第三章 系的时间响应分析

合集下载

工程控制基础 第3章 系统的时间响应分析

工程控制基础 第3章 系统的时间响应分析

总结 当ζ一定时ωn增大ts就减小; 当ωn一定时ζ增大,ts也减小
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
30
3.4 二阶系统性能指标
➢ 总结
➢ 要使二阶系统具有合适动态特性,应合理选择ζ和ωn。一般的做法是先根据 最大超调量Mp 、振荡次数N等要求选择系统的阻尼比ζ ,然后再根据上升 时间tr、峰值时间tp、调整时间ts等要求,确定系统无阻尼固有频率ωn
➢ 单位脉冲响应
➢ 单位阶跃响应
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
3.2 一阶系统时间响应
➢ 一阶系统:微分方程
传递函数:
➢ 单位斜坡响应
12
T:时间常数
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
3.2 一阶系统时间响应
➢ 一阶系统:微分方程
传递函数:
➢ 不同输入函数不同时间常数下输出响应比较
当ζ一定时ωn增大ts就减小; 当ωn一定时ζ增大,ts也减小
2019/12/30
机械工程控制基础
29
3.4 二阶系统性能指标
➢ 二阶欠阻尼系统瞬态性能指标:
上升时间 tr 、峰值时间 t p 、最大超调量 M p 、调整时间 ts 、振荡次数 N
二阶欠阻尼单位阶跃响应
➢ 振荡次数N :在过渡过程时间内, xo(t)穿越其稳态值的次数的一半
2 n
s2

2n s

2 n
ωn、ζ
:特征参数
➢ 单位脉冲响应
• 当 ,0系统为零阻尼系统时
华中科技大学 易朋兴
2019/12/30
机械工程控制基础

第3章 系统的时间响应分析

第3章 系统的时间响应分析

第3章 系统的时间响应分析在建立系统的数学模型(微分方程或传递函数)之后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,时间响应分析是重要的方法之一。

第3.1节 时间响应及其组成一、时间响应的概念所谓时间响应指系统在外加激励作用下,其输出量随时间变化的函数关系。

或者说 在输入作用下,系统的输出(响应)在时域的表现形式;在数学上,就是系统的动力学方程在一定初始条件下的解。

自变量为时间t ,因变量为输出()[()]o x t y t二、时间响应的组成分析:第一、二项是由微分方程的初始条件(即系统的初始状态)引起的自由振动,即自由响应。

ω。

应该说第三项的自第三项是由作用力引起的自由振动即自由响应,其振动频率均为nω与作用力频率ω无关,由响应并不完全自由。

因为它的幅值受到F的影响,当然,它的频率n自由即在此。

第四项是由作用力引起的强迫振动即强迫响应,其振动频率即为作用力频率ω。

因此系统的时间响应可从两方面分类:按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即在“无输入时的系统初态”为零而仅由输入引起的响应)Array所以我们的研究对象是:零状态响应。

另外还有两个需了解的概念:瞬态响应和稳态响应。

瞬态响应:系统在外加激励作用后,从初始状态到最终状态的响应过程称为瞬态响应。

反映了系统的快、稳特性。

稳态响应:时间趋于无穷大时,系统的输出状态为稳态响应。

反映系统的准确性。

三、系统方程的特征根影响系统自由响应的收敛性和振荡第3.2节 典型的输入信号由于系统的输入具有多样性,所以在分析和设计系统时,需要规定一些典型的输入信号,然后比较各系统对典型信号的时间响应。

不同系统或参数不同的同一系统对同一典型信号的时间响应不同,反映出各种系统动态特性的差异,从而可以定出相应的性能指标,对系统的性能予以评定。

尽管在实际中,输入信号很少是典型信号,但由于系统对典型信号的时间响应和对任意信号的时间响应之间存在一定的关系统,所以知道系统对典型信号的响应就可求出对任意输入的响应。

