【中考模拟题】山东省滨州博兴县2017届九年级数学学业水平模拟试题
2017九年级数学上期末学业水平试题滨州市有答案
利
用
图
象
可
知
当
时
-
7
分
(
3
)
略
.•
10
分
2
k
(
本ห้องสมุดไป่ตู้
大
题
满
分
10
分
)
1
解
:
设
第
-——二
个
月
的
降
价
应
是
元
根
据
题
意
得
80
X2(
30+
(
8C
-X
)
(
200
+10〉
:)
+40[800-20
0-
(
200
+10〉
〈)
-50
X8(
)0=9
000
•5
分
整
理
得
x2
-20x
+10(
)=0
解
这
个
方
程
得
x1
=x2=
=10
…Q
售
售
出
了
200
件
7
第
二二二
个
月
如
果
单
价
不
变
预
计
仍
可
售
出
200
件
批
发
商
为
增
加
销
售
量
决
疋
降
价
销
售
根
据
市
场
调
查
单
价
中考数学考点总动员系列专题:14反比例函数(含解析)
故另一个交点坐标为(- 1, —6.
考点:正比例函数与反比例函数 考点典例四、反比例函数与一次函数的交点问题
【例4】甘肃兰州第11题)如图,反比例函数),=± a<0与一次函数y=x + 4的图像交于A、4两点的横
X
坐标分别为-3、-1,则关于克的不等式勺<X + 4 x<0的解集为()
A. ;v<-3
两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质 当k>0时”函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。 当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,随x的增大而增大。 4、反比例函数解析式的确定 确定及课是的方法仍是待定系数法。由于在反比例函数y =&中,只有一个待定系数,因此只需要一对对应
2
2
2
• S/.KO=S/Mf+SabcT,
.\1bD*OF=- X (EF-OE) =- X (3-OE)二』-10E二」(k,-匕)…②,
22
2
22 2
由①②两式解得OE=1,
则k「k二二2.
故选D.
考点:反比例函数图象上点的坐标特征.
【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数厂& (k为常数,kWO)的图象是双曲线,
1 .四川自贡第12题)一次函数y尸匕x+b和反比例函数九=幺(k:・k#0)的图象如图所示,若y〉y,,则x
x
的取值范围是( )
A. -2(工<0 或 x>l B. - 2<x<l 【答案】D.
C. xV-2 或 x>l
D. k<-2 或 0<x<l
2017年山东省滨州市中考数学试卷-答案
∥180,AO、BO【解析】AC BDBAO与【提示】根据平行线的性质和平分线的定义即可得到结论.【考点】角平分线的定义,平行线的性质,AB是小圆的切线,,四边形2如图,在30,AB ∴3tan30AC .BD BA =(2AC AC+A .A B =CD DA =BA BD =,又180B BAD ∠+∠,180,36α∴,36∴∠,故选B .据A B A =得B ∠,CD DA =可得2C B ∠=∠BA BD =,180. 名生产螺母,一个螺栓套两个螺母,每人每天生产螺母【解析】22k k ++的增大而减少,78->-,,故选B .【提示】根据一次函数的变化趋势即可判断.90PEO ∠=,180∴∠,180MPN ∠+,∴∠,OP 平分∠PF OB ⊥PF =,在中,OP OPPE PF =⎧⎨=⎩POE ∴△≌△正确,OM ON +定值,故(2)正确,MN 的长度是变化的,故(4)错误,故选B .AC BC +(23,2B +123=⨯【解析】如图,C,∴,(2,3)【考点】位似图形的性质及对应点坐标之间的关系90,AE90BFE ∠+,90∠,∴∠90EAH ∠=,EBF ∴△∽△2EBF C ∴=△.HAE C =△.故答案为:8.【提示】设出BFE ∠=【解析】21131=-⨯11243+⨯⨯2)()()()()m n m nm n m n m n m n m n++=-=++--. )根据多项式乘以多项式法则计算即可得;)63x +=甲63x +=乙[(636s ∴=甲22s s <乙甲,(2)列表如下: ,AD BC ∥.AF BE ∥是平行四边形,AB BE =菱形BE EF ==2BAF BAE =∠,90AGB ∠=,∴30,60.四边形ABCD 是平行四边形,60.30,那么60,再根据平行四边形的对角相等即可求60.【考点】菱形的判定与性质,平行四边形的性质,作图—基础作图,点又BDM∠=O的切线;,点,DBF∠=DB DA DF DA,DE DF DA∴.是O的切线;)根据三角形内心的定义以及圆周角定理,得到DF DA,据此可得DF DA.【考点】相似三角形的判定与性质,垂径定理,圆周角定理,切线的判定与性质,三角形的内切圆与内心(2)如图1,过P作PH AB⊥于点H,过H作HQ x⊥轴,过P作PQ y⊥轴,两垂线交于点Q,90,90∴∠,∴∠90,∴△3,(4,0)A-5d=,整理消去,45>,∴5119,864⎫⎪⎭;(3)如图2,设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E=',最小,(0,1)C,∴+最小,由C点坐标可确定出C'点的坐标,利用(2)中所求函数关系式可求线且C F'与AB垂直时CE EF+的最小值.得d的值,即可求得CE EF【考点】二次函数综合题。
滨州市博兴中考模拟试题三.doc
滨州市博兴县中考模拟试题(三)数学试题一、选择题:(本题有l0小题,共30分。
每小题只有一个选项是正确的。
不选、多选、错选均不给分)1.如果a 与-2互为倒数,那么a 是A .-2B .21-C .21 D .22.据统计,2006“超级女声”短信投票的总票数约327000000张,将这个数用科学记数法表示的结果是A .3.27×106B .3.27×107C .3.27×108D .3.27×1093.不等式组⎩⎨⎧->-x x 3042的解集为A .2>xB .3<xC .2>x 或3-<xD .32<<x4.若反比例函数xy 1-=的图像经过点A (2, m ),则m 的值是 A .-2B .2C .21-D .21 5.一个袋中装有1个红球,2个白球,3个黄球,它们除颜色外完全相同。
小明从袋中任意摸出1个球,摸出的是白球的概率是A .61 B .31 C .-l D .16.已知a 为等边三角形的一个内角,则a cos 等于A .21 B .22 C .23 D .33 7.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是8.根据下列表格的对应值:你能得到方程02=++c bx ax (0≠a ,c b a ,,为常数)的一个解x 的范围是A .23.33<<xB .24.323.3<<xC .25.324.3<<xD .26.325.3<<x9.如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是:10.某学习小组在讨论“变化的鱼”时,知道上图中的大鱼与小鱼是位似图形,若小鱼上的点),(P b a 对应大鱼上的点Q ,则点Q 的坐标为A .)2,2(b a --B .)2,(b a --C .)2,2(a b --D .),2(b a --二、填空题(本大题共8小题,每小题4分,共32分)11.请你写出一个反比例函数的解析式,使它的图像在第一、三象限: 。
山东省滨州博兴县2017届九年级学业水平模拟考试数学(解析版)
山东省滨州市博兴县2017年初中学生学业水平模拟考试数学试题一、选择题(本大题共12小题,共36分)1. 式子y=中x的取值范围是()A. x≥0B. x≥0且x≠1C. 0≤x<1D. x>1【答案】B【解析】二次根式有意义的条件是被开方数为非负数,分式有意义的条件是分母不为零,由此可得x≥0且x-1≠0,即x的取值范围是x≥0且x≠1,故选B.2. 已知a,b互为相反数,c,d互为倒数,|e|=,则代数式5(a+b)2+cd-2e的值为()A. -B.C. 或-D. - 或【答案】D【解析】∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵|e|=,∴e=±.当e=时,原式=5×02+-2×=-;当e=-时,原式=5×02+-2× =;故选:D.3. 计算(+1)2016(-1)2017的结果是()A. -1B. 1C. +1D. 3【答案】A【解析】(+1)2016(-1)2017=(+1)2016(-1)2016•(-1)=(2-1)2016•(-1)=-1.故选A.4. 若关于x的不等式组的整数解共有4个,则m的取值范围是()A. 6<m<7B. 6≤m<7C. 6<m≤7D. 3≤m<4...【答案】C【解析】试题解析:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选D.考点:一元一次不等式组的整数解.5. 函数是反比例函数,则m的值为()A. 0B. -1C. 0或-1D. 0或1【答案】A【解析】由是反比例函数,得m2+m-1=-1且m+1≠=0,解得m=0,故选:A.6. 如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A. 3kmB. 3kmC. 4kmD. (3-3)km【答案】A点睛:本题考查了解直角三角形的应用-方向角问题,难度适中,正确作出辅助线构造出直角三角形是解觉本题的关键.7. 在平面直角坐标系中,⊙P的半径是2,点P(0,m)在y轴上移动,当⊙P与x轴相交时,m的取值范围是()A. m<2B. m>2C. m>2或m<-2D. -2<m<2【答案】D【解析】当圆心P到x轴的距离小于2时,⊙P与x轴相交时,∴OP<2,∴|m|<2,∴-2<m<2,...故选D.8. 我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是()A. 25;25B. 29;25C. 27;25D. 28;25【答案】C【解析】25出现了2次,出现的次数最多,则众数是25;把这组数据从小到大排列25,25,27,29,30,最中间的数是27,则中位数是27;9. 如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A. ③④B. ②③C. ②④D. ①④【答案】B【解析】∵当y1=y2时,即-x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=-x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=-x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,-x2+4x=2,x1=2+,x2=2-(舍去),∴使得M=2的x值是1或2+,∴④错误;...∴正确的有②③两个.点睛: 本题考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.10. 如图所示的几何体是由一些大小相同的小立方块搭成的,则从如图看到的图形是()A. B. C. D.【答案】D【解析】从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:D.11. 如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于()A. B. 45°- C. 45°-α D. 90°-α【答案】B【解析】∵∠AOC=90°,∠COB=α,∴∠AOB=90°+α∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+∠COD=∠AOC-∠AOD=90°-(45°+)=45°-.故选B.12. 如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A. B. C. D.【答案】C【解析】试题解析:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1= =35°;同理可得:∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n-1A n B n-1=.故选:C.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.二、填空题(本大题共6小题,共24分)13. 如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .【答案】0【解析】∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,...∴由中点公式得:c=,∴a+b=2c,∴a+b-2c=0.故答案为:0.14. 已知等腰三角形的底边长为10cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的腰长为 ______ cm.【答案】15【解析】根据题意设等腰三角形的腰长x厘米,有两种情况:当上边部分比下边部分大时,列出方程:(x+)—(10+)=5 ,解得x=15;当上边部分比下边部分小时,列出方程:(10+)—(x+)=5,解得x=5,又因5+5=10,不符合三角形的三边关系,所以该等腰三角形的腰长为15cm.点睛:本题主要考查了等腰三角形的计算,分两种情况讨论是解题的关键,同时要考虑求出的腰长必须满足三角形的三边关系.15. 如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要 ______ 元钱.【答案】612【解析】试题分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.考点:勾股定理的应用.16. 若关于x的二次三项式x2-kx-3因式分解为(x-1)(x+b),则k+b的值为 ______ .【答案】1∴k=1-b,b=3,∴k=-2,则k+b=-2+3=1.故答案为1.17. 如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数 ______ .【答案】150°【解析】连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°18. 如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,N为对角线AC上任意一点,则DN+MN的最小值为 ______ .【答案】10【解析】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又∵CM=CD-DM=8-2=6,∴在R t△BCM中,BM===10,故答案为:10.点睛: 本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.三、计算题(本大题共1小题,共10分)19. 计算:( 1 )(-1)2015+(-)-1+-2sin45°.(2)解不等式,并写出不等式的正整数解....【答案】(1)-4;(2)x≤2,不等式的正整数解为1,2.【解析】试题分析: (1)原式利用乘方的意义,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x系数化为1,求出解集,找出解集的正整数解即可.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.试题解析:(1)原式=-1-3+-=-4;去分母得:3x-3≤2x-1,(2)解得:x≤2,则不等式的正整数解为1,2.四、解答题(本大题共5小题,共50分)20. 一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于,问至少需取走多少个黄球?【答案】(1);(2)至少取走3个黄球.【解析】试题分析: (1)先求出球的总数,再根据概率公式即可得出结论;(2)设取走x个黄球,则放入x个红球,根据概率公式求解即可.试题解析:解:(1)∵袋中有4个红球、5个白球、11个黄球,∴摸出一个球是红球的概率==;(2)设取走x个黄球,则放入x个红球,由题意得,≥,解得x≥,∵x为整数,∴x的最小正整数值是3.答:至少取走3个黄球.21. 如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若,AD=4,求CE的长.【答案】(1)证明见解析;(2)CE=2.【解析】试题分析: (1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)利用相似三角形的判定和性质得出AB,利用勾股定理求出BD,进而解答即可.试题解析:...(1)证明:连接OD.∵OA=OD,∴∠BAD=∠ODA.∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠ODA=∠DAC.∴OD∥AE.∵DE⊥AE,∴OD⊥DE.∴DE是⊙O的切线;(2)∵OB是直径,∴∠ADB=90°.∴∠ADB=∠E.又∵∠BAD=∠DAC,∴△ABD∽△ADE.∴.∴AB=10.由勾股定理可知.连接DC,∴.∵A,C,D,B四点共圆.∴∠DCE=∠B.∴△DCE∽△ABD.∴.∴CE=2.22. 如图,一艘货船以每小时48海里的速度从港口B出发,沿正北方向航行.在港口B处时,测得灯塔A 处在B处的北偏西37°方向上,航行至C处,测得A处在C处的北偏西53°方向上,且A、C之间的距离是45海里.在货船航行的过程中,求货船与灯塔A之间的最短距离及B、C之间的距离;若货船从港口B出发2小时后到达D,求A、D之间的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)【答案】(1)货船与灯塔A之间的最短距离是36海里,B、C之间的距离是21海里....(2)A、D之间的距离是60海里.【解析】试题分析: (1)过点A作AO⊥BC,垂足为O.先解R t△ACO中,求出CO=AC•cos53°≈45×=27,AO=AC•sin53°≈45×=36.再解R t△ABO,得到∠OAB=90°-37°=53°,BO=AO•tan53°≈36×=48,那么BC=BO-CO=48-27=21海里;(2)先根据路程=速度×时间求得BD=48×2=96,那么OD=BD-BO=96-48=48.然后在R t△AOD中利用勾股定理求出AD===60海里.试题解析:(1)过点A作AO⊥BC,垂足为O.在Rt△ACO中,∵AC=45,∠ACO=53°,∴CO=AC•cos53°≈45×=27,AO=AC•sin53°≈45×=36.