(陈强)高二年级理科数学选修2-1期末复习试卷

合集下载

高二理科数学选修2-1期末质量检测试题(卷)含答案

高二理科数学选修2-1期末质量检测试题(卷)含答案

高二理科数学选修2-1期末质量检测试题(卷)含答案本试卷分为两部分,第一部分为选择题,第二部分为非选择题. 满分150分,考试时间100分钟.第一部分(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “46k <<”是“方程22164x y k k +=--表示椭圆”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件2.过点(0,1)作直线,使它与抛物线24y x =仅有一个公共点,这样的直线有( ) A. 1条 B. 2条 C. 3条 D. 4条 3.下列命题:①“在三角形ABC 中,若sin sin A B >,则A B >”的逆命题是真命题; ②命题:2p x ≠或3y ≠,命题:5q x y +≠,则p 是q 的必要不充分条件;③“任意32,10x R x x ∈-+„”的否定是“任意32,10x R x x ∈-+>”;④“若,a b >则221a b >-”的否命题为“若a b „,则221a b -„”; 其中正确的个数是( )A .1B .2C .3D .44.若A ,B ,C 不共线,对于空间任意一点O 都有311488OP OA OB OC =++u u u r u u u r u u u r u u u r,则P ,A ,B ,C 四点( )A .不共面B .共面C .共线D .不共线5.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是边OA 、CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA uu u r 、OB uuu r 、OC uuu r表示向量OG uuu r是( )A .111633OG OA OB OC =++u u u r u u u r u u u r u u u rB .112633OG OA OB OC =++u u u r u u u r u u u r u u u rC .2233OG OA OB OC =++u u u r u u u r u u u r u u u rD .122233OG OA OB OC =++u u u r u u u r u u u r u u u r6.已知(4,2)是直线l 被椭圆221369x y +=所截得的线段的中点,则l 的方程是( ) A. 280x y ++=.280x y +-= C .280x y --= D .280x y -+=7.若椭圆22221x y a b+=过抛物线x y 82=的焦点,且与双曲线122=-y x 有相同的焦点,则该椭圆的方程是( )A .12422=+y x B .1322=+y x C .14222=+y x D .1322=+y x 8.已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A. 223 B .423C .2D .29.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A. 3 B. 5 C. 3或5 D. 3或510.设p :211x -?,q :()[(1)]0x a x a --+…,若q 是p 的必要而不充分条件,则实数a 的取值范围是( )11.已知椭圆12222=+by a x )0(>>b a 上一点A 关于原点的对称点为点,B F 为其右焦点,若BF AF ⊥,设α=∠ABF ,且⎥⎦⎤⎢⎣⎡∈4,6ππα,则该椭圆离心率e 的取值范围为( )A. ]13,22[- B. )1,22[ C. ]23,22[ D. ]36,33[120,0)a b >>的左顶点与抛物线22y px =的焦点的距离为4(2,1)--,则双曲线的焦距为( )A. 第二部分(非选择题,共90分)二、填空题:本大题共4小题,每小题6分,共24分.13. 椭圆22259x y +=1的两焦点为1F 、2F ,一直线过1F 交椭圆于P 、Q ,则2PQF ∆的周长为________. 14.已知下列命题:①命题“存在x R ∈,213x x +>”的否定是“任意x R ∈,213x x +<”; ②已知p ,q 为两个命题,若“p 或q ”为假命题,则“(p ⌝)且(q ⌝)为真命 题”;③“2a >”是“5a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中所有真命题的序号是________.15.直线32y x =与椭圆22221(0)+=>>x y a b a b 相交于A 、B 两点,过点A 作x 轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是 .16.已知点P 是抛物线x y 82-=上一点,设P 到此抛物线准线的距离是1d ,到直线010=-+y x 的距离是2d ,则21d d +的最小值是 .