控制工程基础-第三章时间响应分析第一二节

控制工程基础-第三章时间响应分析第一二节

2020年11月4日星期三2时17分22秒
9
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析
上面分析的是一个特殊的简单的例子,主要目的是 为下面的一般情况的分析作引子。
对于一般情况(线性常微分方程的输入函数没有导 数项,只有一次项),设系统的动力学方程为:
an
y (n)
如图所示,质量为m与弹簧刚度为k的单自由度系统
在外力(即输入)Fcosωt的作用下,系统的动力学方程用
常微分方程表示为:
my(t) ky(t) F cost
由高等数学知识可知这一 非齐次常微分方程的完全解 由两部分组成:
y(t) y1(t) y2 (t)
式中:yl(t)是齐次微分方程的通解; y2(t)是其一个特解。
的关系和0型、I型、Ⅱ型系统的稳态偏差。 6、单位脉冲函数及单位脉冲响应函数的重要意义。
2020年11月4日星期三2时17分22秒
2
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析
时间响应及其组成的含义: 时间响应:是指系统的响应(输出)在时域里的表现形
式,或系统的动力学方程在一定初始条件下的解
将系数A、B代入整理得方程的最终解为:
自由响应 强迫响应
y(t) y(0n ) sinnt y(0) cosnt Fk 112 cosntFk 112cost
零输入响应
零状态响应
2020年11月4日星期三2时17分22秒
7
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析

机械工程控制基础_第三章

机械工程控制基础_第三章
初始条件:设t 0时,y(t ) y(0),y(t ) y(0)
将初始条件带入(2)(3)可解得:
F 1 C1 ,C2 y(0) n k 1-(/n )2
y(0)
整理:
自由响应(通解)
y(t ) y(0) sin nt y(0) cos nt
积 分 关 系
3.3 一阶系统的时间响应分析
一阶系统:凡其动态过程可用一阶微分方程来表示的 控制系统称为一阶系统。 一般形式为:

Ty(t ) y(t ) u (t )

1 G(s) Ts 1
T 称为一阶系统的时间常数。
3.3.1 一阶系统的单位脉冲响应
输入为单位脉冲函数时,系统输出称为单位脉冲响应。
i 1 i 1
零输入响应
零状态响应
注意:
1)系统的阶次n和si取决于系统的固有特性,与系统的初态 无关;
y(t ) L1[G(s) X (s)] 所求得的输出是系统的零状态 2)由
响应,因在定义系统的传递函数时,已指明系统的初态为 零,故取决于系统的初态的零输入为0;
3)对于线性定常系统,若 (t )引起的输出为 (t ),则x ' (t )引起 x y 的输出为y ' (t )
Y ( s ) G ( s )U ( S ) 1 1 1 1 Ts Ts 1 T 1 T T 2 2 2 2 2 Ts 1 s s (Ts 1) s (Ts 1) s s (Ts 1) s s s 1 T
y(t ) L [Y (s)] t T Te
δ函数的重要性质

结论:系统在单位脉冲函数作用下,其响应函数等于 传递函数的拉氏逆变换

第三章系统的时间响应分析机械工程控制基础教案

第三章系统的时间响应分析机械工程控制基础教案

第三章系统的时间响应分析机械⼯程控制基础教案Chp.3时间响应分析基本要求(1) 了解系统时间响应的组成;初步掌握系统特征根的实部和虚部对系统⾃由响应项的影响情况,掌握系统稳定性与特征根实部之间的关系。

(2 ) 了解控制系统时间响应分析中的常⽤的典型输⼊信号及其特点。

(3) 掌握⼀阶系统的定义和基本参数,能够求解⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应;掌握⼀阶系统时间响应曲线的基本形状及意义。

掌握线性系统中,存在微分关系的输⼊,其输出也存在微分关系的基本结论。

(4) 掌握⼆阶系统的定义和基本参数;掌握⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;掌握⼆阶系统性能指标的定义及其与系统特征参数之间的关系。

(5) 了解主导极点的定义及作⽤;(6) 掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误差及稳态误差的求法;能够分析系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。

(7) 了解单位脉冲响应函数与系统传递函数之间的关系。

重点与难点重点(1) 系统稳定性与特征根实部的关系。

(2) ⼀阶系统的定义和基本参数,⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应曲线的基本形状及意义。

(3) ⼆阶系统的定义和基本参数;⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。

(4) 系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差的求法;系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。