在Rt△ABO中,∵AO=36,∠OAB=90°-37°=53°,∴BO=AO•tan53°≈36×=48,∴BC=BO-CO=48-27=21,∴货船与灯塔A之间的最短距离是36海里,B、C之间的距离是21海里.(2)∵BD=48×2=96,∴OD=BD-BO=96-48=48.在Rt△AOD中,∵∠AOD=90°,∴AD===60,∴A、D之间的距离是60海里.23. 如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.(1)求点C的坐标;(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.【答案】(1)C(5,-4);(2)能,理由见解析.(3)Q1(5,-4),Q2(5.84,-2.88),Q3(,). 【解析】解:⑴ C(5,-4);(过程1分,纵、横坐标答对各得1分) ………… 3分⑵ 能…………………………………4分连结AE ,∵BE是⊙O的直径,∴∠BAE=90°. …………5分在△ABE与△PBA中,AB2=BP· BE , 即, 又∠ABE=∠PBA,∴△ABE∽△PBA . ……………………………………7分∴∠BPA=∠BAE=90°, 即AP⊥BE . …………………8分...⑶ 分析:假设在直线EB上存在点Q,使AQ2=BQ· EQ. Q点位置有三种情况:①若三条线段有两条等长,则三条均等长,于是容易知点C即点Q;②若无两条等长,且点Q在线段EB上,由Rt△EBA中的射影定理知点Q即为AQ⊥EB之垂足;③若无两条等长,且当点Q在线段EB外,由条件想到切割线定理,知QA切⊙C于点A.设Q(),并过点Q作QR⊥x轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法.解题过程:① 当点Q1与C重合时,AQ1=Q1B=Q1E, 显然有AQ12=BQ1· EQ1 ,∴Q1(5, -4)符合题意;……………………………9分② 当Q2点在线段EB上,∵△ABE中,∠BAE=90°∴点Q2为AQ2在BE上的垂足,……………………10分∴AQ2== 4.8(或).∴Q2点的横坐标是2+ AQ2·∠BAQ2= 2+3.84=5.84,又由AQ2·∠BAQ2=2.88,∴点Q2(5.84,-2.88),………………………11分③方法一:若符合题意的点Q3在线段EB外,则可得点Q3为过点A的⊙C的切线与直线BE在第一象限的交点.由Rt△Q3BR∽Rt△EBA,△EBA的三边长分别为6、8、10,故不妨设BR=3t,RQ3=4t,BQ3=5t, ……………………12分由Rt△ARQ3∽Rt△EAB得,………………………13分即得t=,〖注:此处也可由列得方程;或由AQ32= Q3B·Q3E=Q3R2+AR2列得方程)等等〗∴Q3点的横坐标为8+3t=, Q3点的纵坐标为,即Q3(,) . …………14分方法二:如上所设与添辅助线, 直线 BE过B(8, 0), C(5, -4),∴直线BE的解析式是. ………………12分设Q3(,),过点Q3作Q3R⊥x轴于点R,∵易证∠Q3AR =∠AEB得Rt△AQ3R∽Rt△EAB,∴, 即, ………………13分∴t=,进而点Q3的纵坐标为,∴Q3(,). ………14分方法三:若符合题意的点Q 3在线段EB外,连结Q3A并延长交轴于F,...∴∠Q3AB =∠Q3EA,,在R t△OAF中有OF=2×=,点F的坐标为(0,),∴可得直线AF的解析式为, …………………12分又直线BE的解析式是, ………………13分∴可得交点Q3(,). ……………………14分(1)根据切割线定理求OD,,即可求得C的纵坐标,由图即可求得C的横坐标(2)连结AE,通过AB2=BP· BE,求得△ABE∽△PBA,因为BE是⊙O的直径,所以∠BAE=90°,从而求得AP⊥BE⑶假设在直线EB上存在点Q,使AQ2=BQ· EQ. Q点位置有三种情况:①若三条线段有两条等长,则三条均等长,于是容易知点C即点Q;②若无两条等长,且点Q在线段EB上,由Rt△EBA中的射影定理知点Q即为AQ⊥EB之垂足;③若无两条等长,且当点Q在线段EB外,由条件想到切割线定理,知QA切⊙C于点A.设Q(),并过点Q作QR⊥x轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法.24. 如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=-1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形BOCF的面积最大,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【答案】(1)抛物线的解析式为y=-x2-x+4;(2)存在,F(-2,4);(3)点P的坐标(-3,1).【解析】试题分析: (1)根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据面积的和差,可得二次函数,根据二次函数的性质,可得m的值,再根据自变量与函数值的对应关系,可得F点坐标;(3)根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得答案.试题解析:(1)由A、B关于对称轴对称,A点坐标为(2,0),得 B(-4,0).将A、B、C点的坐标代入函数解析式,得,解得,抛物线的解析式为y=-x2-x+4;(2)如图1,,设BC的解析式为y=kx+b,将B、C点坐标代入函数解析式,得,解得,BC的解析式为y=x+4.G在BC上,D在抛物线上,得G(m,m+4),F(m,-m2-m+4)....DG=-m2-m+4-(m+4)=-m2-2m.S四边形BOCF=S△BOC+S△BCF=BO•OC+FG•BO=×4×4+×4(-m2-2m)=8+2[-(m+2)2+2]当m=-2时,四边形BOCF的面积最大是12,当m=-2时,-m2-m+4=4,即F(-2,4);(3)如图2,当x=-1时,y=-x2-x+4=,即D(-1,)y=x+4=3,即E(-1,3).DE=-3=.P在直线BC上,Q在抛物线上,得P(m,m+4),Q(m,-m2-m+4).PQ=-m2-m+4-(m+4)=-m2-2m.由以D、E、P、Q为顶点的四边形是平行四边形,得DE=PQ,即-m2-2m=,解得m=-1(不符合题意,舍),m=-3.当m=-3时,y=m+4=1,即P(-3,1).以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标(-3,1).点睛: 本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用面积的和差得出二次函数是解题关键;利用平行四边形的对边相等得出关于m的方程是解题关键.。
2017年山东省滨州市中考数学试卷含答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前山东省滨州市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算1(|1)|--+-,结果为 ( ) A .2- B .2 C .0 D .1-2.一元二次方程220x x -=根的判别式的值为 ( ) A .4 B .2 C .0 D .4-3.如图,直线AC BD ∥,AO ,BO 分别是BAC ∠,ABD ∠的平分线,那么下列结论错误的是 ( )A .BAO ∠与CAO ∠相等B .BAC ∠与ABD ∠互补 C .BAO ∠与ABO ∠互余 D .ABO ∠与DAO ∠不等 4.下列计算:①22=2=;③2(12-=;④1=-. 其中结果正确的个数为( ) A .1 B .2 C .3 D .4 5.若正方形的外接圆半径为2,则其内切圆半径为( ) AB.CD .1 6.分式方程311(1)(2)x x x x -=--+的解为( ) A .1x = B .1x =- C .无解 D .2x =-7.如图,在ABC △中,AC BC ⊥,30ABC ∠=,点D 是CB 延长线上的一点,且BD BA =,则tan DAC ∠的值为 ( ) A.2B.C.3+D.8.如图,在ABC △中,AB AC =,D 为BC 上一点,且DA DC =,BD BA =,则B ∠的大小为 ( ) A .40 B .36 C .80 D .259.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 ( )A .(22162)7x x =-B .(16222)7x x =-C .2162227()x x ⨯=-D .2221627()x x ⨯=- 10.若点,()7M m -,,()8N n -都是函数224()1y k k x +++=-(k 为常数)的图象上,则m 和n 的大小关系是 ( ) A .m n > B .m n < C .m n = D .不能确定11.如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补.若MPN ∠在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M ,N 两点,则以下结论:①PM PN =恒成立;②O M O N +的值不变;③四边形PMON 的面积不变;④MN 的长不变.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)其中正确的个数为( )A .4B .3C .2D .112.在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线1y x=相交于点A ,B ,且4AC BC +=,则OAB △的面积为( ) A.3或3B11 C.3D1第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题4分,共24分.)13.01)|32cos60----= .14.不等式组3(2)4,21152x x x x --⎧⎪-+⎨⎪⎩>≤的解集为 .15.在平面直角坐标系中,点C ,D 的坐标分别为()2,3C ,()1,0D .现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且2OB =,则点C 的对应点A 的坐标为 .16.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若8AD =,6AB =,4AE =,则EBF △周长的大小为 .17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为 . 18.观察下列各式:2111313=-⨯, 2112424=-⨯, 2113535=-⨯, …请利用你所得结论,化简代数式2222132435(2)n n +++⋅⋅⋅+⨯⨯⨯+(3n ≥且为n 整数),其结果为 .三、解答题(本大题共6小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)(1)计算:22()()a b a ab b -++.(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++.20.(本小题满分9分) 根据要求,解答下列问题.(1)解下列方程(直接写出方程的解即可): ①方程2210x x +=-的解为 ; ②方程2320x x +=-的解为 ; ③方程2430x x +=-的解为 ; ……(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x +=-的解为 ;②关于x 的方程 的解为11x =,2x n =. (3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.21.(本小题满分9分)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(甲乙(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐? (2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(本小题满分10分)如图,在□ABCD 中,以点A 为圆心、AB 长为半径画弧交AD 于点F ;再分别以点B ,F 为圆心、大于12BF 的相同长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF ,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF 是菱形. (2)若菱形ABEF 的周长为16,AE =求C ∠的大小.23.(本小题满分10分)如图,点E 是ABC △的内心,AE 的延长线交BC 于点F ,交ABC △的外接圆O 于点D ;连接BD ,过点D 作直线DM ,使BDM DAC ∠=∠.(1)求证:直线DM 是O 的切线. (2)求证:2DE DF DA =.24.(本小题满分14分)如图,直线y kx b =+(k ,b 为常数)分别与x 轴、y 轴交于点0()4,A -,()0,3B ,抛物线221y x x =++-与y 轴交于点C . (1)求直线y kx b =+的函数解析式.(2)若点,()P x y 是抛物线221y x x =++-上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标.(3)若点E 在抛物线221y x x =++-的对称轴上移动,点F 在直线AB 上移动,求CE EF +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)【解析】AC BD ∥180,AO 、BO 平分线,BAO ∴∠ABO 与DBO ∠余,故选D .,AB 是小圆的切线,,四边形2,在30,∴3tan30AC BD BA =(2BC =3)2DC ACAC AC==】AB AC =,CD DA =,BA BD =BDA BAD =∠设B α∠=2B A D α=,180B BAD ∠+∠+,22180ααα∴++,36α∴,36B ∴∠=,故选B .数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【提示】根据AB AC =可得B C ∠=∠,CD DA =可得22ADB C B ∠=∠=∠,BA BD =,可得2BDA BAD B ∠=∠=∠,在ABD △中利用三角形内角和定理可求出B ∠. 【考点】等边对等角以及三角形内角和等于180. 9.【答案】D【解析】设分配x 名工人生产螺栓,则(27)x -名生产螺母,一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得22216(27)x x ⨯=-.故选D . 【提示】设分配x 名工人生产螺栓,则(27)x -名生产螺母,根据每天生产的螺栓和螺母按12:配套,可得出方程. 【考点】一元一次方程解决实际问题 10.【答案】B【解析】2224(1)30k k k ++=++>,2(24)0k k ∴-++<,∴该函数是y 随着x 的增大而减少,78->-,m n ∴<,故选B .【提示】根据一次函数的变化趋势即可判断m 与n 的大小. 【考点】一次函数的图象的性质 11.【答案】B【解析】如图作PE OA ⊥于E,PF OB ⊥于F.90PEO PFO ∠=∠=,180EPF AOB ∴∠+∠=,180MPN AOB ∠+∠=,EPF MPN ∴∠=∠,EPM FPN ∴∠=∠,OP 平分AOB ∠,PE OA ⊥于E ,PF OB ⊥于F ,PE PF ∴=,在P O E △和POF △中,OP OPPE PF =⎧⎨=⎩,POE POF ∴△≌△,OE OF ∴=,在PEM △和PFN △中,MPE NPFPE PF PEM PFN ∠=∠⎧⎪=⎨⎪∠=∠⎩,PEM PFN ∴△≌△,EM NF ∴=,PM PN =,故(1)正确,PEM PNF S S ∴=△△,PMON PEOF S S ∴==四边形四边形定值,故(3)正确,2OM ON OE ME OF NF OE +=++-==定值,故(2)正确,MN 的长度是变化的,故(4)错误,故选B .AC BC +(2A +AB ∴2数学试卷 第11页(共18页)【解析】如图,,(2,3)C ,【提示】根据位似变换的定义,画出图形即可解决问题,注意有两解.90,AE ,解得:90BFE ∠+,90,90EAH ∠==,∴△,C ∴△HAE C AE =△【提示】设【解析】21131=⨯112435+⨯⨯2)()()()()m n m nm n m n m n m n m n++=-=++--. )根据多项式乘以多项式法则计算即可得;数学试卷 第13页(共18页) 数学试卷 第14页(共18页))63x +=甲263)2-⨯+63656063x +++=乙21[(636s ∴=甲22s s <乙甲,(2)列表如下:AD BC ∥.AF BE ∥形ABEF 是平行四边形,AB BE =是菱形;)如图,连结于G .菱形43AE =,∴90AGB ∠=,30,60BAE ∴∠∠=.四边形ABCD 是平行四边形,60C BAF ∴∠=∠=.30,那60,再根据平行四边形的对角相等即可求出60.【考点】菱形的判定与性质,平行四边形的性质,作图—基础作图,点BDM∠=BDM DBC∴∠=∠,BC DM∴∥,OD DM∴⊥,∴直线DM是O的切线;,点DBF∠=DB DA,即2DB DF DA=,DE DF DA∴.是O的切线;,即可得出DF DA,据此可得2DE DF DA=.【考点】相似三角形的判定与性质,垂径定理,圆周角定理,切线的判定与性质,三角线交于点Q,90,90∴∠,90AOB=,,(4,0)A-23(4x+--+45>,∴得最小值时(3)如图2,设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E=',(0,1)C,∴的最小值为数学试卷第15页(共18页)数学试卷第16页(共18页)=',则可知(3)设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E+最小,由C点坐标可确定出C'当F、E、C'三点一线且C F'与AB垂直时CE EF+的最小点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE EF值.【考点】二次函数综合题数学试卷第17页(共18页)数学试卷第18页(共18页)。
山东省滨州市 2017年中考数学试卷及参考答案
(n≥3且n为整数),其结果为________.
