秋九年级数学上册23用公式法求解一元二次方程课后作业2新版北师大版含答案
北师大版九年级上册数学第二章一元二次方程(解析版)
第二章一元二次方程一、单选题1.下列各方程中,一定是关于X的一元二次方程的是()A. 2x2+3=2x (5+x)B, ax2+c=0C.(a+1)炉+6升1=0D. (^2+l) x2- 3x+l=0【答案】D【解析】4.*+3=M5+、)整理得,10x-3=0,故不是一元二次方程;B.当a=0时,。
炉+。
=0不是一元二次方程:C.当a=-l时,(什1濡+6升1=0不是一元二次方程:D. aa2>0,二届+1 翔,匚d+lM -3x+l = 0 是一元二次方程:故选D.2.关于工的一元二次方程(。
-1)/+»/_] = 0的一个根是0,则。
值为()A. 1B. -1C. 1 或—1D. i【答案】B【解析】把0代入原方程,再根据原方程是一元二次方程,得到关于a的方程及不等式,解之即可.解:根据题意得:解得:a=-\.故选:B.3.下列说法不正确的是()A.方程工2=%有一根为0B.方程/一1=0的两根互为相反数C.方程(x-l)2-l = 0的两根互为相反数D.方程N—x + 2 = 0无实数根【答案】C【解析】解:A./=x,移项得:x2—x = 0,因式分解得:x(x-l)=0,解得x=0或x=l,所以有一根为0,此选项正确;B. ?-1 = 0,移项得:W=i,宜接开方得:x=l或x=-l,所以此方程的两根互为相反数,此选项正确:C. *-1)2-1 = 0,移项得:(X -1>=1,直接开方得:x-l=l或解得x=2或x=0,两根不互为相反数,此选项错误:D./ 7+2 = 0,找出a=l, b=-l, c=2,则二=l-8=-7V0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选C.4.用配方法解一元二次方程2/—3x —1=0,配方正确的是().A. 3 工一一4)1716B.3丫X- -4J【答案】A【解析】按照配方法的步骤进行求解即可得答案.解:2X 2-3X -1 = 0移项得2/—3x = l ,,3 1二次项系数化1的厂--A = 一,3 配方得Y-二X + 2 1716故选:A本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边:(2)把二次项的 系数化为1:(3)等式两边同时加上一次项系数一半的平方.5 .关于x 的一元二次方程(m-l )x?-2mx + m+l = 0,下列说法正确的是().【答案】C【解析】根据一元二次方程判别式的性质分析,即可得到答案.(m-l )x 2 - 2mx+ m + l = O 的判别式为: X —— 13 7=-+ 3 4;A.方程无实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根无法确定△二(一2〃。
推荐K12学习2018届九年级数学上册第二章一元二次方程2.3用公式法求解一元二次方程一练习新版北师
《2.3 用公式法求解一元二次方程(一)》练习一、基础过关1.用公式法解方程4x2﹣12x=3所得的解正确的是()A.x=B.x=C.x=D.x=2.关于方程x2﹣2=0的理解错误的是()A.这个方程是一元二次方程B.方程的解是C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解3.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2-3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=04.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定5.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=06.到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625C.450(1+2x)=625 D.625(1+x)2=450二、综合训练7.已知x=(b2﹣4c>0),则x2+bx+c的值为.8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为.9.根的判别式内容:△=b2﹣4ac>0⇔一元二次方程;△=b2﹣4ac=0⇔一元二次方程;此时方程的两个根为x1=x2= .△=b2﹣4ac<0⇔一元二次方程.△=b2﹣4ac≥0⇔一元二次方程.10.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.11.如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:.12.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:b= .三、拓展应用13.小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是.请你举出反例说明小红的结论是错误的.14.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的14.若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.15.已知a、b、c为实数,且,求方程ax2+bx+c=0的根.16.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.17.如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当通道宽a为10米时,花圃的面积= ;(2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.18.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.参考答案一、基础过关1.D解:方程整理得:4x2﹣12x﹣3=0,这里a=4,b=﹣12,c=﹣3,∵△=144+48=192,∴x==,故选:D.2.B解:A、这个方程是一元二次方程,正确;B、方程的解是x=±,错误;C、这个方程可以化成一元二次方程的一般形式,正确;D、这个方程可以用公式法求解,正确;故选:B.3.C解:设原正方形的边长为xm,依题意有(x-1)(x-2)=18,故选C.4.B解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.5.B解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.6.A.解:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得:450(1+x)2=625.故选A.二、综合训练7.答案为:0解:∵x=(b2﹣4c>0),∴x2+bx+c=()2+b+c=++c===0.故答案为:0.8.答案为:(100-x)(80-x)=7644解:设道路的宽应为x米,由题意有(100-x)(80-x)=7644,故答案为:(100-x)(80-x)=76449.答案为:有两个不相等的实数根;有两个相等的实数根;﹣;无解;有实数根.解:△=b2﹣4ac>0⇔一元二次方程有两个不相等的实数根;△=b2﹣4ac=0⇔一元二次方程有两个相等的实数根;此时方程的两个根为x1=x2=﹣.△=b2﹣4ac<0⇔一元二次方程无解.△=b2﹣4ac≥0⇔一元二次方程有实数根.故答案为:有两个不相等的实数根;有两个相等的实数根;﹣;无解;有实数根.10.答案为:﹣1或2.解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.11.答案为:x2-35x+34=0.解:设小道进出口的宽度为xm,根据题意,得:30×20-20×2x-30x+2x•x=532,整理,得:x2-35x+34=0.故答案为:x2-35x+34=0.12.答案为3.解:∵关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,∴△=b2﹣8>0,∴b>2或b<﹣2,∴b为3,4,5等等,∴b为3(答案不唯一).故答案为3.三、拓展应用13.解:如方程x2+5x+6=0,(x+2)(x+3)=0,∴x1=﹣2,x2=﹣3,小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是.则x==,x=2和x=3,这与上面的因式分解法求得的方程的解不一致,故小红的结论是错误的.14.解:设道路的宽为x米,则可列方程:x(12-4x)+x(20-4x)+16x2=16×20×12,即:x2+4x-5=0,解得:x1=l,x2=-5(舍去).答:道路的宽为1米15.解:∵+|b+1|+(c+3)2=0,∴a=1,b=﹣1,c=﹣3,原方程为x2﹣x﹣3=0,这里a=1,b=﹣1,c=﹣3,∴x=.16.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.17.解:(1)由图可知,花圃的面积为:(40-2×10)(60-2×10)=800(平方米).故答案为:800;(2)根据题意得:60×40-(40-2a)(60-2a)=38×60×40,解得:a1=5,a2=45(舍去).答:通道的面积与花圃的面积之比能等于3:5,此时通道的宽为5米.18.解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.。