难点(1) ⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。

(2) 系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。

建⽴数学模型后进⼀步分析、计算和研究控制系统所具有的各种性能。

第三章一阶系统的时间响应

第三章一阶系统的时间响应

(t 0)
显然,xou (t)瞬态项为 et /T,稳态项为1 t 0时,xou (t) 0.
xou
(t)
1 T
et /T
xou (t) t0
1 et /T T
t 0
1 T
一阶系统的单位函数响 应函数是一个递增的指 数函数。
一阶系统的时间常数不同,其单位阶跃响应曲线上 升的速度不同,时间常数越大,上升越慢(惯性越 大),反之,依然。
w(t) n2t exp(nt) (t 0) 4)当 1,系统为过阻尼系统时,
w(t) 2
n {exp[( 2 1
2 1)nt]
exp[( 2 1)nt]} (t 0)
当取不同值时,二阶欠阻尼系统的单位脉冲响应曲线
是减幅的正弦振荡曲线, 且愈小,衰减愈慢,振荡频率
愈大,故二阶欠阻尼系统又称为二阶振荡系统,其幅
第3节 一阶系统的时间响应
一、一阶系统 可用一阶微分方程表示的系统,称为一阶系统。其微分方程的 一般形式为
Txo (t) xo (t) xi (t) G(s) Xo(s) 1
Xi(s) Ts 1
其中,T称为一阶系统的时间常数,是一阶系统的特征参数。
二、一阶系统的单位脉冲响应 w(t)
当系统的输入信号是理想的脉冲函数时,系统的输出称为系统 的单位脉冲响应函数(或单位脉冲响应)。
超调量 %
• (Maximum Overshoot): 指响应的最大偏 离量h(tp)于终值 之差的百分比, 即
tr 或 t p 评价系统的响应速度;
% h(t p ) h() 100 %
ts 同时反映响应速度和阻尼程度的综合性指标。
h()
% 评价系统的阻尼程度。
延迟时间 t d :

第三章系统时域响应分析

第三章系统时域响应分析

s1 s2
[s平面]
系统可视为两个一阶系统的串或并联
图1)
2) 1,有两个相等负实根,
s ,
1,2
n
系统称为临界阻尼系统。
s1,2
2020/8/17

图2)
3)0 1,有两共轭复根,
s 2
j 1
,
1,2
n
n
系统称为欠阻尼系统。
4) 0,有两个共轭虚根,
s j ,
1,2
)
p
(
2
1
)sin(
n
d tp )
t
n
p
e
cos(
2
d tp )
1
0
d
2020/8/17
t t sin ) (co s ) 0 ( .
n dp
d
dp
t 当cos( )0 (1) dp
2
2
1
1
t 有tg(
) d n
dp
tg
n
n
t k, dp
t t 由定义取 。
,
n
(s)1 s2 n
Xo s s s
s s 1
2
1
1
s 2 21
21 21
ss1
ss2
xo
e e (t)1
xo
s s 2
st 1
st 2
n ( )1
2
1 1
2
2020/8/17
0
t
s 2)1,系统为临界阻 尼系 统 。,
1,2
n
n
X(s)1s2
o
s s
2020/8/17
2、描述欠阻尼二阶系统单位阶跃响应的特性, 常用的性能指标:

系统时间响应分析

系统时间响应分析

二阶系统的响应特性完全由ζ和 ωn两个参数决定,所以ζ、ωn是 二阶系统的两个重要参数。
左 半 平 面 ξ>0
ξ= 0

右 半 平 面 ξ<0
0 < ξ< 1
jω n
ξ=1 两个相等根
β
0
ω d=ω n
σ
ξ=0
ξ>1
jω n
两个不等根
图 3-9二 阶 系 统 极 点 分 布
过阻尼二阶系统:传递函数可分 解为两个一阶惯性环节相加或相 乘,因此可视为两个一阶环节的 并联,也可视为两个一阶环节的 串联。
二、 一阶系统的单位脉冲响应
输入信号是理想的单位脉冲函数时,系统输出 称为单位脉冲响应 函数或简称为单位脉冲响应。
W (s)X 0(s) G (s)X i(s)
Xi(s)L[(t)]1
W(s)G(s)
单位脉冲响应函数:系统传递函数的Laplace逆变换!!!
w(t)L1[G(s)]L1[ 1 ] Ts1
减小的,当t为 时,其响应速度为零;
实验方法求一阶系统的传递函数
1. 输入单位阶跃信号,并测出它的响应曲线及稳态值; 2.从响应曲线上找出0.632(即特征点A)所对应的时间t为T
四、一阶系统单位斜坡响应
不同输入信号响应关系:
系统对输入信号导数的响应,就等于系统对该输入信 号响应的导数;
系统对输入信号积分的响应,就等于系统对该输入信 号响应的积分。
)时,系统的输出称为单
Xo(s) G(s)Xi(s)
X i (s) L[ (t)] 1
同样有:W (s) G (s) 单位脉冲响应是传递函数的Laplace逆变换
记d n 1,2 称 d 为二阶系统的有阻尼固有频率。