÷
.
②方程x2﹣3x+2=0的解为; ③方程x2﹣4x+3=0的解为;
…
(2) 根据以上方程特征及其解的特征,请猜想: ①方程x2﹣9x+8=0的解为;
②关于x的方程的解为x1=1,x2=n.
(3) 请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性. 21. 为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所
示:
甲
63
66
63
61
64
61
乙
63
65
60
63
64
63
(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体 配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.
(Ⅰ)求直线y=kx+b的函数解析式;
(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并 求d取最小值时点P的坐标;
(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
A . m>n B . m<n C . m=n D . 不能确定 11. 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两 边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的 面积不变;(4)MN的长不变,其中正确的个数为( )
2017年山东省滨州市五校中考一模数学试卷(解析版)
2017年山东省滨州市五校中考数学一模试卷一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数0、、、π中,无理数有( ) A .1个 B .2个C .3个D .4个 2.(3分)已知3﹣x +2y =0,则2x ﹣4y 的值为( )A .﹣3B .3C .﹣6D .63.(3分)为了预防“HINI ”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y 与时间t 的函数关系图象大致为( )A . B.C .D .4.(3分)甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则( )A .甲比乙高B .甲、乙一样C .乙比甲高D .不能确定 5.(3分)在△ABC 中,∠C =90°,tan A =,则sin A =( )A .B .C .D .6.(3分)如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOE的大小为()A.100°B.110°C.120°D.130°7.(3分)下列长度的三条线段,可以组成三角形的是()A.10、5、4B.3、4、2C.1、11、8D.5、3、8 8.(3分)如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,则下列四个结论:AD∥BC、AC⊥BD、∠BDA =∠BDC、四边形ABED面积为4,其中错误的个数为()A.1B.2C.3D.49.(3分)Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15B.12C.13D.1410.(3分)在反比例函数y=(k<0)的图象上有两点(﹣1,y1),(,y2),则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定11.(3分)不等式组的解集在数轴上表示出来,其对应的图形为()A.长方形B.梯形C.线段D.射线12.(3分)把矩形ABCD沿着对角线BD折叠,使点C落在C′处,交AD于E,若AD=8,AB=4,则AE的长为()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)当x=时,分式的值为零.14.(4分)等腰三角形的一个内角为40°,则顶角的度数为.15.(4分)方程x(x﹣2)+2x﹣4=0的解是.16.(4分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是.17.(4分)如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得EC∥AB,则∠CAB的大小为.18.(4分)已知△ABC的三个顶点坐标为A(5,0)、B(6,4)、C(3,0),将△ABC以坐标原点O为位似中心,以位似比2:1进行缩小,则缩小后的点B 所对应的点的坐标为.三、解答题(本大题共6小题,共60分)19.(8分)化简:÷(﹣).20.(9分)如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,求∠B′A′C的大小.21.(9分)法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时沿同一方向配合搜寻飞机残骸(如图).在距海面900米的高空A处,侦察机测得搜救船在俯角为30°的海面C处,当侦察机以150米/分的速度平行海面飞行20分钟到达B处后,测得搜救船在俯角为60°的海面D处,求搜救船搜寻的平均速度.(结果保留三个有效数字,参考数据:≈1.414,≈1.732)22.(10分)如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2=(x<0)分别交于点C(﹣1,2)、D(a,1).(1)分别求出直线及双曲线的解析式;(2)利用图象直接写出,当x在什么范围内取值时,y1>y2;(3)请把直线y1=x+m上,y1<y2时的部分用黑色笔描粗一些.23.(10分)如图,已知AC是⊙O的直径,∠ACB=60°,连结AB,过A、B 两点分别作⊙O的切线,两切线交于点P,连接OP交AB于D.(1)求证:OP∥BC;(2)求证:AD2=OD•DP.24.(14分)已知二次函数y=﹣2x2+8x﹣4,根据要求完成下列各题:(1)将函数关系式用配方法化为y=a(x+h)2+k形式,并写出其图象的顶点C 坐标、对称轴;(2)若它的图象与x轴交于A、B两点(点A在点B的右侧),求△ABC的面积;(3)若它的图象与y轴交于D点,点P在其对称轴上,求PB+PD的最小值.2017年山东省滨州市五校中考数学一模试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数0、、、π中,无理数有()A.1个B.2个C.3个D.4个【解答】解:∵实数0、、、π中,是开方开不尽的数、π是无限不循环小数,∴,π是无理数.故选:B.2.(3分)已知3﹣x+2y=0,则2x﹣4y的值为()A.﹣3B.3C.﹣6D.6【解答】解:∵3﹣x+2y=0,∴x﹣2y=3,∴2x﹣4y=2(x﹣2y)=2×3=6.故选:D.3.(3分)为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为()A.B.C.D.【解答】解:由正比例函数和反比例函数的图象性质,可判断:消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为A.故选A.4.(3分)甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则( )A .甲比乙高B .甲、乙一样C .乙比甲高D .不能确定 【解答】解:由题意知,甲的平均数==8环,乙的平均数=8环, 所以从平均数看两个一样.故选:B .5.(3分)在△ABC 中,∠C =90°,tan A =,则sin A =( )A .B .C .D . 【解答】解:tan A ==, 设BC =2x ,AC =3x ,勾股定理,得AB ==x , sin A ===,故选:C .6.(3分)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =100°,则∠BOE 的大小为( )A .100°B .110°C .120°D .130°【解答】解:∵OA 平分∠EOC ,∠EOC =100°,∴∠AOE=∠EOC=50°,∴∠BOE=180°﹣∠AOE=130°,故选:D.7.(3分)下列长度的三条线段,可以组成三角形的是()A.10、5、4B.3、4、2C.1、11、8D.5、3、8【解答】解:A、4+5<10,所以不能组成三角形;B、2+3>4,能组成三角形;C、1+8<11,不能组成三角形;D、5+3=8,不能组成三角形.故选:B.8.(3分)如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,则下列四个结论:AD∥BC、AC⊥BD、∠BDA =∠BDC、四边形ABED面积为4,其中错误的个数为()A.1B.2C.3D.4【解答】解:∵△ABC沿射线BC向右平移到△DCE,∴AD=BC,AD∥BC,故选项A正确;∴四边形ABCD为平行四边形,又△ABC为等边三角形,∴AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,由平移可知:AC∥DE,则DE⊥BD,故选项B正确;∵△ABC沿射线BC向右平移到△DCE,∴AD=CE,AD∥CE,∴四边形ACED为平行四边形,由平移可得△DCE也为等边三角形,∴DE=CE,∴四边形ACED为菱形,∴∠BDA=∠BDC,选项C正确;过A作AF⊥BC,如图所示:∵△ABC为边长为2的等边三角形,∴BF=CF=BC=1,在Rt△ABF中,AB=2,BF=1,根据勾股定理得:AF==,=(BE+AD)•AF=3,选项D错误,则S梯形ABED所以,错误的有1个,故选:A.9.(3分)Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15B.12C.13D.14【解答】解:连接OA、OB、OC、OD、OE、OF,∵⊙O是△ABC的内切圆,切点分别是D、E、F,∴OD⊥AC,OE⊥AB,OF⊥BC,AD=AE,BE=BF,∴∠ODC=∠OFC=∠ACB=90°,∵OD=OF,∴四边形ODCF是正方形,∴CD=OD=OF=CF=1,∵AD=AE,BF=BE,∵AE+BE=AB=5,∴AD+BF=5,∴△ABC的周长是:AC+BC+AB=AD+CD+CF+BF+AB=5+1+1+5=12.故选:B.10.(3分)在反比例函数y=(k<0)的图象上有两点(﹣1,y1),(,y2),则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定【解答】解:∵k<0,∴反比例函数图象的两个分支分别位于第二四象限.∵﹣1<0,>0,∴点(﹣1,y1)在第二象限,点(,y2)在第四象限,∴y1>0,y2<0,∴y1﹣y2>0.故选:C.11.(3分)不等式组的解集在数轴上表示出来,其对应的图形为()A.长方形B.梯形C.线段D.射线【解答】解:由2x+2≥0,解得x≥﹣1,由﹣x≥﹣1解得x≤1,不等式组的解集是﹣1≤x≤1,故选:C.12.(3分)把矩形ABCD沿着对角线BD折叠,使点C落在C′处,交AD于E,若AD=8,AB=4,则AE的长为()A.3B.4C.5D.6【解答】解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CBD.∵AD∥BC,∴∠CBD=∠ADB.∴∠EBD=∠EDB.∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=(8﹣x)2+16∴x=5,∴AE=3,故选:A.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)当x=﹣3时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.14.(4分)等腰三角形的一个内角为40°,则顶角的度数为100°或40°.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.15.(4分)方程x(x﹣2)+2x﹣4=0的解是x=2或x=﹣2.【解答】解:∵x(x﹣2)+2(x﹣2)=0,∴(x﹣2)(x+2)=0,则x﹣2=0或x+2=0,解得:x=2或x=﹣2,故答案为:x=2或x=﹣2.16.(4分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是﹣1<x<3.【解答】解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.17.(4分)如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得EC∥AB,则∠CAB的大小为70°.【解答】解:∵△ABC绕点A逆时针旋转40°到△AED的位置,∴AC=AE,∠CAE=40°,∴∠ACE=∠AEC=70°,∵CE∥AB,∴∠CAB=∠ACE=70°,故答案为:70°.18.(4分)已知△ABC的三个顶点坐标为A(5,0)、B(6,4)、C(3,0),将△ABC以坐标原点O为位似中心,以位似比2:1进行缩小,则缩小后的点B 所对应的点的坐标为(3,2)或(﹣3,﹣2).【解答】解:∵点B的坐标为(6,4),以原点为位似中心将△ABC缩小,位似比为2:1,∴点B的对应点的坐标为(3,2)或(﹣3,﹣2),故答案为:(3,2)或(﹣3,﹣2).三、解答题(本大题共6小题,共60分)19.(8分)化简:÷(﹣).【解答】解:原式=÷=•=﹣.20.(9分)如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,求∠B′A′C的大小.【解答】解:如图,连接AA′.由旋转得:AC=A′C,A′B′=AB,∠ACA′=90°,即△ACA'为等腰直角三角形,∴∠AA′C=45°,AA′2=22+22=8,∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∴∠B'A′C=90°+45°=135°.21.(9分)法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时沿同一方向配合搜寻飞机残骸(如图).在距海面900米的高空A处,侦察机测得搜救船在俯角为30°的海面C处,当侦察机以150米/分的速度平行海面飞行20分钟到达B处后,测得搜救船在俯角为60°的海面D处,求搜救船搜寻的平均速度.(结果保留三个有效数字,参考数据:≈1.414,≈1.732)【解答】解:作CG⊥AE,垂足为G,作DF⊥AE,垂足为F,得四边形CDFG 为矩形,∴CD=GF,CG=DF=900米,在Rt△AGC中,∠A=30°,∴∠ACG=60°,∴AG=CG•tan60°=900米,同理,在Rt△BFD中,BF=DF•tan30°=300米,∵AB=150×20=3000米,∴CD=GF=AB+BF﹣AG=2400米,∴搜寻的平均速度为2400÷20=120≈208米/分.答:搜救船搜寻的平均速度为208米/分.22.(10分)如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2=(x<0)分别交于点C(﹣1,2)、D(a,1).(1)分别求出直线及双曲线的解析式;(2)利用图象直接写出,当x在什么范围内取值时,y1>y2;(3)请把直线y1=x+m上,y1<y2时的部分用黑色笔描粗一些.【解答】解:(1)把C(﹣1,2)代入y1=x+m得:﹣1+m=2,解得m=3,则y1=x+3把C(﹣1,2)代入y2=(x<0)得:2=,解得:k=﹣2,则y=﹣;(2)把D(a,1)代入y=﹣得a=﹣2,由图形知,当﹣2<x<﹣1时,y1>y2;(3)如图所示;23.(10分)如图,已知AC是⊙O的直径,∠ACB=60°,连结AB,过A、B 两点分别作⊙O的切线,两切线交于点P,连接OP交AB于D.(1)求证:OP∥BC;(2)求证:AD2=OD•DP.【解答】证明:(1)连接OB,∵P A,PB是⊙O的切线,∴P A=PB,∠APO=∠BPO,∴OP垂直平分AB,∵AC是⊙O的直径,∴AB⊥BC,∴OP∥BC;(2)∵P A是⊙O的切线,∴∠OAP=90°,∴∠ADO=∠ADP=∠OAP=90°,∴∠OAD+∠P AD=∠P AD+∠APD=90°,∴∠OAD=∠APD,∴△OAD∽△DAP,∴,∴AD2=OD•DP.24.(14分)已知二次函数y=﹣2x2+8x﹣4,根据要求完成下列各题:(1)将函数关系式用配方法化为y=a(x+h)2+k形式,并写出其图象的顶点C 坐标、对称轴;(2)若它的图象与x轴交于A、B两点(点A在点B的右侧),求△ABC的面积;(3)若它的图象与y轴交于D点,点P在其对称轴上,求PB+PD的最小值.【解答】解:(1)∵y=﹣2x2+8x﹣4=﹣2(x2﹣4x)﹣4=﹣2(x2﹣4x+4﹣4)﹣4=﹣2(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),对称轴为直线x=2;(2)令y=0,则﹣2(x﹣2)2+4=0,∴(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣,∴抛物线与x轴的交点坐标为A(2+,0),B(2﹣,0),∴△ABC的面积=×4×[(2+)+(2﹣)]=4;(3)如图,二次函数的图象与y轴交于D点(0,﹣4),点A与点B关于直线x=2对称,连接AD交直线x=2于P,则点P即为所求,此时,PB+PD的最小值为AD长,∵Rt△AOD中,AD===,∴PB+PD的最小值为.。
山东滨州2017中考试题数学卷(word版含解析)
