2、最小角定理平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小角。
CA 1 在公式cos θ=cos θ1•cos θ2中,由于0<cos θ2<1,所以cos θ<cos θ1,从而θ1<θ(y =cosx 在[0,π]上是减函数) 3、直线和平面所成的角⑴定义:一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角)。
两条异面直线所成的夹角、直线与平面所成的角与二面角讲义
两条异面直线所成的夹角、直线与平面所成的角与二面角讲义前言:立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线 线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成 角等。
考点一:两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= 点A ,B ∈直线a,C ,D ∈直线b 。
构成向量CD AB ,。
><⋅>=<CD AB CDAB CD AB CD AB ,,,cos 所对应的锐角或直角即为直线a(AB)与b(CD)所成的角。
随堂练习:1. 在正三棱柱ABC -A 1B 1C 1,若AB =2BB 1,则AB 1与C 1B 所成角的大小( )A .60°B .90°C .105°D .75°2.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1, 则 BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .10153、 如图1-6,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图1-6(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值.考点二:直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为 |c o s |________θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.AP 与平面α的法向量n 所成的角所对应的锐角的余角或直角即为直线AP 与平面α所成的角θ,所以AP 与n 的角的余弦值的绝对值为直线AP 与平面α所成的角的正弦值。
97直线和平面所成的角与二面角.doc
97直线和平面所成的九与二面角.txt等余震的心情,就像初恋的少女等情人,既怕他不来, 又怕他乱来。
听说女人如衣服,兄弟如手足,M想起来,我竟然七手八脚地裸奔了二十多年! 今天心情不好,我只有四句话想说,包括这句和丽面的两句,我的话说完了!9. 7直线和平而所成的角与二而角学法导引本节是本章的核心内容z—,是多个知识点的交汇处.在本节的学习中我们要在学习知识的同吋,深刻理解体会各个知识点Z间的内在联系,如线线垂直、线面垂直、面面垂直的互和转化,不同方向的转化的作用,三种空间角:线线角、线面角、血面角求法的界同点等.同时通过对典型例题的学习,掌握解决问题的方法,学会思路分析,掌握解题步骤的写法,形成一个统一完整的知识结构.知识要点精讲知识点1直线和平面所成的角1.斜线和平面所成的角:一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).2.直线和平而所成的角的大小范围是[0° , 90° ].当a =0°时,总线在平而内或直线平行于平面;当a =90°时,直线垂直于平面;当0。
< a <90°时,直线与平面斜交.3.最小角定理:平面的斜线和它在平面内的射影所成的仙是这条斜线和这个平血内任一条直线所成的角中最小的角.4.作法:作直线和平面所成的角,关键是作垂线,找射影.知识点2二面角的概念及平面角的作法1.二面角概念:从空间一条直线出发的两个半平面所组成的图形叫做二面角.如图9-7 —1所示,记为a—a—B,二面角有三个要素:两个半平面和一条棱.3.二面角的平面角的作法有三种:(1)定义法;(2)三垂线定理法;(3)直截面法(作与棱垂直的截而).4.二面角的大小的取值范围为(0。
, 180° ].5.平面角是直角的二面角叫做直二面角.6.两个平面相交所成的二面角是直二面角吋,就说这两个平面互相垂直.知识点3两个面垂直的判定方法方法一(定义法)如果两个平面相交所成的二面角是直二面角,那么这两个平面互相垂直.定义法把而而垂直关系数量化.方法二(判定定理)如果一个平面经过期一个平面的一条垂线,那么这两个平面互相垂直. 知识点4两个平面垂宜的性质性质 1 (性质定理)如果两个平血垂直,那么在一个平血内垂直于它们交线的直线垂直于另一个平面.知识点5平而图形的翻折将平面图形沿某一直线进行翻折得到一个二面角,图形由平面图形变成了空间图形,研究翻折后空间元素的数量或位置关系,这一类问题称为平面图形的翻折.解这类问题的关键是把折前折后的图形进行对照,分析哪些元素的数量或位置发牛改变,哪些没有改变.解题方法、技巧培养出题方向1有关线面角的计算点拨求直线和平面所成的角吋,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常以以下步骤:①构造一作出或找出斜线与射影所成的角,②设定一论证所作或所找的角为所求的角,③计算一常用解三角形的方法求角,④结论一点明直线和平面所成的角值.出题方向2两个平面垂直的判定例2如图9-7-3, P是AABC所在平血外一点,ZABC=90° , PA=PB=PC,求证:平面PAC丄平面ABC. [分析]要证明平面PAC丄平面ABC,只要在平面PAC (或平面ABC)屮找到一条平而ABC(或平面PAC)的垂线,这条垂线要根据图中条件來找.[证明]・・・PA=PC,取AC中点0,连结P0、0B,则P0丄AC,I ZABC=90° , 0 为AC 中点,・•・ A0=0C=0B.