系统的时间响应分析

系统的时间响应分析

系统的时间响应分析时间响应分析是探索系统对输入信号做出反应的一种方法。

在这个过程中,我们研究系统输出在不同时间点的行为,以便更好地理解和预测系统的性能和稳定性。

在进行时间响应分析之前,我们需要了解输入信号和系统的数学模型。

输入信号可以是连续时间信号,也可以是离散时间信号。

系统的数学模型可以是差分方程、微分方程、差分方程的递归关系等形式。

在时间响应分析中,最常用的分析方法是通过求解系统的微分方程或差分方程获得其输出。

对于连续时间系统,我们通常使用微分方程;对于离散时间系统,我们通常使用差分方程。

在实际应用中,我们可以使用不同的方法来获得系统的时间响应。

其中最常见的方法是使用拉普拉斯变换和傅里叶变换。

拉普拉斯变换通常用于连续时间系统,而傅里叶变换则更适用于离散时间系统。

通过进行时间响应分析,我们可以获得系统的重要性能指标,如稳定性、阻尼比、自然频率等。

这些指标对于系统设计和控制至关重要。

通过对时间响应分析的研究,我们可以了解系统对不同输入信号的响应速度、衰减程度以及是否能达到稳态。

此外,时间响应分析还有助于系统的故障诊断和故障排除。

通过观察系统的时间响应,我们可以判断系统是否存在故障,并进一步确定故障的来源和性质。

总之,时间响应分析是一种重要的系统分析方法,可以帮助我们了解系统的性能和稳定性。

通过对系统输出在不同时间点的观察和分析,我们可以获得系统的重要性能指标,并进一步进行系统设计和控制的优化。

时间响应分析是系统控制理论中的一项重要内容,它用于研究系统对输入信号的响应情况。

通过分析系统在不同时间点的输出行为,我们可以获得有关系统的重要信息,例如系统的稳定性、阻尼比、自然频率等。

这些信息对于系统设计、控制和故障排除非常关键。

在进行时间响应分析之前,我们首先需要了解系统的输入信号和数学模型。

输入信号可以是连续时间信号,也可以是离散时间信号,而系统的数学模型可以是差分方程、微分方程、递推关系等表示。

在时间响应分析中,最常用的方法是通过求解系统的微分方程或差分方程来获得系统的输出。

控制理论第三章

控制理论第三章

c(t) t T T et T t 0 (3-4)
系统对单位斜坡输入的时间响应和输 入信号表示于图3-5b中。
图3-5b 一阶系统的时间响应
第三章 控制系统的时域分析
§3-2 一阶系统的时间响应
误差信号为
e(t) r(t) c(t) t t T T et T T 1 et T
a)
b)
图3-6 二阶系统框图
第三章 控制系统的时域分析
§3-3 二阶系统的时间响应
❖ 二、二阶系统的单位阶跃响应
对单位阶跃输入r(t) 1(t) ,R(s) 1 ,从式(3-9)可以求出系统单
位阶跃响应的拉氏变换
s
C(s) G(s)R(s)
n2
1 1 s 2n
s2 2n s n2 s s s2 2n s n2
上升到100%所需的时间都叫做上升时间。 对于过阻尼和临界系统(ζ≥1),通常采用 10%~90%的上升时间;对于欠阻尼系统 (0<ζ<1),通常采用0~100%的上升时间。
3.峰值时间 :响应曲线达到超调量的第一个峰值所需要的时 间叫做峰值时间。
第三章 控制系统的时域分析
§3-1时间响应及系统性能指标
4.最大超调量:最大峰值(即第一个峰值)与理想稳态值1之间的
差值叫做最大超调量值Mp。通常采用百分比表
示最大相对超调量,定义为
σp
%
c(tp ) c() c()
100%
最大超调量的数值,直接说明了系统的相
对稳定性。
5.调整时间: 响应曲线第一次达到并永远保持在这一允许误差范 围内所需要的时间,叫做调整时间。
时间响应从零值到终值呈指
数曲线上升 。曲线在t = 0的初始 斜率为

