2020年聚焦中考数学考点跟踪突破28几何作图

合集下载

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

第27课尺规作图本节内容考纲要求考查五个基本作图和能转化为基本作图的简单尺规作图。

广东省近5年试题规律:以解答题出现,一般考查作角平分线,线段的垂直平分线和过一点直线的垂线,多与三角形、四边形问题结合一起,难度不大,但学生欠缺动手操作,是常见丢分题。

知识清单知识点一尺规作图定义只用圆规和尺子来完成的图画,称为尺规作图.基本步骤(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,使它符合什么条件;(3)作法:运用五种基本作图,保留作图痕迹;(4)证明:验证所作图形的正确性;(5)结论:对所作的图形下结论.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过一已知点作直线的垂线;(5)作已知线段的垂直平分线.课前小测1.(尺规作图的定义)尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.(作角平分线)如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS3.(作一个角等于已知角)小明回顾用尺规作一个角等于已知角的作图过程(如图所示),连接CD、C′D′得出了△OCD≌△O′C′D′,从而得到∠O=∠O′,其中小明作出△OCD≌△O′C′D′判定的依据是()A.SSS B.SAS C.ASA D.AAS 4.(作垂直平分线)如图所示,已知线段AB=6,现按照以下步骤作图:①分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧相交于点C和点D;②连结CD交AB于点P.则线段PB的长为.5.(作垂线)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.经典回顾考点一作线段垂直平分线【例1】(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【点拨】作线段的垂直平分线要点:①以线段两端点为圆心作弧,两弧交于两点;②再过两点作垂线.考点二作角平分线【例2】(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.【点拔】作角的平分线要点:①以顶点为圆心画弧交角的两边于两点;②再以这两点为圆心作弧,两弧交于一点;③最后过顶点与交点作射线.考点三作垂线【例3】(2015•广东)如图,已知锐角△AB C.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.【点拨】过一点作垂线或作高线要点:①以这点为圆心,在直线上截取一条线段;②再作线段的垂直平分.考点四作一个角等于已知角【例4】(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC 于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.【点拔】过一点作一个角等于已知角要点:①以角的顶点为圆心画弧交两边于两点,以这一点为圆心,相同半径作弧,交于一点;②再以两点间距离为半径,作弧,两弧交于一点;③最后过这一点于交点作射线.对应训练1.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.2.(2019•中山一模)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.3.(2019•江门期末)画图题:如图,已知三角形ABC,AB=5.(1)过点C作CD⊥AB,点D为垂足:(2)在(1)的条件下,若DB=2,求点A到CD的距离.4.(2019•顺德期末)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.中考冲刺夯实基础1.(2019•赤峰)已知:AC是□ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.2.(2019•惠阳二模)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(不要求写作法,保留作图痕迹)(2)判断△ACE的形状,并证明.3.(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.(2019•越秀一模)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.能力提升5.(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.6.(2019•三明模拟)如图,在△ABC中,AB=AC.(1)尺规作图:作∠CBD=∠A,D点在AC边上(要求:不写作法,保留作图痕迹)(2)若∠A=40°,求∠ABD的度数.7.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.第27课尺规作图课前小测1.C.2.D.3.A.4.3.5.B.经典回顾考点一作线段垂直平分线【例1】解:(1)如图,直线EF即为所求;(2)∵四边形ABCD是菱形,∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABD=∠DBC=12∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.考点二作角平分线【例2】(1)解:如图,DE为所求;(2)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠ADB=∠C+∠DAC,而∠C=∠DAC,∴2∠BDE=2∠C,即∠BDE=∠C,∴DE∥AC.考点三作垂线【例3】解:(1)如图,MN为所求;(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠BAD=BDAD =34,∴BD=3,∴CD=BC﹣BD=5﹣3=2.考点四作一个角等于已知角【例4】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.对应训练1.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.2.解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.3.解:(1)如图,CD为所作.(2)∵AB=5,BD=2,∴AD=3,∴点A到CD的距离为3.4.解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.中考冲刺夯实基础1.解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.2.解:(1)如图即为所求:(2)△ACE是等腰三角形.证明:∵CE平分∠ACD,∴∠ACE=∠ECD,∵AB∥CD,∴∠AEC =∠ECD ,∴∠ACE =∠AEC ,∴△ACE 是等腰三角形.3.(1)解:如图,点D 为所作;(2)证明:∵AB =AC ,∴∠ABC =∠C =(180°﹣36°)=72°, ∵DA =DB ,∴∠ABD =∠A =36°,∴∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠BDC =∠C ,∴△BCD 是等腰三角形.4.(1)解:如图,F 点为所作;(2)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠B =90°,∴∠DAE =∠AEB ,∵DF ⊥AE ,∴∠AFD =90°,在△ABE 和△DFA 中B DFAAEB DAF AE AD=⎧⎪=⎨⎪=⎩∠∠∠∠,∴△ABE≌△DFA(AAS),∴AB=DF.能力提升5.解:(1)如图⊙O即为所求.(2)25π.6.解:(1)如图,∠CBD为所作;(2)∵AB=AC,∴∠ABC=∠C=1(180°﹣∠A)=70°,2∵∠CBD=∠A=40°,∴∠ABD=70°﹣40°=30°.7.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴DEAC =BEBC,即2DE=33DE,∴DE=65.。

