弹塑性力学第六章

合集下载

弹塑性有限元法

弹塑性有限元法
第六章 弹塑性有限元法
当变形体同时存在大的弹性和塑性变形时,必 须采用弹塑性力学进行分析,相应的有弹塑性 有限元法,其较一般弹性有限元复杂得多。
1、塑性区中应力与应变之间为非线性关系,非线性问 题求解 — 增量法;
2、应力与应变关系不是一一对应的,加载与卸载关系 不同,必须判断是加载还是卸载状态;
3、多种材料硬化模型产生不同的有限元计算公式;
K u Q 非线性方程组
方程组
求解
与ij 有关
与ij 有关
u tt u t uu

三、弹塑性有限元处理的技术问题
1、加载增量步长的选定
计算精度与收敛性
加载的增量步长
tt P t P rmin P
增量步终止载荷
初始设定载荷增量
初始载荷 载荷约束因子
2、变形区弹塑性状态的判定
弹塑性变形过程中,变形体内部可能同时存在弹 性区、过渡区、塑性加载区和塑性卸载区等四种不同 状态的区域和单元,计算时必须分别进行处理。
x xy y xy z xy 2
xy
x yz y yz z yz xy yz 2
yz
x y
zx zx
z xy
zx zx
xy zx 2
zx
二、弹塑性有限元方程
由于 非线性的应力应变关系,只能按照增量法求解。
在小变形条件下,对t到t+Δt时刻的增量步进行 分析。设变形体为各向同性硬化材料、且服从Mises 屈服条件和Prandtl – Reuss方程的本构关系,并设t 时刻的变形条件为:单位体积的体积力为tpi;作用 在边界表面ST上的单位面积力为tTi;任一质点的位
移为tui,应变为tij,应力为tij。现以t时刻的变形为

6弹塑性力学基本求解方法

6弹塑性力学基本求解方法

d r
dr
1 r
(2
r
)
0
代入几何方程和物理方程,整理可得
d 2ur 2 dur 2 ur 0 dr 2 r dr r 2
第六章 弹性力学基本求解方法
❖位移法应用——错配球
解此微分方程,其一般解为:
由 r 时 ur 0 C1 0
ur
C1r
C2 r2
由 r r1 时 ur r0 C2 r0 (1 )2 r02 r03
l 2
h/2
x
ydy
0
第六章 弹性力学基本求解方法
❖应力函数——逆解法
于是可求得:
B
r 5h2
,C
l2r 4h2
10r,
D
3 4
r
x
所以 y
xy
第六章 弹性力学基本求解方法
❖应力函数——逆解法 总结:应力函数设计
1.集中载荷——按材料力学方法求解 2.均布载荷—— f (xi2 ) 3.线性分布载荷—— f (xi3 ) 4.非线性分布载荷—— f (xi4 xi8 )
r1
r0
r0
)
—— 错配度
分析:基体变形为球对称变形,则
ur 0 u u 0
边界条件:
r , ur 0 (符合圣维南原理)
第六章 弹性力学基本求解方法
❖位移法应用——错配球
根据应力平衡微分方程
R0

r r
1 r
r
r r sin
1 r
(2
r
r ctg ) 0
r
r
0
r
r
ur
r0
(
r0 r
)2
由几何方程可得

薄圆筒、柱 弹塑性力学详解

薄圆筒、柱 弹塑性力学详解

(6 11)
(6 12)
du i d u i ;
vi)弹塑性交界处的连接条件:如果交界面 的法向为ni ,则在 上有: (a)法向位移连续条件 du i (b)应力连续条件
(E)
ni du i ni ;
( p)
( p)
(6 13)
(6 14)
d ij ni d ij ni ;
无量纲化后得到:
(6-19)
d d d , d d 20)
消去 d 得:
(6 21)
简单的弹塑性问题
2 由(6-18)式知 1 及 d d 0,

d d d / 1 2
塑性力学
第六章 简单的弹塑性问题
§6.1
弹塑性边值问题的提法
§6.2 “薄壁筒”的拉、扭联合变形
§6.5 “柱体”的弹塑性自由扭转
§6.6 受内压的“厚壁圆筒”
简单的弹塑性问题
§6.1 弹塑性边值问题的提法
一、弹塑性全量理论边值问题
设在物体V内给定体力 Fi ,在应力边界 ST 上给定面力Ti ,在位移 边界Su 上给定位移 u i ,要求应力 ij ,应变 ij ,位移 ui ,它们满足 以下方程和边条件:
(E)
上标(E)和(P)分别表示弹性区和塑性区。
简单的弹塑性问题
§6.2 “薄壁筒” 的 拉、扭变形
考察薄壁圆筒承受拉力P 和扭矩T 联合作用的弹塑性变形问题。采用圆柱坐 标,取z 轴与筒轴重合。设壁厚为h ,筒的内外平均半径为R ,则筒内应力 为:
z P / 2Rh , z T / 2R 2 h,
(6-10)
1 2v d kk d kk , E d d ij 0, 0, ij d hd , d d 0, ij ij

塑性力学简单的弹塑性问题优秀课件

塑性力学简单的弹塑性问题优秀课件

一、按增量理论求解
对理想弹塑性材料,增量本构方程是 Prandtl-Reuses 关系,于是:
d z
1 E
d z
d
2 3
z
,
1 2
d z
1 2G
dz
d
z
(6-19)
无量纲化后得到:
消去 d 得:
d d d, d d d,
d d d d
(6-20)
(6 21)
由(6-18)式知 1 2 及 d d 0,
路径①沿OBC。在B点有0 0, 0 0。
A
在BC段上有 1 ln1 , 2 1
D ③
解出 e2y 1 tanh ,
e2y 1
O
在C点
e2 e2
1 1
0.76,
1 2 0.65
(6 30)
C ①
B
类似地,对路径②,即阶梯变形路径OAC可求得 0.76和 0.65
路径③是比例加载路径ODC,其上 d d 。在到达D点时,
Tp 2 A pdxdy
6 100
就是截面的塑性极限扭矩。
仍以半径为a的圆柱体为例,它处于全塑性扭转状态时, p 表面必然是一个
圆锥,既然斜率是 s , 高度就应为 sa,按(6-100)式求出
Tp
2 3
sa3.
6 101
与(6-96)式相比可知对圆柱体
Tp / Te 4 / 3.
6 102
塑性力学简单的弹 塑性问题
塑性力学
第六章 简单的弹塑性问题
§6.1 弹塑性边值问题的提法 §6.2 薄壁筒的拉扭联合变形 §6.5 柱体的弹塑性自由扭转 §6.6 受内压的厚壁圆筒 §6.7 旋转圆盘