2.3 用公式法求解一元二次方程 同步练习 2021-2022学年北师大版数学九年级上册
用公式法求解一元二次方程一、选择题1.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.2.方程x(x﹣1)=2的两根为()A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=1,x2=2D.x1=﹣1,x2=2 3.用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为()A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,84.x=是下列哪个一元二次方程的根()A.2x2+3x+1=0B.2x2﹣3x+1=0C.2x2+3x﹣1=0D.2x2﹣3x﹣1=0 5.观察下列表格,一元二次方程x2﹣x=1.1的一个解x所在的范围是()x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x2﹣x0.110.240.390.560.750.96 1.19 1.44 1.71 A.1.5<x<1.6B.1.6<x<1.7C.1.7<x<1.8D.1.8<x<1.9 6.若a+b+c=0,4a﹣2b+c=0,则关于x的一元二次方程a(x﹣1)2+bx=b﹣c的解为()A.x=﹣1B.x=0C.x=﹣1或x=2D.x=﹣2或x=0 7.下列关于x的一元二次方程定有实数解的是()A.ax2﹣x+2=0B.x2﹣2x+1=0C.x2﹣x﹣m=0D.x2﹣mx﹣1=0 8.一元二次方程2019x2﹣2020x+2021=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.若关于x的方程kx2+2x+1=0有实数根,则实数k的取值范围是()A.k≠0B.k≤1C.k≥1D.k≤1且k≠0 10.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A.k≥﹣B.k≥﹣且k≠0C.k<﹣D.k>﹣且k≠011.当a+b=4时,关于x的一元二次方程﹣ax2+bx+1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定12.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+9=0B.x2﹣2x+2=0C.x2+6x+9=0D.x2+5x﹣1=0二、填空题13.已知二次多项式x2﹣ax+a﹣5.(1)当x=1时,该多项式的值为;(2)若关于x的方程x2﹣ax+a﹣5=0,有两个不相等的整数根,则正数a的值为.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m=.15.关于x的方程kx2﹣2x+1=0有一个实数数根,则k的值是.16.关于x的一元二次方程mx2﹣2x+1=0有两个不相等的实数根,则实数m的取值范围是.17.若关于x的方程x2+6x+a=0有两个相等的实数根,则a的值为.三、解答题18.用适当的方法解方程:(1)2x2+3x=1;(2)(x﹣2)(x+5)=18;(3)(x﹣1)2=4;(4)x(3x﹣6)=(x﹣2)2.19.关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)若k是符合条件的最大整数,求此时一元二次方程的解.20.已知a,b,c均为实数,且+|b+1|+(c+2)2=0,求关于x的方程ax2+bx+c=0的根.21.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合.上述材料,解决下列问题:(1)M{32,(﹣3)2,﹣32}=;(2)若min{2x+1,4x﹣3,7}=2x+1,则整数x的值是;(3)若M{5x,x2,﹣3}=min{x2,﹣3},求x的值.。
2022-2023学年北师大版九年级数学上册《2-3用公式法求解一元二次方程》同步练习题(附答案)
2022-2023学年北师大版九年级数学上册《2.3用公式法求解一元二次方程》同步练习题(附答案)一.选择题1.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+1=0B.x2﹣2x+1=0C.x2+x+1=0D.x2+2x﹣1=0 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程kx2+4x+1=0有实数根,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠0D.k≤4且k≠0 4.当k<﹣时,关于x的一元二次方程(k﹣2)x2﹣(2k﹣1)x+k=0的根的情况是()A.两个相等的实根B.两个不相等的实根C.无实根D.无法判断5.若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是()A.k≥﹣4且k≠0B.k≥﹣4C.k>﹣4 且k≠0D.k>﹣46.用公式法解方程6x﹣8=5x2时,a、b、c的值分别是()A.5、6、﹣8B.5、﹣6、﹣8C.5、﹣6、8D.6、5、﹣8 7.下列方程中,有两个不相等的实数根的方程是()A.2x2﹣7x+8=0B.16x2+9=24x C.3x2+x﹣5=0D.7x2+1=08.若关于x的方程x2+8x﹣m=0有两个相等的实数根,则m的值为()A.8B.﹣16C.16D.﹣329.关于x的方程ax2﹣2x+1=0有两个实数根,则a的取值范围是()A.a≤1B.a<1C.a≤1且a≠0D.a<1且a≠0 10.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0B.x2﹣2x+1=0C.x2﹣1=0D.x2+2x+3=0 11.下面方程中,有两个不等实数根的方程是()A.x2+x﹣1=0B.x2﹣x+1=0C.x2﹣x+=0D.x2+1=012.如果关于x的方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a B.a且a≠0C.a D.a且a≠013.已知关于x的一元二次方程x2﹣m=2x有实数根,则m的取值范围是()A.m>﹣1B.m≥﹣1C.m>0D.m≥014.一元二次方程x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根15.如果一次函数y=(m+1)x+m的图象不经过第一象限,那么关于x的一元二次方程x2+2x ﹣m=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定16.当4c>b2时,方程x2﹣bx+c=0的根的情况是()A.有两个不等实数根B.有两个相等实数根C.没有实数根D.不能确定有无实数根二.填空题17.若a,b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为.18.若实数a,b满足a2+ab﹣b2=0,则=.19.当t时,关于x的方程x2﹣3x+t=0可用公式法求解.20.已知关于x的一元二次方程kx2﹣(2k+3)x+k+1=0有实数根,则实数k的取值范围是.21.若关于x的方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,实数k的值为.22.已知关于x的方程kx2﹣2(k+1)x+k﹣1=0有两个不相等的实数根,则k的取值范围是.23.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的整数根,若k为正整数,则k=.24.方程(x+1)(x﹣2)=1的根是.25.若关于x的一元二次方程x2+6x+4m=0有两个相等的实数根,则m的值为.三.解答题26.若关于x的一元二次方程(m﹣2)x2+2x﹣1=0有实数根,求m的取值范围.27.解方程:(1).(2)4x2﹣12x+5=0.28.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有两个实数根,求m的取值范围.29.若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.30.用适当方法解下列方程(1)3x2﹣2x﹣2=0(2)x2﹣6x+9=(5﹣2x)231.已知关于x的一元二次方程x2+6x+a+3=0有两个相等的实数根,求a的值及此时这个方程的根.32.解方程:x2﹣3(2x+1)=0.33.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.求实数k 的取值范围.34.已知关于x的方程是,说明:不论m取任意实数,原方程一定有实数根.35.