三、解答题:本大题共4小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分16分)已知a 为实数,p :点(1,1)M 在圆22()()4x a y a ++-=的内部; q :任意,x R ∈都有21x ax ++0…. (1)若p 为真命题,求a 的取值范围; (2)若q 为假命题,求a 的取值范围;(3)若“p 且q ”为假命题,且“p 或q ”为真命题,求a 的取值范围. 18. (本小题满分17分)已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο底面ABCD ,且1PA AD DC ===,2AB =,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的 余弦值.19. (本小题满分16分)双曲线C 的中心在原点,右焦点为23(,0)3F ,渐近线方程为3y x =±. (1)求双曲线C 的方程;(2)设直线l :1y kx =+与双曲线C 交于A 、B 两点,问:当k 为何值时,以AB 为直径的圆过原点; 20. (本小题满分17分)已知点(0,2)A -,椭圆2222:1x y E a b+=)0(>>b a 的离心率为3,(,0)F c 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P 、Q 两点,当OPQ ∆的面积最大时,求直 线l 的方程.高二理科数学选修2-1期末质量检测试题参考答案一、选择题:1.C 2.C 3.C 4.B 5.A 6.B 7.A 8.B 9.C 10.A 11.A 12.B二、填空题:本大题共4小题,每小题6分,共24分.13.20 14.② 15.1216.2 三、解答题:本大题共4小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分16分)解:(1)由题意得,22(1)(1)4a a ++-<,解得11a -<<, 4分p 为真命题时a 的取值范围为(1,1)-. 5分(2)若q 为真命题,则240a =-≤D ,解得22a -≤≤, 8分故q 为假命题时a 的取值范围(,2)(2,)-∞-+∞U . 10分 (3)由题意得,p 与q 一真一假,从而当p 真q 假时有11,22,a a a -<<⎧⎨<->⎩或 无解; 13分当p 假q 真时有11,22,a a a -⎧⎨-⎩≤或≥≤≤解得2112a a --≤≤或≤≤. 15分∴实数a 的取值范围是[][]2,11,2--U . 16分18. (本小题满分17分) (1)【方法一】证明:PA ⊥Q 底面ABCD ,CD AD ⊥, ∴由三垂线定理得:CD PD ⊥, 2分因而CD 与面PAD 内两条相交直线AD 、PD 都垂直,∴CD ⊥面PAD . 4分又CD ⊂面PCD ,∴面PAD ⊥面PCD . 6分(1)【方法二】证明:由已知得:PA AD ⊥,PA AB ⊥,AD AB ⊥.以A 为坐标原点,AD 长为x 轴,AB 长为y 轴, AP 长为z 轴,建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M . 2分 因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故 4分 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD .又DC 在面PCD 上,故面PAD ⊥面PCD . 6分 (2)解:因),1,2,0(),0,1,1(-==PB AC 7分9分||||AC PB ⋅则AC 与PB 所成的角为 11分 (3)解:平面AMC 的一个法向量设为),,1(11z y n =,),21,1,0(),0,1,1(==AM AC ⎪⎩⎪⎨⎧=+=+∴0211111z y y ∴)2,1,1(-= 13分 平面BMC 的一个法向量设为),,1(22z y =,),21,1,0(),0,1,1(-=-=⎪⎩⎪⎨⎧=+-=-∴02101222z y y ∴)2,1,1(= 15分 3266411,cos=⋅+->=<∴因为面AMC 与面BMC 所成二面角为钝角,所以面AMC 与面BMC 所成二面角的余弦值为32-. 17分19. (本小题满分16分) 解:(12分得2223a b c a b⎧=⎪⎨=+⎪⎩,解得331a b ⎧=⎪⎨⎪=⎩5分 双曲线的方程是231x y -=. 7分(2)① 由221,31,y kx x y =+⎧⎨-=⎩得()223220k x kx ---=, 10分 由20,30k ∆>-≠且,得66,k -<<且 3k ≠±. 12分设()11,A x y 、()22,B x y ,因为以AB 为直径的圆过原点,所以OA OB ⊥,所以 12120x x y y +=.又12223kx x k -+=-,12223x x k =-, 14分 所以 212121212(1)(1)()11y y kx kx k x x k x x =++=+++=, 所以22103k +=-,解得1k =±. 16分 20. (本小题满分17分) 解:(1)设,因为直线的斜率为,,所以,. 2分 又,解得, 5分 ,所以椭圆的方程为. 7分(2)设,由题意可设直线l 的方程为:,联立消去得, 9分当,所以,即或 11分.所以14分点到直线的距离所以,15分设,则,,当且仅当,即,解得时取等号,满足,所以的面积最大时直线的方程为:或. 17分。

