第一章 矩阵的运算与初等变换(第一讲)
基础公共课复习资料-线性代数知识点汇总
第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
矩阵论简明教程(第二版)第一讲[1]
所以A的特征值为1 2 2,3 7.
当1 2 2时,解方程组 2 I A x 0.由 2 2 1 2 2 1 2 I A 2 4 4 0 0 0 2 4 4 0 0 0
1 k 1
1
1 3 E i, j k
1
k 1
1
三、其他特殊矩阵
k 1 幂零矩阵: A 0, k : 某正整数;
A 2 幂等矩阵:
C11 C12 C21 C22 则AB Cs1 Cs 2
C1r t C2 r , 其中 Cij Aik Bkj k 1 Csr i 1, 2, , s; j 1, 2, , r
4、转置与共轭转置
A11 A21 设 A As1 A12 A22 As 2
k3 x3,k3 0.
二、特征值与特征向量的性质 定义3
设A aij
定理1
nn
C
nn
, 称 a11 a22 ann .
ann为A的迹,记为
trA,即trA a11 a22
设n 阶方阵A aij
1 1 +2 + +n a11 a22 ann =trA; 2 12 n det A; 3 AT的特征值是1,2, ,n ,而AH的特征值是
2 2 得基础解系 x1 1 , x2 0 0 1
所以对应1 2 2的全部特征向量为 k1 x1 k2 x2 , 其中k1 , k2不同时为0.
当3 7时,解方程组 7 I A x 0.由 8 2 2 1 0 0.5 7 I A 2 5 4 0 1 1 2 4 5 0 0 0 1 得基础解系 x3 2 , 故对应3 7的全部特征向量为 2
第一章 矩阵
(c)
对称矩阵的和、差、数乘仍是对称矩阵; 反对称矩阵的和、差、数乘仍是反对称矩阵,
但:设 n 方阵 A,B 对称,则 AB 对称 ⇔ AB = BA ; 设 对称 ⇔ AB = BA . 另: A 为任意级方阵,则 A + A′ 为对称矩阵, A − A′ 为反对称矩阵, 且 A 可表为对称矩阵与反对称矩阵之和 A =
⎛ Er ⇔ 对任意 A ∈ P m×n 都可以经过行和列的初等变换化为 ⎜ ⎜ 0 ⎝ ⎛ Er ⇔ 存在可逆矩阵 U ∈ F m× m , Q ∈ F m×n ,使得 UAQ = ⎜ ⎜ 0 ⎝
3.可逆矩阵
(1)定义:设 A ∈ P n×n ,若存在 B ∈ P n×n ,使得 AB = BA = E ,则称 A 是可逆矩阵,并 称 B 是 A 的逆矩阵,记为 B = A −1 。 (2)一些性质:
a12 ⎛ b11 ⎜ ⎜b L ain )⎜ 21 L ⎜ ⎜b ⎝ n1 b12 b22
(ai1
ai 2
L
an2
L b1m ⎞ ⎟ L b2 m ⎟ = (ci1 L L⎟ ⎟ L abm ⎟ ⎠
ci 2 L cin ) ,
及其它分块方法. (ii)可逆分块矩阵的逆: ⎛ A1 ⎜ ⎜ 设A=⎜ ⎜ ⎜ ⎝ A2 ⎞ ⎟ ⎟ ⎟ ,其中 Ai 为方阵,则 O ⎟ As ⎟ ⎠
A 可逆 ⇔ Ai ≠ 0, i = 1,L , s ⇔ Ai可逆, i = 1,L , s ,且
⎡ A1−1 ⎢ −1 A =⎢ ⎢ ⎢ ⎢ ⎣
−1 A2
⎤ ⎥ ⎥ ⎥ O ⎥ As−1 ⎥ ⎦.
2
主讲:陈顺民
数学竞赛:高等代数部分
另:两个相同分法的准对角矩阵的和、积仍然是分块对角矩阵,且主 对角线上的子块是对应子块的和、积。 (iii)一般: AB ≠ BA ; ( AB ) ≠ A k B k (但不排除特殊情况)
高等代数 (11)
0 0
a11 a21
a12 a11
a22
a12
a21
a22Biblioteka a121 a122a21a11 a22a12
a11a21 a12a22
a221 a222
a121 a122 0, a221 a222 0 a11 a12 a21 a22 0 A O
a11
A AT
T
AT
AT
T
AT A
A AT
A AT对称
思考: 设A 与 B 同阶反称, 则A+B ( A B, AB ) 对称, 反称?