人教版2020年九年级数学中考初中数学知识点框架图

人教版2020年九年级数学中考初中数学知识点框架图

第一部分《数与式》知识点π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:单项式:系数与次数分类多项式整式数与式()01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧=⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点第三部分《函数与图象》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-g 一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性:若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,)⑤最值:当a >0时,x=-,y =;a <0时,x=-,y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值...⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):④比较函数的大小第四部分《图形与几何》知识要点0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:,;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos30tan 302cos 45tan 45110cos 60,tan 302R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在t A B C 中,si n =cos =,t an =斜边斜边的邻边si n 三角函数特殊三角函数值si n45;si n6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090A B CD P PA PA PC PD ..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g g 相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO A PB PA PC PD .⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g 于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R +r ),内含(d <R -r )圆和圆的位置关系相切:外切(d =R +r ),内切(d =R -r )相交:R -r <d <R +r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:P第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩g 行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=,相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩A第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩L 一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)初中数学常考知识点I、代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题)2)科学记数法表示一个数(选择题第二题)3)实数的运算法则:混合运算(计算题)4)实数非负性应用:代数式求值(选择、填空)2、代数式:代数式化简求值(解答题)3、整式:1)整式的概念和简单运算、化简求值(解答题)2)利用提公因式法、公式法进行因式分解(选择填空必考题)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(解答题)1)理解正比例函数、一次函数的意义、会画图像2)理解一次函数的性质3)会求解析式、与坐标轴交点、求与其他函数交点4)解决实际问题3、反比例函数(解答题)1)反比例函数的图像、意义、性质(两支,中心对称性、分类讨论)2)求解析式,与其他函数的交点、解决有关问题(如取值范围、面积问题)4、二次函数(必考解答题)1)图像、性质(开口、对称性、顶点坐标、对称轴、与坐标轴交点等)2)解析式的求解、与一元二次方程综合(根与交点、判别式)3)解决实际问题4)与其他函数综合应用、求交点5)与特殊几何图形综合、动点问题(解答题)II、空间与图形一、图形的认识1、立体图形、视图和展开图(选择题)1)几何体的三视图,几何体原型相互推倒2)几何体的展开图,立体模型相互推倒2、线段、射线、直线(解答题)1)垂直平分线、线段中点性质及应用2)结合图形判断、证明线段之间的等量、和差、大小关系3)线段长度的求解4)两点间线段最短(解决路径最短问题)3、角与角分线(解答题)1)角与角之间的数量关系2)角分线的性质与判定(辅助线添加)4、相交线与平行线1)余角、补角2)垂直平分线性质应用3)平分线性质与判定5、三角形1)三角形内角和、外角、三边关系(选择题)2)三角形角分线、高线、中线、中位线性质应用(辅助线)3)三角形全等性质、判定、融入四边形证明(必考解答题)4)三角形运动、折叠、旋转、平移(全等变换)、拼接(探究问题)6、等腰三角形与直角三角形1)等腰三角形的性质与判定、直角三角形的性质、勾股定理及逆定理2)等腰三角形、直角三角形与四边形或圆的综合3)锐角三角函数、特殊角三角函数、解直角三角形(解答题)4)等腰、直角、等腰直角三角形与函数综合形成的代几综合题(压轴题必考)7、多边形:内角和公式、外角和定理(选择题)8、四边形(解答题)1)平行四边形的性质、判定、结合相似、全等证明2)特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用(动点问题、面积问题及相关函数解析式问题)3)梯形:一般梯形及等腰、直角梯形的性质、与平行四边形知识结合,四边形计算题,辅助线的添加等9、圆(必考解答题)1)圆的有关概念、性质2)圆周角、圆心角之间的相互联系3)掌握并会利用垂径定理、弧长公式、扇形面积公式,圆锥侧面面积、全面积公式解决问题4)圆中的位置关系:要会判断:点与圆、直线与圆、圆与圆(重点是圆与圆位置关系)5)重点:圆的证明计算题(圆的相关性质与几何图形综合)二、图形与变换1、轴对称:会判断轴对称图形、能用轴对称的知识解决简单问题2、平移:会运用平移的性质、会画出平移后的图形、能用平移的知识解决简单问题3、旋转:理解旋转的性质(全等变换),会应用旋转的性质解决问题(全等证明),会判断中心对称图形4、相似:会用比例的基本性质解题、利用三角形相似的性质证明角相等、应用相似比求解线段长度(解答题)III、统计与概率一、相关概念的理解与应用:平均数、中位数、众数、方差等(选择题)二、能利用各种统计图解决实际问题(必考,解答题)三、会用列举法(包括图表、树状图法)计算简单事件发生的概率(解答题,填空题)。

2020年中考(全国通用版含解析)数学必考考点专题:尺规作图

2020年中考(全国通用版含解析)数学必考考点专题:尺规作图

专题:尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB 的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