弹塑性力学第六章

弹塑性力学第六章

26
§6-3 平面问题的基本解法
当体力为常数或体力为零时,两个平面问题 的相容方程一致
2(x+y ) = 0
(x+y )为调合函数,与弹性系数无关,不
管是平面应力(应变)问题,也不管材料如何, 只要方程一致,应力解一致,有利实验。
2019/10/28
27
§6-3 平面问题的基本解法
3.2 应力函数解法 当体力为常量或为零时,按应力法解的
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类 §6-2平面问题的基本方程和边界条件 §6-3平面问题的基本解法 §6-4多项式应力函数运用举例
2019/10/28
1
第六章 弹性力学平面问题的直 坐标系解答
在第五章讨论了弹性力学问题的基本解法: 位移法和应力法,并结合简单的三维问题, 根据问题的特点,猜想问题的应力解或位移 解,并验证猜想的解是否满足应力法或位移 法的基本方程和边界条件,满足则为问题真 解。
1.1 平面应力问题
受力和约束特点:沿厚度(x3方向)均匀分
布,体力 f3 = fz = 0 , 面力 X 板表面无面力,坐标系(x1 ,
3 x2
Z ,
0 ,在薄
x3)放在板
厚中间平面——中平面,以z(或x3)轴垂直板
面。满足上述条件的问题称为平面应力问题
2019/10/28
7
§6-1平面问题的分类
最后应力分量解为其特解加通解:
x

y2

fx x,

y

x2

fy
y,
xy


2 xy
2019/10/28
35

弹塑性力学第6章—弹塑性力学问题的建立与基本解法

弹塑性力学第6章—弹塑性力学问题的建立与基本解法

6.3 塑性力学基本方程与边界条件
6.3.2 塑性力学问题的基本解法
对应于增量理论和全量理论,塑性力学问题采用不同的解法。
全量理论中塑性力学问题的提法:
已知作用于物体上的体力、边界面力(给定力边界上)、 边界位移增量(给定位移边界上)的加载历史,求解某一时刻 物体的应力场、应变场、位移场。
全量理论对应的解法:
θ = εx + ε y + εz
2 2 2 ∂ ∂ ∂ 2 , ∇ = 2 + 2 + 2 ∂x ∂y ∂z
6.2 弹性力学问题的基本解法
位移法:
上述位移法平衡方程表示为张量形式为
(λ + μ )u j , ji + μui, jj + fi = 0
位移法平衡方程的推导包含了平衡方程、几何方程和本构 方程的信息,求解时只需补充边界条件。 当边界条件为给定位移时,可以直接使用;当边界条件为 给定面力时,则可通过广义胡克定律和几何关系,将其中的 应力用位移来表示。
增量理论
e dε ij = dε ij + dε ijp
e ij
1 dε ij = ( dui , j + du j ,i ) 2
3v 其中弹性应变增量 dε = − dσ mδ ij 2G E
塑性应变增量 dε ijp = dλ
dσ ij
∂ϕ 3dε p , dλ = ∂σ ij 2σ s
6.3 塑性力学基本方程与边界条件
用张量公式表示为
1 ε ij = (ui , j + u j ,i ) 2
此外还可补充6个应变协调方程
6.1 弹性力学基本方程与边界条件
弹性力学基本方程
本构方程:

工程弹塑性力学---平面应力应变问题的直角坐标解

工程弹塑性力学---平面应力应变问题的直角坐标解

第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。

这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。

本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。

弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。

本章学习的困难是应力函数的确定。

虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。

这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。

二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。

§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。

平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。

这种弹性体的位移将发生在横截面内,可以简化为二维问题。

根据平面应变问题定义,可以确定问题的基本未知量和基本方程。

对于应力解法,基本方程简化为平衡微分方程和变形协调方程。

学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。

弹塑性力学课件第六章

弹塑性力学课件第六章
时,各横截面除了在自身平面内绕轴线转动外,还发生了垂直于 截面的翘曲变形。因此,平面假定不再成立。由此可见,非圆形 截面杆的扭转问题比圆轴杆的扭转问题要复杂得多。
图 6.2 非圆形截面等直杆的扭转实验
2018/10/31
8
第六章 柱体扭转问题
柱体扭转问题的实验研究
为了简化问题,圣维南( Saint Venant)由实验观察中假定,任
意截面形状的柱体在发生自由扭转变形时,各个横截面的翘曲程度都
相同。这就是圣维南等翘曲假定。如果我们把轴取在柱体的轴线上, 根据等翘曲假定,就有
w w( x, y) ( x, y)
u zy v xz
刚性转动假定
u zy
v xz w ( x, y )
2 2
MT KT

MT KT
KT G ( x 2 y 2 x
A
y )dxdy y x y )dxdy y x
截面翘曲影响项
扭转刚度
G r 2 dxdy G ( x
第六章 柱体扭转问题
福州大学土木工程学院 卓卫东 教授
1
第六章 柱体扭转问题


柱体扭转问题的实验研究 基本方程
几个典型例子
柱体扭转问题的实验比拟方法
薄壁杆件的扭转问题
其他说明
2018/10/31
2
第六章 柱体扭转问题
引 言
柱体扭转问题在土木、机械等工程中是常见的一类问题。 所谓柱体扭转,是指圆柱体和棱柱体仅在端部受到扭矩的作 用,而且扭矩矢量与柱体的轴线方向重合。 本章将专门分析柱体扭转问题中较为简单的一类问题: 任意截面形状柱体的 自由扭转问题 ,即允许柱体在受扭变形 后的横截面自由翘曲的情形。关于柱体的 约束扭转问题 ,即 横截面的翘曲受到约束的情形,这里不进行讨论 。

弹塑性力学部分习题

弹塑性力学部分习题
2018/10/7 7
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类
§6-2平面问题的基本方程和边界条件
§6-3平面问题的基本解法
§6-4多项式应力函数运用举例
2018/10/7
8
第七章弹性力学平面问题的极坐 标系解答
§7-1平面极坐标下的基本公式 §7-2轴对称问题 §7-3轴对称应力问题——曲梁 的纯弯曲 §7-4圆孔的孔边应力集中问题 §7-5曲梁的一般弯曲 §7-6楔形体在楔顶或楔面受力
弹塑性力学
第 六 章 弹性力学平面问题的直角坐标系解答 第 七 章 弹性力学平面问题的极坐标系解答 第 八 章 等截面直杆的扭转 第 九 章 空间轴对称问题 第 十 章 弹性力学问题的能量原理 第 十一 章 塑性力学基础知识
2018/10/7
1
参考书目
1.徐芝纶, 弹性力学:上册 .第三版,高等教育
w k x, y
其中 k 为待定常数,(x‚y)为待定函数, 试写出应力分量的表达式和位移法方程。
2018/10/7
18
题1-6 半空间体在自重 g 和表面均布压力 q 作用下的位移解为 u = v = 0,
1 g 2 2 w q h z h z 2G 2
2018/10/7
在 V上
16
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z l y
Fbz g
x
x
2018/10/7
17
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
u kyz
v kxz