一、选择题(每小题3分,共12小题,合计36分) 1.计算-(-1)+|-1|,结果为A .-2B .2C .0D .-1【答案】B.【解析】原式=1+1=2,故选B.2.一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-4【答案】A.【解析】在这个方程中,a =1,b =-2,c =0,△=2(2)4104--⨯⨯= ,故选A. 3.如图,直线AC ∥BD ,AO ,BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是 A .∠BAO 与∠CAO 相等 B .∠BAC 与∠ABD 互补C .∠BAO 与∠ABO 互余D .∠ABO 与∠DBO 不等【答案】D.4.下列计算:(12)2=2,(2)2(2)-2,(3)(23-2=12,(4(23)(23)1-=-,其中结果正确的个数为A .1B .2C .3D .4【答案】D.【解析】根据二次根式的性质可得(1)、(2)、(3)正确;根据平方差公式可得(4)正确,故选D.5.若正方形的外接圆半径为2,则其内切圆半径为A 2B .2C 2D .1【答案】A.【解析】如图,由题意得,OA=2,△AOM 是等腰直角三角形,根据勾股定理可得2 ,故选A.ACDB6.分式方程311(1)(2)x x x x -=--+的解为A .x =1B .x =-1C .无解D .x =-2【答案】C.7.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .23B .3C .33D .3【答案】A.【解析】设AC=x ,在Rt △ABC 中,∠ABC=30°,即可得AB=2x ,3,所以BD=BA=2x,即可得33)x ,在Rt △ACD 中,tan ∠DAC=(32)32CD xAC +==+ ,故选A.8.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .80°D .25°AB CD【答案】B.【解析】设∠B=x ,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x ,因AD=CD ,根据等腰三角形的性质可得∠DAC=∠C=x ,因BD=BA ,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x ,在△ABD 中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 A .22x =16(27-x )B .16x =22(27-x )C .2×16x =22(27-x )D .2×22x =16(27-x )【答案】D10.若点M (-7,m )、N (-8,n )都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是A .m >nB .m <nC .m =nD .不能确定【答案】A.【解析】因2224(1)30k k k ++=++f , 所以2(24)0k k -++p ,即可得y 随x 的增大而减小,又因-7<-8,所以m>n ,故选A.11.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为A .4B .3C .2D .1PA ONBM【答案】B.12.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A、B,且AC+BC=4,则△OAB的面积为A.3+3或3 3 B2+12-1C.3 3 D2-1【答案】A.【解析】如图,分线段AB在双曲线1yx=和直线y=x交点的左右两侧两种情况,设点C 的坐标为(m,0),则点A的坐标为(m,m),点B的坐标为(m,1m),因AC+BC=4,所以m+1m=4,解得m=23,当3时,即线段AB在双曲线1yx=和直线y=x交点的左侧,求得33,所以333即可求得△OAB的面积为123(23)2332⨯=-;当3时,即线段AB在双曲线1yx=和直线y=x交点的右侧,求得AC=2+3,BC=2-3,所以AB=(2+3)-(2-3)=23,即可求得△OAB的面积为123(23)2332⨯⨯+=+,故选A.第II卷(非选择题,共84分)二、填空题:本大题共6个题,每小题4分,满分24分.13.计算:33+(3-3)0-|-12|-2-1-cos60°=____________.【答案】3- .【解析】原式=113123322+---=- .14.不等式组3(2)4,21152x xx x-->⎧⎪-+⎨⎪⎩≤的解集为___________.15.在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A 的坐标为_______.【答案】(4,6)或(-4,-6).【解析】已知点D(1,0),点D的对应点B在x轴上,且OB=2,所以位似比为2,即可得点A的坐标为(2×2,3×2)或[2×(-2),3×(-2)],即点A的坐标为(4,6)或(-4,-6).16.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F.若AD=8,AB=6,AE=4,则△EBF周长的大小为___________.23(左视图)【答案】8.17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_________.【答案】12+15π.【解析】这个几何体的表面积为:2×3+2×3+2324π⨯ +2324π⨯+32234π⨯⨯⨯ =12+15π. 18.观察下列各式: 2111313=-⨯,2112424=-⨯2113535=-⨯……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.【答案】2354(1)(2)n nn n +++ .【解析】根据题目中所给的规律可得,原式=12222(...)2132435(2)n n ++++⨯⨯⨯+ =111111111(1...)23243512n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1)221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++ . 三、解答题:本大题共6个小题,满分60分. 19.(本小题满分8分)(1)计算:(a -b )(a 2+ab +b 2)(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++. 【答案】(1)a 3-b 3;(2)m +n . 【解析】20.(本小题满分9分) 根据要求,解答下列问题. (1)根据要求,解答下列问题.①方程x 2-2x +1=0的解为________________________; ②方程x 2-3x +2=0的解为________________________; ③方程x 2-4x +3=0的解为________________________; …………(2)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x +8=0的解为________________________; ②关于x 的方程________________________的解为x 1=1,x 2=n . (3)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.【答案】(1)①x1=1,x2=1;②x1=1,x2=2;③x1=1,x2=3.(2)①x1=1,x2=8,②x2-(1+n)x+n=0;(3)x1=1,x2=8.【解析】试题分析:(1)观察这些方程可得,方程的共同特征为二次项系数均为1,一次性系数分别为-2、-3、-4,常数项分别为1,2,3.解的特征:一个解为1,另一个解分别是1、2、3、4、…,由此写出答案即可;(2)根据(1)的方法直接写出答案即可;(3)用配方法解方程即可.(3)x2-9x+8=0x2-9x=-8x2-9x+814=-8+814(x-92)2=494∴x-92=±72.∴x1=1,x2=8.21.(本小题满分9分)为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【答案】(1) 乙种小麦长势整齐;(2)16.【解析】试题分析:(1)先分别计算出这两组数据的平均数,再利用方差公式分别求得这两组数据的方差,比较即可得答案;(2)列表(或画树状图)求得所有等可能的结果,利用概率公式求得所抽取的两株配对小麦株高恰好都等于各自平均株高的概率即可.(2)列表如下63 65 60 63 64 6363 (63,63)(63,65)(63,60)(63,63)(63,64)(63,63)66 (66,63)(66,65)(66,60)(66,63)(66,64)(66,63)63 (63,63)(63,65)(63,60)(63,63)(63,64)(63,63)61 (61,63)(61,65)(61,60)(61,63)(61,64)(61,63)64 (64,63)(64,65)(64,60)(64,63)(64,64)(64,63)61 (61,63)(61,65)(61,60)(61,63)(61,64)(61,63)∴共有36种情况,其中小麦株高恰好都等于各自平均株高(记为事件A)有6种.∴P(A)=16.22.(本小题满分10分)如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于12BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=3C的大小.AB EF DCP【答案】(1)详见解析;(2)60°.【解析】试题解析:(1)由作图过程可知,AB=AF,AE平分∠BA D.∴∠BAE=∠EAF.∵四边形ABCD为平行四边形,∴BC∥A D.∴∠AEB=∠EAF.∴∠BAE=∠AEB,∴AB=BE.∴BE=AF.∴四边形ABEF为平行四边形.∴四边形ABEF为菱形.(2)连接BF,∵四边形ABEF为菱形,∴BF与AE互相垂直平分,∠BAE=∠FAE.∴OA=12AE=23.∵菱形ABEF的周长为16,∴AF=4.∴cos∠OAF=OAAF3.∴∠OAF=30°,∴∠BAF=60°.∵四边形ABCD为平行四边形,∴∠C=∠BAD=60°.23.(本小题满分10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DA C.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF·D A.【答案】详见解析.【解析】试题解析:证明:(1)如图1,连接DO,并延长交⊙O于点G,连接BG;∵点E是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠DA C.∵∠G=∠BAD,∴∠MDB=∠G,∵DG为⊙O的直径,∴∠GBD=90°,∴∠G+∠BDG=90°.∴∠MDB+∠BDG=90°.∴直线DM是⊙O的切线;(2)如图2,连接BE.∵点E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CA D.∵∠EBD=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,∠CBD=∠CA D.24.(本小题满分14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE +EF的最小值.【答案】(1) y=34x+3;(2)P(58,11964);(3)145.【解析】试题分析:(1)将A、B两点坐标代入y=kx+b中,求出k、b的值;(2)作出点P到直线AB的距离后,由于∠AHC=90°,考虑构造“K形”相似,得到△MAH、△OBA、△NHP三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH ==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C′E .当C ′F ⊥AB 时,CE +EF 最小.试题解析:解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3. ∴y =34x +3. (2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1) 学&科网设F(m,34m+3)∴CE+EF的最小值=C′E=145.。
2017年山东省滨州市中考数学试卷-答案
【解析】AC BD ∥180,AO 、BO CAO 相等,∠BAO ∴∠与ABO ∠【提示】根据平行线的性质和平分线的定义即可得到结论.,AB 是小圆的切线,,四边形是等腰直角三角形,2OE ∴=如图,在30,AB ∴3tan30AC .BD BA =AC ACA .AB AC =CD DA =BA BD=2BAD C =∠=BDA BAD =∠,又180B BAD BDA ∠+∠+∠=,180,36α∴,36∴∠,故选B .A B A =得B ∠,CD 2C B ∠=∠180. 名生产螺母,一个螺栓套两个螺母,每人每天生产螺母【解析】22k k ++的增大而减少,78->-,,故选B .【提示】根据一次函数的变化趋势即可判断.90PEO ∠=,180∴∠,180MPN ∠+,∴∠EPM FPN =∠,OP 平分AOB ∠PF OB ⊥于OP OP=⎧POE ∴△≌△OM ON +选B .AC BC +(23,2B +【解析】如图,C,,(2,3)【提示】根据位似变换的定义,画出图形即可解决问题,注意有两解.【考点】位似图形的性质及对应点坐标之间的关系90,AE90BFE ∠+,90∠,∴∠90EAH ∠=,EBF ∴△∽△2EBF C ∴=△.HAE C =△【提示】设【解析】21131=⨯112435+⨯⨯2)()()()()m n m nm n m n m n m n m n++=-=++--. )根据多项式乘以多项式法则计算即可得;)63x +=甲263)2-⨯63x +=乙21[(636s ∴=甲22s s<乙甲,(2)列表如下:,AD BC∥.AF BE∥是平行四边形,AB BE=菱形90AGB∠=,∴30,260BAF BAE∴∠=∠=.四边形ABCD是平行四边形,60C BAF∴∠=∠=.30,那么60,再根据平行四边形的对角相等即可求60.【考点】菱形的判定与性质,平行四边形的性质,作图—基础作图,点又BDM ∠=O 的切线;,点,DBF ∠=DB DADF DA ,DE DF DA ∴.是O 的切线;)根据三角形内心的定义以及圆周角定理,得到DF DA ,据此可得DF DA .【考点】相似三角形的判定与性质,垂径定理,圆周角定理,切线的判定与性质,三角形的内切圆与内心(2)如图1,过P 作PH AB ⊥于点H ,过H 作HQ x ⊥轴,过P 作PQ y ⊥轴,两垂线交于点Q ,90,90∴∠,∴∠90,∴△,(4,0)A-d=,整理消去,45>,∴5119,⎫⎪;(3)如图2,设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E=',最小,(0,1)C,∴。
山东省滨州市五校中考数学一模试卷(含解析)
2017年山东省滨州市五校中考数学一模试卷一、选择题(本题共12个小题,每小题3分,共36分)1.实数0、、、π中,无理数有()A.1个B.2个C.3个D.4个2.已知3﹣x+2y=0,则2x﹣4y的值为()A.﹣3 B.3 C.﹣6 D.63.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为()A. B.C. D.4.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则()A.甲比乙高 B.甲、乙一样C.乙比甲高 D.不能确定5.在△ABC中,∠C=90°,tanA=,则sinA=()A.B.C.D.6.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOE的大小为()A.100°B.110°C.120°D.130°7.下列长度的三条线段,可以组成三角形的是()A.10、5、4 B.3、4、2 C.1、11、8 D.5、3、88.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,则下列四个结论:AD∥BC、AC⊥BD、∠BDA=∠BDC、四边形ABED面积为4,其中错误的个数为()A.1 B.2 C.3 D.49.Rt△ABC中,∠C=90°,AB=5,内切圆半径为2,则三角形的周长为()A.15 B.12 C.13 D.1410.在反比例函数y=(k<0)的图象上有两点(﹣1,y1),(,y2),则y1﹣y2的值是()A.负数 B.非正数C.正数 D.不能确定11.不等式组的解集在数轴上表示出来,其对应的图形为()A.长方形B.梯形 C.线段 D.射线12.把矩形ABCD沿着对角线BD折叠,使点C落在C′处,交AD于E,若AD=8,AB=4,则AE的长为()A.3 B.4 C.5 D.6二、填空题(本大题共6小题,每小题4分,共24分)13.当x= 时,分式的值为零.14.等腰三角形的一个内角为40°,则顶角的度数为.15.方程x(x﹣2)+2x﹣4=0的解是.16.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是.17.如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得EC ∥AB,则∠CAB的大小为.18.已知△ABC的三个顶点坐标为A(5,0)、B(6,4)、C(3,0),将△ABC以坐标原点O为位似中心,以位似比2:1进行缩小,则缩小后的点B所对应的点的坐标为.三、解答题(本大题共6小题,共60分)19.(8分)化简:÷(﹣).(9分)如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,20.连接AB′,并有A B′=3,求∠B′A′C的大小.21.(9分)法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时沿同一方向配合搜寻飞机残骸(如图).在距海面900米的高空A处,侦察机测得搜救船在俯角为30°的海面C处,当侦察机以150米/分的速度平行海面飞行20分钟到达B处后,测得搜救船在俯角为60°的海面D处,求搜救船搜寻的平均速度.(结果保留三个有效数字,参考数据:≈1.414,≈1.732)22.(10分)如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2=(x<0)分别交于点C(﹣1,2)、D(a,1).(1)分别求出直线及双曲线的解析式;(2)利用图象直接写出,当x在什么范围内取值时,y1>y2;(3)请把直线y1=x+m上,y1<y2时的部分用黑色笔描粗一些.23.(10分)如图,已知AC是⊙O的直径,∠ACB=60°,连结AB,过A、B两点分别作⊙O 的切线,两切线交于点P,连接OP交AB于D.(1)求证:OP∥BC;(2)求证:AD2=OD•DP.24.(14分)已知二次函数y=﹣2x2+8x﹣4,根据要求完成下列各题:(1)将函数关系式用配方法化为y=a(x+h)2+k形式,并写出其图象的顶点C坐标、对称轴;(2)若它的图象与x轴交于A、B两点(点A在点B的右侧),求△ABC的面积;(3)若它的图象与y轴交于D点,点P在其对称轴上,求PB+PD的最小值.2017年山东省滨州市五校中考数学一模试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.实数0、、、π中,无理数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【分析】根据无理数及有理数的定义进行解答即可.【解答】解:∵实数0、、、π中,是开方开不尽的数、π是无限不循环小数,∴,π是无理数.故选B.【点评】本题考查的是无理数的定义,注意带根号的数要开不尽才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2017•滨州一模)已知3﹣x+2y=0,则2x﹣4y 的值为()A.﹣3 B.3 C.﹣6 D.6【考点】33:代数式求值.【分析】根据3﹣x+2y=0,可得x﹣2y=3,应用代入法,求出2x﹣4y的值为多少即可.【解答】解:∵3﹣x+2y=0,∴x﹣2y=3,∴2x﹣4y=2(x﹣2y)=2×3=6.故选:D.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为()A. B.C. D.【考点】GA:反比例函数的应用;G2:反比例函数的图象.【分析】主要利用正比例函数和反比例函数的图象性质解答.【解答】解:由正比例函数和反比例函数的图象性质,可判断:消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为A.故选A.【点评】正比例函数的图象是一条直线,反比例函数的图象是双曲线.4.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则()A.甲比乙高 B.甲、乙一样C.乙比甲高 D.不能确定【考点】W2:加权平均数.【分析】运用求平均数公式: =(x1+x2+x3+…x n)分别求出甲、乙两名学生的平均数,再比较.【解答】解:由题意知,甲的平均数==8环,乙的平均数=8环,所以从平均数看两个一样.故选B.【点评】本题考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数,它反映这组数据的平均水平.5.在△ABC中,∠C=90°,tanA=,则sinA=()A.B.C.D.【考点】T3:同角三角函数的关系.【分析】根据正切函数的定义,勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【解答】解:tanA==,设BC=2x,AC=3x,勾股定理,得AB==x,sinA===,故选:C.【点评】本题考查了同角三角函数关系,利用正切函数的定义,勾股定理得出AB的长是解题关键.6.