2020中考数学高分分项突破试卷几何压轴题汇总含答案与解析

2020中考数学高分分项突破试卷几何压轴题汇总含答案与解析

航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全



航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全
航 启 心 全


全航 启 心 全
航 启 心 全


2020中考高分分项突破
航 航 数学试卷几何压轴题汇总及答案与解析

最新2020年河南中考一轮复习复习28讲 9教育课件

最新2020年河南中考一轮复习复习28讲 9教育课件

B=ba.
返回目录
数学(河南)
第1部分 第四单元 三角形
2.解直角三角形的类型和解法
已知条件
图形
解法
已知一直角 边和一个锐 角(a,∠A)
已知斜边和 一个锐角(c, ∠A)
∠B = 90°- ∠A ,c =
a

__s_in__A_

b

ta
a n
A
(或 b= c2-a2)
∠B = 90°-∠ A ,a =
返回目录
数学(河南)
第1部分 第四单元 三角形
三、解直角三角形 1.直角三角形的边角关系 (1)两锐角关系:∠A+∠B=90°; (2)三边关系:a2+b2=c2(勾股定理);
a (3)边角关系:sin A=cos B=⑦__c____,cos A=
sin
b B=⑧___图①
返回目录
数学(河南)
第1部分 第四单元 三角形
如图②,底座上 A,B 两点间的距
离为 90 cm,低杠上点 C 到直线 AB 的
距离 CE 的长为 155 cm,高杠上点 D
到直线 AB 的距离 DF 的长为 234 cm,
已知低杠的支架 AC 与直线 AB 的夹角
∠CAE 为 82.4°,高杠的支架 BD 与直
返回目录
数学(河南)
第1部分 第四单元 三角形
坡度 坡面的铅直高度 h 和水平宽度 (坡 l 的比叫坡度(坡比),用字母 i 比)、 表示;坡面与水平线的夹角 α 坡角 叫坡角,i=tan α=hl 中考几种常见的考查形式:1.以楼房等建筑物为背景,
含仰角、俯角;2.以航海为背景,含方向角;
3.以河流为背景的测量;4.以四边形为背景,含坡度、

聚焦中考数学(甘肃省)考点跟踪突破28几何作图

聚焦中考数学(甘肃省)考点跟踪突破28几何作图

考点跟踪突破28 几何作图一、选择题(每小题7分,共35分) 1.(2014·滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( A )A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等2.(2015·舟山)数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l 外一点P ,用直尺和圆规作直线PQ ,使PQ⊥l 于点Q.”分别作出了下列四个图形,其中作法错误的是( A )3.(2015·衢州)数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB =c ,一条直角边BC =a.小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( B )A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径,第3题图) ,第5题图)4.(2015·深圳)如图所示,已知△ABC(AC<AB <BC),用尺规在线段BC 上确定一点P ,使得PA +PC =BC ,则符合要求的作图痕迹是( D )5.(2015·潍坊)如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M ,N ;第二步,连接MN ,分别交AB ,AC 于点E ,F ; 第三步,连接DE ,DF.若BD =6,AF =4,CD =3,则BE 的长是( D ) A .2 B .4 C .6 D .8解析:由作图可知MN 是AD 的垂直平分线,即MN⊥AD 且平分AD ,∴AE =ED ,AF =FD.又∵AD 平分∠BAC,MN ⊥AD ,设AD 与MN 交点为O ,∴△AOE ≌△AOF ,∴AE =AF ,∴AE =AF =FD =ED ,∴四边形AFDE为菱形,∴ED ∥AF ,∴△BED ∽△BAC ,∴BE BA =BD BC .∵BD=6,BC =BD +CD =6+3=9,AE =AF =4,∴BE4+BE=69,解得BE =8二、填空题(每小题7分,共21分)6.(2014·梅州)如图,在Rt△ABC中,∠B=90°,分别以A,C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,连接MN,与AC,BC分别交于点D,E,连接AE,则:(1)∠ADE=__90°__;(2)AE__=__EC;(填“>”“<”或“=”)(3)当AB=3,AC=5时,△ABE的周长=__7__.7.如图所示,已知线段a,c和∠α,求作:△ABC,使BC=a,AB=c,∠ABC=∠α,根据作图把下面空格填上适当的文字或字母.(1)如图①所示,作∠MBN=__∠α__;(2)如图②所示,在射线BM上截取BC=__a__,在射线BN上截取BA=__c__;(3)连接AC,如图③所示,△ABC就是__所求作的三角形__.8.(2015·河北)如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第一条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第二条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第三条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__9__.解析:∵不难分析得:A n-1A n与射线OB、OC两者较小的夹角为(n+1)×9°≤90°,∴n的最大值为9三、解答题(共44分)9.(14分)(2013·青岛)如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)解:因为点E到B,D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以点D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.如图所示,点E即为所求,BE =DE10.(14分)(2014·宁夏)如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E ;(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:BD 平分∠CBA.(1)解:如图所示,DE 就是要求作的AB 边上的垂直平分线 (2)证明:∵DE 是AB 边上的垂直平分线,∠A =30°,∴AD =BD ,∴∠ABD =∠A=30°,∵∠C =90°,∴∠ABC =90°-∠A=90°-30°=60°,∴∠CBD =∠ABC-∠ABD=60°-30°=30°,∴∠ABD =∠CBD,∴BD 平分∠CBA11.(16分)(2015·孝感)如图,一条公路的转弯处是一段圆弧(AB ︵).(1)用直尺和圆规作出AB ︵所在圆的圆心O ;(要求保留作图痕迹,不写作法)(2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.解:(1)作图如图所示(2)连接OB ,OC ,OC 交AB 于点D.∵AB=80,C 为的中点,∴OC ⊥AB.∴AD =BD =40,CD =20.设OB=r ,则OD =r -20.在Rt △OBD 中,∵OB 2=OD 2+BD 2,∴r 2=(r -20)2+402,解得:r =50.∴AB ︵所在圆的半径是50 m2016年甘肃名师预测1.已知平面内两点A ,B ,用直尺和圆规求作一个圆,使它经过A ,B 两点,根据如图所示的作图痕迹判断直线MN 与线段AB 的位置关系是( C )A .MN 垂直AB 但不平分AB B .MN 平分AB 但不垂直ABC .MN 垂直平分ABD .不能确定,第1题图) ,第2题图)2.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D.再分别以点C ,D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是( D )A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C ,D 两点关于OE 所在直线对称 D .O ,E 两点关于CD 所在直线对称。