△P(5AP0B 中,PO=PO,PC=PB, OC=OB,・・・ APOC^APOB.・・・ ZP0B=ZP0C=90o,即PO±OB.乂•・• OCAOB=O,・•・P0丄平而AEC.点拨应用判定定理,面面垂直要由线面垂直推得,而线面垂直乂要依靠线线垂直,因此线线垂直在证明面面垂直时尤为重要.出题方向3两个平面垂直的性质例3如图9-7-6, PA丄平面ABC,二面角A—PB—C是直二而角,求证:AB丄BC.[分析]要证线线垂直,可以通过线面垂直.而要得到线面垂直,可以通过判定定理,也可以通过面面乖直的性质.[证明]过A作AD丄PB于D.T 一面角A—PB—C是直一面角,即平面APB丄平面CPB,・•・ PA丄BC.而PAAAD=A,・・・BC丄平面PAB.・・・BC丄AB.出题方向4有关二面角的计算图9-7-8图9 — 7—9点拨(1)问题(1)由平面与平血的特殊位置关系求角,问题(2) (3)都是根据定义作出角,再在三角形中求角.(2)两个平面相交成四个二面角,即两对对棱角.把锐角或直角叫做两个平面所成的角,取值范围为(0° , 90°]而二而角取值范围为(0° , 180°]出题方向5平面图形的翻折问题例5如图9-7-13, ZACB=90° , CD是ZACB的平分线,现沿CD将ZACB折成60°的二面角A—CD—B,求折后AC与平面CDB所成角的正弦值.图9-7-13[解]在折前图(1)CD±取一点M,过M作CD的垂线交AC、BC于E、F,折后图(2)中.•・• CD丄EM, CD丄FM,・・・ZEMF=60°且平面EMF丄平面CFM.点拨平面图形的翻折要注意观察折前后图形中元素的数量及位置的变化,如EM、MF的长度不变,CM±EM, CM丄的位迸关系不变,而EF的长度,ZECE的人小发主了变化等.易错易混点警示木节内容屮易错易混点主要表现在①对判定定理和性质定理屮的条件理解不充分,结论运用不到位而产牛混乱.②求二面角时作平面角不正确.下血仅举两例简要说明.例6已知平而a丄平而Y ,平面3丄Y g, a A [3 = i ,求证:i丄Y .[错证]如图9-7-18,图9-7-19综合应用创新【综合能力升级】本节知识与线面垂直及三垂线定理的综合题是与本节内容有关的综合问题的常见形式,一般表现为:一是线而垂肓与面而垂肓的相互化归的证明;二是由三垂线定理找(作)二面角的平面角进而求值.[分析]先求出平面ASB丄平面BSC的必耍条件.再从必要条件中找充分条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.7直线与平面所成的角和二面角(二)教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法:(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理. 教学重点:二面角的概念和二面角的平面角的作法. 教学难点:二面角的平面角的一般作法及其寻求.授课类型:新授课. 课时安排:1课时. 教具:多媒体、实物投影仪. 教学过程:一、复习引入: 1.斜线,垂线,射影⑴垂线自一点向平面引垂线,垂足叫这点在这个平面上的射影.这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段.⑶射影过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影.直线与平面平行,直线在平面由射影是一条直线.直线与平面垂直射影是点.斜线任一点在平面内的射影一定在斜线的射影上.2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中 ⑴射影相交两条斜线相交;射影较长的斜线段也较长. ⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶垂线段比任何一条斜线段都短.⑴O B =O C ⇒AB =AC O B >O C ⇒AB >AC⑵AB =AC ⇒O B =O CAB >AC ⇒O B >O C ⑶O A <AB ,O A <AC 3.直线和平面所成角 (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角.一直线垂直于平面,所成的角是直角.一直线平行于平面或在平面内,所成角为0︒角.直线和平面所成角范围:[0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角.4.公式:已知平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=.二、讲解新课:1.二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.若棱为l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示:第一种是卧式法,也称为平卧式:DCBAE第二种是立式法,也称为直立式:l B'O'A'B O A βα2.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角.(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角.说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直. 三、讲解范例:例1.在正四面体ABCD 中,求相邻两个平面所成的二面角的平面角的大小. 解:取BC 的中点E ,连接,AE DE ,∵正四面体ABCD ,∴,BC AE BC ED ⊥⊥于E , ∴AED ∠为二面角A BCD --的平面角, 方法一:设正四面体的棱长为1,则1AE DE AD ===,由余弦定理得1cos 3AED ∠=方法二:(向量运算)令AB a = ,,AC b AD c ==,棱长为1,∵1111[()][]2224EA ED a b c a b ⋅=-+⋅--=, ||||EA ED == ,∴1cos 3AED ∠=即相邻两个平面所成的二面角的平面角的大小为1arccos3. 