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOE的大小为()A.100°B.110°C.120°D.130°【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】根据角平分线定义求出∠AOE,根据邻补角的定义求出即可.【解答】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOE=∠EOC=50°,∴∠BOE=180°﹣∠AOE=130°,故选D.【点评】本题考查了角平分线定义和邻补角,能求出∠AOE的度数是解此题的关键.7.下列长度的三条线段,可以组成三角形的是()A.10、5、4 B.3、4、2 C.1、11、8 D.5、3、8【考点】K6:三角形三边关系.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、4+5<10,所以不能组成三角形;B、2+3>4,能组成三角形;C、1+8<11,不能组成三角形;D、5+3=8,不能组成三角形.故选:B.【点评】本题主要考查了三角形三边关系的运用,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.8.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,则下列四个结论:AD∥BC、AC⊥BD、∠BDA=∠BDC、四边形ABED面积为4,其中错误的个数为()A.1 B.2 C.3 D.4【考点】Q2:平移的性质;JA:平行线的性质;KK:等边三角形的性质.【分析】利用平移的性质、等边三角形的判定和性质、等腰梯形的判定、菱形的判定和性质.对选项进行证明,从而得到正确答案.【解答】解:∵△ABC沿射线BC向右平移到△DCE,∴AD=BC,AD∥BC,故选项A正确;∴四边形ABCD为平行四边形,又△ABC为等边三角形,∴AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,由平移可知:AC∥DE,则DE⊥BD,故选项B正确;∵△ABC沿射线BC向右平移到△DCE,∴AD=CE,AD∥CE,∴四边形ACED为平行四边形,由平移可得△DCE也为等边三角形,∴DE=CE,∴四边形ACED为菱形,∴∠BDA=∠BDC,选项C正确;过A作AF⊥BC,如图所示:∵△ABC为边长为2的等边三角形,∴BF=CF=BC=1,在Rt△ABF中,AB=2,BF=1,根据勾股定理得:AF==,则S菱形ABCD=BC•AF=2,选项D错误,所以,错误的有1个,故选A.【点评】本题是一道涉及平移的性质、等边三角形的判定和性质、等腰梯形的判定和菱形的判定和性质结合求解的综合题.考查了整体的数学思想和正确运算的能力.9.Rt△ABC中,∠C=90°,AB=5,内切圆半径为2,则三角形的周长为()A.15 B.12 C.13 D.14【考点】MI:三角形的内切圆与内心.【分析】根据切线的性质得出∠ODC=∠OFC=∠ACB=90°,得出正方形ODCF,求出CD=CF=1,根据切线长定理求出AD+BF=AE+BE=5,代入AC+BC+AB求出即可.【解答】解:连接OA、OB、OC、OD、OE、OF,∵⊙O是△ABC的内切圆,切点分别是D、E、F,∴OD⊥AC,OE⊥AB,OF⊥BC,AD=AE,BE=BF,∴∠ODC=∠OFC=∠ACB=90°,∵OD=OF,∴四边形ODCF是正方形,∴CD=OD=OF=CF=2,∵AD=AE,BF=BE,∵AE+BE=AB=5,∴AD+BF=5,∴△ABC的周长是:AC+BC+AB=AD+CD+CF+BF+AB=5+2+2+5=14.故选D.【点评】本题考查了切线的性质,正方形的性质和判定,切线长定理,三角形的内切圆等知识点的应用,关键是求出CD、CF、AD+BF的长,主要考查学生运用定理进行计算的能力,题目比较典型,难度适中.10.在反比例函数y=(k<0)的图象上有两点(﹣1,y1),(,y2),则y1﹣y2的值是()A.负数 B.非正数C.正数 D.不能确定【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据k<0判断出函数图象所在的象限,进而判断出y1,y2的符号,据此可得出结论.【解答】解:∵k<0,∴反比例函数图象的两个分支分别位于第二四象限.∵﹣1<0,>0,∴点(﹣1,y1)在第二象限,点(,y2)在第四象限,∴y1>0,y2<0,∴y1﹣y2>0.故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.不等式组的解集在数轴上表示出来,其对应的图形为()A.长方形B.梯形 C.线段 D.射线【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由2x+2≥0,解得x≥﹣1,由﹣x≥﹣1解得x≤1,不等式组的解集是﹣1≤x≤1,故选:C.【点评】本题考查了解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.把矩形ABCD沿着对角线BD折叠,使点C落在C′处,交AD于E,若AD=8,AB=4,则AE的长为()A.3 B.4 C.5 D.6【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】设DE=x,则AE=8﹣x.根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,根据勾股定理即可求解.【解答】解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CBD.∵AD∥BC,∴∠CBD=∠ADB.∴∠EBD=∠EDB.∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=(8﹣x)2+16∴x=5,∴AE=3,故选A.【点评】此题主要是运用了折叠的性质、平行线的性质、等角对等边的性质和勾股定理.二、填空题(本大题共6小题,每小题4分,共24分)13.当x= ﹣3 时,分式的值为零.【考点】63:分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.【点评】本题考查了分式的值为零的条件,分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.等腰三角形的一个内角为40°,则顶角的度数为100°或40°.【考点】KH:等腰三角形的性质.【分析】已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的运用;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.方程x(x﹣2)+2x﹣4=0的解是x=2或x=﹣2 .【考点】A8:解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x(x﹣2)+2(x﹣2)=0,∴(x﹣2)(x+2)=0,则x﹣2=0或x+2=0,解得:x=2或x=﹣2,故答案为:x=2或x=﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是﹣1<x <3 .【考点】HC:二次函数与不等式(组).【分析】根据二次函数的性质得出,y<0,即是图象在x轴下方部分,进而得出x的取值范围.【解答】解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.【点评】此题主要考查了二次函数的性质,利用数形结合得出图象在x轴下方部分y<0是解题关键.17.如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得EC ∥AB,则∠CAB的大小为70°.【考点】R2:旋转的性质;J9:平行线的判定.【分析】根据旋转的性质得到AC=AE,∠CAE=40°,根据等腰三角形的性质得到∠ACE=∠AEC=70°,根据平行线的性质即可得到结论.【解答】解:∵△ABC绕点A逆时针旋转40°到△AED的位置,∴AC=AE,∠CAE=40°,∴∠ACE=∠AEC=70°,∵CE∥AB,∴∠CAB=∠ACE=70°,故答案为:70°.【点评】本题考查了旋转的性质,平行线的性质,熟练掌握旋转的性质是解题的关键.18.已知△ABC的三个顶点坐标为A(5,0)、B(6,4)、C(3,0),将△ABC以坐标原点O为位似中心,以位似比2:1进行缩小,则缩小后的点B所对应的点的坐标为(3,2)或(﹣3,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点B的坐标为(6,4),以原点为位似中心将△ABC缩小,位似比为2:1,∴点B的对应点的坐标为(3,2)或(﹣3,﹣2),故答案为:(3,2)或(﹣3,﹣2).【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题(本大题共6小题,共60分)19.化简:÷(﹣).【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,求∠B′A′C的大小.【考点】R2:旋转的性质;KQ:勾股定理;KS:勾股定理的逆定理.【分析】首先连接AA',证明∠AA′C=45°,然后证明AB′2=AA′2+A′B′2,得到∠AA′B′=90°,即可解决问题.【解答】解:如图,连接AA′.由旋转得:AC=A′C,A′B′=AB,∠ACA′=90°,即△ACA'为等腰直角三角形,∴∠AA′C=45°,AA′2=22+22=8,∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∴∠B'A′C=90°+45°=135°.【点评】该题主要考查了旋转变换的性质、勾股定理及其逆定理的应用问题;解题的关键是作辅助线,构造直角三角形.21.法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时沿同一方向配合搜寻飞机残骸(如图).在距海面900米的高空A处,侦察机测得搜救船在俯角为30°的海面C处,当侦察机以150米/分的速度平行海面飞行20分钟到达B处后,测得搜救船在俯角为60°的海面D处,求搜救船搜寻的平均速度.(结果保留三个有效数字,参考数据:≈1.414,≈1.732)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先分析图形,根据题意构造直角三角形Rt△ACG与Rt△BDF.利用CG=DF构造方程,进而可解.【解答】解:作CG⊥AE,垂足为G,作DF⊥AE,垂足为F,得四边形CDFG为矩形,∴CD=GF,CG=DF=900米,在Rt△AGC中,∠A=30°,∴∠ACG=60°,∴AG=CG•tan60°=900米,同理,在Rt△BFD中,BF=DF•tan30°=300米,∵AB=150×20=3000米,∴CD=GF=AB+BF﹣AG=2400米,∴搜寻的平均速度为2400÷20=120≈208米/分.答:搜救船搜寻的平均速度为208米/分.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)(2017•滨州一模)如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2=(x<0)分别交于点C(﹣1,2)、D(a,1).(1)分别求出直线及双曲线的解析式;(2)利用图象直接写出,当x在什么范围内取值时,y1>y2;(3)请把直线y1=x+m上,y1<y2时的部分用黑色笔描粗一些.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把C(﹣1,2)分别代入y1=x+m,y2=(x<0)根据待定系数法即可求得;(2)联立方程,解方程即可求得D的坐标,根据图象即可求得y1>y2时x的取值范围;(3)根据题意作出图象即可.【解答】解:(1)把C(﹣1,2)代入y1=x+m得:﹣1+m=2,解得 m=3,则y1=x+3,把C(﹣1,2)代入y2=(x<0)得:2=,解得:k=﹣2,则y=﹣;(2)把D(a,1)代入y=﹣得a=﹣2,由图形知,当﹣2<x<﹣1时,y1>y2;(3)如图所示;【点评】本题考查了待定系数法求解析式,以及反比例函数和一次函数的交点的求法,熟练掌握待定系数法和解方程是关键.23.(10分)(2017•滨州一模)如图,已知AC是⊙O的直径,∠ACB=60°,连结AB,过A、B两点分别作⊙O的切线,两切线交于点P,连接OP交AB于D.(1)求证:OP∥BC;(2)求证:AD2=OD•DP.【考点】S9:相似三角形的判定与性质;MC:切线的性质.【分析】(1)连接OB,根据切线的性质得到PA=PB,∠APO=∠BPO,根据等腰三角形的性质对对对OP垂直平分AB,于是得到结论;(2)由PA是⊙O的切线,得到∠OAP=90°,根据余角的性质得到∠OAD=∠APD,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OB,∵PA,PB是⊙O的切线,∴PA=PB,∠APO=∠BPO,∴OP垂直平分AB,∵AC是⊙O的直径,∴AB⊥BC,∴OP∥BC;(2)∵PA是⊙O的切线,∴∠OAP=90°,∴∠ADO=∠ADP=∠OA P=90°,∴∠OAD+∠PAD=∠PAD+∠APD=90°,∴∠OAD=∠APD,∴△OAD∽△DAP,∴,∴AD2=OD•DP.【点评】本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.24.(14分)(2017•滨州一模)已知二次函数y=﹣2x2+8x﹣4,根据要求完成下列各题:(1)将函数关系式用配方法化为y=a(x+h)2+k形式,并写出其图象的顶点C坐标、对称轴;(2)若它的图象与x轴交于A、B两点(点A在点B的右侧),求△ABC的面积;(3)若它的图象与y轴交于D点,点P在其对称轴上,求PB+PD的最小值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;H9:二次函数的三种形式;PA:轴对称﹣最短路线问题.【分析】(1)运用配方法将抛物线的解析式化为y=a(x+h)2+k形式,即可得到顶点C坐标、对称轴;(2)根据函数解析式求得A、B两点坐标,得出AB的长,最后计算△ABC的面积即可;(3)根据点A与点B关于直线x=2对称,连接AD交直线x=2于P,则点P即为所求,PB+PD 的最小值为AD长,最后根据勾股定理求得AD长,即可得出PB+PD的最小值.【解答】解:(1)∵y=﹣2x2+8x﹣4=﹣2(x2﹣4x)﹣4=﹣2(x2﹣4x+4﹣4)﹣4=﹣2(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),对称轴为直线x=2;(2)令y=0,则﹣2(x﹣2)2+4=0,∴(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣,∴抛物线与x轴的交点坐标为A(2+,0),B(2﹣,0),∴△ABC的面积=×4×[(2+)+(2﹣)]=4;(3)如图,二次函数的图象与y轴交于D点(0,﹣4),点A与点B关于直线x=2对称,连接AD交直线x=2于P,则点P即为所求,此时,PB+PD的最小值为AD长,∵Rt△AOD中,AD===,∴PB+PD的最小值为.【点评】本题主要考查了抛物线与x轴的交点、待定系数法求二次函数解析式、最短路线问题,掌握二次函数的性质和图象是解题的关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要涉及点关于某直线的对称点.21。
山东省滨州市博兴县中考数学模拟试卷(含解析)
2017年山东省滨州市博兴县中考数学模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.比﹣1小2015的数是()A.﹣2014 B.2016 C.﹣2016 D.20142.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣54.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°5.不等式组的解集在数轴上表示正确的是()A.B.C. D.6.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能7.已知a+b=53,a﹣b=38,则a2﹣b2的值为()A.15 B.38 C.53 D.20148.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.9.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种关系.如表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为()A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米10.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PBC.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ11.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2014 B.2015 C.2016 D.201712.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,联结EF、CF,那么下列结论中一定成立的个数是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.1个B.2个C.3个D.4个二、填空题:本大题共6个小题,每小题4分,满分24分.13.计算:sin30°+2﹣1+= .14.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是°.15.如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=3,则线段BC的长度等于.16.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD 的面积为.17.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走步.18.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B 处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(8分)设A=,B=(1)求A与B的差;(2)若A与B的值相等,求x的值.20.(8分)已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.21.(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?22.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.23.(8分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.24.(9分)如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE ⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.25.(11分)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.2017年山东省滨州市博兴县中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.比﹣1小2015的数是()A.﹣2014 B.2016 C.