解方程:x2﹣6=4x﹣2x236.已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论k取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2022的值.参考答案一.选择题1.解:A、Δ=﹣4<0,方程没有实数根;B、Δ=0,方程有两个相等的实数根;C、Δ=1﹣4=﹣3<0,方程没有实数根;D、Δ=4+4=8>0,方程有两个不相等的实数根.故选:D.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:∵关于x的一元二次方程kx2+4x+1=0有实数根,∴△≥0且k≠0,则16﹣4k≥0且k≠0,解得:k≤4且k≠0,故选:D.4.解:∵a=k﹣2,b=﹣(2k﹣1),c=k,∴Δ=b2﹣4ac=[﹣(2k﹣1)]2﹣4×(k﹣2)×k=4k+1.∵当k<﹣时,Δ=4k+1<0.∴该方程无实数根.故选:C.5.解:当k=0时,原方程为﹣4x+1=0,解得:x=,∴k=0符合题意;当k≠0时,∵方程kx2﹣4x﹣1=0有实数根,∴Δ=(﹣4)2+4k≥0,解得:k≥﹣4且k≠0.综上可知:k的取值范围是k≥﹣4.故选:B.6.解:原方程可化为:5x2﹣6x+8=0;∴a=5,b=﹣6,c=8;故选C.7.解:A、Δ=(﹣7)2﹣4×2×8=49﹣64<0,方程没有实数根,所以A选项错误;B、方程变形为16x2﹣24x+9=0,Δ=(﹣24)2﹣4×16×9=0,方程两个相等的实数根,所以B选项错误;C、Δ=12﹣4×3×(﹣5)=1+60>0,方程有两个不相等的实数根,所以C选项正确;D、Δ=02﹣4×7×1<0,方程没有实数根,所以D选项错误.故选:C.8.解:∵方程x2+8x﹣m=0有两个相等的实数根,∴Δ=0,即82﹣4(﹣m)=0,解得m=﹣16,故选:B.9.解:ax2﹣2x+1=0有两个实数根,当a=0时,方程化为﹣2x+1=0,解得:x=,不合题意;故a≠0,则有b2﹣4ac=4﹣4a≥0,解得:a≤1,则m的取值范围是a≤1且a≠0.故选:C.10.解:A、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,∴有不相等的实数根;B、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴有相等的实数根;C、∵Δ=b2﹣4ac=02﹣4×1×(﹣1)=4>0,∴有不相等的实数根;D、∵Δ=b2﹣4ac=22﹣4×1×3=﹣8<0,∴没有实数根.故选:D.11.解:A、∵Δ=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根.B、∵Δ=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根.C、∵Δ=b2﹣4ac=1﹣1=0,∴方程有两个相等的实数根.D、移项后得,x2=﹣1∵任何数的平方一定是非负数.∴方程无实根.故错误.故选:A.12.解:当a=0时,原方程为x﹣1=0,解得:x=1;当a≠0时,有Δ=12﹣4a×(﹣1)=1+4a≥0,解得:a≥﹣且a≠0.综上可知:若关于x的方程ax2+x﹣1=0有实数根,则a的取值范围为a≥﹣.故选:A.13.解:∵关于x的一元二次方程x2﹣m=2x,即x2﹣2x﹣m=0有实数根,∴△≥0,即4+4m≥0,∴m≥﹣1.故选:B.14.解:∵Δ=b2﹣4ac=(﹣3)2﹣4×1×3=﹣3<0,∴方程没有实数根,故选:D.15.解:∵一次函数y=(m+1)x+m的图象不经过第一象限,∴m+1<0且m<0,∴m<﹣1,∴Δ=22﹣4×1×(﹣m)=4(m+1)<0,∴方程没有实数根.故选:C.16.解:∵4c>b2,∴b2﹣4c<0,∴方程x2﹣bx+c=0中,Δ=b2﹣4ac=b2﹣4c<0,∴方程无实数根,故选:C.二.填空题17.解:∵等腰三角形三边长分别为a、b、4,∴有a=4或b=4和a=b两种情况,当a=4或b=4时,代入方程可得42﹣6×4+n+1=0,解得n=7,此时方程为x2﹣6x+8=0,解得x=2或x=4,此时三角形的三边为2、4、4,满足条件;当a=b时,即方程有两个相等的实数根,∴Δ=0,即(﹣6)2﹣4(n+1)=0,解得n=8,此时方程为x2﹣6x+9=0,解得x1=x2=3,则三角形的三边为3、3、4,满足条件;综上可知n的值为7或8,故答案为:7或8.18.解:a2+ab﹣b2=0△=b2+4b2=5b2.a==b∴=.故答案是:19.解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴Δ=b2﹣4ac≥0,即Δ=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.20.解:∵关于x的一元二次方程kx2﹣(2k+3)x+k+1=0有实数根,∴,解得:k≥﹣且k≠0.故答案为:k≥﹣且k≠0.21.解:∵a=k﹣1,b=﹣(2k﹣2),c=﹣3,∴Δ=b2﹣4ac=(2k﹣2)2﹣4×(k﹣1)×(﹣3)=4k2+4k﹣8=0,解得:k=1或k=﹣2,∵k﹣1≠0,∴k≠1,∴k=﹣2,故答案为﹣2.22.解:∵a=k,b=﹣2(k+1),c=k﹣1,Δ=b2﹣4ac=12k+4>0,即k>﹣方程有两个不相等的实数根,则二次项系数不为零k≠0.∴k>﹣且k≠0故答案为k>﹣且k≠0.23.解:根据题意得:Δ=4﹣4(2k﹣4)=20﹣8k>0,解得:k<,∵k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=﹣1±,∵方程的解为整数,∴5﹣2k为完全平方数,∴k的值为2.故答案为2.24.解:整理得:x2﹣x﹣3=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,x=,x1=,x2=,故答案为:x1=,x2=.25.解:∵关于x的一元二次方程x2+6x+4m=0有两个相等的实数根,∴Δ=0,即62﹣4×4m=0,解得m=,故答案为:m=.三.解答题26.解:根据题意得m﹣2≠0且Δ=22﹣4(m﹣2)×(﹣1)≥0,解得m≥1且m≠2.27.解:(1)两边都乘以(x﹣1),得:2(x﹣2)+x﹣1=﹣2,解得:x=1,检验:当x=1时,最简公分母x﹣1=0,所以x=1是原分式方程的增根,则原分式方程无解;(2)∵4x2﹣12x+5=0,∴(2x﹣1)(2x﹣5)=0,则2x﹣1=0或2x﹣5=0,解得:x1=,x2=28.解:∵(m﹣2)x2﹣2x+1=0有两个实数根,∴Δ=b2﹣4ac≥0,∴4﹣4(m﹣2)≥0,∴m≤3,又知(m﹣2)x2﹣2x+1=0是一元二次方程,即m﹣2≠0,解得m≠2,故m≤3且m≠2.29.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.30.解:(1)这里a=3,b=﹣2,c=﹣2,Δ=b2﹣4ac=(﹣2)2﹣4×3×(﹣2)=28x===∴x1=,x2=;(2)(x﹣3)2﹣(5﹣2x)2=0(x﹣3+5﹣2x)(x﹣3﹣5+2x)=0即(2﹣x)(3x﹣8)=0∴2﹣x=0或3x﹣8=0∴x1=2,x2=.31.解:∵方程x2+6x+a+3=0有两个相等的实数根,∴Δ=62﹣4(a+3)=24﹣4a=0,∴a=6.把a=6代入原方程,得x2+6x+9=(x+3)2=0,解得:x1=x2=﹣3.∴这个方程的根为﹣3.32.解:∵x2﹣3(2x+1)=0,∴x2﹣6x﹣3=0,∵△=(﹣6)2﹣4×(﹣3)=48>0,∴x==3±2,∴x1=3+2,x2=3﹣2.33.解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,∴Δ>0,∴[2(k﹣1)]2﹣4(k2﹣1)>0,∴k2﹣2k+1﹣k2+1>0,整理得,﹣2k+2>0,解得k<1.故实数k的取值范围为k<1.34.解:(1)当m=﹣2时,是一元一次方程,有一个实根;(2)当m≠﹣2时,Δ=b2﹣4ac=(m+2)2+20,∵(m+2)2>0,∴(m+2)2+20>0∴方程有两个不等实根;综合上述,m为任意实数时,方程均有实数根.35.解:方程整理得:3x2﹣4x﹣6=0,∵a=3,b=﹣4,c=﹣6,∴△=16+72=88,则x1=,x2=.36.解:(1)∵Δ=(2k)2﹣4×1×(k2﹣1)=4k2﹣4k2+4=4>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)因为方程有一个根为3,所以9+6k+k2﹣1=0,即k2+6k=﹣8所以2k2+12k+2022=2(k2+6k)+2022=﹣16+2022=2006.。
《2.3 用公式法求解一元二次方程》课时同步训练 2020-2021年北师大版数学九年级上册