例6. 若实矩阵(元均为实数) A 满足 AAT = O, 证明 A = O. 2阶矩阵赋予灵感:
设
A
a11
a21
a12 a22
0
0
同阶对称矩阵之和是否仍为对称矩阵? 同阶对称矩阵的乘积是否仍为对称矩阵? 解: 设 A, B 对称, 则
AT A
kAT kAT kA
AT A, BT B A BT AT BT A B
kA 对称 A B 对称
1
A
2
2 1
0
,
B
1
1 1
1
AB
2
21
0
1
1 3
反对称矩阵 AT A
反对称(反称) 矩阵:
AT A 即aii 0, aij a ji , i j
1 方阵
2 沿着对角线, 对称位置上的元相反 : aij a ji
例1. 下列矩阵是否为对称矩阵, 反称矩阵?
2 1 1
A
1 1
0 0
0 5
,
A 对称
0 3 1
第一章线性代数
2. 初等矩阵的性质 定理1.1. 定理1.1. 对m×n矩阵A施行一次初等行变换 矩阵A施行一次初等行 相当于在A 相当于在A的左边乘以相应的初等 矩阵; 施行一次初等列 矩阵; 对A施行一次初等列变换相 当于在A 当于在A的右边乘以相应的初等矩 阵.
第一章 矩阵
§1.5 方阵的逆矩阵
§1.5 方阵的逆矩阵 一. 逆矩阵的概念 1. 定义: 设A为方阵, 若存在方阵B, 使得 定义: 为方阵, 若存在方阵B AB = BA = E, 则称A可逆, 并称B 则称A可逆, 并称B为A的逆矩阵. 逆矩阵. 2. 逆矩阵是唯一的, A−1. 逆矩阵是唯一的, 记为A 记为 3. 性质:设A, B为同阶可逆方阵, 数k ≠ 0. 则 性质: 为同阶可逆方阵, (1) (A−1)−1 = A. (2) (AT)−1 = (A−1)T. (A (3) (kA)−1 = k−1A−1. (4) (AB)−1 = B−1A−1.
则λA =
λA11 λA12 … λA1r λA21 λA22 … λA2r
… … … … . λAs1 λAs2 … λAsr
第一章 矩阵
§1.3 分块矩阵
3. 分块乘法
设A为m×l矩阵, B为l ×n矩阵, 将它们分块如下 矩阵, 矩阵, A11 A12 … A1t B11 B12 … B1r A21 A22 … A2t B21 B22 … B2r A= … … … … , B= … … … … , As1 As2 … Ast Bt1 Bt2 … Btr 其中A 的列数分别与B 其中Ai1, Ai2, …, Ait的列数分别与B1j, B2j, …, Btj的 行数相等. 行数相等. C11 C12 … C1r t C21 C22 … C2r 其中C 则AB = … … … … , 其中Cij = Σ AikBkj , k=1 Cs1 Cs2 … Csr (i = 1, 2, …, s; j = 1, 2, …, r.)
第一章 矩阵
阳光普照
定义3 规定数 与矩阵 A [ai j ]mn 的乘积 A 为
A A [ai j ]m n .
显然
0 A O, 1 A A. A (1) A [ai j ]m n 称为矩阵A的负矩阵。
数乘满足运算律:
1 A A; 2 A A A;
二、矩阵的乘法运算
显然可考虑定义矩阵的乘法和除法为:
A B [ai j bi j ]mn
和
A B [ai j bi j ]mn ,
这是个著名的病态矩阵,称为Hilbert矩阵。
例 4 (图的邻接矩阵) 某航空公司在A,B,C,D四城市之间开辟了若干 航线 ,如图所示表示了四城市间的航班图,如果 从A到B有航班,则用箭头从 A指向 B.
到达城市
A
出 发 城 市
B
C
D
A
B
C
A B C D
D
我们先用表格来表示航班图(见前页) 。表格中
太繁琐了,得换个思路!!