﹣2016 D.2014【考点】1A:有理数的减法.【分析】根据题意列出算式,利用有理数的减法法则计算即可得到结果.【解答】解:根据题意得:﹣1﹣2015=﹣2016,故选C【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°【考点】JA:平行线的性质.【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.【点评】本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.5.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.6.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能【考点】MB:直线与圆的位置关系;D5:坐标与图形性质;T5:特殊角的三角函数值.【分析】设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.【解答】解:设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交,故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.7.已知a+b=53,a﹣b=38,则a2﹣b2的值为()A.15 B.38 C.53 D.2014【考点】4F:平方差公式.【分析】根据平方差公式即可求出答案.【解答】解:∵a2﹣b2=(a+b)(a﹣b)∴a2﹣b2=53×38=2014故选(D)【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.8.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】列举出所有情况,看在同一辆车的情况数占总情况数的多少即可.【解答】解:设3辆车分别为A,B,C,共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为,故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在同一辆车的情况数是解决本题的关键.9.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种关系.如表是测得的指距与身高的一组数据:根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他的指距约为()A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米【考点】FH:一次函数的应用.【分析】先根据题意求出一次函数的解析式,再把y=226代入即可求出答案.【解答】解:设这个一次函数的解析式是:y=kx+b,,解得:,一次函数的解析式是:y=9x﹣20,当y=226时,9x﹣20=226,x=27.3.故选:C.【点评】本题主要考查了一次函数的应用,在解题时要能根据题意求出一次函数的解析式是本题的关键.10.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PBC.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ【考点】N2:作图—基本作图.【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,PA=PB,∴点A、B到PQ的距离相等,故C错误.故选C.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.11.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2014 B.2015 C.2016 D.2017【考点】HA:抛物线与x轴的交点.【分析】先求出m2﹣m的值,再代入代数式进行计算即可.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2016=1+2016=2017.故选D.【点评】本题考查的是抛物线与x轴的交点,熟知x轴上点的坐标特点是解答此题的关键.12.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,联结EF、CF,那么下列结论中一定成立的个数是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.1个B.2个C.3个D.4个【考点】L5:平行四边形的性质.【分析】由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME是解题关键.二、填空题:本大题共6个小题,每小题4分,满分24分.13.计算:sin30°+2﹣1+= 3 .【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:sin30°+2﹣1+=0.5+0.5+2=3故答案为:3.【点评】此题主要考查了实数的运算,负整数指数幂和特殊角的三角函数值,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是30 °.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ABC=∠C,再求出∠CBD,然后根据∠ABD=∠ABC ﹣∠CBD代入数据计算即可得解.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)=70°,∵BD=BC,∴∠CBD=180°﹣70°×2=40°,∴∠ABD=∠ABC﹣∠CBD=70°﹣40°=30°.故答案为:30.【点评】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.15.如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=3,则线段BC的长度等于.【考点】MC:切线的性质.【分析】如图,连接DO,首先根据切线的性质可以得到∠ODC=90°,又AC=3BC,O为AB的中点,由此可以得到∠C=30°,接着利用30°的直角所对的直角边是斜边的一半和勾股定理即可求解.【解答】解:如图,连接DO,∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,而AB是⊙O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴OD=CD,∵CD=3,∴BC=OD=,故答案为:.【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.16.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD 的面积为12 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求△BCF的面积,再利用△BCF与△DEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求△DCF的面积,进而可求▱ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴S△DEF:S△BCF=()2,又∵E是AD中点,∴DE=AD=BC,∴DE:BC=DF:BF=1:2,∴S△DEF:S△BCF=1:4,∴S△BCF=4,又∵DF:BF=1:2,∴S△DCF=2,∴S▱ABCD=2(S△DCF+S△BCF)=12.故答案为:12.【点评】本题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出△BCF的面积.17.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走30 步.【考点】B7:分式方程的应用.【分析】设小博每消耗1千卡能量需要行走x步,则小琼每消耗1千卡能量需要行走(x+10)步,然后利用小琼步行12 000步与小博步行9 000步消耗的能量相同列方程,然后分式方程,再进行检验即可得到答案.【解答】解:设小博每消耗1千卡能量需要行走x步,则小琼每消耗1千卡能量需要行走(x+10)步,根据题意得=,解得x=30,经检验x=30是原方程的解.答:小博每消耗1千卡能量需要行走30步.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.18.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B 处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为7 米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据∠DBC=45°,得到BC=CD,根据tanα=0.7和正切的概念列出算式,解出算式得到答案.【解答】解:∵∠DBC=45°,∴BC=CD,tanα==,则=,解得CD=7.故答案为:7.【点评】本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键,注意仰角和俯角的概念.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.设A=,B=(1)求A与B的差;(2)若A与B的值相等,求x的值.【考点】B3:解分式方程;6B:分式的加减法.【分析】(1)首先通分,然后利用同分母的分式的加减法则求解;(2)根据A和B两个式子的值相等,即可列方程求解.【解答】解:(1)A﹣B====(2)∵A=B∴去分母,得2(x+1)=x去括号,得2x+2=x移项、合并同类项,得x=﹣2经检验x=﹣2是原方程的解.【点评】本题考查了分式的加减以及分式方程的解法,解分式方程时一定要注意检验.20.已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【考点】AA:根的判别式.【分析】(1)设方程的另一个根为x,则由根与系数的关系得:x+1=﹣a,x•1=a﹣2,求出即可;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】解:(1)设方程的另一个根为x,则由根与系数的关系得:x+1=﹣a,x•1=a﹣2,解得:x=﹣,a=,即a=,方程的另一个根为﹣;(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了根的判别式和根与系数的关系,注意:如果x1,x2是一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个根,则x1+x2=﹣,x1•x2=,要记牢公式,灵活运用.21.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.【考点】MO:扇形面积的计算;KO:含30度角的直角三角形;M2:垂径定理;M5:圆周角定理.【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.【解答】解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,S扇形FOC==π.即可得阴影部分的面积为π.【点评】本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P 的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).【点评】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S+S△BCP列方程是关键.△ACP24.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.【考点】MR:圆的综合题.【分析】(1)由AE⊥AC,∠ACB=90°,可得AE∥BC,然后由平行线分线段成比例定理,求得y关于x的函数解析式;(2)由题意易得要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,然后由△ABC∽△EAC,求得答案;(3)易得点C必在⊙E外部,此时点C到⊙E上点的距离的最小值为CE﹣DE.然后分别从当点E在线段AD上时与当点E在线段AD延长线上时,去分析求解即可求得答案.【解答】解:(1)∵AE⊥AC,∠ACB=90°,∴AE∥BC,∴=,∵BC=6,AC=8,∴AB==10,∵AE=x,AP=y,∴=,∴y=(x>0);(2)∵∠ACB=90°,而∠PAE与∠PEA都是锐角,∴要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,此时△ABC∽△EAC,则=,∴AE=.故存在点E,使△ABC∽△EAP,此时AE=;(3)∵点C必在⊙E外部,∴此时点C到⊙E上点的距离的最小值为CE﹣DE.设AE=x.①当点E在线段AD上时,ED=6﹣x,EC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙E的半径为.②当点E在线段AD延长线上时,ED=x﹣6,EC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙E的半径为9.∴⊙E的半径为9或.【点评】此题属于圆的综合题.考查了相似三角形的判定与性质、切线的性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.25.(11分)(2012•盘锦)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【考点】HF:二次函数综合题.【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M 为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.【解答】解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为y=﹣3x+3,∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.。
历年中考数学模拟试题(含答案) (213)
2017年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.(3分)计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣12.(3分)一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣43.(3分)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等4.(3分)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.45.(3分)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.16.(3分)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣27.(3分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.38.(3分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.(3分)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k 为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定11.(3分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB 互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N 两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.112.(3分)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=.14.(4分)不等式组的解集为.15.(4分)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为.16.(4分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为.17.(4分)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为.18.(4分)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.三、解答题(本大题共6个小题,满分60分,解答时请写出必要的盐推过程)19.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.20.(9分)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为;②方程x2﹣3x+2=0的解为;③方程x2﹣4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.21.(9分)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲636663616461乙636560636463(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(10分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.23.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC 的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.24.(14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.2017年山东省滨州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.(3分)(2017•滨州)计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣1【分析】根据有理数的加法和绝对值可以解答本题.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选B.【点评】本题考查有理数的加法和绝对值,解答本题的关键是明确有理数加法的计算方法.2.(3分)(2017•滨州)一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣4【分析】直接利用判别式的定义,计算△=b2﹣4ac即可.【解答】解:△=(﹣2)2﹣4×1×0=4.故选A.【点评】本题考查了根的判别式:利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.3.(3分)(2017•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【分析】根据平行线的性质和平分线的定义即可得到结论.【解答】解:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠BAO与∠CAO相等,∠ABO与∠DBO相等,∴∠BAO与∠ABO互余,故选D.