决胜2020年中考图形的几何变1

决胜2020年中考图形的几何变1

决胜2020年中考图形的几何变换点睛导航1.剪纸问题一张纸经过折和剪的过程,会形成一个轴对称图案.解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.2.轴对称-最短路线问题(1)最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.(2)凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.3.翻折变换(折叠问题)翻折变换(折叠问题)实质上就是轴对称变换.在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.4.坐标与图形变化-平移在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)挑战突破1.(2020•深圳模拟)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF.在以上4个结论中,正确的有()A.1 B.2 C.3 D.42.(2020•闽清模拟)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个B.4个C.5个D.6个3.(2020•宁夏模拟)如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.(2020•平山模拟)如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.15.(2020•淄博模拟)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.6.(2020•碑林区校级模拟)如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A.2B.3C.6 D.37.(2020•慈溪市模拟)如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON =6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=()A.2 B.3 C.D.8.(2020•二七区校级模拟)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1012,1011)B.(1009,1008)C.(1010,1009)D.(1011,1010)9.(2020•鼓楼区校级模拟)如图,在平面直角坐标系中,已知A(2,0),B(4,0),点P 为线段AB外一动点,且P A,以PB为边作等边△PBM,则线段AM的最大值为()A.B.C.D.10.(2020•浉河区校级模拟)如图,边长为8的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是()A.4 B.3 C.2 D.111.(2020•山西模拟)如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A.a米B.a cotα米C.a cotβ米D.a(tanβ﹣tanα)米12.(2020•济宁模拟)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()A.10cm.B.24cm C.26cm D.52cm13.(2020•南通模拟)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.三角形C.等腰梯形 D.正五边形14.(2020•南宁模拟)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O 为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形 D.正六边形15.(2020•呼和浩特模拟)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π16.(2020•南岗区校级模拟)如图,将正方形纸片ABCD沿MN折叠,折痕为MN,点A的对应点是点A′,点B的对应点是点B′,点B′落在边CD上,若CB′CD,且BN =5,则折痕MN的长为()A.B.C.D.17.(2020•武昌区模拟)如图,在Rt△ABC中,∠ACB=90°,BC=6,点P在边AB上,连接CP,将△BCP沿直线CP翻折后,点B恰好落在边AC的中点处,则点P到AC的距离是()A.2.5 B.C.4 D.18.一些完全相同的小正方体搭成一个几何体,这个几何体从正面和左面看所得的平面图形均如图所示,小正方体的块数可能有()A.7种B.8种C.9种D.10种。