第三章系统的时间响应分析.pptx

第三章系统的时间响应分析.pptx

华中科技大学 易朋兴
2020/7/21
机械工程控制基础
10
3.1 时间响应及其组成
➢ 控制系统中典型输入信号
单位脉冲信号
单位阶跃信号
单位斜坡信号
单位抛物线信号
正弦信号
随机信号
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
11
3.2 一阶系统时间响应
➢ 一阶系统: 微分方程
传递函数:
T:时间常数
若存在特征根具有正实部, 若存在特征根实部为0,
系统自由响应项发散, 其余实部为负,则自由响应
系统不稳定
称为瞬态响应项等幅振荡
系统临界稳定
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
9
3.1 时间响应及其组成
➢ 系统特征根si:系统的特征根影响系统自由响应的收敛性和 振荡特性
➢ 结论
➢ 特征根实部影响自由响应项的收敛性
13
T:时间常数
单位脉冲响应
单位阶跃信号
单位斜坡信号
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
14Biblioteka 3.2 一阶系统时间响应➢ 一阶系统:微分方程
传递函数:
T:时间常数
➢ 性能指标:调整时间ts
➢ 一阶系统地阶跃输入作用下,达到稳态值的(1-△)所需要的时间 ( △为允许误差) 稳态值
△·稳态值
➢ 若所有特征根均有负实部,系统自由响应项收敛,系 统稳定,此时自由响应称为瞬态响应,强迫响应项称
为稳态响应
➢ 若存在特征根实部为正,系统自由响应项发散,系统 不稳定
➢ 若存在特征根实部为0,其余实部为负,则自由响应 等幅振荡,系统临界稳定

第三章 系统的时间响应分析

第三章 系统的时间响应分析

第三章 系统的时间响应3-1 什么是时间响应?答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。

3.2 时间响应由哪两部分组成?各部分的定义是什么?答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。

按响应的性质分为强迫响应和自由响应。

对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。

3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。

3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510s i n (44w t t t =++););t-3(3)w(t)=0.1(1-e(4)()0.01w t t= 解:(1)11()()()()()00w t x t L X s L G s X s i --⎡⎤⎡⎤===⎣⎦⎣⎦ ()1X s i=(),()()G s G s L w t =⎡⎤⎡⎤⎣⎦⎣⎦-1w(t)=L 所以,0.01251.251)()()0.0125 1.25t G s L w t L e s -⎡⎤===⎡⎤⎣⎦⎢⎥+⎣⎦((2)()()G s L w t =⎡⎤⎣⎦5510sin(4)sin 4cos422L t t t s s=++=++⎡⎤⎡⎤⎣⎦⎣⎦5452()2222161616s s s s s s =++=++++113(3)()()0.1(1)0.11t G s L w t L e s s s ⎧⎫⎡⎤-⎪⎪⎢⎥==-=-⎡⎤⎨⎬⎣⎦⎢⎥+⎪⎪⎣⎦⎩⎭0.1(31)s s =+ 0.01(4)()()0.012G s L w t L t s ===⎡⎤⎡⎤⎣⎦⎣⎦3.5解11()()110.256min.t TG s xt e ou Ts T -==-+=()因为一阶系统的单位阶跃响应函数为解得,1(2)(),()10121111()()2211G s r t At t Ts A T T t x t L AL A t T Te or Ts s Ts T s s ===+⎡⎤⎡⎤---⎢⎥==-+=-+⎢⎥++⎢⎥⎣⎦⎣⎦因为一阶系统在输入作用下的时间响应()0.256()()()(1) 2.56(1)tt tT t T Te T e t r t x t At AAT e e or----+=-=-=-=-当t=1min e(t) = 2.53度3.6解解:(1)该系统的微分方程可以表示为o i u iR u += ω⎰=i d t C u o 1其传递函数为 111111)()()(+=+=+==Ts RCs CsR Cs s u s u s G i o 其中T=RC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 系统的时间响应3-1 什么是时间响应?答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。

3.2 时间响应由哪两部分组成?各部分的定义是什么?答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。