《2.3 用公式法求解一元二次方程》课时同步训练2020-2021年数学北师大版九(上)一.选择题(共10小题)1.用公式法解方程x2﹣6x+1=0所得的解正确的是()A.B.C.D.2.用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b()A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,83.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.4.方程x(x﹣1)=2的两根为()A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=1,x2=2D.x1=﹣1,x2=2 5.已知一元二次方程3x2+2x=0的常数项被墨水污染,当此方程有实数根时,被污染的常数项可以是()A.3B.2C.1D.06.已知关于x的一元二次方程mx2﹣2x﹣1=0有实数根,则m的取值范围是()A.m≥﹣1B.m≤﹣1C.m≥﹣1且m≠0D.m≤﹣1且m≠0 7.关于x的一元二次方程ax2﹣2x+1=0有实数根,则a的取值范围是()A.a>1B.a<1C.a≤1且a≠0D.a≥1且a≠0 8.定义新运算“a⊕b”:对于任意实数a,b都有a⊕b=(a+b)(a﹣b)﹣1.例如4⊕3=(4+3)(4﹣3)(k为实数)是关于x的方程,则它的根的情况为()A.有两个不相等的实根B.有两个相等的实根C.有一个实根D.没有实根9.将4个数a、b、c、d排成2行、2列.两边各加一条竖线,记成,并规定,例如:=8×5﹣9×3=13=﹣1的根的情况为()A.有两个不相等的实数根B.只有一个实数根C.没有实数根D.有两个相等的实数根10.问题:已知方程x2+x﹣3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y,则y=,所以x=2y.把x=2y代入已知方程,得(2y)2+2y ﹣3=0,化简,得所求方程为4y2+2y﹣3=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.应用:已知方程4x2﹣x﹣15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数()A.4y2+y﹣15=0B.4y2+y+15=0C.15y2+y﹣4=0D.15y2﹣y﹣4=0二.填空题(共8小题)11.方程4(x+1)2﹣(2x+5)(2x﹣5)=5的解为.12.李伟同学在解关于x的一元二次方程x2﹣3x+m=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,则原方程的解为.13.将方程3x2=5(x+2)化为一元二次方程的一般式为.14.已知x=(b2﹣4c≥0),则式子x2+bx+c的值是.15.关于x的方程ax2﹣bx﹣c=0的系数满足ac>0,则此方程的根x=.16.若关于x的方程x2﹣x﹣m=0有两个相等实数根,则m=.17.关于x的方程(m﹣1)x2﹣2x+3=0有两个不相等的实数根,那么m的取值范围.18.定义比如,4⊗2=22⊗(x+1)]﹣1=0,并且这个关于x的方程有两个不相等的实数解.三.解答题(共6小题)19.用公式法解方程:(1)4x2﹣4x+1=0;(2)3x2﹣2x+1=0;(3)3x(x﹣3)=2(x﹣1)(x+1).20.用公式法解方程:(1)x2+2x﹣2=0;(2)2x(x+2)=3﹣x;(3)x2﹣8x+8=17x2.21.已知关于x的一元二次方程x2﹣2x+1﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你给出一个k的值,并求出此时方程的根.22.已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为满足条件的最大的整数,求此时方程的解.23.已知关于x的方程(k﹣1)x2﹣2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.24.对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△得值;(2)如果关于x的方程x△(a△x)=有两个相等的实数根,求实数a的值.参考答案一.选择题(共10小题)1.解:∵a=1,b=﹣6,∴△=(﹣4)2﹣4×4×1=32>0,则x===3±2,故选:D.2.解:∵3x2﹣3x=8,∴3x8﹣4x﹣8=7,则a=3,b=﹣4,故选:B.3.解:这里a=3,b=5,∵△=25﹣12=13,∴x=,故选:A.4.解:方程移项并化简得x2﹣x﹣2=4,a=1,b=﹣1△=6+8=9>7∴x=解得x1=﹣1,x4=2.故选D.5.解:设常数项为c,由题意可知:△=4﹣4×8c=4﹣12c≥0,∴c≤,故选:D.6.解:∵关于x的一元二次方程mx2﹣2x﹣3=0有实数根,∴,解得:m≥﹣2且m≠0.故选:C.7.解:∵关于x的一元二次方程ax2﹣2x+6=0有实数根,∴,∴a≤4且a≠0,故选:C.8.解:∵x⊕k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣8)2﹣4(﹣k4﹣1)=4k3+5>0,∴方程有两个不相等的实数根.故选:A.9.解:∵方程=﹣1,∴3x4﹣6x=﹣1,∴7x2﹣6x+7=0,∴△=(﹣6)4﹣4×3×7>0,∴方程=﹣1两个不相等的实数根,故选:A.10.解:设所求方程的根为y,则y=﹣x,所以x=﹣y,将x=﹣y代入方程4x2﹣x﹣15=5,得:4×(﹣y)2﹣(﹣y)﹣15=8,化简,得:4y2+y﹣15=4,故选:A.二.填空题(共8小题)11.解:∵4(x+1)5﹣(2x+5)(2x﹣5)=5,∴4(x2+2x+7)﹣(4x2﹣25)﹣3=0,∴4x2+8x+4﹣7x2+25﹣5=6,∴8x+24=0,∴3x=﹣24,∴x=﹣3,故答案为:x=﹣3.12.解:由题意得:x2+3x+m=7的解为x1=1,x8=﹣4,可得m=﹣4,方程为x2﹣3x﹣4=7,分解因式得:(x﹣4)(x+1)=6,解得:x1=4,x7=﹣1.故答案为:x1=3,x2=﹣1.13.解:3x2=2(x+2),3x6=5x+10,3x5﹣5x﹣10=0,故答案为:3x2﹣5x﹣10=3.14.解:∵x=(b2﹣4c≥6),∴x2+bx+c=()2+b•+c=++==0,故答案为:0.15.解:∵ax2﹣bx﹣c=0,∴△=b5+4ac,∵对于任意实数b,b2≥8,ac>0,∴b2+7ac>0,∴一元二次方程ax2+bx+c=6有两个不相等的实数根.∴x=.故答案为:.16.解:∵方程x2﹣x﹣m=0有两个相等实数根,∴△=(﹣7)2﹣4×7×(﹣m)=1+4m=6,解得:m=﹣.17.解:根据题意得m﹣1≠0且△=(﹣7)2﹣4(m﹣2)×3>0,解得m<且m≠1.故答案为m<且m≠1.18.解:(1)当x2﹣(x+1)≤8时,方程变为kx2﹣1=7.∵方程变为kx2﹣1=3有两个不等实数根,∴△>0,即△=4k>6.∴方程的解为x=±.又∵x2﹣(x+6)≤1,∴﹣1≤x≤4,∴﹣1≤﹣<≤2.(2)当x2﹣(x+1)>5时,x>2或x<﹣1,∴方程变为k(x+6)﹣1=0.因为k≠4时,此方程是一元一次方程方程﹣1,与题意不符;当k≠8时方程不存在,不符合题意.综上,k≥.故答案为:k≥.三.解答题(共6小题)19.解:(1)∵4x2﹣6x+1=0,∴(4x﹣1)2=3,则2x﹣1=8,解得x1=x2=2.5;(2)∵3x7﹣2x+1=7,∴a=3,b=﹣2,则△=(﹣4)2﹣4×5×1=﹣8<5,∴该方程无实数根;(3)整理为一般式,得:x2﹣9x+2=0,∵a=1,b=﹣5,∴△=(﹣9)2﹣8×1×2=73>7,则x==,即x4=,x6=.20.解:(1)∵a=1,b=2,∴△=b5﹣4ac=4+2=12>0,∴x==﹣7±,即x1=﹣8+,x2=﹣7﹣;(2)方程化为2x3+5x﹣3=2,∴a=2,b=5,∴△=b6﹣4ac=56+4×2×5=49>0,∴方程有两个不等的实数根∴x==,∴x1=,x2=﹣3;(3)方程化为4x2+x﹣1=3,∴a=2,b=1,∴△=b7﹣4ac=17﹣4×2×(﹣4)=9>0,∴方程有两个不等的实数根∴x==,∴x1=﹣1,x8=.21.解:(1)∵关于x的一元二次方程x2﹣2x+4﹣k=0有两个不相等的实数根.∴△=(﹣2)2﹣4×1×(7﹣k)>0,解得k>0.(2)由(1)知,实数k的取值范围为k>6,故取k=1,则x2﹣5x=0,即x(x﹣2)=4,解得,x1=0,x7=2.22.解:(1)△=4﹣4(k﹣8)=12﹣4k>0,∴k<3.(2)由(1)可知:k=2,∴此时方程为:x2+2x=0,∴x(x+2)=2,∴x=0或x=﹣2.23.解:(1)∵关于x的方程(k﹣1)x2﹣8x+1=0有两个实数根,∴,解得:k≤2且k≠7.(2)当k=2时,方程为:x2﹣2x+1=0,即(x﹣6)2=0,解得:x2=x2=1.24.解:(1)﹣2△=﹣2×++4;(2)∵a△x=ax+x,∴x△(a△x)=x(ax+x)+ax+x,∴关于x的方程x△(a△x)=化为x(ax+x)+ax+x=﹣,整理得(a+1)x2+(a+1)x+=0,∵方程有两个相等的实数根,∴a+1≠6且△=(a+1)2﹣5(a+1)×=0,即a的值为0.。
用公式法求解一元二次方程课件北师大版数学九年级上册
c=0
Δ=b2-4ac<0 方程没有实数根
知2-讲
特别说明:(1)由Δ=b2-4ac 的符号可判定ax2+bx+c=
0(a ≠ 0)的根的情况. 反之,由ax2+bx+c= 0(a ≠ 0)的根的
情况也可得到Δ=b2-4ac 的符号.