注意到二元一次方程组的解完全由未知数系数
a11、a12、a21、a22
及常数项 b1、b2 所确定。
三元一次方程组的解完全由未知数系数
a11、a12、a13、a21、a22、a23、a31、a32、a33
及常数项 b1、b2、b3 所确定。
一般地,归纳可知,n元的线性方程组
将上式回代入
(1)
中,并整理,可得
b1a22 b2a12 x1 a11a22 a12a21
对于三元一次线性方程组
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a x a x a x b 32 2 33 3 3 31 1
《线性代数》学习指南
学习指南《线性代数》是理工科及经济管理各学科专业的一门重要数学基础课程。
它的课程目标是通过各个教学环节,充分利用数学软件工具,运用各种教学手段和方法,系统地向学生阐述矩阵、向量、线性方程组的基本理论与基本方法,使学生掌握线性代数的基本概念、基本原理与基本计算方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,培养学生逻辑思维能力、抽象思维能力、分析问题与解决问题的能力、运用计算机解决与线性代数相关的实际问题的能力,为学习后继课程的学习,从事工程技术、经济管理工作,科学研究以及开拓新技术领域打下坚实的基础 。
第一章 矩阵矩阵是研究线性方程组和其他相关问题的有力工具,也是线性代数的主要研究对象之一。
矩阵作为一种抽象数学结构的具体表现,其理论与方法在自然科学、工程技术、经济管理、社会领域都具有广泛的应用。
本章从实际问题出发,引出矩阵的概念,讨论矩阵的运算及其性质,逆矩阵及其求法,矩阵的分块,矩阵的初等变换与初等矩阵的概念与性质。
重点是矩阵的运算,特别是矩阵的乘法运算,逆矩阵及其性质,初等变换、初等矩阵的概念与性质,用初等变换化矩阵为阶梯形与最简形,用初等变换和定义法求逆矩阵的方法。
1. 矩阵是初学线性代数认识的第一个概念。
矩阵不仅是线性代数主要讨论的对象之一,而且是非常重要的数学工具,它的理论和方法贯穿于本课程始终。
本章的重点之一是矩阵的各种运算,其中又以矩阵的乘法最为重要,它也是难点之一。
两个矩阵的乘积是有条件的,不是任何两个矩阵都能相乘的。
AB 有意义,必须是A 的列数等于B 的行数,而积矩阵AB 的行数等于A 的行数,列数等于B 的列数。
积矩阵AB 的第i 行第j 列元素等于左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积之和。
读者务必掌握矩阵乘法的实质。
矩阵的乘法与数的乘法不同。
尤其要注意以下三点:(1)矩阵乘法不满足交换律。
当乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,也不一定有AB BA =。
线性代数复习提纲
第一章 矩阵1 矩阵的概念特殊矩阵:行矩阵、列矩阵、对角矩阵、上三角阵、下三角矩阵、单位矩阵、对称矩阵、反对称矩阵。
2 矩阵的运算:(1)矩阵的线性运算及其运算规律-矩阵的加法(减法)和数乘。
(2)矩阵的乘法:能够进行乘法运算必须具备的条件,运算方法,左乘与右乘的区别。
乘法的运算规律(应用较为普遍的是矩阵乘法满足结合律) (3)矩阵的转置:(AB)T =B T A T(4)矩阵的逆:AB=BA=I →A -1=B 矩阵的逆唯一 运算规律: (A -1) -1= A ;(λA) -1= λ-1A -1;(AB) -1=B -1A -1;(A T ) -1=(A -1) T 矩阵逆的计算方法:待定系数法、初等变换法、伴随矩阵法。
3 分块矩阵及其运算第二章 线性方程组与矩阵初等变换 1 线性方程组与矩阵的一一对应关系2 高斯消元法:线性方程组的三种变换→阶梯形方程组。
3 利用矩阵初等变换解线性方程组:三种初等变换→行阶梯形矩阵→行最简形矩阵4 非齐次线性方程组解的三种情形的讨论⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++0000000000000000000011,221,2222111,111211r r rn r r rr nr r nr r d d c c c d c c c c d c c c c c(1)无解(2)唯一解(3)无数解 5矩阵等价的概念 6 初等矩阵的概念7 初等矩阵与矩阵初等变换的关系8 逆矩阵定理:设A 是n 阶矩阵,那么下列各命题等价: (1)A 是可逆矩阵;(2)齐次线性方程组Ax =0只有零解; (3)A 可以经过有限次初等行变换化为In ; (4)A 可表示为有限个初等矩阵的乘积。
9 利用矩阵初等变换求矩阵的逆 A 可以经过一系列初等行变换化为I ; I 经过这同一系列初等行变换化为A -1P s …P 2P 1 (A | I n )=(I n |A -1)第三章 行列式1 n 阶行列式的定义(1)全排列及其奇偶性:逆序数的概念,对换,相邻对换。
第一章 矩阵的运算与初等变换(第一讲)
教学时间:6学时.