弹塑性力学-06

弹塑性力学-06

M

h
M
2
2
x 图
x
y
y
l
h
x
1
h
16
x 6ay, y 0, xy yx 0
现在考察这些应力分量能 否满足边界条件 在y -h/2边界上 l 0; m 1

M

h
M
2
2
x 图
x
y
y
l
h
x
1
h

0 x 1 xy f x 0 xy 0 满足 0 xy 1 y f y 0 y 0
确定 求出 面力(合力)
解决 什么问题
半逆解法:针对所要求解的问题,根据弹性体的边界形状和受 力情况,假设部分或全部应力分量为某种形式的函数,从而推 出应力函数 ,然后来考察,这个应力函数是否满足相容方程, 以及,原来所假设的应力分量和由这个应力函数求出的其余应 力分量,是否满足应力边界条件和位移单值条件。如果相容方 程和各方面的条件都能满足,自然就得出正确的解答;如果某 一方面不能满足,就要另作假设,重新考察。 半逆解法基本步骤:
h 2 h 2
h 2 h 2 h 2 h 2
xy dy 0 dy 0 满足

特别注意:
12 M M x 3 y y , y 0, xy 0 h I 1 h3 梁截面惯性矩 I 12
对于长度 l 远大于深度 h 的梁,上面答案是有实用价值 的;对于长度 l 与深度 h 同等大小的所谓深梁,这个解答是 没有什么实用意义的。
p x x l1 xy l2 p y xy l1 y l2

弹性与塑性力学基础 第六章 塑性力学解题方法及应用举例

弹性与塑性力学基础 第六章 塑性力学解题方法及应用举例

§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法
➢ 滑移线的基本概念
作用于最大剪应力面上的正应力13恰等于平均应力m或中间主应
力2 ,即
1 3 m 2 1 2 (13 ) 1 2 (xy)
任一点应力状态可用静水压(平均
应力)与最大剪切力K相叠加来表
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法 ➢ 滑移线的基本概念 塑性变形体(或变形区)内任一点的应力状态如图所示
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
压力容器、管道、挤压凹模等) 2020/10/16轴对称平面问题
应力分析:
rz、θr为零 θ 、 r为主应力,仅随 r 变化; 平衡微分方程:
dr r 0 (6-1)
dr r
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-1 平衡微分方程和屈服准则联立求解及其应用
6.1.2 受内压塑性圆筒及受内拉的塑性圆环应力计算
弹性与塑性力学基础
第六章
塑性力学解题方法及应用举例
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
1、塑性力学问题求解现状
(1) 在塑性状态物体内应力的大小与分布求解比较弹性状态困难; (2) 非线性塑性应力应变关系方程; (3) 联解平衡方程和屈服准则,补充必要的物理方程和几何方程,在
代入式(6-12)得
z =s

中国科学院大学(国科大)弹塑性力学蔡永恩总结

中国科学院大学(国科大)弹塑性力学蔡永恩总结
第七 章 利用能量原理求解弹性力学问题 1. 弹性体的总势能 1)弹性变形势能 2) 外力势能 a)体力势能 b)边界力势能 2. 最小势能原理 3. 虚功原理 4. 利用最小势能原理求解弹塑性桁架问题 5. 基于虚功原理的有限元方法 6. 基于虚功原理的全量有限元方法 1)离散化(前处理) 2)单元分析 a)建立单元位移模式
45 度的方向的截面上; f 两个垂直面上的正应力之和等于常数(主应力之和); g 摩尔园园心代表平均主应力。 1)摩尔圆原理及特点 2)地学中的应用 3)联合 Coulomb 屈服条件判断断层破裂可能性
第一章主要公式: 1.一维应力状态
最大剪应力方向:与最大或最小主应力夹 45 度角
2. 二维应力状态 1)主应力
4)简单剪切应力和纯剪切应力
2. 主应力和主剪应力,应力不变量
3. 偏应力的大小和方向与偏应力不变量
4. 八面体面上的正应力和剪应力大小 5. 平面 与等倾线垂直的平面
1) 主应力矢量在π平面及其法线(等倾线)上的分解 2) Lode 参数的物理意义
3) 用 Lode 参数表示纯压缩、纯剪切,纯拉伸
a)应力空间加卸载和中性变载 b)满足 Mises 屈服条件的理想塑性材料本构关系 c)满足 Mises 屈服条件的塑性强化材料本构关系 8. 应变空间的弹塑性本构方程 1)Ильюшин公设 4)塑性流动法则和加卸载准则 5)应变空间加卸载和中性变载 6)应变空间与应力空间的弹塑性本构关系比较 7)将应变空间的屈服条件用应力表示 8)由应变增量确定应力增量步骤
6. 等效应力(应力强度)和等效剪应力(剪应力强度) (−) (−) (−)
7. 应力的坐标变换
8. 应力椭圆和应力椭球 9. 应力摩尔圆(二、三维) 应力摩尔园的性质

弹塑性力学-第6章 弹塑性平面问题

弹塑性力学-第6章 弹塑性平面问题

第六章 弹塑性平面问题任何一个弹塑性体实际上都是空间(三维)物体,且一般的载荷严格说来也是空间力系。

因此,所有弹塑性力学问题实际上都是空间问题,即所有的力学量都是坐标),,(z y x 的函数.但是,当所考察的物体(结构)及其所承受的载荷具有某些特点时,则可将它们近似地看作平面(二维)问题,即所有的力学量都是两个坐标(如y x ,)的函数,从而使问题得简化,且所得解答又具有工程所要求的精度.由第二章知,弹塑性力学平面问题可分为平面应力问题和平面应变问题两种,本章主要讨论弹塑性平面问题求解的一般方法。

6.1 弹性平面问题的基本方程由第二章己经知道,两类平面问题的基本未知量虽然是完全相同的,但非零的应力分量、应变分量和位移分量不是完全相同的。

1.1平衡方程无论是平面应力问题还是平面应变问题,由于在z 方向自成平衡,因此,两类问题的平衡方程均为⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00Y y x X y x yxy xyx σττσ (6。

1—1)1。

2几何方程由于只需要考虑面内的几何关系,因此,对于两类平面向题均有 xvy u ,yv ,xuxy y x ∂∂+∂∂=∂∂=∂∂=γεε (6.1—2) 由式(6。

1—2)可得到平面问题的变形协调方程为y x xy xyy x ∂∂∂=∂∂+∂∂γεε22222 (6.1—3) 1。

3本构关系两类平面问题的非零应力分量和应变分量不相同,因此,由广义虎克定律所得本构方程也必然不尽相同.(1)平面应力问题对于平面应力问题,因,0=z σ 0==zx yz ττ,根据广义虎克定律显然有0==zx yz γγ。