按响应的性质分为强迫响应和自由响应。

对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。

3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。

3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510sin(44w t t t =++););t-3(3)w(t)=0.1(1-e(4)()0.01w t t =解:(1)11()()()()()00w t x t L X s L G s X s i --⎡⎤⎡⎤===⎣⎦⎣⎦()1X s i=(),()()G s G s L w t =⎡⎤⎡⎤⎣⎦⎣⎦-1w(t)=L 所以,0.01251.251)()()0.0125 1.25t G s L w t L e s -⎡⎤===⎡⎤⎣⎦⎢⎥+⎣⎦((2)()()G s L w t =⎡⎤⎣⎦5510sin(4)sin 4cos422L t t t s s=++=++⎡⎤⎡⎤⎣⎦⎣⎦5452()2222161616s s s s s s =++=++++113(3)()()0.1(1)0.11t G s L w t L e s s s ⎧⎫⎡⎤-⎪⎪⎢⎥==-=-⎡⎤⎨⎬⎣⎦⎢⎥+⎪⎪⎣⎦⎩⎭0.1(31)s s =+ 0.01(4)()()0.012G s L w t L t s ===⎡⎤⎡⎤⎣⎦⎣⎦3.5解11()()110.256min.t TG s xt e ou Ts T -==-+=()因为一阶系统的单位阶跃响应函数为解得,1(2)(),()10121111()()2211G s r t At t Ts A T T t x t L AL A t T Te or Ts s Ts T s s ===+⎡⎤⎡⎤---⎢⎥==-+=-+⎢⎥++⎢⎥⎣⎦⎣⎦因为一阶系统在输入作用下的时间响应()0.256()()()(1) 2.56(1)t t tT t T Te T e t r t x t At AAT e e or----+=-=-=-=-当t=1min e(t) = 2.53度3.6解解:(1)该系统的微分方程可以表示为o i u iR u += ω⎰=idt C u o 1其传递函数为 111111)()()(+=+=+==Ts RCs CsR Cs s u s u s G i o 其中T=RC 。

显然,该系统为一阶系统,其单位脉冲响应函数为T te Tt -=1)(ω,单位脉冲响应如图(b );其单位阶跃响应函数为Ttou ex --=1,单位阶跃响应如图(c );其单位斜坡响应函数为Tt or TeT t x -+-=,单位斜坡响应如图(d )。

(2)标准积分器的传递函数为 Tss G 1)(= 其中T=RC 其单位脉冲响应函数为T t 1)(1=ω;其单位阶跃响应函数为Ttt x ou =)(1;其单位斜坡响应函数为Tt t x or 2)(21=,显然,用图(a )所示网络代替积分器,存在误差e(t)。

它们分别为:(a ) 当输入为单位脉冲函数时)1(1)()()(1T te T t t t e --=-=ωω若t<<T, 0)1(1)()()(1=-=-=-T t e T t t t e ωω若t=T, )11(1)1(1)()()(1e T e T t t t e T t -=-=-=-ωω若t>>T, Te T t t t e T t 1)1(1)()()(1=-=-=-ωω(b ) 当输入为单位阶跃函数时T tou ou e T tt x t x t e -+-=-=1)()()(1若t<<T, 01)()()(1=+-=-=-T tou ou e T tt x t x t e若t=T, e e T t t x t x t e T t ou ou 11)()()(1=+-=-=-若t>>T, )(11)()()(1T t Te T t t x t x t e T t ou ou -=+-=-=-(c ) 当输入为单位斜坡函数时T tor or Te T t Tt t x t x t e --+-=-=2)()()(21 若t<<T, 0)()()(1=-=t x t x t e or or若t=T, )15.0()()()(1e T t x t x t e or or -=-=若t>>T, )5.0()()()(1T t Ttt x t x t e or or -=-=从以上分析可知,用图(a )所示系统代替积分器时,只能用在t<<T 段,才能保证误差很小。

当T 增大时,其近似程度提高。

3.7已知控制系统的微分方程为2.5()()20()y t y t x t '+=,试用Laplace 变换法,求该系统的单位脉冲w ()t 和单位阶跃响应()ou x t ,并讨论二者的关系。

解:由传递函数的定义和系统的微分方程,可得系统的传递函数为()208()() 2.510.4Y s G s X s s s ===++ 系统的单位脉冲响应为0.488()[()()][*1][]80.40.4t w t L G s X s L L e s s -'''====++ 系统的单位阶跃响应为8111()[()()][*]20[]0.40.4ou x t L G s X s L L s s s s '''===-++1120[]0.4L s s '=-+比较()w t 和()ou x t ,有()w t =()ou x t '或()ou x t =0()tw t dt ⎰。