机动 目录 上页 下页 返回 结束
§1
1.1
矩阵与向量的概念
矩阵的概念
1. 矩阵的引出 考察线性方程组
x1 x 2 2 x 3 1 2 x1 3 x 2 x 3 2 x 2x 3x 4 2 3 1
隐去未知量和等号,分离出各未知量的系数,
1 2 1 1 3 2 2 1 3 1 2 4
线性代数
绪论
课程的性质
线性代数是数学的一个分支,是数学的基础理论课 之一。它既是学习数学的必修课,也是学习其他专业课的 必修课。
内容与任务
线性代数是研究有限维线性空间及其线性变换的基本 理论,包括矩阵及矩阵的初等变换、方阵的行列式、可逆 矩阵的逆矩阵、线性方程组与向量组的线性相关性、相似 矩阵及二次型等内容。 既有一定的理论推导、又有大量 的繁杂运算。有利于培养学生逻辑思维能力、分析问题和 动手解决问题的能力。
3. 基本向量
1 0 0 0 1 0 , e , , e , 基本列向量: e1 2 n 0 0 1 基本行向量:f1=(1,0,…,0),f2=(0,1, …,0), …,
1 0 1
1 1 2
2 3 1 1 1 2
2 1 3
5 2 , 1
6 3 , 3
则 f (A) = A2- 3A + 2E
线性代数第一章
a1n aM2n , amn
称为m行n 列矩阵, 简称m n 矩阵. 其中aij称为矩阵
的第i行第 j 列元素, 也称为矩阵的(i, j)元.
矩阵常用大写英文字母表示,如 A, B,C,L . 有时记作 [aij ], Amn,或[aij ]mn .
a11 a12 L
A
a21 M
a22 M
65 3 2
6 0
r2 2r1
r3 r1 r3 4r1
0 0
1 1
2 2
0 0
3 3
2 2
4 7 6 14 5 12
0 1 2 2 1 4
1 2 1 3 1 2
1 2 1 0 5 7
r3 r2
r3 r2
0
1
2 0 3 2 12r3 0 1
20
3
2
r3 r4 0 0 0 2 4 6 r13r3 0 0 0 1 2 3
L
am1 am2 L
a1n aM2n aij amn
当P = R时 , 矩阵A称为实矩阵; 当P = C时 , 矩阵A称为复矩阵.
特殊矩阵
(1)零矩阵:元素全为零的矩阵,记作 Osn , 或O .
(2)行向量(矩阵):只有一行的矩阵. (3)列向量(矩阵):只有一列的矩阵.
同型矩阵:行数、列数均相等的两个矩 阵.
转置矩阵
定义1.2.3 将一个m n矩阵
a11 a12 L
A
a21
a22
L
M M
am1 am2 L
a1n
a2
n
M
amn
的行依次变列(或列依次变行)所得到的n m 矩阵
a11 a21 L
a12
矩阵论简明教程第三版大纲
矩阵论简明教程第三版大纲第一章:引言- 矩阵的定义与基本概念- 矩阵的运算法则- 矩阵的特殊类型(零矩阵、单位矩阵、对角矩阵等)第二章:线性方程组与矩阵- 线性方程组的矩阵表示- 线性方程组的解的判定与求解- 齐次线性方程组与非齐次线性方程组- 线性相关与线性无关性质第三章:矩阵的初等变换与矩阵的秩- 矩阵的初等变换及其性质- 矩阵的行阶梯形与行简化阶梯形- 矩阵的秩及其性质- 矩阵的秩与线性方程组解的关系第四章:矩阵的逆与行列式- 矩阵的逆的定义与性质- 矩阵的可逆性判定- 矩阵的伴随矩阵与逆矩阵的性质- 矩阵的行列式的定义与性质- 矩阵的行列式的计算方法第五章:特征值与特征向量- 矩阵的特征值与特征向量的定义与性质- 矩阵的特征值与特征向量的计算方法- 矩阵的对角化与相似矩阵- 特征值与特征向量在几何中的应用第六章:正交变换与正交矩阵- 正交变换的定义与性质- 正交矩阵的性质与判定- 正交变换在几何中的应用- 施密特正交化与正交矩阵的计算方法第七章:复数与复矩阵- 复数与复数域- 复矩阵的定义与性质- 复矩阵的运算法则- 复矩阵的特殊类型(Hermitian矩阵、Unitary矩阵等)第八章:广义逆与线性方程组的最小二乘解- 广义逆的定义与性质- 广义逆与线性方程组的关系- 最小二乘解的定义与性质- 最小二乘解的计算方法第九章:矩阵函数与矩阵方程- 矩阵函数的定义与性质- 矩阵方程的解的存在性与唯一性- 矩阵方程的求解方法第十章:矩阵的分解与应用- 矩阵的LU分解与求解线性方程组- 矩阵的QR分解与最小二乘问题- 矩阵的奇异值分解与主成分分析- 矩阵的特征值分解与对角化。
线性代数考研讲义完整版(完整资料).doc
【最新整理,下载后即可编辑】考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲 基本概念1.线性方程组的基本概念线性方程组的一般形式为: a 11x 1+a 12x 2+…+a 1n x n =b 1,a 21x 1+a 22x 2+…+a 2n x n =b 2,… … … …a m1x 1+a m2x 2+…+a mn x n =b m ,其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足:当每个方程中的未知数x i 都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m ⨯n 个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个m ⨯n 型矩阵.例如2 -1 0 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a 11 a 12 … a 1n a 11 a 12 … a 1nb 1A = a 21 a 22 … a 2n 和(A |)= a 21 a 22 … a 2n b 2… … … … … … …a m1 a m2 … a mn a m1 a m2 … a mnb m为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等(记作A =B ),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a 1,a 2,⋯ ,a n 的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为1,2,⋯ ,n 时(它们都是表示为列的形式!)可记A =(1,2,⋯ ,n ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A .④ 数乘结合律: c(d)A =(cd)A .⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A ').