因此本构方程为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+=+-=-=-=xy xy y x z x y y y x x E EE Eτνγσσνενσσενσσε)1(2)()(1)(1 (6。

1—4a ) 或⎪⎪⎪⎭⎪⎪⎪⎬⎫+=+-=+-=xyxy x y y y x x E E E γντνεενσνεενσ)1(2)(1)(122(6。

弹塑性力学 第六章 塑性力学基本概念

弹塑性力学   第六章 塑性力学基本概念

理想刚塑形模型???
2、线性硬化模型:硬化阶段曲线为线性
将硬化阶段的曲线简化为一条直线,即连续的应力-应 变关系曲线OAA’C简化为两条直线组成的折线OAC。 第一条直线OA代表线 弹性变形性质,其斜 率为E ;第二条直线 AC代表强化性质 ,其 斜率为Et。

b B
s
C
s,
s,
• 影响材料性质的其它几个因素: 1. 温度。当温度上升,材料屈服应力降低、塑性变形 能力提高。高温下,会有蠕变、应力松弛现象。 2. 应变速率。如果在实验时加载速度提高几个数量级, 则屈服应力会相应地提高,塑性变形能力会降低。一 般加载速度不考虑这个因素。高速撞击载荷或爆炸载 荷需要考虑。
§6.3 单轴应力-应变关系的简化模型
屈服条件(加载条件)
s
p
A
*
将累积塑性变形量作为内变量
H O E
k ( dε ) 0
p
*
k函数称为硬化函数,初值:
k (0) s
B‘

• (2)随动硬化模型: • 对一些材料有包辛 格效应的材料,应 变硬化提高了材料 的拉伸屈服应力, 在反向加载(压缩) 时,压缩屈服应力 降低。 • 这种硬化特征称为 随动硬化。
6.2 材料实验结果
一、单轴拉伸实验 • 材料塑形变形性质通过试验研究获得。
• 最简单实验是室温单轴拉压实验: •材料:金属多晶体材料 •试件如图
•名义应力和名义应变定义为
P / A0
A0
l l0 / l0
l0
--材料的单轴拉伸实验曲线有如图所示两种形态。
conditional yield limit 条件屈服极限

弹塑性力学第6章

弹塑性力学第6章

he
he
h
he M 2 b ydy 2 b ydy
y
0
he
弹性区:0 y he
y he
s
塑性区:he y h s
①弹塑性状态弹塑性弯矩
M= 2
h02e b3he2hybe2ss
dy
h
b2s
he
bh2
sydhye2
bh2
s
1
1 3
he h
2
he
h 弹性极限状态
M=Me
梁弹塑性弯曲的基本假定条件:
①平断面假定条件;
②不考虑纤维层之间的挤压应力;
③在弹性区: x x 呈线性关系;
在塑性区: 仅考虑应力
x 对屈服条件的影响
对于理想弹塑性材料
x
x
E
x e
x s x e
6.2 梁的弹塑性纯弯曲问题
截面具有两个对称面的梁在理想弹塑性材料时, 截面上的应力随着进入塑性阶段不同可能会出现 三种情况:(具有两对对称轴三个阶段中性层位置不变)
x s
s
s
Me
x s
弹性极限状态
弹塑性状态
he
Mp
he
塑性极限状态
(1)弹性极限状态
①弹性极限状态下弯矩值——弹性极限弯矩
Me
2 3
h2b s
We s
We
We
2 3
bh2
②弹性极限状态下梁曲率——ke
s
h
e
1 Eh
Me We
h
s
We
bH 6
2
e
2 s
EH
(2)塑性极限状态
①塑性极限状态下弯矩值——塑性极限弯矩 M p

弹塑性力学-06旋转圆盘

弹塑性力学-06旋转圆盘

弹性区内的应力分量: 弹性区内的应力分量:
3 + µ 1 + 3µ rp 4 1 + 3µ rp 2 ( ) − ( ) + σ r = σ s − ρω p r [ 8 24 r 12 r
2 2
1 + 3µ 1 + 3µ r p 4 1 + 3µ r p 2 ( ) − ( ) σ θ = σ s − ρω p r [ − 8 24 r 12 r
σ θ = C1 −
C 2 1 + 3µ ρω 2 r 2 − 8 r2
σ r = C1 +
3. 实心圆盘: 实心圆盘:
C2 3 + µ − ρω 2 r 2 8 r2 C 2 1 + 3µ σ θ = C1 − 2 − ρω 2 r 2 8 r
半径为 b ,厚度为 h(h 远小于 b )的实心圆盘 ( 设外边界为自由边界。 设外边界为自由边界。 r=0 处,σr 与 σθ 为有限值:C2 = 0 为有限值: r=b 处,无面力: 无面力:
ω
r
σ θ σr
o h b
σθ
r b
r = 0 : σ r = σθ =
3+ µ ρω 2b 2 8
1− µ ρω 2 [(3 + µ )b 2 − 3(1 + µ )r 2 ] 应变分量: 应变分量: ε r = 8E 1− µ εθ = ρω 2 [(3 + µ )b 2 − (1 + µ )r 2 ] 8E
σθ
r o h b
ω
r
σ θ
σr
3+ µ r = 0 : σ r = σθ = ρω 2b 2 8
b