(2)一元二次方程有实数根(或有两个实数根)包括有两
2k-1=0 的根的情况为(
A. 有两个相等的实数根
B. 没有实数根
C. 有两个不等的实数根
D. 无法判断
)
知2-练
思路导引:
解:∵ a=1,b=-2(k+1),c=-k2+2k-1,
∴ Δ =b2-4ac=[-2(k+1)]2-4×1×(-k2+2k-
1)=8+8k2>0.
当方程中的a,b,c含有字母时,求出
第二章 一元二次方程
3 用公式法求解一元二次方程
1 课时讲授 用公式法解一元二次方程
一元二次方程根的判别式
2 课时流程
逐点
导讲练
课堂
小结
作业
提升
知识点 1 用公式法解一元二次方程
知1-讲
1. 求根公式:对于一元二次方程ax2+bx+c= 0(a ≠ 0),当
b2-4ac
≥ 0 时,它的根是x =
知1-练
(3)x2-2x+3=0.
解:这里a=1,b=-2,c=3 .
∵ b2 -4ac=(-2)2 -4×1×3=-8<0,
∴方程无实数根.
知1-练
知1-练
1-1. 用公式法解下列方程:
(1)y2-2y-2=0;
解:这里 a=1,b=-2,c=-2.
届九年级数学上册 23 用公式法求解一元二次方程第二课时教学设计 新版北师大版
用公式法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:学生已学习了一元一次方程、二元一次方程组等内容;已经经历将一些实际问题抽象成数与代数问题的过程及一元二次方程的建模过程;学习了用配方法解一元二次方程,掌握了数与代数的基本知识和基本技能和一定的运算技能。
这些为本节进一步用配方法解一元二次方程提供了基础。
学生活动经验基础:学生在七年级和八年级中有过方案设计的经历,经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力,这些也构成了本课任务完成的活动经验基础。
二、教学任务分析体会方程是刻列出方程;课程标准对方程的要求是:能够根据具体问题中的数量关系,本节主要检验结果是否合理。
画现实世界的一个有效的数学模型;能根据具体的实际意义,因此设计了一个方案设计比较枯燥,为了巩固解方程的方法,同时考虑到单纯的式的训练,)通过一(1:活动,需要自行设计方案,因此需要适度的建模,为此制定本课时教学目标是巩固解一元体会方程的解必须符合实际意义,增强用数学的意识,元二次方程的建模过程,通过设计方案培养学生创新思维能力,展示自己驾驭数学去解决实际(2)二次方程的方法;问题的勇气、才能及个性。
三、教学过程分析整个教学过程共分七个环节进行。
第一环节:知识回顾;第二环节:情境引入;第三环节:方案设计;第四环节:问题解答;第五环节:学以致用;第六环节:反思归纳;第七环节:布置作业。
第一环节:知识回顾活动内容:你能举例说明什么是一元二次方程吗?它有什么特点?怎样用配方法解一元二次方程?怎样用公式法解一元二次方程?活动目的: 1帮助学生回忆一元二次方程及其解法,为后面说明设计方案的合理性作铺垫。
第二环节:情境引入活动内容:师提出问题:现在我遇到这样的问题,看大家能否帮我解决?并使花园所占面积为荒要建造一个花园,,宽为12m的矩形荒地上,在一块长为16m 地面积的一半。
你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?活动目的:成为学生真正以同学生平等的身份提出问题,以情境引入课题,改变教师的权威地位,使学生真正成为意义上的合作者。
2022年北师大版数学《用公式法求解一元二次方程》配套精品练习(附答案)
2.3 用公式法求解一元二次方程第1课时 用公式法求解一元二次方程一、填空题1、把()2332x x +=+化成()002≠=++a c bx ax 的形式后,则a = ,b = ,c =______.2、用公式法解方程1582--=x x ,其中ac b 42-= ,1x = ,2x =_______.3、不解方程,判断所给方程:①0732=++x x ;②042=+x ;③012=-+x x 中,有实根的方程有 个.4、关于x 的一元二次方程()0122=++-+m x m x 有两个相等的实数根,则m 的值是 .5、若一元二次方程0132=-+x bx 有解,则b 应满足的条件是________.6、若关于x 的方程()01452=---x x a 有实数根,则a 满足的条件是_______.7、已知一个矩形的长比宽多2cm ,其面积为82cm ,则此长方形的周长为________. 8、当x =_______时,代数式13x +与2214x x +-的值互为相反数. 9、若关于x 的一元二次方程02=-+n mx x 有两个相等的实数根,则m ,n 所满足的关系式是 .10、若方程042=+-a x x 的两根之差为0,则a 的值为________.二、选择题1、利用求根公式求x x 62152=+的根时,c b a ,,的值分别是( ) A .5,12,6 B .5,6,12 C .5,-6,12 D .5,-6,-122、已知一元二次方程012=-+x x ,下列判断正确的是( )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定3、方程0263422=++x x 的根是( )A .3,221==x xB .2,621==x xC .2,2221==x xD .621-==x x4、一元二次方程012=+-ax x 的两实数根相等,则a 的值为( )A .0=aB .2,2-==a a 或C .2=aD .02==a a 或5、若关于x 的一元二次方程()0112=++-kx x k 有实根,则k 的取值范围是( ) A .1≠k B .2>k C .12≠<k k 且 D .k 为一切实数6、如果关于x 的一元二次方程01122=++-x k kx 有两个不相等的实数根,那么k 的取值范围是( )A .21<kB .021≠<k k 且C .2121<≤-kD .02121≠<≤-k k 且 7、已知c b a 、、是△ABC 的三边长,且方程()()012122=--++x c bx x a 的两根相等,•则△ABC为( )A .等腰三角形B .等边三角形C .直角三角形D .任意三角形8、如果不为零的n 是关于x 的方程02=+-n mx x 的根,那么n m -的值为( )A .-12B .-1C .12D .1 9、若()()0822222=----n m n m ,则22n m -的值是( ) A .4 B .-2 C .4或-2 D .-4或2三、利用公式法解下列方程(1)220x -+= (2)012632=--x x (3)0231322=-+y y(4)0422=++x x (5)()332-=-x x x (6) ()012552=++x x(7)()()1281-=++x x (8)()93222-=-x x (9)0242232=-+-x x四、解答题1、如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,•如果正方体的左面与右面所标注代数式的值相等,求x的值.2、小明在一块长18m宽14m的空地上为班级建造一个花园(阴影部分),所建花园占剩余空地面积的12,请你求出图中的x.第七章平行线的证明周周测3一、单选题1、如图,△ABC中,∠ACB=90°, ∠A=30°,AC的中垂线交AC于E.交AB于D,则图中60°的角共有( )A、6个B、5个C、4个D、3个2、下列说法中正确的是( )A、原命题是真命题,则它的逆命题不一定是真命题B、原命题是真命题,则它的逆命题不是命题C、每个定理都有逆定理D、只有真命题才有逆命题3、下列命题是假命题的是( )A、如果a∥b,b∥c,那么a∥cB、锐角三角形中最大的角一定大于或等于60°C、两条直线被第三条直线所截,内错角相等D、矩形的对角线相等且互相平分4、如图,在梯形ABCD中,AB∥CD,AD=DC=CB,若,则A、130°B、125°C、115°D、50°5、如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A、60°B、65°C、70°D、75°6、下列条件中,能判定△ABC为直角三角形的是()A、∠A=2∠B=3∠CB、∠A+∠B=2∠CC、∠A=∠B=30°D、∠A=∠B=∠C7、下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A、1个B、2个C、3个D、4个8、下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A、1个B、2个C、3个D、4个9、下列命题中,真命题是()A、周长相等的锐角三角形都全等B、周长相等的直角三角形都全等C、周长相等的钝角三角形都全等D、周长相等的等腰直角三角形都全等10、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A、80B、50C、30D、20二、填空题11、命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是________,结论________.12、如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于________.13、已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 ________,该逆命题是 ________命题(填“真”或“假”).14、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.15、写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:________.16、已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为________.17、一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.18、如图,在ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果,,那么________三、解答题(共5题;共29分)19、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.20、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.21、已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.22、如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23、已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