【点评】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(3分)(2017•滨州)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.5.(3分)(2017•滨州)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.1【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故选A.【点评】本题考查的是正方形和圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,利用勾股定理是解答此题的关键,属于中考常考题型.6.(3分)(2017•滨州)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣2【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB 延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.【点评】本题考查了解直角三角形,利用锐角三角函数的概念解直角三角形问题.8.(3分)(2017•滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.9.(3分)(2017•滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选D.【点评】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.10.(3分)(2017•滨州)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定【分析】根据一次函数的变化趋势即可判断m与n的大小.【解答】解:∵k2+2k+4=(k+1)2+3>0∴﹣(k2+2k+4)<0,∴该函数是y随着x的增大而减少,∵﹣7>﹣8,∴m<n,故选(B)【点评】本题考查一次函数的性质,解题的关键是判断k2+2k+4与0的大小关系,本题属于中等题型.11.(3分)(2017•滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.【解答】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF +∠AOB=180°, ∵∠MPN +∠AOB=180°, ∴∠EPF=∠MPN , ∴∠EPM=∠FPN ,∵OP 平分∠AOB ,PE ⊥OA 于E ,PF ⊥OB 于F , ∴PE=PF ,在△POE 和△POF 中,,∴△POE ≌△POF , ∴OE=OF ,在△PEM 和△PFN 中,,∴△PEM ≌△PFN ,∴EM=NF ,PM=PN ,故(1)正确, ∴S △PEM =S △PNF ,∴S 四边形PMON =S 四边形PEOF =定值,故(3)正确,∵OM +ON=OE +ME +OF ﹣NF=2OE=定值,故(2)正确, MN 的长度是变化的,故(4)错误, 故选B .【点评】本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.12.(3分)(2017•滨州)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1【分析】根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.故=2±,所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.【点评】此题主要考查了反比例函数与一次函数的交点,正确表示出各线段长是解题关键.二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)(2017•滨州)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=﹣.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算.【解答】解:原式=+1﹣2﹣﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.14.(4分)(2017•滨州)不等式组的解集为﹣7≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(4分)(2017•滨州)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为(4,6)或(﹣4,﹣6).【分析】根据位似变换的定义,画出图形即可解决问题,注意有两解.【解答】解:如图,由题意,位似中心是O,位似比为2,∴OC=AC,∵C(2,3),∴A(4,6)或(﹣4,﹣6),故答案为(4,6)或(﹣4,﹣6).【点评】本题考查位似变换、坐标与图形的性质等知识,解题的关键是学会正确画出图形解决问题,注意一题多解.16.(4分)(2017•滨州)如图,将矩形ABCD沿GH对折,点C落在Q处,点D 落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为8.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF =C△HAE=8.故答案为:8.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.17.(4分)(2017•滨州)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.【分析】由几何体的三视图得出该几何体的表面是由3个长方形与两个扇形围成,结合图中数据求出组合体的表面积即可.【解答】解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,该几何体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.【点评】本题考查了由几何体三视图求几何体的表面积的应用问题,考查了空间想象能力,由三视图复原成几何体是解决问题的关键.18.(4分)(2017•滨州)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.【分析】根据所列的等式找到规律=(﹣),由此计算+++…+的值.【解答】解:∵=﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=.故答案是:..【点评】此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键.三、解答题(本大题共6个小题,满分60分,解答时请写出必要的盐推过程)19.(8分)(2017•滨州)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.【点评】本题主要考查多项式乘以多项式及分式的乘法,根据多项式乘法得出立方差公式是解题的关键.20.(9分)(2017•滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1;②方程x2﹣3x+2=0的解为x1=1,x2=2;③方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了因式分解法解一元二次方程.21.(9分)(2017•滨州)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲636663616461乙636560636463(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【分析】(1)先计算出平均数,再依据方差公式即可得;(2)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.【解答】解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:636663616461 6363、6366、6363、6361、6364、6361、63 6563、6566、6563、6561、6564、6561、65 6063、6066、6063、6061、6064、6061、60 6363、6366、6363、6361、6364、6361、63 6463、6466、6463、6461、6464、6461、64 6363、6366、6363、6361、6364、6361、63由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.【点评】本题考查了平均数、方差及列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(10分)(2017•滨州)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.23.(10分)(2017•滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此可得DE2=DF•DA.【解答】解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF•DA,∴DE2=DF•DA.【点评】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.24.(14分)(2017•滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线解析式;(2)过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则可证明△PHQ∽△BAO,设H(m,m+3),利用相似三角形的性质可得到d与x的函数关系式,再利用二次函数的性质可求得d取得最小值时的P 点的坐标;(3)设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,则可知当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,由C点坐标可确定出C′点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE+EF的最小值.【解答】解:(1)由题意可得,解得,∴直线解析式为y=x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m,m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),∵A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,整理消去m可得d=x2﹣x+=(x﹣)2+,∴d与x的函数关系式为d=(x﹣)2+,∵>0,∴当x=时,d有最小值,此时y=﹣()2+2×+1=,∴当d取得最小值时P点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,d=×(2﹣)2+=,即CE+EF的最小值为.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、二次函数的性质、轴对称的性质等知识.在(1)中注意待定系数法的应用,在(2)中构造相似三角形是解题的关键,在(3)中确定出E点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
滨州市博兴中考模拟试题四
滨州市博兴县中考模拟试题(四)数学试题一、选择题:(此题有10小题,共 30分。
每题只有一个选项是正确的,不选、多项选择、错选均不给分)1.以下计算正确的选项是A、2a2 a3 2a 6B、(3a2)3 9a 6C、a6 a 2 a3D、(a2)3 a 62.抛物线y (a 8) 2 2 的极点坐标是A、( 2,8)B、( 8,2)C、( -8, 2) D 、( -8, -2)3.已知圆锥的底面半径为9cm,母线长为 30cm,则圆锥的侧面积为A、270 cm2 B 、360 cm2C、450 cm2 D 、540 cm2 4.如图,已知AB ∥CD , AB=CD ,AE=FD ,则图中的全等三角形有A、 1对B、2对C、3对D、4对5.现有 2008年奥运会福娃卡片20张,此中贝贝 6张。
京京 5张,欢欢 4张,迎迎 3张,妮妮 2 张,每张卡片大小、质地平均相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是A.1B 、 3 C、1D 、1 10 10 4 56.假如一个定值电阻R两头所加电压为5伏时,经过它的电流为1安培,那么经过这一电阻、的电流 I 随它的两头电压U变化的图像是7.如图是 5× 5的正方形网络,以点D、E为两个极点作地点不一样的格点三角形,使所作的格点三角形与△ ABC 全等,这样的格点三角形最多能够画出A、 2个8.如图,已知△B 、 4个C、6个ABC 的六个元素,则以下甲、乙、丙三个三角形中和△D、8个ABC 全等的图形是A、甲乙 B 、甲丙C、乙丙 D 、乙9.如图,∠ ACB=60 °,半径为 2的⊙ O切BC 于点 C,若将⊙ O在 CB上向右转动,则当转动到⊙ O与 CA 也相切时,圆心 O挪动的水平距离为A、2 B 、4 C、2 3 D 、 410.如图,是用 4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为 49,小正方形面积为4,若用 X 、Y 表示直角三角形的两直角边(X>Y ),请察看图案,指出以下关系式中不正确的选项是A、X 2 Y 2 49B、X Y 2C、2XY 4 49D、X Y 13二、填空题(本大题共8小题,每题 4分,共 32分)11.如图,正方形 ABCD 边长为 1,E 、 F 、G 、H 分别为各边上的点,且 AE=BF=CG=DH ,设小正方形 EFGH 的面积为 Y , AE 为 X ,则 Y 对于 X 的函数图像大概是 __________。
山东省滨州博兴县2017届九年级数学学业水平模拟试题
山东省滨州博兴县2017届九年级数学学业水平模拟试题2017年初中学业水平测试模拟训练数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案C D B C C B C B C D B B二、填空题(本大题6个小题,每小题4分,共24分)13.x (y+x)(y-x) 14.25x 3212++=x y 或2)3(212-+=x y 15.15° 16.2π 17.3 18.40三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(第①小题6分,第②小题4分,满分10分)①: 解不等式组 205121123x x x ->⎧⎪+-⎨+⎪⎩,≥, ………………② 解:解不等式①,得2x <. …………………2分解不等式②,得1x -≥. …………………4分所以,不等式组的解集是 -1≤x <2. ……………5分不等式组的解集在数轴上表示如下:…………………6分②:计算:12011|32|5(2009π)2-⎛⎫-+-+-⨯- ⎪⎝⎭解:原式12325=-+-+-23=--. …………………4分20.(本小题满分8分)解:(1)证明:∵O 是AC 的中点,∴OA =OC ,又∵AE =CF ,∴OE =OF , ……………………………………2分又∵DF ∥BE ,∴∠OEB =∠OFD ,又∵∠EOB =∠FOD , …………………………………………3分∴△BOE ≌△DOF ; ………………………………………………4分(2)∵△BOE ≌△DOF ,∴OD =OB ,又∵OA =OC ,∴四边形ABCD 是平行四边形,…………………………………………6分又∵OD =12AC ,OD =12BD , ∴AC =BD ,∴四边形ABCD 是矩形.……………………………………8分21. (本小题满分10分)解:(1)设蓝球个数为x 个,则由题意得22+1+x =12 , 解得 x =1, 5- 4- 3- ………………①即蓝球有1个. …………………………4分(2)树状图如下: 黄白2白1蓝白2白1蓝黄白1蓝黄白2蓝黄白2白1所有可能结果共有12种,它们发生的可能性相等,其中两次摸到都是白球的有2种,∴ P (两个都是白球)=122 =61 . …………………………10分 22.(本小题满分10分)解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .在Rt △AEC 中,tan ∠CAE =CE AE , 即tan30°=100+x x …………………4分 ∴33100=+x x , 3x =3(x +100) ……………………5分解得x =50+503=136.6 ……………………7分经检验x =136.6是原方程的解,且符合题意.∴CE =136.6m. ……………………8分∴CD CE ED =+=136.6+1.5=138.1≈ 138(m) ……………………9分答:该建筑物的高度约为138m . …………………10分23.(本小题满分10分)(1)解 连结CD ,∵BC 是⊙O 的直径,∴∠BDC =90°,即CD ⊥AB , …………………………………………3分∵AD =DB ,∴AC =BC =2OC =10. …………………………………………5分(2)证明 连结OD .∵∠ADC =90°,E 为AC 的中点,∴DE =EC =12AC ,∴∠1=∠2, …………………………………………7分 ∵OD =OC ,∴∠3=∠4,∵AC 切⊙O 于点C ,∴AC ⊥OC ,∴∠1+∠3=∠2+∠4=90°,即DE ⊥OD , …………………………………………9分∴DE 是⊙O 的切线. …………………………………………10分24.(本小题满分12分)解:(1)设二次函数的解析式为2y ax bx c =++,则 164002a b c a b c c -+=⎧⎪++=⎨⎪=⎩ ,12322a b c ⎧=-⎪⎪⎪∴=-⎨⎪=⎪⎪⎩, 故抛物线的解析式为213222y x x =--+ . ……………………………4分(2)以AB 为直径的圆圆心坐标为O `(23-,0).52O C '∴= , 32O O '= . O CO CDO '∴△∽△ ,得3/22/2OD = 83OD ∴=. D ∴坐标为(38,0). ……………………………8分 (3)存在. ……………………………9分抛物线对称轴为x 32X =-.设圆的半径为r(r>0),令点E 在点F 的左边. ①当E,F 在x 轴上方时,则E 坐标为(-23-r,r ),F 坐标为(-23+r,r )将点E 坐标代入抛物线 213222y x x =--+中,得r=-21(-23-r)2-23(-23-r)+2, 12912r ∴=-+,22912r =-- (舍去). ②当E ,F 在x 轴下方时,则E 坐标为(-23-r,-r ),F 坐标为(-23+r,-r),将E 点的坐标代入213222y x x =--+.得-r=-21(-23-r)2-23(-23-r)+2,得r 3=1+229或r 4=1-229(舍去) . 故在以EF 为直径的圆,恰好与x 轴相切,该圆的半径为2912-+或2912+. ……………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省滨州博兴县2017届九年级数学学业水平模拟试题一、选择题(本大题共12小题,共36.0分)1.式子y=中x的取值范围是()A.x≥0B.x≥0且x≠1C.0≤x<1D.x>12.已知a,b互为相反数,c,d互为倒数,|e|=,则代数式5(a+b)2+cd-2e的值为()A.-B.C.或-D.-或3.计算(+1)2016(-1)2017的结果是()A.