第六章 弹塑性力学平面问题

第六章 弹塑性力学平面问题

Axy 3 U yf1 ( x) f 2 ( x) 4U = 0 6 4U 4U 4U 2 2 2 4 0 4 x x y y 4U 4U 0 0 4 2 2 y x y
பைடு நூலகம்
d 4 f1 ( x) d 4 f 2 ( x) 4U y 0 4 4 4 x dx dx d 4 f1 ( x) f1 ( x) Bx3 Cx 2 Dx 0 4 dx d 4 f 2 ( x) f 2 ( x) Ex3 Fx 2 0 4 dx Axy 3 U y ( Bx3 Cx 2 Dx) Ex3 Fx 2 6
x F1 ( x, y ), y F2 ( x, y ), xy F3 ( x, y )
平面应变问题
纵向轴
构件几何形状特征: 具有很长纵向轴的柱体
横截面的大小和形状沿轴 线不变;外力与轴线垂直 并且沿轴线不变;主体两 端受固定约束。
z方向上位移 w 0 位移发生在oxy平面内
o
x y
② ax bxy cy x 2c, y 2a, xy b
2 2
2a 2c o y -b o
3
均匀应力状态
b 0, a 0, c 0 双向受拉 b 0, a 0, c 0 纯剪切
x
③ ax bx y cxy dy x 2cx 6dy 复杂应力状态 y 6ax 2by 应用叠加原理
3 2 2
x y
-3dh2 o x
xy
可分解为简单 2(bx cy ) 应力状态
a b c 0, d 0 纯弯曲
y
④ ax 4 bx 3 y cx 2 y 2 dxy3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6. ELASTIC PLANE PROBLEMS6.1. Basic equationsWe now proceed to a large category of problems of theory of elasticity, which are important for practical application and at the same time admit considerable simplification in the mathematical aspect of solution. Simplification implies that one may disregard one of the coordinate axes in these problems, for instance Oz , and consider that the whole phenomenon takes place in one plane Oxy. These problems fall into two groups opposite in a sense but common by the mathematical form of solution. The first of these groups is so called plane stress problems, and the second of these groups is called plane strain problems.The coordinates used in the following four sections are rectangular Cartesian, and we use Latin indices for range x, y, z as before and, in the plane problems, use Greek indices for range x , y .(a) Plane stress problemsIn this case, we have,0===ττσyz zx z (6.1) And),(y x x x σσ=, ),(y x y y σσ=, ),(y x xy xy ττ= (6.2) Hence, the equilibrium equations become0=+∂∂+∂∂F yx bx xy x τσ 0=+∂∂+∂∂F yx by y xy στ (6.3) The boundary conditions will bel l p xy x x 21τσ+=l l p y xy y 21στ+= (6.4)where p p y x , are the components of surface forces at x ,y directions and()()y n l x n l ,cos ,,cos 21== Constitutive equations become()y x x Eνσσε-=1 ()x y y Eνσσε-=1 ()τντγxy xy xy EG +==12 (6.5) and ()⎭⎬⎫+-===σσεγγy x z yz xz ,0 (6.6) where the strain component εz is in the direction z of the thin flat plate. The strain compatibility condition will bey x y x xy x y ∂∂∂=∂∂+∂∂γεε22222 (6.7) When the method of stress is used, the strain components in equation (6.7) must be exchanged for stress components. Considering equations (6.5) and (6.3) we have()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+-=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y F x F y x by bx y x νσσ12222 (6.8) When the body forces are constant ( or neglected ) throughout the volume of the body, then we have()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂σσy x y x (6.9) or()02=+∇σσy x (6.9’) where ∇2is the Laplacian operator. The equation (6.9) is so-called M. Levy’s equation.Thus the solution of the plane stress problem (neglected the body forces) is reduced to integration of three differential equations:()y x ,,,0,==βασβαβ (6.3’) 02=∇σαα (6.9’)and satisfaction of the conditions on the surface:p n αβαβσ= (6.4’)(b) Plane strain problemsA body is said to be in the state of plane strain or plane deformation, parallel to th e xy -plane, if the component w of the displacement vector u vanishes and the components u and v are the functions of the coordinates x and y . Thus the plane strain problem is characterized by the formulas,()()y x w y x u u ,,0,=⎪⎭⎪⎬⎫==ααα (6.10)()u u αββααβε,,21+=(6.11) The constitutive relations are (),,,u u αββααβαβμδλθσ++= (6.12),0,===ττλθσyz xz z (6.13)where the dilatation .,u ααθ= it is easy to show that σz is proportional to the sum σσy x +:()()σσμλλσy x z ++=2 (6.14)The compatibility equation in stress form is()F b ααααμλμλσ,222++-=∇ (6.15) The boundary conditions arep n αβαβσ= (6.16)where the n βare components of the exterior unit normal vector to boundary curve C. The formulation of the first boundary-value problem is complete.It is interesting to note that in the case of constant body forces the equations determining stress distribution do not contain the elastic constants of the material. Hence the stress distribution is the same for all isotropic materials, provided the equations are sufficient for the complete determination of the stress. This conclusion is of practical importance. It is possible to determine stress by an optical method using polarized light. From the above discussion it evident that experimental results obtained with a transparent material can be applied immediately to any other material, such as steel and other metals. It should be noted also that in the case of constant body forces the compatibility equation holds both for the case of plane stress and for the plane strain. Hence the stress distribution is the same in the two cases provided the shape of the boundary and external forces are the same.6.2. Stress function. Inverse and semi-inverse methodIt has been shown that a solution of two-dimensional problems reduces to the integration of the differential equations of equilibrium together with the compatibility equation and the boundary conditions. If we neglected the body forces, the equations to be satisfied are⎪⎪⎭⎪⎪⎬⎫=∂∂+∂∂=∂∂+∂∂00y x y x y xy xy x σττσ (6.17) ()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂σσy x y x (6.18) and the boundary conditions (6.4)For the first boundary-value problems, i.e. given the surface forces, the usual method of solving these equations is by introducing a new function, called the stress function introduced by G . B. Airy (1862), and is sometimes called the Airy stress function . Let us take any function ψ:()y x ,ψψ=and put the following expressions for stress components:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫∂∂∂-=∂∂=∂∂=y x x y xy y x ψτψσψσ22222 (6.19) Substituting expressions (6.19) into Eq. (6.17) it is complete satisfied. The true solution of the problem is that which satisfies also the compatibility equation (6.18). Substituting expressions (6.19) into (6.18) we find that the stress function ψ must satisfy the equation024422444=∂∂+∂∂∂+∂∂y y x x ψψψ (6.20) or04=∇ψ (6.20’)Equation (6.20) is called a biharmonic equation. Thus the solution of a two-dimensional problem, when the body forces are neglected, reduces to finding a solution of equation (6.20), which satisfies the boundary conditions (6.4) of the problem.Now we consider a more general case of body forces and assume that these forces have a potential. Then the components F b x and F by are given by the equationsyV F x V F by bx ∂∂-=∂∂-=, (6.21) where V is the potential function. Equation of equilibrium become()0=∂∂+-∂∂xV x xy x τσ ()0=∂∂+-∂∂xV y xy y τσ These equations are of the same form as equations of equilibrium and can be