有以下规律:① (A T )T = A .② (A +B )T =A T +B T .③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T 表示行向量,当是行向量时, T 表示列向量.向量组的线性组合:设1,2,…,s 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称c 11+c 22+…+c s s 为1,2,…,s 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n 阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E (或I ).数量矩阵: 对角线上的的元素都等于一个常数c 的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn 如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 0023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(nn n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如 |,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵:(A |)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1③1+a 1 1 1a 2 a a a 1 1+x 1 12 2+a 2 2a a 2 a a . 1 1 1+x 1 .3 3 3+a 3 .a a a 2 a 1 1 1 1+x4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A |=2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i i i a b a b a b ++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB . AB 的行数和A 相等,列数和B 相等. AB 的(i,j)位元素等于A 的第i 个行向量和B 的第j 个列向量(维数相同)对应分量乘积之和.设 a 11 a 12 … a 1n b 11 b 12 … b 1s c 11c 12 … c 1sA = a 21 a 22 … a 2nB = b 21 b 22 … b 2sC =AB =c 21 c 22 … c 2s… … … … … …… … …a m1 a m2 … a mn ,b n1 b n2 … b ns ,c m1c m2 … c ms ,则c ij =a i1b 1j +a i2b 2j +…+a in b nj .矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件.② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由AB =0推不出A =0或B =0.由AB =AC 和A ≠0推不出B =C .(无左消去律)由BA =CA 和A ≠0推不出B =C . (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC .② 数乘性质 (c A )B =c(AB ).③ 结合律 (AB )C = A (BC ).④ (AB )T =B T A T .2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A的连乘积.规定A 0=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h .② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为1,2,…,n ,B的列向量组为1,2,…,s , AB 的列向量组为1,2,…,s ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:i =A i ,i=1,2,…,s.即A (1,2,…,s )= (A 1,A 2,…,A s ).② =(b 1,b 2,…,b n )T ,则A = b 11+b 22+…+b n n .应用这两个性质可以得到:如果i =(b 1i ,b 2i ,…,b ni )T ,则i =A I =b 1i 1+b 2i 2+…+b ni n .即:乘积矩阵AB 的第i 个列向量i 是A 的列向量组1,2,…,n 的线性组合,组合系数就是B 的第i 个列向量i的各分量.类似地, 乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c 倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s 列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E,CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)② 如果A 和B 都可逆,则AB 也可逆,并且(AB )-1=B -1A -1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E (i,j)-1= E (i,j), E (i(c))-1=E (i(c -1)), E (i,j(c))-1= E (i,j(-c)).(4) 逆矩阵的计算和伴随矩阵① 计算逆矩阵的初等变换法当A 可逆时, A -1是矩阵方程AX =E 的解,于是可用初等行变换求A -1:(A |E )→(E |A -1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.② 伴随矩阵若A 是n 阶矩阵,记A ij 是|A |的(i,j)位元素的代数余子式,规定A的伴随矩阵为A 11 A 21 … A n1A *= A 12 A 22 … A n2 =(A ij )T .… … …A 1n A 2n … A mn请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时, A *和A -1有密切关系.