-1B.1C.+1D.34.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7B.6≤m<7C.6<m≤7D.3≤m<45.函数是反比例函数,则m的值为()A.0B.-1C.0或-1D.0或16.如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3kmB.3kmC.4kmD.(3-3)km7.在平面直角坐标系中,⊙P的半径是2,点P(0,m)在y轴上移动,当⊙P与x轴相交时,m的取值范围是()A.m<2B.m>2C.m>2或m<-2D.-2<m<28.我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是()A.25;25B.29;25C.27;25D.28;259.如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.③④B.②③C.②④D.①④10.如图所示的几何体是由一些大小相同的小立方块搭成的,则从如图看到的图形是()A. B. C. D.11.如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于()A. B.45°- C.45°-α D.90°-α12.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A. B. C. D.二、填空题(本大题共6小题,共24分)13.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .14.已知等腰三角形的底边长为10cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的腰长为 ______ cm.15.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要 ______ 元钱.16.若关于x的二次三项式x2-kx-3因式分解为(x-1)(x+b),则k+b的值为 ______ .17.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△C QB,则∠APB的度数 ______ .18.如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,N为对角线AC上任意一点,则DN+MN的最小值为 ______ .三、计算题(本大题共1小题,共10分)19.计算:( 1 )(-1)2015+(-)-1+-2sin45°.(2)解不等式,并写出不等式的正整数解.四、解答题(本大题共5小题,共50分)20.一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于,问至少需取走多少个黄球?21.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若=,AD=4,求CE的长.22.如图,一艘货船以每小时48海里的速度从港口B出发,沿正北方向航行.在港口B处时,测得灯塔A处在B处的北偏西37°方向上,航行至C处,测得A 处在C处的北偏西53°方向上,且A、C之间的距离是45海里.在货船航行的过程中,求货船与灯塔A之间的最短距离及B、C之间的距离;若货船从港口B 出发2小时后到达D,求A、D之间的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)23.如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.(1)求点C的坐标;(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.24.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=-1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形BOCF的面积最大,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2017年初中学生学业水平模拟考试数学试题答案和解析【答案】1.B2.D3.A4.C5.A6.A7.D8.C9.B 10.D 11.B 12.C13.014.1515.61216.117.150°18.1019.解:(1)原式=-1-3+-=-4;(2)去分母得:3x-3≤2x-1,解得:x≤2,则不等式的正整数解为1,2.20.解:(1)∵袋中有4个红球、5个白球、11个黄球,∴摸出一个球是红球的概率==;(2)设取走x个黄球,则放入x个红球,由题意得,≥,解得x≥,∵x为整数,∴x的最小正整数值是3.答:至少取走3个黄球.21.(1)证明:连接OD.∵OA=OD,∴∠BAD=∠ODA.∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠ODA=∠DAC.∴OD∥AE.∵DE⊥AE,∴OD⊥DE.∴DE是⊙O的切线;(2)∵OB是直径,∴∠ADB=90°.∴∠ADB=∠E.又∵∠BAD=∠DAC,∴△ABD∽△ADE.∴.∴AB=10.由勾股定理可知.连接DC,∴.∵A,C,D,B四点共圆.∴∠DCE=∠B.∴△DCE∽△ABD.∴.∴CE=2.22.解:(1)过点A作AO⊥BC,垂足为O.在R t△ACO中,∵AC=45,∠ACO=53°,∴CO=AC•cos53°≈45×=27,AO=AC•sin53°≈45×=36.在R t△ABO中,∵AO=36,∠OAB=90°-37°=53°,∴BO=AO•tan53°≈36×=48,∴BC=BO-CO=48-27=21,∴货船与灯塔A之间的最短距离是36海里,B、C之间的距离是21海里.(2)∵BD=48×2=96,∴OD=BD-BO=96-48=48.在R t△AOD中,∵∠AOD=90°,∴AD===60,∴A、D之间的距离是60海里.23.解:(1)C(5,-4);(3分)(2)能.(4分)连接AE,∵BE是⊙O的直径,∴∠BAE=90°,(5分)在△ABE与△PBA中,AB2=BP•BE,即,又∠ABE=∠PBA,∴△ABE∽△PBA,(7分)∴∠BPA=∠BAE=90°,即AP⊥BE;(8分)(3)分析:假设在直线EB上存在点Q,使AQ2=BQ•EQ.Q点位置有三种情况:①若三条线段有两条等长,则三条均等长,于是容易知点C即点Q;②若无两条等长,且点Q在线段EB上,由R t△EBA中的射影定理知点Q即为AQ⊥EB之垂足;③若无两条等长,且当点Q在线段EB外,由条件想到切割线定理,知QA切⊙C于点A.设Q(t,y (t)),并过点Q作QR⊥x轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法.解题过程:①当点Q1与C重合时,AQ1=Q1B=Q1E,显然有AQ12=BQ1•EQ1,∴Q1(5,-4)符合题意;(9分)②当Q2点在线段EB上,∵△ABE中,∠BAE=90°∴点Q2为AQ2在BE上的垂足,(10分)∴AQ2==4.8(或),∴Q2点的横坐标是2+AQ2•cos∠BAQ2=2+3.84=5.84,又由AQ2•sin∠BAQ2=2.88,∴点Q2(5.84,-2.88),[或(,-)];(11分)③方法一:若符合题意的点Q3在线段EB外,则可得点Q3为过点A的⊙C的切线与直线BE在第一象限的交点.由R t△Q3BR∽R t△EBA,△EBA的三边长分别为6、8、10,故不妨设BR=3t,RQ3=4t,BQ3=5t,(12分)由R t△ARQ3∽R t△EAB得,(13分)即得t=,(注:此处也可由tan∠Q3AR=tan∠AEB=列得方程=;或由AQ32=Q3B•Q3E=Q3R2+AR2列得方程5t(10+5t)=(4t)2+(3t+6)2等等)∴Q3点的横坐标为8+3t=,Q3点的纵坐标为,即Q3(,);(14分)方法二:如上所设与添辅助线,直线BE过B(8,0),C(5,-4),∴直线BE的解析式是y=,(12分)设Q3(t,),过点Q3作Q3R⊥x轴于点R,∵易证∠Q3AR=∠AEB得R t△AQ3R∽R t△EAB,∴,即,(13分)∴t=,进而点Q3的纵坐标为,∴Q3(,);(14分)方法三:若符合题意的点Q3在线段EB外,连接Q3A并延长交y轴于F,∴∠Q3AB=∠Q3EA,tan∠OAF=tan∠Q3AB=tan∠AEB=,在R t△OAF中有OF=2×=,点F的坐标为(0,-),∴可得直线AF的解析式为y=x-,(12分)又直线BE的解析式是,y=x-,(13分)∴可得交点Q3(,).(14分)24.解:(1)由A、B关于对称轴对称,A点坐标为(2,0),得B(-4,0).将A、B、C点的坐标代入函数解析式,得,解得,抛物线的解析式为y=-x2-x+4;(2)如图1,设BC的解析式为y=kx+b,将B、C点坐标代入函数解析式,得,解得,BC的解析式为y=x+4.G在BC上,D在抛物线上,得G(m,m+4),F(m,-m2-m+4).DG=-m2-m+4-(m+4)=-m2-2m.S四边形BOCF=S△BOC+S△BCF=BO•OC+FG•BO=×4×4+×4(-m2-2m)=8+2[-(m+2)2+2]当m=-2时,四边形BOCF的面积最大是12,当m=-2时,-m2-m+4=4,即F(-2,4);(3)如图2,当x=-1时,y=-x2-x+4=,即D(-1,)y=x+4=3,即E(-1,3).DE=-3=.P在直线BC上,Q在抛物线上,得P(m,m+4),Q(m,-m2-m+4).PQ=-m2-m+4-(m+4)=-m2-2m.由以D、E、P、Q为顶点的四边形是平行四边形,得DE=PQ,即-m2-2m=,解得m=-1(不符合题意,舍),m=-3.当m=-3时,y=m+4=1,即P(-3,1).以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标(-3,1).【解析】1. 解:要使y=有意义,必须x≥0且x-1≠0,解得:x≥0且x≠1,故选B.根据二次根式有意义的条件和分母有意义得出x≥0且x-1≠0,求出即可.本题考查了二次根式有意义的条件和分式有意义的条件,能根据题意得出x≥0且x-1≠0是解此题的关键.2. 解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵|e|=,∴e=±.当e=时,原式=5×02+-2×=-;当e=-时,原式=5×02+-2×=;故选:D.根据题意可知a+b=0,cd=1,e=±,然后代入计算即可.本题主要考查的是求代数式的值,求得a+b=0,cd=1,e=±是解题的关键.3. 解:(+1)2016(-1)2017=(+1)2016(-1)2016•(-1)=(2-1)2016•(-1)=-1.故选A.先根据积的乘方得到原式=[(+1)(-1)]2016•(-1),然后利用平方差公式计算.本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.4. 解:,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5. 解:由是反比例函数,得m2+m-1=-1且m+1≠=0,解得m=0,故选:A.根据y=kx-1(k是不等于零的常数),是反比例函数,可得答案.本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).6. 解:作AC⊥OB于点C,如右图所示,由已知可得,∠COA=30°,OA=6km,∵AC⊥OB,∴∠OCA=∠BCA=90°,∴OA=2AC,∠OAC=60°,∴AC=3km,∠CAD=30°,∵∠DAB=15°,∴∠CAB=45°,∴∠CAB=∠B=45°,∴BC=AC,∴AB=,故选A.根据题意,可以作辅助线AC⊥OB于点C,然后根据题目中的条件,可以求得AC和BC的长度,然后根据勾股定理即可求得AB的长.本题考查解直角三角形的应用-方向角问题,解答此类问题的关键是明确题意,利用在直角三角形中30°所对的边与斜边的关系和勾股定理解答.7. 解:当圆心P到x轴的距离小于2时,⊙P与x轴相交时,∴OP<2,∴|m|<2,∴-2<m<2,故选D.当圆心P到x轴的距离小于2时,⊙P与x轴相交时,可得到|m|<2,由此不难解决问题.本题考查直线与圆位置关系、坐标与图形的性质等知识,解题的关键是记住直线与圆的位置关系的判定方法,属于中考常考题型.8. 解:25出现了2次,出现的次数最多,则众数是25;把这组数据从小到大排列25,25,27,29,30,最中间的数是27,则中位数是27;故选C.根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9. 解:∵当y1=y2时,即-x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=-x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=-x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,-x2+4x=2,x1=2+,x2=2-(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选B.若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x 任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.本题考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.10. 解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.11. 解:∵∠AOC=90°,∠COB=α,∴∠AOB=90°+α∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+∠COD=∠AOC-∠AOD=90°-(45°+)=45°-.故选B.利用角平分线的性质计算.本题主要考查的是角平分线的性质,不是很难.12. 解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n-1A n B n-1=.故选:C.根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n-1A n B n-1的度数.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.13. 解:∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,∴由中点公式得:c=,∴a+b=2c,∴a+b-2c=0.故答案为:0.点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,由中点公式得:c=,则a+b=2c,所以a+b-2c=0.题目考查了两点间的距离.根据平面直角坐标系中两点A(x1,y1)、B(x2,y2),则AB两点的中点坐标公式为(,),数轴上的中点坐标可以看做是X轴上两点坐标即可.14. 解:如图,设等腰三角形的腰长是xcm.当AD+AC与BC+BD的差是5cm时,即x+x-(x+10)=5,解得:x=15,15,15,10能够组成三角形;当BC+BD与AD+AC的差是5cm时,即10+x-(x+x)=5,解得:x=5,5,5,10不能组成三角形.故这个三角形的腰长为15cm.故答案为:15.两部分之差可以是底边与腰之差,也可能是腰与底边之差,解答时应注意.设等腰三角形的腰长是xcm,根据其中一部分比另一部分长5cm,即可列方程求解.本题考查等腰三角形的性质:等腰三角形有两边相等,同时考查了三角形的三边关系.15. 解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.本题考查了勾股定理的应用,正确理解地毯的长度的计算是解题的关键.16. 解:由题意得:x2-kx-3=(x-1)(x+b)=x2+(b-1)x-b,∴k=1-b,b=3,∴k=-2,则k+b=-2+3=1.故答案为1.将因式分解的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件求出k与b的值,即可求出k+b的值.本题考查了因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.17. 解:连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.18. 解:∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又∵CM=CD-DM=8-2=6,∴在R t△BCM中,BM===10,故答案为:10.由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在R t△BCM 中利用勾股定理即可求出BM的长即可.本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.19.(1)原式利用乘方的意义,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x系数化为1,求出解集,找出解集的正整数解即可.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)先求出球的总数,再根据概率公式即可得出结论;(2)设取走x个黄球,则放入x个红球,根据概率公式求解即可.本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.21.(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)利用相似三角形的判定和性质得出AB,利用勾股定理求出BD,进而解答即可.本题考查切线的判定、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.22.(1)过点A作AO⊥BC,垂足为O.先解R t△ACO中,求出CO=AC•cos53°≈45×=27,AO=AC•sin53°≈45×=36.再解R t△AB O,得到∠OAB=90°-37°=53°,BO=AO•tan53°≈36×=48,那么BC=BO-CO=48-27=21海里;(2)先根据路程=速度×时间求得BD=48×2=96,那么OD=BD-BO=96-48=48.然后在R t△AOD中利用勾股定理求出AD===60海里.此题考查了解直角三角形的应用-方向角问题,锐角三角函数,勾股定理.作出辅助线构造直角三角形是解题的关键.23.(1)根据题意,根据圆心的性质,可得C的AB的中垂线上,易得C的横坐标为5;进而可得圆的半径为5;利用勾股定理可得其纵坐标为-4;即可得C的坐标;(2)连接AE,由圆周角定理可得∠BAE=90°,进而可得AB2=BP•BE,即,可得△ABE∽△PBA;进而可得∠BAE=90°,即AP⊥BE;(3)分三种情况讨论,根据相似三角形性质、切割线定理、勾股定理、三角函数的定义,易得Q到xy轴的距离,即可得Q的坐标.本题是一道动态解析几何题,对学生的运动分析,数形结合的思想作了重点的考查,有一定的难度.24.(1)根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据面积的和差,可得二次函数,根据二次函数的性质,可得m的值,再根据自变量与函数值的对应关系,可得F点坐标;(3)根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得答案.本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用面积的和差得出二次函数是解题关键;利用平行四边形的对边相等得出关于m的方程是解题关键.。