北师大版九年级数学2.3用公式法求解一元二次方程(2)课后练习
用公式法求解一元二次方程(第2课时)
1.用公式法解方程243x x =+时,24b ac ∆=-的值是( )
A.4
B.28
C.20 D .-4
2.若点P 的横、纵坐标恰好是方程22240x x --=的两根,则点P 在( )
A. 第二象限
B. 第四象限
C.第一象限 D 第二或第四象限
3.方程2269x x -=的根为
4.已知三角形的两边长为分别为3cm 和4cm ,第三边长是方程2650x x -+=的根,则该三角形的周长为 ,形状为 ,面积为
5.如图,某小区规划在一个长30 m 、宽20 m
的长方形土地上修建三条等宽的通道,使其
中两条与AB 平行,另外两条与AD 平行,
其余部分种花草,要使每一块花草的面积
都为 78 m2,那么通道宽应该设计为多少?
设通道宽为x m ,则由题意列的方程
为_____________________.
6. 某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m. 养鸡场的面积能达到180 m2 吗?如果能,请给出设计方案;如果不能,请说明理由.
7.要对一块长为60m ,宽为40m 的矩形荒地ABCD 进行绿化和硬化,设计方案如图所示,矩形P ,Q 为两块绿地,其余为硬化路面。
P ,Q 两块绿地周围的硬化路面宽度都相等,并且两块绿地的面积和矩形ABCD 面积的
14,求P ,Q 两块绿地周围硬化路面的宽。
Q P D C B A。
北师大版初三上册用公式法解一元二次方程同步练习(含解析)
北师大版初三上册2一、选择题1.用公式法解方程x2-2=-3x时,a ,b ,c的值依次是()A.0,-2,-3B.1,3,-2C.1,-3,-2D.1,-2,-32.用公式法解方程(x+2)2=6(x+2)-4时,b2-4ac的值为()A.52B.32C.2D.-123.方程-x2+3x=1用公式法求解,先确定a ,b ,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-14.假如一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2-4ac≥0B.b2-4ac≤0C.b2-4ac>0D.b2-4ac<05.方程x2-3x+2=0的最小一个根的倒数是()A.1B.2C.D.46.方程(x-1)(x-2)=1的根是()A.x1=1,x2=2B.x1=-1,x2=-2C.x1=0,x2=3 D.以上都不对7.已知a是一元二次方程x2﹣2x﹣1=0较大的实数根,则对a的值估量正确的是()A.0<a<1 B.1<a<2 C.2<a<3 D.3<a<4二、填空题8.一元二次方程x2-3x-2=0的解是________9.写出方程x2+x-1=0的一个正根________10.当x=________时,代数式x2-8x+12的值是-4.11.利用解一元二次方程的方法,在实数范畴内分解因式x2﹣2x﹣1=__ ______.12.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于________.13.假如关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为________14.关于x的方程3kx2+12x+2=0有实数根,则k的取值范畴是_______ _.三、解答题15.用公式法解方程:(1);(2)(3)(4)16.已知关于x的方程x(x-k)=2-k的一个根为2.(1)求k的值;(2)求方程2y(2k-y)=1的解.17.已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,求那个直角三角形的斜边长18.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m 的值.19.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2 ,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直截了当写出三个,不需说明理由)20.定义新运算:关于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.依照以上知识解决问题:若2☆a的值小于0,请判定方程:2x2﹣bx+a=0的根的情形.答案解析部分一、选择题1.【答案】B【考点】公式法解一元二次方程【解析】【解答】整理得:x2+3x-2=0,那个地点a=1,b=3,c=-2.故选B.【分析】方程整理为一样形式,找出a , b ,c的值即可2.【答案】C【考点】公式法解一元二次方程【解析】【解答】∵(x+2)2=6(x+2)-4∴x2-2x-4=0∴a=1,b=-2,c=-4∴b2-4ac =4+16=20.故选C.【分析】此题考查了公式法解一元一次方程,解此题时第一把方程化简为一样形式,然后找a、b、c ,最后求出判别式的值3.【答案】A【考点】解一元二次方程-公式法【解析】【解答】将-x2+3x=1整理为一样形式得:-x2+3x-1=0,可得出a=-1,b=3,c=-1.故选A【分析】将一元二次方程整理为一样形式,找出二次项系数a ,一次项系数b及常数项c即可.4.【答案】A【考点】解一元二次方程-公式法【解析】【解答】若一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,则b2-4ac≥0;故选A.【分析】若一元二次方程能用公式法求解,则根的判别式必大于或等于0,由此可判定出正确的选项.5.【答案】A【考点】一元二次方程的求根公式及应用【解析】【解答】解:x2-3x+2=0,(x-1)(x-2)=0,x-1=0或x-2=0,x1=1或x2=2,因此方程x2-3x+2=0的最小一个根的倒数是1,故答案为:A.【分析】观看方程右边为0,左边能够分解因式,因此利用因式分解法求出方程的解,再求出方程的解中较小一个根的倒数。
北师大版九年级数学上册--第二单元2.3-《用公式法求解一元二次方程》练习题(含答案)
《用公式法求解一元二次方程》一、填空题。
1、利用求根公式解一元二次方程时,首先要把方程化为____________,确定_____________________ _______________________________的值,当__________时,把a,b,c 的值代入公式,x 1,2=__________________求得方程的解。
2、方程3x 2-8=7x 化为一般形式是_______________________,a=______,b=________,c=_______,方程的根x 1=____________,x 2=____________。
3、用公式法解方程24123y y =+,方程的根x 1=____________,x 2=____________。
二、选择题。
)1、下列一元二次方程中,没有实数根的是( )A .2210x x +-=B .220x ++=C .210x +=D .220x x -++=2、用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )、2=24312122⨯-± 、2=24312122⨯-±- 、2=24312122⨯+± 、2=32434)12()12(2⨯⨯⨯---±-- 3、方程x 2+3x=14的解是( ) =2653± =2653±- =2233± =2233±- 4、下列各数中,是方程x 2-5x+5=0的解的有( )¥个个 个 个 5、方程x 2+(23+)x+6=0的解是( )=1,x 2=6 =-1,x 2=-6 =2,x 2=3 =-2,x 2=-3三、用公式法解下列方程:1、2210x x +-=2、21683x x +=3、5x 2+2x -1=0`4、6y2+13y+6=05、x2+6x+9=76、2x2+12x=2 >四、你能找到适当的x的值使得多项式A=4x2+2x-1与B=3x2-2相等吗此时A的值为多少【《用公式法求解一元二次方程》参考答案1、一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 a ac b b 242-±-2、3x 2-7x -8=0 3 -7 -861457 61457-+ 3、32y ±=二、1.C三、1、1x =-± 2、121344x x ==-,. ,3、解:a=5,b=2,c=-1 ∴Δ=b 2-4ac=4+4×5×1=24>0∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x 4、解:a=6,b=13,c=6 ∴Δ=b 2-4ac=169-4×6×6=25>0 ∴x 1·2=12513122513±-=±- ∴x 1=-23,x 2=-32 5、解:整理,得:x 2+6x+2=0 ∴a=1,b=6,c=2∴Δ=b 2-4ac=36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-76、x 1·2==-3±10四、解:依题意,可得:4x 2+2x -1=3x 2-2整理,得x 2+2x+1=0 ∴(x+1)2=0,∴x 1=x 2=-1 ∴当x=-1时,A=13.。
9年级数学北师大版上册课件第2章《用公式法求解一元二次方程》
新知导入
一元二次方程的一般形式是:
ax2+bx+c = 0(a≠0)
【思考】如果使用配方法解出一元二次方程一般形式的根,那 么这个根是不是可以普遍适用呢?