基本公式: AA *=A *A =|A |E .于是对于可逆矩阵A ,有A -1=A */|A |, 即A *=|A |A -1.因此可通过求A *来计算A -1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc ≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T,A=E-T,B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n =A n-2+A 2-E . (2) 求A n .例4设A 为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足 A1=1+2+3, A 2=22+3,A 3=22+33.求作矩阵B ,使得A (1,2,3)=(1,2,3)B . (2005年数学四)例5设3阶矩阵A =(1,2,3),|A |=1,B =(1+2+3,1+22+33,1+42+93),求|B |.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A 是3阶矩阵, 是3维列向量,使得P =(,A ,A 2)可逆,并且A 3=3A -2A 2.又3阶矩阵B 满足A =PBP -1.(1)求B .(2)求|A +E |.(01一)2 1 0例8 3阶矩阵A ,B 满足ABA *=2BA *+E ,其中A = 1 2 0 ,求|B |.(04一)0 0 1例9 3 -5 1设3阶矩阵A = 1 -1 0 , A -1XA =XA +2A ,求X .-1 0 2例10 1 1 -1设3阶矩阵A = -1 1 1 , A *X =A -1+2X ,求X .1 -1 1例11 4阶矩阵A ,B 满足ABA -1=BA -1+3E ,已知1 0 0 0A *= 0 1 0 0 ,求B . (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A = 2 1 0 , B = 0 0 0 , XA +2B =AB +2X ,求X 11.2 13 0 0 -1例13 设1=(5,1,-5)T ,2=(1,-3,2)T ,3=(1,-2,1)T ,矩阵A满足A 1=(4,3) T , A 2=(7,-8) T , A 3=(5,-5) T ,求A .2.概念和证明题例14 设A 是n 阶非零实矩阵,满足A *=A T .证明:(1)|A |>0.(2)如果n>2,则|A |=1.例15 设矩阵A =(a ij )3 3满足A *=A T ,a 11,a 12,a 13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵,E+AB可逆,证明(E+AB)-1A 也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C 为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例 3 (1)提示:A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 1 .1 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系 设1,2,…,s 是一个n 维向量组.如果n 维向量等于1,2,…,s 的一个线性组合,就说可以用1,2,…,s 线性表示.如果n 维向量组1,2,…,t 中的每一个都可以可以用1,2,…,s 线性表示,就说向量 1,2,…,t 可以用1,2,…,s 线性表示.判别“是否可以用1,2,…,s 线性表示? 表示方式是否唯一?”就是问:向量方程x 11+x 22+…+x s s =是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A 为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组1,2,…,t 可以用1,2,…,s 线性表示,则矩阵(1,2,…,t )等于矩阵(1,2,…,s )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是i 对1,2,…,s 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t 可以用1,2,…,s 线性表示,而1,2,…,s 可以用γ1,γ2,…,γr 线性表示,则1,2,…,t 可以用γ1,γ2,…,γr 线性表示.当向量组1,2,…,s 和1,2,…,t 互相都可以表示时就说它们等价并记作1,2,…,s ≅1,2,…,t. 等价关系也有传递性.。
北京科技大学线性代数课件1
0 0 1 O a 0 0 0 b 1 B 1 1 b
0 0 0 a 0 0 A2 A3 A4 其中 A1 0 1 b 1 1 1 b 0
Ait Btj Aik Bkj
线性代数1-2
例2 设 1 0 0 1 A 1 2 1 1 2 解: 1 0 E 0 1 A 1 2 1 A1 1
0 0 0 0 , 1 0 0 1
1 A1 0 1 1 1 0 1 2 1 B B 1 21 0 14 1 1 2
线性代数1-2
例
a 0 A 1 0 a 0 A 1 0
1 0 0 a A a 0 0 A O 0 , 0 b 1 E B 1 E 1 1 b 0 1 0 0 a 0 0 ( A1 , A2 , A3 , A4 ) 0 b 1 1 1 b a 1
0 2 4 1
1 0 3 3
0 1 . 3 1
线性代数1-2
例2 设 1 0 0 1 A 1 2 1 1 2 解 1 0 E 0 1 A 1 2 1 A1 1
0 0 1 0 0 0 1 2 , B 1 0 1 0 1 1 0 1
线性代数1-2
第一章 矩阵
1.2分块矩阵
分块矩阵的概念 分块矩阵的运算规则
线性代数1-2
2.分块矩阵的运算规则 分块的原则: (1)分块的目的是为了简化矩阵运算; (2)矩阵分块后必须使子块能够运)分块对角阵
线性代数1-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑩负矩阵
设A = (aij ) m×n , 称 - A = (aij ) m×n 为矩阵A的负矩阵.
11 对称矩阵
设A = (aij ) n×n , 且aij = a ji , 则称A为对称矩阵.
12 反对称矩阵 .