高中数学人教A版选修2-1-高二上学期期末复习(一)理科数学试题

高中数学人教A版选修2-1-高二上学期期末复习(一)理科数学试题

高中数学学习材料 (灿若寒星 精心整理制作)高二数学期末复习 选修2-1模块测试A 一、选择题(12×5=60) 1.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .221169x y += B .2211612x y += C .22143x y += D .22134x y += 3.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形 4.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 5.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则BD BC AB 2121++等于( )A .ADB .GAC .AGD .MGC 1D 1B 1A 1CDABPM6.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y = D .23x y -=或x y 92= 7.抛物线y =x 2到直线 2x -y =4距离最近的点的坐标是 ( ) A .)45,23(B .(1,1)C .)49,23( D .(2,4) 8.向量)2,1,2(-=a ,与其共线且满足18-=⋅x a 的向量x 是 ( )A .)41,31,21(- B .(4,-2,4) C .(-4,2,-4) D .(2,-3,4)9.如图,正方体1111ABCD A B C D -的棱长为2, 点P 是平面ABCD 上的动点,点M 在棱AB 上,且13AM =,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为4,则动点P 的轨迹是( )A .圆B .抛物线C .双曲线D .直线10.过原点O 作两条相互垂直的直线分别与椭圆P :2212x y +=交于A 、C 与B 、D , 则四边形ABCD 面积最小值为( ) A 、83B 、42C 、22D 、4311.已知抛物线21x y =+上一定点(1,0)A -和两动点,P Q ,当PA PQ ⊥时,点Q 的横坐标的取值范围是( )A.(,3]-∞- B .[1,)+∞ C .[3,1]-D .(,3]-∞-[1,)+∞12.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=3|PF 2|, 则双曲线离心率的取值范围为 ( )A.(1,2)B.(]1,2C.(3,+∞)D.[)3,+∞二、填空题(4×5=20分)13.命题“存在有理数x ,使220x -=”的否定为 。

高二数学选修2-1期末综合测试卷

高二数学选修2-1期末综合测试卷

高二数学选修2-1期末综合测试卷高二数学选修2-1期末综合试题(卷)一、选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题“若a<b,则a+c<b+c”的逆否命题是()A。