satisfied by taking⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂∂-=∂∂=-∂∂=-y x x V y V xy y x ψτψσψσ22222, (6.22) Substituting (6.22) in the compatibility equation (6.8) and (6.15) respectively, we have: for plane stress problem,()V ∇--=∇241νψ (6.23) for plane strain problem,V ∇---=∇24121ννψ (6.24)In many problems it is often found convenient to employ the inverse method or semi-inverse method. In the inverse method, some functions satisfying the differential equations are taken and examined to see what boundary conditions these functions will satisfy and thereby to know what problems they can solve. Specifying in advance the analytic form of stress function ()y x ,ψ and selecting its parameters (for instance, coefficients of a polynomial) so as to satisfy the basic equations and boundary conditions for plane problems. The semi-inverse method in which one guesses at part of the solution, tries to determine the rest rationally so that all the differential equations and boundary conditions are satisfied. As we known, from uniqueness of solution, any by guessing solution, which can be satisfied all the differential equations and boundary conditions of a well-posed plane problem is an exact solution of this problem.As we know, the biharmonic equation is of fourth-order differential equations, therefore all of polynomials whose order is lower than fourth are biharmonic function. When the stress function is taken as a polynomial in linear form,()cy bx a y x ++=,ψ, (6.25)the compatibility equation is satisfied for all values of the constant a, b and c. The stress components given by Eqs. (6.19) are zeros. The stress boundary conditions always give zeros. Thus, we have the case of no surface forces and no stress and that the superposition of a linear function to the stress function for any problem does not affect the stresses. If the function ψ represents a polynomial of the second degree()y c bxy x a y x 2222,++=ψ (6.26) equation (6.20) will obviously be satisfied everywhere for any values of a, b, and c. The stresses, in accordance with equations (6.19) will be expressed as.;;b a c xy y x -===τσσ (6.27)Then we have the case of the homogeneous state of stress.If the stress function ψ is a polynomial of third degree()y c bxy x a y k y x f y x e x d y x 223223226226,++++++=ψ (6.28) equation (6.20) will again be satisfied for arbitrary values of the coefficients the stresses, according to equations (6.19), will represented as⎪⎭⎪⎬⎫---=++=++=b fy ex a cy dx c ky fx xy y x τσσ (6.29)i.e., they will be linear functions of the coordinates.If the stress function ψ is given as a function of the fourth or higher degree, its derivatives entering in equation (6.20) will be different from zero, in general; the coefficients must be chosen in such a way as to satisfy the compatibility condition (6.20) for arbitrary values of x and y . The stresses will then be functions of the second and higher degree.6.3. Bending of Elastic BeamsAs a example, we now discuss the bending of elastic cantilever beam loaded at the free end, as shown in figure (6.1), by using the semi-inverse method and stress function. Consider a cantilever having a narrow rectangular cross section of unit width bent by a force F applied at the free end δis the thickness of the beam in the direction perpendicular to the plane of the drawing. The upper and lower edges are free from load, and the shearing forces, having a resultant F , distributed along the end x=0. In this case , the boundary condition are⎪⎪⎭⎪⎪⎬⎫-====⎰+-±=±==h h xy h y y h y xy x x dy F δτστσ0)(0)(0)(0 (a)(a) Selecting stress functionLet us try to solve this problem by using the semi-inverse method. As we known from the mechanics of materials, The moment will be changed linearity along x and the normal stress σx is proportional to y. Thus, it can be supposed thatxy C y x 122=∂∂=ψσ (b) where C 1 is a constant. Integrating the equation (b) twice, we have()()()x f x f y y x C y x 213161,++=ψ (c)Differentiating this function with respect to x and substituting the results in the biharmonic equation (6.20), we have0424414=+dx f d dx f d y (d) The second term in the above equation is independent of y, but this equation must be satisfied for all values of x and y in the beam. This is possible only if0414=dxf d and 0424=dx f d (e) or C x C x C x C f 5423321+++=C x C x C x C f 9827362+++=where C C C 932,,,⋅⋅⋅ are constants of integration. Therefore, we have()()C x C x C x C C x C x C x C y y x C 9827365423323161++++++++=ψ (6.30)Substituting in Eqs. (6.19), we obtain Fig., 6.1 A cantilever beam loaded at its free end()()C y C x C xy C x y 73622226+++=∂∂=ψσ (f) C x C x C y C y x xy 43222122321----=∂∂∂-=ψτ (g) Determining the coefficientsThe boundary conditions require that ,0h y on y ±==σ or()()0267362=+++C h C x C h C()()0267362=+-++-C h C x C h CThese equations must be valid for all values of x between 0 and l ; it follows therefore that062=+C h C , 073=+C h C0,07362=+-=+-C h C C h CSolving, we find .07632====C C C C Thus()02321432221=----=±=C x C x C h C h y xy τ orh C C 21421-=. From the fourth equation of (a), we have()F dy h y dy h h h h xy =-=-⎰⎰--22δδτ, from which,2331I F h F C -=-=δ where h I 332δ= is the moment of inertia of the cross section, the final expressions for the stress components are therefore()⎪⎪⎭⎪⎪⎬⎫--==-=y h I F I F x y xy y x 2220τσσ (6.31)This coincides completely with the elementary solution as given in the mechanics of materials. From this solution, we see that the distribution of the shearing stress at the ends must according to the parabolic law and that σx at the built-in end must vary linearly with y . The solution, therefore, is exact only when the boundary forces are so given. If the boundary forces are given in any other manner, this solution will not be an exact one; but by virtue of Saint-Venant’s principle, it does represent the stress distribution for some cross section at a large distance from the ends.Displacements calculationNow we discuss the deformation of the beam. From the strain-displacement relations and Hooke’s law, we obtain,,EIFxy y v EI Fxy x u ν=∂∂-=∂∂ ()()EIy h F E x v y u xy 22)1(12-+-=+=∂∂+∂∂νντ(h)Integrating the above first two equations, we obtain ()()⎪⎪⎭⎪⎪⎬⎫+=+-=x EI y Fx v y u EI y x F u i 12222νν (i) in which ()()x v y u 11, are the unknown functions of y and x. substituting u and v into Eq. (h) we find()()h F EIx EI F dx dv y EI F dy du 221211222νν+-+-=+- We note that the terms on the left of the equal sign are functions of y alone and the terms on the right side are functions of x alone. A function of x can be equal to a function of y for all values of x and y only when they are both equal to a constant sayC 1. Thus()C y EIF dy du 12122=+-ν()C h F EIx EI F dx dv 