设A = (aij ) n譶 , 且aij = -a ji , 则称A为反对称矩阵.
2 4 2 4 0 0 BA = 1 2 = . 0 0 3 6
机动 目录 上页 下页 返回 结束
3. 运算律 1) 矩阵的乘法一般不满足交换律; 2) (AB)C = A(BC); 3) λ (AB) = (λA) B = A(λ B),( 其中λ为数 ); 4) A ( B + C ) = AB + AC; ( B + C ) A = BA + CA. 4. 方阵的幂运算 设 A为 n 阶方阵. k , l 为正整数
机动 目录 上页 下页 返回 结束
2.3 矩阵与矩阵相乘 1. 定义 定义2.3 设 A =(aij)m×s , B = ( bij )s×n 矩阵,那末规 定义 定矩阵 A与矩 B 的乘积是一个m×n矩阵C = ( c ij )m×n .其 中
cij = ai1b1 j + ai 2b2 j + L + ais bsj
机动 目录 上页 下页 返回 结束
3. 几种特殊的矩阵 ①同型矩阵:行数和列数都分别相等的矩阵. ②相等矩阵:同型矩阵,对应元素相等. ③方阵
a11 a 12 A= M an1
a12 L a1n a22 L a2 n . M M an 2 L ann
机动 目录 上页 下页 返回 结束
机动目录ຫໍສະໝຸດ 上页下页返回
结束
教学目的: 教学目的:通过本章的教学使学生了解矩阵的概念, 掌握矩阵的运算,认识矩阵在线性代数学中的地位与作用, 为今后的学习打好基础. 教学要求:理解矩阵的概念,熟练掌握矩阵的各种运 教学要求 算,会用矩阵解决各种实际问题. 教学重点:正确理解矩阵的概念,熟练掌握矩阵的各 教学重点: 种运算. 教学难点: 教学难点:矩阵的乘法运算与矩阵的初等变换.分块矩 阵,特别是分块矩阵的乘法运算. 教学时间:6学时. 教学时间
1
4
2
3
则 A2 表示从 i 市经一次中转到 j 市的单向航线的条数 构成的矩阵.
机动 目录 上页 下页 返回 结束
小结: 1,计算矩阵的加减法时,要注意必须是同型矩阵. 2,计算矩阵的乘法时,要注意前一个矩阵的列数必 须等于后一个矩阵的行数,这样的两个矩阵才能相乘. 3,要注意矩阵的乘法不满足交换律. 作业:标准化作业本第一章作业.
用途与特点
线性代数理论不仅为学习后续课程奠定必要的数学基 础,而且在工农业生产如国防技术中有着广泛的应用,是 理工科大学生的一门重要的数学基础课.该课程的特点是: 公式多,式子大,符号繁,但规律性强,课程内容比较抽 象,需要学生具备一定的抽象思维能力,逻辑推理能力, 分析问题能力和动手解决实际问题的能力.
1 4
2
3
机动 目录 上页 下页 返回 结束
若令
1 从i市到j市有一条单向航线; aij = 0 从 i 市到 j 市没有单向航线.
则图中的航线用矩阵表示为
0 1 A= 0 1
1 1 1 0 0 0 . 1 0 0 0 1 0
机动 目录 上页 下页 返回 结束
1.2 向量的概念 1. 向量的概念 定义1.2 维列向量,1行n列的矩阵 定义1.2 n行1列的矩阵称为n维列向量 维列向量 称为n 为行向量.它们都简称为向量 为行向量. 向量. 向量 2. 表示法:α ,β ,γ ,ξ ,η ,x ,y ,z ,等. 3. 基本向量
1 0 E= M 0
0 L 0 1 L 0 . M O M 0 L 1
机动
目录
上页
下页
返回
结束
⑦行矩阵
A = (a11 , a12 ,L , a1n ) .
b11 b 21 . ⑧列矩阵 B = M bm1
0 0 ⑨零矩阵 O = M 0
0 L 0 0 L 0 . M O M 0 L 0
机动
目录
上页
下页
返回
结束
4.
矩阵的应用
例1.某厂向三个商店发送四种产品,其发送的数量和 单价及单件的重量都可用矩阵来刻划. 若用aij表示为工厂向第 i 店发送第j 种产品数量,则 矩阵
a11 A = a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 , a34
表示了工厂向三个商店发送四种产品的数量.
机动 目录 上页 下页 返回 结束
若用bi1 表示第 i 种产品的单价,bi2 表示第 i 种产品的 单件重量,则着四件产品的单价即单件重量也可用矩阵表 示为
b11 b12 b b22 21 B= . b31 b32 b41 b42
例2. 四个城市间的单向航线如下图所示.