2020年中考数学三轮知识点提分一遍过(30)尺规作图含答案

2020年中考数学三轮知识点提分一遍过(30)尺规作图含答案

2020年中考数学三轮知识点提分一遍过(30)尺规作图1.[2016·东台市二模]如图K30-1,是利用尺规作的角平分线OC ,在用尺规作角平分线时,用到的三角形全等的判定方法是( )图K30-1 作法:①以O 为圆心,任意长为半径作弧,分别交OA ,OB 于点D ,E ;②分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C ;③作射线OC ,则OC 就是∠AOB 的平分线A.SSSB.SASC.ASAD.AAS2.[2019·深圳]如图K30-2,已知AB=AC ,AB=5,BC=3.以A ,B 两点为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,过M ,N 作直线与AC 相交于点D ,则△BDC 的周长为 ( )图K30-2A .8B .10C .11D .133.[2019·长春]如图K30-3,在△ABC 中,∠ACB 为钝角,用直尺和圆规在边AB 上确定一点D ,使∠ADC=2∠B ,则符合要求的作图痕迹是 ( )图K30-34.[2019·河南]如图K30-4,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )图K30-4A.2√2B.4C.3D.√105.[2019·兰州]如图K30-5,矩形ABCD中,∠BAC=60°,以点A为圆心,任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于1MN的长为半径作弧交于点P,作射线AP交2BC于点E,若BE=1,则矩形ABCD的面积等于.图K30-56.[2019·盐城亭湖区校级模拟]如图K30-6,已知△ABC中,∠A=70°,根据作图痕迹推断∠BOC 的度数为.图K30-67.[2019·盐城阜宁县一模]如图K30-7,△ABC中,AB=BC.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB,且BM交AC于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若BC=6,BD=4,求线段AC的长.图K30-78.[2019·武威]已知:如图K30-8,在△ABC中,AB=AC.(1)求作:△ABC的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S☉O=.图K30-89.[2018·益阳]如图K30-9,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:①以A为圆心,任意MN的长为半径作弧,长为半径作弧,分别交AB,AC于点M,N;②分别以M,N为圆心,以大于12两弧相交于点E;③作射线AE;④以同样的方法作射线BF.AE交BF于点O,连接OC,则OC=.图K30-910.[2019·厦门质检]如图K30-10,在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下连接FC,求∠BCF的度数.图K30-1011.[2019·无锡]按要求作图,不要求写作法,但要保留必要的作图痕迹.(1)如图K30-11①,A为☉O上一点,请用直尺(不带刻度)和圆规作出☉O的内接正方形ABCD;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点.事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图:①如图②,在▱ABCD中,E为CD的中点,作BC的中点F;②如图③,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC 的高AH.图K30-11【参考答案】1.A2.A[解析]由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.3.B[解析]∵∠ADC=2∠B,且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴点D在线段BC的垂直平分线上.故选B.4.A[解析]过点B作BM⊥AD于点M,∵AD∥BC,∴∠BCD+∠D=180°,又∵∠D=90°,∴∠BCD=90°,∴∠BCD=∠D=∠BMD=90°,∴四边形BCDM为矩形,∴BM=CD,DM=BC.由作图可知AE=CE,又∵O是AC的中点,∴BF所在直线垂直平分线段AC,∴AB=BC=3.在Rt△ABM中,∠AMB=90°,AM=AD-MD=1,∴BM=22=√322=2√2,∴CD=2√2.故选A.5.3√3[解析]在矩形ABCD中,∠BAC=60°,∴∠B=90°,∠BCA=30°,由题意知AE平分∠BAC,∴∠BAE=∠EAC=30°,∵在Rt △ABE 中,BE =1, ∴AE =1sin30°=2,AB =1tan30°=√3, ∵∠EAC =∠ECA =30°, ∴EC =AE =2,∴BC =3, ∴S 矩形ABCD =AB ·BC =3√3.6.125° [解析]由作法得BO 平分∠ABC ,CO 平分∠ACB , ∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠BOC =180°-∠OBC -∠OCB =180°-12(∠ABC +∠ACB )=180°-12(180°-∠A ) =90°+12∠A , 而∠A =70°,∴∠BOC =90°+12×70°=125°.故答案为125°. 7.解:(1)如图,BM 为所作.(2)∵∠ABD =∠ACB ,∠BAD =∠CAB , ∴△ABD ∽△ACB , ∴AB AC=BD BC,即6AC=46,∴AC =9.8.解:(1)如图,☉O 即为所求.(2)25π[解析]设线段BC的垂直平分线交BC于点E,连接OB.由题意得OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π·52=25π.故答案为25π.9.√2[解析]过点O作OD⊥AC,垂足为D.由作图可知AE,BF分别是∠BAC和∠ABC的平分线,∴点O为△ABC的内心,CO平分∠ACB,∵AB=5,AC=4,BC=3,32+42=52,∴△ABC为直角三角形,∠ACB=90°.易知OD为△ABC的内切圆半径,=1.∴OD=3+4-52∵∠OCD=1∠ACB=45°,2∴△OCD为等腰直角三角形,∴OC=√2OD=√2.10.解:(1)如图所示,E为所求作的点.(2)在正方形ABCD中,∠BCD=90°,BC=CD,∠DBC=∠CDB=45°,∵EF=EC,∴∠EFC=∠ECF.又EF⊥BD,∴∠EFB=∠ECB=90°,∴∠BFC=∠BCF,(180°-45°)=67.5°.∴∠BCF=1211.解:(1)连接AO并延长交圆O于点C,作AC的垂直平分线交圆O于点B,D,四边形ABCD 即为所求.(2)①连接AC,BD交于点O,连接EB交AC于点G,连接DG并延长交CB于点F,F即为所求.②作图如下.。