122112-=++-νIntegrating, we have()()C y C y EIFy u 213126+++=ν ()()C x C h Fx EIEI x F x v 3123116+-+-=ν where C 2 and C 3 are constants of integration. The displacements u and v are therefore()C y C y EI Fy x EI F u 2132262++++-=ν ()C x C h x EIFx EI F y x EI F v 31232162+-+-+=νν Assume that the right end (at the point x=l, y=0 ) of the beam is fixed. The boundaryconditions are then.0,0===∂∂==y l x at yu v uWe find by substitution,()h l EIF EI l F C C EIl F C 23322113,0,2ν++=== then the displacements are()()()()()⎪⎪⎭⎪⎪⎬⎫⎥⎦⎤⎢⎣⎡-++-++=++-=x l h l y x l x EI F v EIy F y x l EI F u ννν123662222233322 (6.32) The functions of u and v are non-linear equations of x and y . It means, that any sectionwill be not a plane after deformation. This phenomenon is different with the result of elementary theory of mechanics of materials. At the fixed end (x=l ), the deformation will be given by the following relations:()⎪⎪⎭⎫ ⎝⎛-+==222323l ly l EI F v lx ν ()⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛∂∂=νν122h y EI F x v l x ()GI h F EI h F x v y l x 21220-=+-=⎪⎭⎫⎝⎛∂∂==ν Then we obtain the angle of rotation of the horizontal line element at the fixed end isFh 2/2GI ( Fig. 6.2). Let us now realize the same fixing in a different manner specifying the condition0,0,=∂∂==xvandy l x which requires that the element dx of the supporting section must remain horizontal, then we obtain the same result as the preceding discussion, i.e. the angle of rotation of the vertical line element at the fixed end is also Fh 2/2GI.The vertical displacement of the axes of the beam is()()()x h EIF EI Fl EI x l F EI x F v y -+++-==1132623220ν (6.33) The deflection at the free end is()()GIh Fl EI FlEI l Fh EI Fl v y x 231323230+=++===ν (6.34) The second term of the above equation is obviously the influence to the shearing stress,but it is too small , about ( 2h/l )2. For example, if l =10(2h), then the ratio( Fh 2/2DI over Fl 3/3EI) is 1/100.Fig. 6.2 Theoretical results of the fixed endIt is clear, the result of mechanics of material is sufficient precisely for the long thin beams.In fact, detail analysis of the deformation at the end is very complex, but the influence region of end effect, according to the Saint-venant principle, is limited (about like as the height of the beam).Example 6.1 Find the stress distribution and the deflection at center of the beam subjected uniformly distributed load q along its top edge as shown in Fig. 6.3.(1) Select the stress function⎪⎪⎭⎫⎝⎛-+++=55324332221y y x C y C y x C x C ψ (6.35)Easy to verify that the stress function ψ satisfy the biharmonic function.(2) Determine the coefficientsThe boundary conditions are()0=±=h y xy τ ()q h y y -=-=σ ()0==h y y σand at x=,l ± we have 0=⎰-ydy hh x σδτql dy l hhxy ±=⎰-Then we findC 2 + 3C 4h 2 =02(C 1 + C 2h +C 4h 3)=0Fig. 6.3 Simple supported beam subjected uniformly distributed load.2(C 1 – C 2h – C 4h 3 )=-q C 3 +C 4l 2 – (2/3)C 4h 2 = 0 4(C 2h + C 4h 3 ) =qSolving the above equations we obtain⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-++-=5815288345323223322y y x h h l h y h y x x q ψ (3) Find the stress components()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=53222222h y y x l I q x σ (6.36) ⎪⎪⎭⎫⎝⎛+--=h y h y Iqy 3233232σ (6.37) ()x y h Iq xy 222--=τ (6.38) where h I 332δ=. Comparing with the results of mechanics of materials, we find the second term of equation (6.36) is independent on x , and when h = l/10, the influence upon σx is very small (about 1/1500). It should be noted that at ,l x ±=()153522h y I qy x -=σ and not coincide with the given conditions, i. e. at eachend, the normal stresses are not equal to zero. But the resultant force and resultant moment are equal to zero. Again according to the Saint-Venant’s principle the results of stress analysis are correctly for the whole beam.(4) determine the deflection at the center section of the beamBy using the above results we can find the deflection v 0 at y=0:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++--=x h x h x x l EI q v 222242202151222ν (6.39) and the curvature of the deflection curve is⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=h x l EI q dx v d 2222022542ν (6.40)It is easy to understand that the second term of Eq. (6.40) is a correction term..Fig. 6.4 A part loaded beam6.4. Deep beam problem Solution by trigonometric seriesThe method of solution of the plane problem by means of algebraic polynomials, considered in the preceding sections, afford limited possibilities for practical application because it is very difficult to select a polynomial which gives the solution corresponding to a prescribed load which is more or less complicated. The method of trigonometric polynomials, proposed by C.Ribie`re (1889) and L.N.G. Filon (1903) for the case of bending a rectangular strip whose length is considerably greater than the height, was found to be far more effective. Specially, when the external load is discontinuity, select a trigonometric polynomial as a stress function is reasonable.We now discuss the solution by trigonometric polynomial, as a example of part loaded beam (Fig.6.4), by using the inverse method. Select the stress function as the following form()()lxn y f y x πψsin,= (6.41) where n is an arbitrary constant, f(y) is an arbitrary function, 2l is the length of the beam.As indicated in the preceding sections, the solution of the plane problem by means of the stress function ()y x ,ψ is reduced to the integration of equation04=∇ψLet ln πα=, then we have ()x y f αψsin =()ααψsin 444y f x=∂∂ ()xy f yx ααψsin 2224''-=∂∂∂()()x y f yαψs i n 444=∂∂ then we obtain a ordinary differential equation of f(y)()()()()02424=+''-y f y f y f ααIts general solution is in the usual way in the hyperbolic function form()y ysh C y ych C y sh C y ch C y f αααα4321+++= (6.42)Substituting (6.42) in (6.41), we find the stress function as()x y ysh C y ych C y sh C y ch C αααααψsin 4321+++= (6.43)The stress components are()()]22[sin 43222122y ysh y ch C y ych y sh C y sh C y ch C x y x αααααααααααααψσ+++++=∂∂=()y ysh C y ych C y sh C y ch C x xy ααααααψσ4321222sin +++-=∂∂= (6.44)()()][cos 43212y ych y sh C y ysh y ch C y ch C y sh C x yx xy ααααααααααααψτ++++++-=∂∂∂-=(6.45)It is easy to verify that another form of hyperbolic function will be satisfied the biharmonic function of ψ. Therefore we can get infinite particular solution for this problem, hence the stress function may be taken as the following form ()()∑∞=+++=14321s i n,n y y c h C y y s h C y ch C y sh C x y x αααααψ+()∑∞=++++18765cos n y ych C y ysh C y ch C y sh Cx ααααα (6.46)The coefficients of equation (6.46) C i (I=1,2,…,,,8) will be determined by using theboundary conditions. In this case, the stress boundary conditions must be given in the form