线性代数
普通高等学校国家级"十五"规划教材 大学数学系列教材
线性代数
吉林大学大学数学系列教材编委会 主编:戴天时 陈殿友 2006.2
绪论
课程的性质
线性代数是数学的一个分支,是数学的基础理论课 之一.它既是学习数学的必修课,也是学习其他专业课的 必修课.
内容与任务
线性代数是研究有限维线性空间及其线性变换的基本 理论,包括矩阵及矩阵的初等变换,方阵的行列式,可逆 矩阵的逆矩阵,线性方程组与向量组的线性相关性,相似 矩阵及二次型等内容. 既有一定的理论推导,又有大量 的繁杂运算.有利于培养学生逻辑思维能力,分析问题和 动手解决问题的能力.
λa11 λa 21 L λam1 λa12 λa22 L λam 2 λa1n L λa2 n . L L L λamn L
机动 目录 上页 下页 返回 结束
λA = Aλ=
2. 运算律 数乘矩阵满足下列运算规律: 设 A,B 为 m×n 矩阵,λ,为数 1) (λ)A = λ ( A ); 2) ( λ + ) A = λ A + A; 3) λ ( A + B ) = λA + λB. 这样定义矩阵加法和数乘矩阵的运算,统称为矩阵的 线性运算.
1 0 0 0 1 0 基本列向量: e1 = ,e2 = ,L ,en = , M M M 0 0 1
基本行向量:f1=(1,0,…,0),f2=(0,1, …,0), …,
fn=(0,0, …,1).
显然n维基本向量可排成一个n阶的单位矩阵.
§2.矩阵的运算 矩阵的运算
1) 1 24 = Ak AAL A 4 3
2) A A = A
k l
k l
k
k +l
3) ( A ) = A .
kl
注 : 一般说来 ( AB ) ≠ Ak B k .
k
机动
目录
上页
下页
返回
结束
如 A×B
a11 a = 21 a31
a12 a22 a32
a13 a23 a33
b11 b12 a14 b21 b22 . a24 b31 b32 a34 b b 41 42
= C = (cij )3×2
其中ci1是向第 i 店所发产品的总值 ,ci2是向第 i店所发 产品的总重量.C 表示为向三个商店所发产品的总值及总 重量所构成的矩阵.
机动 目录 上页 下页 返回 结束
又如
0 1 A= 0 1 2 0 2 A = 1 0
1 1 1 0 0 0 , 1 0 0 0 1 0 1 1 0 1 1 1 . 0 0 0 2 1 1
2.1 矩阵的加法 1. 定义 定义2 .1 设有两个m×n矩阵 A =(aij) 定义 末矩阵 A 与 B 的和记作 A + B , 规定为
a11 + b11 a +b 21 21 M am1 + bm1 a12 + b12 a22 + b22 M am 2 + bm 2 L
,B =(bij)那
A+ B =
a1n + b1n L a2 n + b2 n . M L amn + bmn
矩阵的 减法:A – B = A + (-B )
机动 目录 上页 下页 返回 结束
2. 运算律 矩阵的加法满足下列运算规律设 A,B,C 都是 m×n 矩阵: 1) A + B = B + A; 2)(A + B)+ C = A +( B + C ); 3) A +(-A)= A- A = O. 2.2 数与矩阵相乘 1. 定义 定义2.2 数λ与矩阵的乘积,记作 λA 或Aλ,规定为 定义
学习与要求
为学好这门课程,要求学生要认真上好每一节课深刻 理解每一节课的基本理论,熟练掌握每一节课的重点内容, 熟练运用知识点解题,能够收到举一反三,触类旁通的效 果.
第一章
第一章 矩阵的运算与初等变换
矩阵是代数学中最重要的基本概念之一,是代数学研 究的主要对象,也是数学许多分支研究及应用的重要工具, 它贯穿于线性代数的各个部分.在很多领域中的一些数量 关系都可以用矩阵来描述. 本章主要介绍矩阵的概念,性质和运算.并把向量是 视为特殊的矩阵,自然地引进向量的概念及其线性运算. 还将介绍矩阵的初等变换及分块矩阵等相关知识,为今后 的学习打下扎实的理论基础.
机动 目录 上页 下页 返回 结束
2. 矩阵的定义 定义1.1 定义1.1 由m×n个数排成m个行n个列的数表
a11 a 21 M am1 a12 a22 M am 2 L a1n L a2 n M L amn