备战2020年中考数学考点一遍过考点20 尺规作图

备战2020年中考数学考点一遍过考点20 尺规作图

考点18 尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:学-科网(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例1已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).【答案】见解析【解析】如图所示,直线CD即为所求.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形.比如给定一个△ABC,可以这样画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,用直尺和圆规作∠A′O′B′=∠AOB,能够说明作图过程中△C′O′D′≌△COD的依据是A.角角边B.角边角C.边角边D.边边边4.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5.用尺规作图,已知三边作三角形,用到的基本作图是A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.学!科网8.如图,已知线段a,b,c.请画一条线段,使它的长度等于2a+b–c(不写画法,保留痕迹).9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.10.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.1.(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为A.45°B.60°C.90°D.135°2.(2018•安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是A.B.C.D.3.(2018•舟山)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是A.B.C.D.4.(2018•河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是A.①–Ⅳ,②–Ⅱ,③–Ⅰ,④–ⅢB.①–Ⅳ,②–Ⅲ,③–Ⅱ,④–ⅠC.①–Ⅱ,②–Ⅳ,③–Ⅲ,④–ⅠD.①–Ⅳ,②–Ⅰ,③–Ⅱ,④–Ⅲ5.(2018•宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是A.B.C.D.6.(2018•鄂尔多斯)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=47D.sin∠CBE=21 147.(2018•郴州)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于12CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为A.6 B.2 C.3 D.38.(2018•河南)如图,已知AOBC的顶点O(0,0),A(–1,2),点B在轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为A.(5–1,2)B.(5,2)C.(3–5,2)D.(5–2,2)9.(2018·巴中)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是A.CF=FG B.AF=AGC.AF=CF D.AG=FG10.(2018·百色)已知∠AOB=45°,求作∠AOP=22.5°,作法:(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°.根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有A.①②B.①③C.②③D.①②③1.【答案】B【解析】由作图的痕迹可知:点D是线段BC的中点,∴线段AD是△ABC的中线,故选B.如图,在△ABC中,∠C=90°,∠B=40°.3.【解析】首先作一条射线,进而截取AB=A′B′,∠CAB=∠C′A′B′,进而截取AC=A′C′,进而得出答案.如图所示:△A′B′C′即为所求.变式拓展1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,或者是作角等于已知角,故选C . 2.【答案】D【解析】选项A ,画线段MN =3 cm ,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B ,用量角器画出∠AOB 的平分线,量角器不在尺规作图的工具里,错误;选项C ,用三角尺作过点A 垂直于直线l 的直线,三角尺也不在作图工具里,错误;选项D ,正确.故选D . 3.【答案】D【解析】由题意可知,OD =OC =O ′D ′=O ′C ′,CD =C ′D ′,在△COD 和△C ′O ′D ′中,OC O C OD O D CD C D ''''⎧⎪'⎪'⎨⎩===,∴△COD ≌△C ′O ′D ′(SSS ),故选D . 4.【答案】D【解析】作图痕迹中,弧FG 是以点E 为圆心,DM 为半径的弧,故选D . 5.【答案】C【解析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C . 6.【答案】A【解析】(甲)如图一所示,∵△ABC 为等边三角形,AD 是∠BAC 的角平分线,∴∠BEA =90°, ∴∠BED =90°,∴∠BEA =∠BED =90°,由甲的作法可知,AB =BD ,考点冲关∴∠ABC =∠DBC ,在△ABC 与△DBC 中,AB BD ABC DBC BC BC ⎪∠⎪⎩∠⎧⎨===,∴△ABC ≌△DBC ,故甲的作法正确; (乙)如图二所示,∵BD ∥AC ,CD ∥AB ,∴∠ABC =∠DCB ,∠ACB =∠DBC ,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选A . 7.【答案】40°【解析】∵根据作图过程和痕迹发现MN 垂直平分AB , ∴DA =DB ,∴∠DBA =∠A =35°,∵CD =BC ,∴∠CDB =∠CBD =2∠A =70°,∴∠C =40°, 故答案为:40°.8.【解析】利用尺规作图,作一条线段等于已知线段,即可求解. 如下图所示,线段OD 即为所求.9.【解析】作法:(1)分别以A ,B 点为圆心,以大于2AB的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN ,MN 即为线段AB 的垂直平分线.10.【解析】(1)如图所示:(2)BD=DE,证明:∵BD平分∠ABC,∴∠1=12∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1=12∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3=12∠4.∴∠1=∠3.∴BD=DE.1.【答案】A【解析】如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选A.2.【答案】D【解析】A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;直通中考故选D.3.【答案】C【解析】A、由作图可知,AC⊥BD,且平分BD,即对角线互相平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选C.5.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点,使和C在AB的两旁.(2)以C为圆心,C的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选B.6.【答案】C【解析】由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC交BC的延长线于点H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=12CE=1,EH=3CH=3,在Rt△BEH中,BE=22(3)5=27,所以C选项的说法错误;sin∠CBE=EHBE=327=2114,所以D选项的说法正确.故选C.7.【答案】C【解析】过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=12×60°=30°,∴ME=12OM=3.故选C.8.【答案】A【解析】∵AOBC的顶点O(0,0),A(–1,2),∴AH=1,HO=2,∴Rt△AOH中,AO5OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO5,∴HG5–1,∴G51,2),故选A.9.【答案】A【解析】根据作图的步骤得到:BF是∠CBG的平分线,A、因为BF是∠CBG的平分线,FG⊥AB,CF⊥BC,所以CF=FG,故本选项正确;B、AF是直角△AFG的斜边,AF>AG,故本选项错误;C、BF是∠CBG的平分线,但是点F不一定是AC的中点,即AF与CF不一定相等,故本选项错误;D、当Rt△ABC是等腰直角三角形时,等式AG=FG才成立,故本选项错误;故选A.学-科网。