若a+c≥b+c,则a≥bB。

若a+c>b+c,则a>bC。

若a+c≤b+c,则a≤bD。

若a+c<b+c,则a≥b2.以下四组向量中,互相平行的有()组。

1) a=(1,2,1)。

b=(1,-2,3);2) a=(8,4,-6)。

b=(4,2,-3);3) a=(0,1,-1)。

b=(0,-3,3);4) a=(-3,2,0)。

b=(4,-3,3)A。

一B。

二C。

三D。

四3.若平面α的法向量为n1=(3,2,1),平面β的法向量为n2=(2,0,-1),则平面α与β夹角的余弦是()A。

7/10B。

-7/10C。

7/14D。

-7/144.“α=kπ+π。

k∈Z”是“sin2α=”的()A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

既不充分又不必要条件5.“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件A。

充要B。

充分非必要C。

必要非充分D。

既非充分又非必要6.在正方体ABCD-A' B' C' D'中,E是棱A'B'的中点,则A'B与D'E所成角的余弦值为()A。

5/10B。

5/√10C。

10/√22D。

√2/27.顶点在原点,且过点(-4,4)的抛物线的标准方程是()A。

y=-4xB。

x=4yC。

y=-4x或x=4yD。

y=4x或x=-4y8.设椭圆(2/m)^2+(2/n)^2=1(m>0,n>0)的右焦点与抛物线y=8x的焦点相同,离心率为e,则此椭圆的方程为()A。

x^2/4+y^2/16=1B。

x^2/16+y^2/4=1C。

x^2/9+y^2/25=1D。

高二期末数学(选修2-1)模拟题理科参考答案

高二期末数学(选修2-1)模拟题理科参考答案

高二期末数学模拟题理科参考答案1.【答案】B【解析】根据非命题的要求得解.【详解】因为“任意”的否定是“存在”,“等于”的否定是“不等于”故选B. 【点睛】本题考查非命题,注意区别非命题与命题的否定,属于基础题. 2.【答案】A【解析】原不等式等价于,解得,故选A .3.解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.答案:A 4.【答案】C【解析】当时,,,故命题为真命题; 令,则,故命题为假命题.依据复合命题真假性的判断法则,可知命题是真命题,命题是假命题,是真命题,进而得到命题是真命题,命题是真命题.故选C .5.【答案】B【解析】∵⊥a c ,∴430x -+-=,解得1x =,∴(1,2,1)=a ,又∥b c ,设λ=b c ,则112233y y λλλλ=-⎧=-⎧⎪=⇒⎨⎨=-⎩⎪=-⎩,∴(1,2,3)=-b ,∴(1,2,1)++=a b c ,∴++==a b c6.解析: 根据余弦定理:cos A =b 2+c 2-a 22bc >0,∴A 为锐角.∵在不等边三角形中,a 是最大边,∴A 是最大角,∴△ABC 为锐角三角形,∴π3<A <π2.答案: B 7.【答案】B【解析】根据等差中项的定义和等比数列的通项公式求解 【详解】因为1a ,312a ,2a 成等差数列,所以312=+a a a ,(3)(2)0x x -+<23x -<<10x =28x -=lg lg101x ==p 0x =20x =q p q ∨p q ∧q ⌝()p q ∧⌝()p q ∨⌝又因为{}n a 为等比数列,所以2111a q a a q =+,即21=0q q --,解得q =.因为数列的各项均为正数,所以12q +=. 故选B. 【点睛】本题考查等差中项和等比数列的通项公式,属于基础题. 8.【答案】A【解析】①若曲线C 表示椭圆,则401041k k k k ->⎧⎪->⎨⎪-≠-⎩,即55(1,)(,4)22k ∈时,曲线C 表示椭圆,故(1)错误;②若曲线C 表示焦点在x 轴上的椭圆,则401041k k k k ->⎧⎪->⎨⎪->-⎩,解得512k <<,故(2)正确;③若曲线C 表示双曲线,则(4)(1)0k k --<,解得4k >或1k <,故(3)正确; ④由(1)可知,(4)错误.9.【答案】A【解析】由题意得,联立直线与抛物线,得, 由,得,即,所以A . 10.【答案】A【解析】根据诱导公式和三角形的关系判断是否从左推右成立或从右推左成立,从而判断充分条件和必要条件.【详解】 若2A B π+=,则sin sin cos 2A B B π⎛⎫=-= ⎪⎝⎭;2116y kxy x =⎧⎪⎨=+⎪⎩21016x kx -+=0Δ=12k =±12b a =e ==若sin cos A B =,则sin sin 2A B π⎛⎫=-⎪⎝⎭, 因为A ,B 为三角形的内角,所以2A B π=-或2A B ππ+-=,即2A B π+=或2A B π-=.