由此可得结论:系统对某种输入的导数的响应等于系统对该输入的响应的导数;系统对某种输入的积分的响应等于系统对该输入饿响应的积分。

3.9已知单位反馈系统的开环传递函数为(s)=求:(1)K=20,T=0.2;(2)K=16,T=0.1;(3)K=2.5,T=1等三种情况是的单位阶跃响应。

并分析开环增益K 与时间常数T 对系统性能的影响。

解:由于单位反馈系统,其前向通道传递函数与开环传递函数相等,所以系统的闭环传递函数为由于为一阶系统,故时间常数为。

故单位阶跃响应为当K=20,T=0.2时,=0.952(1-)当K=1.6,T=0.2时,=0.615(1-)当K=2.5,T=1时,=0.714(1-)从上面可知:当K值增大时,系统的响应应快速性好;T值减小是,系统的响应快速性变好。

3.11解解:简化传递函数方框图有ω,且显然,这是一个简单的二阶系统。

无阻尼固有频率为nω2n则,阻尼比为,有阻尼固有频率为3.12图为某数控机床系统的位置随动系统的方框图,试求: (1)阻尼比ξ及无阻尼比固有频率w n ; (2)求该系统的M p ,t p ,t s 和N 。

解:G k (s)=9(1)s s + H(S)=1 G B (s)=9(1)91(1)s s s s +++ =929s s ++ 该系统为一简单的二阶系统,其中w n =3s-1, ξ=16w d =w 21ξ-2116⎛⎫- ⎪⎝⎭-1=2.958s -1 σ=ξw n =0.5β=arctan w d σ⎛⎫⎪ ⎪⎝⎭=arctan5.916=1.403 则单位阶跃响应参数t r=w dπβ-=0.587st p =w dπ=1.062sM p =w de σπ⎛⎫ ⎪- ⎪⎝⎭=0.538=53.8%过度过程时间t s若△=2%,t s =4σ=8s若△=5%,t s =2s dt w π3σ=6s振荡次数N若△=2%,N=2s dt w ππξ=3.7≈4若△=5%,N=2s dt w ππξ≈33 . 12 图为某数控机床系统的位置随动系统的方框图,试求:(1) 阻尼比ξ及无阻尼固有频率 ωn;(2) 该系统的Mp,t p ,t s 和 N 。

解: ΘG K (s )=)1(9+s s H (s) = 1G B(s )=1)s(s 911)s(s 9+++ = 992++s s显然,该系统为一简单二阶系统,其中ωn= 3s 1-;ξ= 61,即它是一个二阶欠阻尼系统。

ωd= ωnξ21-=3 ⨯ )61(21-s 1- = 2.958s1-σ = ξωn= 3 ⨯ 61= 0.5 β = arctan(σωd ) = arctan5.916 = 1.403则单位阶跃响应参数为 上升时间t r = ωβπd- =958.2403.114.3- s = 0.587 s峰值时间t p =ωπd=958.214.3 s = 1.062 s 最大超调量 Mp=edπσω)(- =e14.3958.25.0⨯-= 0.538 = 53.8%过度过程时间若 ∆= 2%t s =σ4 = 5.04s = 8 s若 ∆= 5% t s = σ3= 5.03s = 6 s振荡次数 N =ωπdst2若 ∆= 2% N =ωπdst2 =πξξ212- = 3.7 ≈ 4若 ∆= 5% N =ωπdst2 =πξξ215.1- = 2.828 ≈ 33.13 试求下述系统在单位斜坡函数r (t )=t (t ≥0) 输入的响应y(t)和误差函数e(t)。

1(1)()1G s Ts =+ 222(2)()(01)2n n n G s s s ξξωωω=≤<++21[()]L r t s =解:(1)∵22221111()()11s s T T Y s G s s T s s s T =⋅=⋅=-+++221()[]1tTs T T y t L t T Tes s T -=-+=-++∴tt TT--∴ e(t)=t-y(t)=t-(t-T+Te )=T-Te2212n n s s ωξωω⋅⋅++2n 221(2) ∵ Y(s)=G(s)=s s22(cos )n td d net t ξωξξωωωω-+n2∴ y(t)=t-tn ξωξωω≥n -d 2e =t-0)ωω=d 其中,tξωξωω≥n -d n 2e 则 e(t)=t-y(t)=0)3.15 要使图(题3.15)所示系统的单位阶跃响应的最大超调量等于25%,峰值时间p t 为2秒。

相关文档
最新文档