2020年中考数学28个考点一定要吃透

 2020年中考数学28个考点一定要吃透

2020年中考数学28个考点一定要吃透很多同学会在一些基础题上粗心,虽说是粗心,归根结底也是没有掌握牢固。

再者,一些稍许设置陷阱的题,只有班上少数数学成绩较好的同学能够幸免。

其他同学几乎都做错了,所以,这类似的题就极具代表性了,是典型题。

这些常考、易错的知识点做了一个总结!!可以说中考必考,都是初中时期的典型重点,尤其是在期末考试之前就必须“吃透”。

一、相似三角形(7个考点)考点1相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5三角形的重心考核要求:知道重心的定义并初步应用。

考点6向量的有关概念考点7向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

三、二次函数(4个考点)考点10函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

2020年广东中考数学点对点第一部分基础过关课时28视图与投影课件(共33张PPT)

2020年广东中考数学点对点第一部分基础过关课时28视图与投影课件(共33张PPT)
图中有矩形的是___①_②____.(写出所有正确答案 的序号)
图9
8.(2019百色)下列四个命题: ①两直线平行,内错角相等; ②对顶角相等; ③等腰三角形的两个底角相等; ④菱形的对角线互相垂直. 其中逆命题是真命题的是 ( C ) A.①②③④ B.①③④ C.①③ D.①
9.如图10所示是由一些相同的小正方体构成 的几何体的三视图,那么构成这个几何体的小 正方体有__4___个.
5.(2019南充)如图8所示是一个几何体的表面展
开图,这个几何体是
( C)
图8
6.晚上小亮在路灯下散步,在小亮从远处走 到灯下,再远离路灯这一过程中,他在地上的 影子 ( B )
A.逐渐变短 B.先变短后变长
C.先变长后变短 D.逐渐变长
B 7.(2019北京)在如图9所示的几何体中,其三视
A.1 B.2
C.3 D.4
课堂检测
A
1.(2019广东)如图7,由4个相同正方体组合而
成的几何体,它的左视图是
( A)
图7
2.(2013广东)下列几何体中,俯视图为四边形
的是
( D)
3.(2019深圳)下列哪个图形是正方体的展开图 (B )
4.一个几何体,从正面看是个长方形,从上面 看是个圆形,该几何体是__圆__柱____.
特点如图112..主主视视图图与与俯左视视图图长高对平正齐
3.左视图与俯视图宽相等
注意:看得见部分的轮廓线画成实线,看不见的
画虚线.
二、常见几何体的三视图
几何体 视图
主视图
左视图
俯视图
三、正方体的展开图 1.一四一型
2.二三一型
3.三三型
4.二二二型

贵州省2020届中考数学大一轮素养突破 教师课件:第28讲 尺规作图、视图与投影

贵州省2020届中考数学大一轮素养突破 教师课件:第28讲  尺规作图、视图与投影



主视图
视图及特征 左视图
俯视图
展开图图示 (选其中一种)
体 的


特征:有两个视图一样为矩形,俯视图不带圆心

主视图
左视图
俯视图




特征:两个视图一样为三角形,俯视图为带圆心的圆
返回思维导图
常 见
几何体











主视图
视图及特征 左视图
俯视图
展开图图示 (选其中一种)
特征:三视图随摆放方式不同而不同
主视图
左视图
俯视图
特征:三个视图都一样为正方形
见本讲考点: 小立方体的展 开图
返回思维导图
常 见
几何体