故选A. 【点睛】本题考查充分条件和必要条件,属于基础题.11.D [法一:如图,建立空间直角坐标系,则A (1,0,0),D 1(0,0,1),M (1,1,12),N (12,1,1),C (0,1,0).所以AD 1→=(-1,0,1), MN →=(-12,0,12).所以MN →=12AD 1→.又直线AD 1与MN 不重合, 所以MN →∥AD 1→.又MN 平面ACD 1,所以MN ∥平面ACD 1.因为AD 1→=(-1,0,1),D 1C →=(0,1,-1),AC →=(-1,1,0).设平面ACD 1的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·D 1C →=0,所以⎩⎪⎨⎪⎧-x +z =0,y -z =0.所以x =y =z .令x =1,则n =(1,1,1). 又因为AM →=(1,1,12)-(1,0,0)=(0,1,12),所以|AM →|=02+12+⎝ ⎛⎭⎪⎫122=52.所以点M 到平面ACD 1的距离为|AM →·n ||n |=323=32.法二:延长NM 交CB 的延长线于H ,连AH 、D 1H ,MH ∥平面ACD 1,∴M 到平面ACD 的距离即为H 到平面ACD 1的距离.则VD 1-AHC =13×34=14=VH -ACD 1=13×32h .∴h =32.]12.【答案】D【解析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-+,可得2222222a c b ac a b ac +-⨯=-+,即c=.又c =,所以4b =.因为0OA OB OC ++=,所以点O 为ABC △的重心, 所以3AB AC AO +=,所以3AB AO AC =-,两边平方得22|9|6cos AB AO AO AC CAO =-∠2||AC +. 因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+,于是29||AO -940AO -=,所以43AO =, AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯=. 因为ABC △的面积是AOC △面积的3倍.故ABC △ 【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题. 13.【答案】1-【解析】画出可行域,通过向上平移基准直线230x y -=到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数z 2x 3y 在点()1,1A 处取得最小值,且最小值为231z =-=-.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.14.【答案】 【解析】将化为,由于准线方程为, 所以抛物线开口向下,且,所以. 15.【答案】201918-2y ax =21x y a=2y =10a <124a =18a =-【解析】观察归纳每一行最后一个数的特征再求解. 【详解】因为每行的最后一个数分别是14916⋯,,,,, 可归纳出第n 行的最后一个数是2n ,因为2441936=,所以第45行第83个数为1936+83=2019. 故得解. 【点睛】本题考查观察归纳能力,属于基础题. 16.【答案】(,3)(4,)-∞+∞【解析】根据均值不等式的“1”的妙用得最值求解. 【详解】因为136132414(4)12(121222222y x x y x y x y x y ⎛⎫⎛⎫+=++=+++= ⎪ ⎪⎝⎭⎝⎭, 当且仅当32x =,6y =时,取等号, 由题意得2127m m >-,解得4m >或3m <. 故得解. 【点睛】本题考查均值不等式,属于中档题. 17.【答案】(,2]{1}-∞-.【解析】∵当命题p 为真命题时,函数21()lg()4f x ax x a =-+的定义域为R , ∴2104ax x a -+>恒成立,得2010a Δa >⎧⎨=-<⎩,解得1a >; 当命题q 为真命题时,244(2)0Δa a =--≥,解得2a ≤-或1a ≥,∵“p 或q ”为真命题,且“p 且q ”为假命题, ∴命题p 与命题q 一真一假. 若p 真q 假,则a ∈∅;若p 假q 真,得121a a a ≤⎧⎨≤-≥⎩或,则2a ≤-或1a =,综上所述,实数a 的取值范围是(,2]{1}-∞-.18.【答案】(1)34π;(22+【解析】(1)由三角函数的恒等变换化简角,再运用正弦定理边角互化得解;(2)由余弦定理反映三角形的三边的关系求解三角形的周长. 