例2.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小; (2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小.1A1A 解:(1)取11B D 中点1O ,连接11,AO CO ,∵正方体1AC ,∴111111,B D AO CO B D ⊥⊥, ∴1AO C ∠即为二面角11A B D C --的平面角,在AOC ∆中,11AO CO AC ===, 可以求得11cos 3AO C ∠=即二面角11A B D C --的大小为1arccos 3.(2)过1C 作1C O BD ⊥于点O ,∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角,可以求得:1tan COC ∠所以,平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小为. 说明:求二面角的步骤:作——证——算——答.例3.已知:二面角l αβ--且,A A α∈到平面β的距离为A 到l 的距离为4,求二面角l αβ--的大小.解:作AO l⊥于点O ,AB ⊥平面β于点B ,连接BO , ∵AB β⊥于点B ,AO l ⊥于点O ,∴l OB ⊥,∴AOB ∠即为二面角l αβ--的平面角, 易知,4AB AO ==,∴60AOB ∠=即二面角l αβ--的大小为60.说明:利用三垂线定理作二面角的平面角是解决二面角问题中一种重要的方法,其特征是其中一个平面内一点作另一个平面的垂线.则已经有三种作二面角的平面角的方法,即:定义法、垂面法、三垂线法. 例4.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值.分析:要求二面角的正弦值,首先要找到二面角的平面角. 解:过D 作DE AC ⊥于E ,过E 作EF AC ⊥交BC 于F ,连结DF , 则C 垂直于平面DEF ,FED ∠为二面角B AC D --的平面角, ∴AC DF ⊥,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥,∴DF ⊥平面ABC , ∴DF EF ⊥,DF BC ⊥,又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥, 设BD a =,则2AB BC a ==,lBOAβαABC DEFD CBPAD CFHBAE 在Rt BCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴DF =, 同理,RtACD ∆中,DE a =,∴sin DF FED DE ∠=== 所以,二面角B AC D --四、课堂练习:1.如图所示,已知PA ⊥面ABC ,,PBC ABC S S S S ∆∆'==,二面角P BC A --的平面角为θ, 求证:cos S S '⋅=证明:过P 作BC 的垂线,垂足为D ,连接AD∵PA ⊥平面ABC ,BC ⊂平面ABC ,BC PD ⊥∴BC AD ⊥ ∴PDA ∠为二面角P BC A --的平面角,即PDA θ∠= ∵PA ⊥面ABC ∴PA AD ⊥ ∵PAD ∆是直角三角形∴cos ADPAD PD∠= 又∵11,22PBC ABC S BC PD S S BC AD S ∆∆'=⋅==⋅= ∴cos S PAD S '∠=∴cos S Sθ'=即cos S S θ'⋅=说明:这是推广的射影定理,也是求二面角平面角的一种方法.2.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD ∆是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CD B --的大小.解:过A 作AH BD ⊥于H∵二面角A BD C --为直二面角∴AH ⊥面BCD 取CD 中点E ,F 为DE 中点,连接,HF AF ∵BE CD ⊥∴//HF BE ∴EF CD ⊥∴HF CD ⊥∴AFH ∠为二面角A BD C --的平面角 令AB a=,则,222AH BE === ∴4HF a =∴在Rt AHF ∆中tan AH AFH HF ∠==∴arctan 3AFH ∠= 即二面角A CD B --的大小为. 3.设A 在平面BCD 内的射影是直角三角形BCD 的斜边BD 的中点O ,1,AC BC CD ==1)AC 与平面BCD 所成角的大小;(2)二面角A BC D --的大小;(3)异面直线AB 和CD 的大小.O EDCFBA解:(1)∵AO ⊥面BCD ∴AO CO ⊥∴ACO ∠为AC 与面BCD 所成角∵1,BC CD ==BD =∴12CO BD ==∴cos ACO ∠=∴6ACO π∠=即AC 与平面BCD 所成角的大小为6π. (2)取BC 中点E ,连接,OE AE ∴//OE CD ∵CD BC ⊥∴OE BC ⊥又∵AO ⊥面BCD ∴AE BC ⊥∴AEO ∠为二面角A BC D --的平面角又∵11222OE CD AO ===∵AO OE ⊥∴tan 2AO AEO OE ∠==arctan 2AEO ∠=即二面角A BC D --的大小为arctan2. (3)取AC 的中点E ,连接,EF OF ,则//,//EF AB OE CD ∴OE 与EF 所成的锐角或直角即为异面直线AB 和CD 所成角 易求得45OEF ∠=.即异面直线AB 和CD 所成角为45. 五、小结:1.二面角的定义、画法.2.二面角的平面角的定义、作法.3.求简单的二面角的大小. 六、课后作业: 七、板书设计(略) 八、课后记:。