主视图
视图及特征 左视图
俯视图
展开图图示 (选其中一种)
特征:三视图是大小不一定相同的矩形
主视图
左视图
俯视图
特征:三个视图一样为圆,不带圆心
返回思维导图
【满分技法】对常见几何体的组合体,在判断其三视图时,要注意分清每一部分的 三视图形状,然后根据其摆放位置及各部分大小判定组合体的视图 三视图的还原:由物体的三视图求几何体的侧面积、表面积、体积等,关键是由三 视图想象出几何体的形状 小立方体的展开图(图中相同颜色表示相对的面): (1)一四一型
定义
主视图:在正面内由前向后观察物体的视图 左视图:在侧面内由左向右观察物体的视图 俯视图: 在水平面内由上向下观察物体的视图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪突破28 几何作图
一、选择题(每小题7分,共35分) 1.(2014·滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( A )
A .同位角相等,两直线平行
B .内错角相等,两直线平行
C .两直线平行,同位角相等
D .两直线平行,内错角相等 2.(2015·舟山)数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q.”分别作出了下列四个图形,其中作法错误的是( A )
3.(2015·衢州)数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB =c ,一条直角边BC =a.小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( B )
A .勾股定理
B .直径所对的圆心角是直角
C .勾股定理的逆定理
D .90°的圆周角所对的弦是直径
,第3题图) ,第5题图)
4.(2015·深圳)如图所示,已知△ABC(AC <AB <BC),用尺规在线段BC 上确定一点P ,使得PA +PC =BC ,则符合要求的作图痕迹是( D )
5.(2015·潍坊)如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:
第一步,分别以点A ,D 为圆心,以大于1
2AD 的长为半径在AD 两侧作弧,交于两点
M ,N ;
第二步,连接MN ,分别交AB ,AC 于点E ,F ; 第三步,连接DE ,DF.
若BD =6,AF =4,CD =3,则BE 的长是( D ) A .2 B .4 C .6 D .8
解析:由作图可知MN是AD的垂直平分线,即MN⊥AD且平分AD,∴AE=ED,AF=FD.又∵AD平分∠BAC,MN⊥AD,设AD与MN交点为O,∴△AOE≌△AOF,∴AE=AF,∴AE=AF=FD=ED,∴四边形AFDE为菱形,∴ED∥AF,∴△BED∽△BAC,
∴BE
BA=
BD
BC.∵BD=6,BC=BD+CD=6+3=9,AE=AF=4,∴
BE
4+BE

6
9,解得BE=8 二、填空题(每小题7分,共21分)
6.(2014·梅州)如图,在Rt△ABC中,∠B=90°,分别以A,C为圆心,大于
1
2AC长
为半径画弧,两弧相交于点M,N,连接MN,与AC,BC分别交于点D,E,连接AE,则:
(1)∠ADE=__90°__;
(2)AE__=__EC;(填“>”“<”或“=”)
(3)当AB=3,AC=5时,△ABE的周长=__7__.
7.如图所示,已知线段a,c和∠α,求作:△ABC,使BC=a,AB=c,∠ABC=∠α,根据作图把下面空格填上适当的文字或字母.
(1)如图①所示,作∠MBN=__∠α__;
(2)如图②所示,在射线BM上截取BC=__a__,在射线BN上截取BA=__c__;
(3)连接AC,如图③所示,△ABC就是__所求作的三角形__.
8.(2015·河北)如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第一条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第二条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第三条线段A2A3;
……
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__9__.
解析:∵不难分析得:A n-1A n与射线OB、OC两者较小的夹角为(n+1)×9°≤90°,∴n的最大值为9
三、解答题(共44分)
9.(14分)(2013·青岛)如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点. 求作:点E ,使直线DE ∥AB ,且点E 到B ,D 两点的距离相等.(在题目的原图中完成作图)
解:因为点E 到B ,D 两点的距离相等,所以,点E 一定在线段BD 的垂直平分线上,首先以点D 为顶点,DC 为边作一个角等于∠ABC ,再作出DB 的垂直平分线,即可找到点E.如图所示,点E 即为所求,BE =DE
10.(14分)(2014·宁夏)如图,△ABC 中,∠C =90°,∠A =30°.
(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E ;(保留作图痕迹,不要求写作法和证明)
(2)连接BD ,求证:BD 平分∠CBA.
(1)解:如图所示,DE 就是要求作的AB 边上的垂直平分线
(2)证明:∵DE 是AB 边上的垂直平分线,∠A =30°,∴AD =BD ,∴∠ABD =∠A =30°,∵∠C =90°,∴∠ABC =90°-∠A =90°-30°=60°,∴∠CBD =∠ABC -∠ABD =60°-30°=30°,∴∠ABD =∠CBD ,∴BD 平分∠CBA
11.(16分)(2015·孝感)如图,一条公路的转弯处是一段圆弧(AB ︵
). (1)用直尺和圆规作出AB ︵
所在圆的圆心O ;(要求保留作图痕迹,不写作法) (2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵
所在圆的半径.
解:(1)作图如图所示
(2)连接OB ,OC ,OC 交AB 于点D.∵AB =80,C 为的中点,∴OC ⊥AB.∴AD =BD =40,CD =20.设OB =r ,则OD =r -20.在Rt △OBD 中,∵OB 2=OD 2+BD 2,∴r 2=(r -20)2+402,解得:r =50.∴AB ︵
所在圆的半径是50 m
2016年甘肃名师预测
1.已知平面内两点A ,B ,用直尺和圆规求作一个圆,使它经过A ,B 两点,根据如图所示的作图痕迹判断直线MN 与线段AB 的位置关系是( C )
A .MN 垂直A
B 但不平分AB B .MN 平分AB 但不垂直AB
C .MN 垂直平分AB
D .不能确定
,第1题图) ,第2题图)
2.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D.再分别以点C ,D 为圆心,大于1
2CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过
点E 作射线OE ,连接CD.则下列说法错误的是( D )
A .射线OE 是∠AO
B 的平分线 B .△COD 是等腰三角形
C .C ,
D 两点关于O
E 所在直线对称 D .O ,E 两点关于CD 所在直线对称。

相关文档
最新文档