of infinite series:()x B x A A x q n nn nααsin cos 110∑∑∞=∞=++= (6.47)As we know from the mathematical analysis, any function in an interval []l l , can be expanded by Fourier series, and the coefficients of this series will be()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫===⎰⎰⎰---l l n l l n l ldx l x n x q l B dx l x n x q l A dx x q l A ππsin 1cos 1210 (6.48) For the case of an uniformly loaded beam (q (x) = q 1), as shown in Fig. (6.4), theFourier coefficients are ()laq dx l q dx x q lA a a ll110221===⎰⎰--()a lq xdx x q l A ll n αααsin 2cos 11==⎰- ()⎰⎰--===a a ll n xdx lq xdx x q l B 0sin sin 11αα from which in the upper side of the beam, we have()⎪⎭⎫⎝⎛+=∑∞=11cos sin 22n a l a l a q x q ααα (6.49)For the lower side, we have the same representative. Now we, as a example, discussthe deep beams.Solution of continuous deep beamConsider a continuous deep beam consisting of a sequence of equal spans similarly loaded such a uniform pressure q on the upper edge. Let h and 2l be the height and span length respectively. In this case, the elementary beam theory is not adequate, but engineering useful results can be obtained by the method of trigonometric series.Let us neglect the influence of left and right neighborhood spans to the center span which we considered only (see Fig. 6.5).The supports of the continuous deep beam are series columns, now we simplified them as a series concentrated forces 2ql. Now we try to solve it. (1) Select the stress functionConsidering the sine function is an anti-symmetric function and σσy x , must be symmetric for y-axes, we select the stress function as the following form()y D xy D x D y ych C y ysh C y ch C y sh C x n 2322114321cos ++++++=∑∞=αααααψ (6.50)where D = const..l n πα=Obviously, due to ()x l x ααcos 2cos =+, the ‘center’ span is truly a substitute span.(2) Calculate the stress components()()D y sh C y ch C y ych C y ysh C y ch C y sh C x y n x 3434321122]2[cos ++++++=∂∂=∑∞=αααααααααψσ (6.51,a)()1432112222cos D y ych C y ysh C y ch C y sh C x x n y ++++-=∂∂=∑∞=ααααααψσ (6.51,b)Fig. 6.5The substitute span of a continuous deep beam=∂∂∂-=yx xy ψτ2()[]D y ych C y sh C y ysh C y ych C y sh Cy ch C x n 24343211sin -+++++∑∞=ααααααααα(6.51,c)The shearing stress components must be anti-symmetric, therefore we have D 2 = 0(3), Give the equilibrium conditions and boundary conditions a), ,0=τxy when, x=0 and x=l ; b),;0ql dx ly-=⎰σc), ;2,0,0,0,0l x x and y when y xy ≠≠===στ d), ;,,0h y when q y xy =-==στe),,00=⎰dy hxσ for any vertical section;(4), Determine the constants and find the stress distribution ruleEasy to find the constants D 1, D 2, D 3, C 1,……C 4,D 1= -q/2, D 2= 0, D 3= 0C 1= ααααααqhh hhch sh h q s 222-≈+-C 2 =α22qC 3= αααααqhh h hh qs s 222222-≈--C 4=ααααααqhh h hhch sh h q s 22222≈-+Substituting above expressions into (6.51) and considering the following related expressioneyy sh y ch ααα-=-we have()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫-=-+-=--=∑∑∑∞=-∞=-∞=-111sin 21cos 21cos 2n y xy n y y n y x e y x q q e y x q e y x q αααααταασαασ(6.52)The stress distribution rule is shown as figure (6.6)(5), Determine the displacement componentsSubstituting the stress components into the following equations()σνσεy x x Ex u -==∂∂1()σνσεx y y Ey v -==∂∂1and integrating, we can obtain the displacement components u and v6.5 Basic equations in polar coordinatesUp to now, in solving the problems of the theory of elasticity we have used therectangular coordinates. In many problems, however, it is found more convenient to select other systems of coordinates. In particular, consider polar coordinate in planeproblems. For example, in discussing stresses in circular rings and disks, curved beams,Fig. 6.6 Stress distribution rule in deep beametc.The relations between polar and rectangular coordinates are (Fig. 6.7),sin ,cos ϕρϕρ==y x (6.53)xyy x arctan,222=+=ϕρ (6. 54) (1) Equilibrium EquationsLet us now consider the equilibrium of a infinitesimal element abcd cut out from the plate by the radial section od, oc , normal to the plate, and by two cylindrical surface ab, cd , normal to the plate. The normal stress component in the radial direction is,σρ the normal component in the circumferential direction is σϕ, and theshearing stress component is τρϕ, each symbol representing stress at the point ϕρ,. The body forces in the directions ϕρ,are F F b b ϕρ,, then from the equilibrium condition in the radial direction we have (Fig. 6.8)()-⎪⎪⎭⎫ ⎝⎛∂∂+--+⎪⎪⎭⎫ ⎝⎛∂∂+2sin ϕρϕϕσσϕρσϕρρρρσσϕϕρρρd d d d d d d 02cos 2cos 2sin=+-⎪⎪⎭⎫ ⎝⎛∂∂++ϕρρϕρτϕρϕϕττϕρσρρϕρϕρϕϕd d F d d d d d d d bFig. 6.7 Relations between polar and Fig.6.8 Notationsrectangular coordinateConsidering ϕd is so small, we have12cos,22sin≈≈ϕϕϕd d d Neglecting small quantities of higher order, and dividing through by the elementary area ,ϕρρd d we obtain the equation of equilibrium in the radial direction, and in a similar manner, the equation of equilibrium in the tangential direction can be obtained as following. Then the two equilibrium equations for plane problems in polar coordinates are⎪⎪⎭⎪⎪⎬⎫=++∂∂+∂∂=+-+∂+∂∂02101F F b b ϕρϕρϕϕρϕρρϕρρτρτϕσρρσσϕτρρσ (6.55)If the body forces are neglected, we observe that Eq. (6.55) will be identically satisfiedwith the introduction of the stress function ψ1 defined byϕψρρψρσρ∂∂+∂∂=22211 (6.56,a) ρψσϕ∂∂=22(6.56,b) ⎪⎪⎭⎫⎝⎛∂∂∂∂-=∂∂∂-∂∂=ϕψρρϕρψρϕψρτρϕ11122 (6.56,c) (2) Strain-displacement relationLet us consider the deformation of an infinitesimal element ABCD, and denote the radial and circumferential components of displacements in directions ϕρ, by u and v respectively (see Fig. 6.9).In the figure (6.9), the solid element ABCD is the state of before deformation, and the dot-line element A’B’C’D’ is the state of after deformation. The vector of displacement at a point can be divided into two parts: radial and circumferential components. For example, vector AA’ will be divided into vectors AA’’ and A” A’, etc. Here AB =ρd , the extension line of OA ’ intersect B’’B’ at F, A’E parallel to A’’B’’.1In this chapter we use ψas the stress function. Don’t confusion with the coordinate .ϕThe circular curve whose radius is OA ’ intersect OD’’ at G . The angle ∠ HA’F =π/2. Thus, we have the displacements at points A, B, C, D, asAA’= AA’’ + A’’A’; BB’= BB’’ +B’’B’;………..etc.Considering ϕd is a infinitesimal quantity, we can obtained the strain components:ρρρρερ∂∂=-∂∂+=''-''≈-''=u d ud uu ABA AB B AB AB B A=-'''-''+'''≈-''=ADADA A A G D D AD AD D A εϕ=()ρϕρϕρϕρϕρϕϕu d v d d v d u d d dvv +∂=--+++=''+''''-'≈''∠+''∠=+=H A HD B A EFE B H A DF A B γγγρϕ21=='''-''+'''''-'''''HA A A D D A O A AB A E B ==∂∂+-∂∂+++-∂∂+∂∂ϕϕϕρϕϕρρρρρρd v d ud u u u v d u d d v=.ϕρρρ∂∂+-∂∂u v v Fig. 6.9 Deformation of an infinitesimal fan element。

相关文档
最新文档