新知讲解
你能用配方法解方程ax2+bx+c=0 (a≠0)吗?
方程的两边同除以a,得
移项,得x2
+
b a
x
=___-__ca______
x2 +b x+ c =0 aa
配方法:
x2-2x+3=0 x2-2x=-3
x2-2x+1=-3+1 (x-1)2=-2 ∵不论x为何值,(x-1)2都 不能为负数,∴此方程无解。
公式法: 解:已知a=1,b=-2,c=3. ∵b2-4ac=(-2)2-4×1×3
=-8<0
你能发现什么?
新知讲解
对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac<0时,它的根的情 况是怎样的?
∵b2-4ac=(-4)2-4×4×1=0
∴ x = -(- 4)± 0 = 1 24 2
即x1=x2=
1 2
新知讲解
公式法解方程的步骤
1.变形:化已知方程为一般形式;
2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值; 4.判断:若b2-4ac ≥0,则利用求根公式求出;
若b2-4ac<0,则方程没有实数根.
根,即
x1=-b+ 2ba2-4ac,x2=-b- 2ba2-4ac;
(2)当Δ=b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根,
即
x1=x2=-2ba;
九年级数学上册第二章一元二次方程3用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题练习2(
九年级数学上册第二章一元二次方程3用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题练习2(新版)新人教版◆随堂检测1、长方形的长比宽多4cm ,面积为60cm 2,则它的周长为________.2、有两块木板,第一块长是宽的2倍,第二块的长是第一块宽的3倍,宽比第一块的长少2米,已知第二块木板的面积比第一块大1082米,这两块木板的长和宽分别是( )A 、第一块木板长18米,宽9米,第二块木板长27米,宽16米B 、第一块木板长12米,宽6米,第二块木板长18米,宽10米C 、第一块木板长9米,宽4.5m ,第二块木板长13.5m ,宽7米D 、以上都不对3、从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,求原来的正方形铁片的面积是多少?4、如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.(点拨:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.)•◆典例分析如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度? B C A Q P解:◆课下作业 ●拓展提高1、矩形的周长为,面积为1,则矩形的长和宽分别为________.2、如图,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( ) A、4+ B、12+、2+ D、212++3、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m . (1)鸡场的面积能达到180m 2吗?能达到200m 2吗?(2)鸡场的面积能达到210m 2吗?4、某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为1.6m 2,•上口宽比渠深多2m ,渠底比渠深多0.4m . (1)渠道的上口宽与渠底宽各是多少?图② 图①A DC EB(2)如果计划每天挖土48m 3,需要多少天才能把这条渠道挖完?(分析:因为渠深最小,为了便于计算,不妨设渠深为x m.)●体验中考1、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A 、213014000x x +-=B 、2653500x x +-=C 、213014000x x --=D 、2653500x x --=2、如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A 、1米B 、1.5米C 、2米D 、2.5米3、张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元,问张大叔购回这张矩形铁皮共化了多少元?●挑战能力1.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m ),另三边用木栏围成,木栏长35m 。
北师版数学九年级上册 用公式法求解一元二次方程
∴方程有两个实数根.
能力提升:
在等腰△ABC 中,三边分别为 a,b,c,其中 a = 5, 若关于 x 的方程 x2 + (b + 2)x + 6 - b = 0 有两个相等的实 数根,求△ABC 的周长. 解:因为关于 x 的方程 x2 + (b + 2)x + 6 − b = 0 有两个 相等的实数根,
∵ b2 - 4ac = 72 – 4 × 1× (-18 ) = 121 > 0,
∴ x 7 121 7 11.
21
2
即 x1 = -9,x2 = 2 .
2. 解方程 (x - 2) (1 - 3x) = 6. 解:去括号,得 x - 2 - 3x2 + 6x = 6.
化为一般式,得 3x2 - 7x + 8 = 0. 这里 a = 3,b = - 7,c = 8, ∴ b2 - 4ac = ( - 7 )2 - 4×3×8 = 49 - 96
第二章 一元二次方程
2.3 用公式法求解一元二次方程
第1课时 用公式法求解一元二次方程
复习引入
1. 用配方法解一元二次方程的步骤有哪几步?
一、移常数项;
二、配方[配上
一次项系数 2
2];
三、写成 (x + m)2 = n ( n≥0 );
四、直接开平方法解方程.
2.如何用配方法解方程 2x2 + 4x + 1 = 0 ?
(3)x2 − x + 1 = 0,a = 1,b = −1,c = 1, ∴Δ = b2 − 4ac = (−1)2 − 4×1×1 = −3 < 0. ∴方程无实数根.