【详解】(1)由2cos2cos21A B +=,得()()22212sin 12sin 1A B ---=,即22sin 2sin B A =, 所以222b a =,b =.因为2cos 0b a C +=,所以cos 2C =-,故 34C π=.(2)由余弦定理得2222cos c a b ab C =+-,所以2222102cos a b ab C a b =+-=++.因为b =,所以22210a a ++=,a =于是2b ==.ABC △2+.【点睛】本题考查运用三角形的正弦定理和余弦定理,属于中档题.19.【答案】(1);(2).【解析】(1)设数列的公差为, 令,得,所以, 令,得,所以. 21n a n =-14(31)49n n n T ++-⋅={}n a d 1n =12113a a =123a a =2n =12231125a a a a +=2315a a =所以,即,解得或,又因为,所以,,所以. (2)由(1)知,所以, 所以,两式相减,得,所以. 20.【答案】(1)(2)【解析】 【分析】(1)由条件可得2a +2c =6和,结合a 2=b 2+c 2,可得椭圆方程; (2)设斜率为1的直线:,与椭圆联立,利用可得直线方程.【详解】(1)设F 1(﹣c ,0)、F 2(c ,0),由已知可得2a +2c =6①,②又a 2=b 2+c 2③, 由①②③可求得a =2,b,所以椭圆C 的方程为 1.(2)设斜率为1的直线:,得:. 由直线与椭圆相切得,解得.所以直线的方程为.【点睛】2222()3()15a d a a a d -⋅=⎧⎨⋅+=⎩222222315a a d a a d ⎧-⋅=⎨+⋅=⎩232a d =⎧⎨=⎩232a d =-⎧⎨=-⎩10a >11a =2d =21n a n =-21(1)2224na n n n nb a n n -=+⋅=⋅=⋅1214244n n T n =⋅+⋅++⋅231414244n n T n +=⋅+⋅++⋅121114(14)13434444441433n n n n n n n T n n +++⋅---=+++-⋅=-⋅=⋅--113144(31)44999n n n n n T ++-+-⋅=⋅+=本题考查椭圆方程求法,注意运用椭圆的定义和离心率公式,考查直线与圆的位置关系,属于基础题.21.【答案】(1)证明见解析;(2)5. 【解析】(1)连接BD 交AC 于O ,易知O 是BD 的中点,故OG BE ∥,BE ⊂面BEF ,OG 在面BEF 外,所以OG ∥面BEF ; 又EF AC ∥,AC 在面BEF 外,AC ∥面BEF ,又AC 与OG 相交于点O ,面ACG 有两条相交直线与面BEF 平行,故面ACG ∥面BEF .(2)连结OF ,∵//FE OC ,∴OF EC ∥, 又∵CE ⊥平面ABCD ,∴OF ⊥平面ABCD ,以O 为坐标原点分别以OC 、OD 、OF 为x 、y 、z 轴建立空间直角坐标系,则(1,0,0)A -,(0,B,D,F ,(1,AD =,(1,AB =,AF =,设面ABF 的法向量为(,,)a b c =m ,依题意有AB AF⎧⊥⎪⎨⊥⎪⎩m m ,AB a AF a ⎧⋅==⎪⎨⋅=+=⎪⎩m m,令a =1b =,1c =-,1)=-m ,,o c s AD <>==m ,直线AD 与面ABF. 22.【答案】(1)22143x y +=;(2)13[4,)4-.【解析】(1)由题意知12c e a ==,所以22222214c a b e a a -===,即2243a b =.又以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -+=相切,所以b == 所以24a =,23b =,故椭圆C 的方程为22143x y +=.(2)由题意知直线l 的斜率存在,设直线l 的方程为(4)y k x =-,联立椭圆有22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,∴2222(43)3264120k x k x k +-+-=.由2222(32)4(43)(6412)0Δk k k =--+->,得214k <. 设11(,)A x y ,22(,)B x y ,则21223243k x x k +=+,2122641243k x x k -=+. ∴222212121212236(4)(4)4()1643k y y k x k x k x x k x x k k =-⋅-=-++=+, ∴2212122226412368725434343k k OA OB x x y y k k k -⋅=+=+=-+++, ∵2104k ≤<,∴2878729434k -≤-<-+, ∴13[4,)4OA OB ⋅∈-, ∴OA OB ⋅的取值范围是13[4,)4-.。