初三数学上册用公式法求解一元二次方程同步试卷含解析(北师大版)
初三数学上册用公式法求解一元二次方程同步试卷含解析(北师大版)一元二次方程有4种解法,即直截了当开平方法、配方法、公式法、因式分解法。
接下来我们一起来练习九年级数学上册用公式法求解一元二次方程同步试卷。
九年级数学上册用公式法求解一元二次方程同步试卷含答案(北师大版)一、选择题(共17小题)1.判定一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12B.16C.20D.242.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范畴是()A.a≥1B.a>1C.a≤1D.a1 C.a≤1 D.a≥14.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范畴是()A.kC.k且k≠05.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B.C. D.6.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范畴是()A.m≤3B.m﹣1 B.k≥﹣1C.k≠0D.kB.m≤且m≠2 C.m≥3 D.m≤3且m≠29.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范畴是()A.m>B.m>且m≠2C.﹣10.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范畴是()A.k≥B.k>C.k0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于.20.已知关于x的一元二次方程x2+ x﹣1=0有两个不相等的实数根,则k的取值范畴是.21.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范畴是.22.关于x的一元二次方程2x2﹣4x+m﹣1=0有两个相等的实数根,则m的值为.23.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范畴是.24.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范畴是.25.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范畴是.26.关于x的一元二次方程ax2+bx+ =0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.27.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范畴是.三、解答题(共3小题)28.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.29.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直截了当写出三个,不需说明理由)30.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范畴;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.2021年北师大版九年级数学上册同步测试:2.3 用公式法求解一元二次方程参考答案与试题解析一、选择题(共17小题)1.判定一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12B.16C.20D.24【考点】根的判别式.【分析】依照题意得到△=64+4a,然后把四个选项中a的值一一代入得到是正整数即可得出答案.【解答】解:∵一元二次方程式x2﹣8x﹣a=0的两个根均为整数,∴△=64+4a,△的值若能够被开平方即可,A、△=64+4×12=102,= ,此选项不对;B、△=64+4×16=128,,此选项不对;C、△=64+4×20=144,=12,此选项正确;D、△=64+4×24=160,,此选项不对,故选:C.【点评】本题考查了利用一元二次方程根的判别式(△=b2﹣4ac)判定方程的根的情形.在一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根.2.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范畴是()A.a≥1B.a>1C.a≤1D.a0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△1 C.a≤1 D.a≥1【考点】根的判别式.【分析】依照根的判别式得出b2﹣4ac1.故选B.【点评】此题要紧考查了一元二次方程根的情形与判别式,关键是把握一元二次方程根的情形与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△C.k且k≠0【考点】根的判别式.【专题】运算题.【分析】依照方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范畴.【解答】解:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴△=4﹣12k>0,解得:k0,解得kb0,b>0,即kb>0,故A不正确;B.k>0,b0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情形与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△﹣1 B.k≥﹣1 C.k≠0 D.k0【解答】解:依题意列方程组解得kB.m≤且m≠2 C.m≥3 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【专题】运算题.【分析】依照一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【解答】解:依照题意得,解得m≤且m≠2.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△B.m>且m≠2 C.﹣【考点】根的判别式;一元二次方程的定义.【专题】运算题.【分析】依照一元二次方程的定义和根的判别式的意义得到m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,解得m>且m≠2,再利用根与系数的关系得到﹣>0,则m﹣2【解答】解:依照题意得m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,解得m>且m≠2,设方程的两根为a、b,则a+b=﹣>0,ab= =1>0,而2m+1>0,∴m﹣2故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△C.k0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△0,方程有两个不相等的实数根;故选C.【点评】本题考查了一元二次方程根的情形与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△0,方程有两个不相等的实数根;C、△=﹣160,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△0,∴方程有两个不相等的实数根.故选:A.【点评】此题要紧考查了一元二次方程根的判别式,把握一元二次方程根的情形与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△= 0?方程有两个相等的实数根;(3)△0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△0,然后依照判别式的意义判定方程根的情形.【解答】解:依照题意△=(﹣2)2﹣4×(﹣1)=8>0,因此方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△= b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△﹣且a≠0 .【考点】根的判别式;一元二次方程的定义.【分析】依照一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范畴.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于3 .【考点】根的判别式.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,据此可列出关于k的等量关系式,即可求得k的值.【解答】解:∵关于x的方程3kx2+12x+k+1=0有两个相等的实数根,∴△=b2﹣4ac=144﹣4×3k×(k+1)=0,解得k=﹣4或3,∵k>0,∴k=3.故答案为3.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△.【考点】根的判别式.【分析】依照方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范畴.【解答】解:依照方程没有实数根,得到△=b2﹣4ac=1﹣4m.故答案为:m>.【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.25.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范畴是m≤1 .【考点】根的判别式.【专题】探究型.【分析】先依照一元二次方程x2+2x+m=0得出a、b、c的值,再依照方程有实数根列出关于m的不等式,求出m的取值范畴即可.【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.【点评】本题考查的是一元二次方程根的判别式,依照题意列出关于m的不等式是解答此题的关键.26.关于x的一元二次方程ax2+bx+ =0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+ =0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+ =0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题要紧考查了一元二次方程根的判别式,熟练把握判别式的意义是解题的关键.27.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范畴是a≤1 .【考点】根的判别式.【专题】运算题.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范畴.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1【点评】此题考查了根的判别式,熟练把握一元二次方程根的判别式与方程根的关系是解本题的关键.三、解答题(共3小题)28.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.【考点】根的判别式.【分析】先依照一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,解方程求出m的值即可.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用公式法求解一元二次方程
一、教材题目:P43 T1-T2
知识技能
1.不解方程,判断下列方程的根的情况:
(1)5x 2+x =7;
(2)25x 2+20x +4=0;
(3)(x +1)(4x +1)=2x.
2.用公式法解下列方程:
(1)2x 2-4x -1=0;
(2)5x +2=3x 2;
(3)(x -2)(3x -5)=1;
(4)0.2x 2+5=32
x.
二、补充题目:部分题目来源于《点拨》
1.方程x 2-4x =0中,b 2-4ac 的值为( )
A .-16
B .16
C .4
D .-4
3.关于x 的一元二次方程mx 2+4x +1=0有实数根,则m 的取值范围是________________.
4.用公式法解方程:
(1)2x 2-3x +1=0; (2)1-x =3x 2;
(3)x 2+2=2 2x.
答案
教材
1.解:(1)将原方程化为一般形式,得5x 2+x -7=0.这里a =5,b =1,c =-7,因为b
2-4ac =12-4×5×(-7)=1+140=141>0,所以方程有两个不相等的实数根.(2)这里a
=25,b =20,c =4,因为b 2-4ac =202-4×25×4=0,所以方程有两个相等的实数根.(3)
将原方程化为一般形式,得4x 2+3x +1=0.这里a =4,b =3,c =1,因为b 2-4ac =9-16
=-7<0,所以方程没有实数根.
2.解:(1)这里a =2,b =-4,c =-1,因为b 2-4ac =(-4)2-4×2×(-1)=24>0,所
以x =4±242×2=4±2 64=2±62.所以x 1=2+62,x 2=2-62
. (2)原方程变形为3x 2-5x -2=0,这里a =3,b =-5,c =-2,因为b 2-4ac =(-5)2-
4×3×(-2)=49>0,所以x =5±492×3=5±76,所以x 1=2,x 2=-13
. (3)原方程变形为3x 2-11x +9=0,这里a =3,b =-11,c =9,因为b 2-4ac =(-11)2-4×3×9=13>0,所以x =
11±136,所以x 1=11+136,x 2=11-136. (4)原方程变形为0.2x 2-1.5x +5=0,这里a =0.2,b =-1.5,c =5,因为b 2-4ac =2.25
-4=-1.75<0,所以方程没有实数根.
点拨:用公式法解一元二次方程时,要先将原方程化为一般形式,这样才能确定a ,b ,c
及b 2-4ac 的值,在确定a ,b ,c 时要注意符号.
点拨
1.B 3.m≤4且m≠0
4.解:(1)a =2,b =-3,c =1,∴b 2-4ac =9-4×2×1=1.∴x=-b±b 2
-4ac 2a =3±14.∴x 1=1,x 2=12
. (2)原方程可化为3x 2+x -1=0,∴a=3,b =1,c =-1.∴b 2
-4ac =1-4×3×(-1)=13.∴x=-b±b 2-4ac 2a =-1±136,∴x 1=-1+136,x 2=-1-136
. (3)原方程可化为x 2-2 2x +2=0,∴a=1,b =-2 2,c =2.∴b 2-4ac =8-4×1×2=0.∴x 1=x 2=2 2
2= 2.。