高二数学选修2-1期末复习卷

高二数学选修2-1期末复习卷

高二数学选修2-1期末复习卷一、选择题1、对抛物线24y x =,下列描述正确的是A 、开口向上,焦点为(0,1)B 、开口向上,焦点为1(0,)16 C 、开口向右,焦点为(1,0) D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的A 、充分条件B 、必要条件C 、充要条件D 、既不充分也不必要条件 3、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、14、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、++-2121B 、 ++2121C 、 +-2121 D 、c b a +--2121 5、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为 A 、平面 B 、直线 C 、圆 D 、线段6、已知直线l 过点P(1,0,-1),平行于向量(2,1,1)a =,平面α过直线l 与点M(1,2,3),则平面α的法向量不可能是( ) A. (1,-4,2) B.11(,1,)42- C. 11(,1,)42-- D. (0,-1,1) 7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为A 、椭圆B 、双曲线C 、抛物线D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 A 、充分必要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件 9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是A 、0≤k<43B 、0<k<43C 、k<0或k>43D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;=a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、511、如果向量= (1,0,1),= b (0,1,1)分别平行于平面 α,β 且都与这两个平面的交线l 垂直,则二面角α-l -β 的大小可能是( ). A .90º B .30º C .45ºD .60º12、双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )A BC D二、填空题13、以(1,1)-为中点的抛物线28y x =的弦所在直线方程为: . 14、在△ABC 中,BC 边长为24,AC 、AB 边上的中线长之和等于39.若以BC 边中点为原点,BC 边所在直线为x 轴建立直角坐标系,则△ABC 的重心G 的轨迹方程为: . 15、已知A (-4,0),B 是圆F :(x -4)2+y 2=16(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .16.已知点P 到点(3,0)F 的距离比它到直线2x =-的距离大1,则点P 满足的方程为 .三、解答题(共五小题,满分74分)17、已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f(x)=-(5-2m)x 是减函数,若p或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18、直线l :1y kx =+与双曲线C :2231x y -=相交于不同的A 、B 两点.MO(1)求AB 的长度;(2)是否存在实数k ,使得以线段AB 为直径的圆经过坐标第原点?若存在,求出k 的值;若不存在,写出理由.19、如图,直三棱柱ABC-A 1B 1C 1底面△ABC 中,CA=CB=1,∠BCA=90°,棱AA 1=2M ,N 分别是A 1B 1,A 1A 的中点。

高二年级的理科数学选修2-1期末试卷.doc

高二年级的理科数学选修2-1期末试卷.doc

高二年级理科数学选修1201502-1 期末试卷(测试时间: 分钟 满分 分)注意事项: 答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效.本卷考试结束后,上交答题纸. 一、选择题(每小题 5 分,共 12 小题,满分 60 分)1. 已知命题 p : xR ,使 tan x 1,其中正确的是( )(A) p : xR ,使 tan x 1(B) p : x R ,使 tan x 1(C)p : x R ,使 tan x 1(D)p : x R ,使 tan x 12. 抛物线y 2 4ax( a0)的焦点坐标是()(A )( a, 0)( B ) ( - a, 0)( C )( 0,a) ( D )( 0, - a)13. 设 a1R ,则 a 1 是 a的()(A )充分但不必要条件 ( B )必要但不充分条件(C )充要条件( D )既不充分也不必要条件4. 已知△ ABC 的三个顶点为 A (3, 3, 2), B ( 4,- 3, 7), C ( 0, 5, 1),则 BC 边上的中线长为()(A ) 2( B )3(C ) 4(D ) 55. 有以下命题:①如果向量 a, b与任何向量不能构成空间向量的一组基底,那么a,b的关系是不共线;②O, A, B,C为空间四点,且向量OA, OB,OC不构成空间的一个基底,则点 O, A, B,C 一定共面;③已知向量 a, b, c是空间的一个基底,则向量 a b, a b, c也是空间的一个基底 .其中正确的命题是()( A )①②(B )①③( C )②③( D )①②③6. 如图:在平行六面体ABCDA 1B 1C 1D 1 中, M 为 A 1C 1 与B 1D1 的交点 . 若ABa , ADb ,AA 1c则下列向量中与BM 相等的向量是( )D1MC11 a1b c1 a1b cA1B1( A )22(B )22DC1 a 1 b1 a1 bccAB( C )2 2(D )227. 已知△ ABC 的周长为 20,且顶点 B (0 ,- 4) , C (0 , 4) ,则顶点 A 的轨迹方程是()x 2 y 2 1x 2 y 2 1(A ) 36 20(B )2036( x ≠ 0)( x ≠ 0) x 2 y 2 1x 2y 2 1(C ) 6 20(D ) 20 6( x ≠ 0)( x ≠ 0)2x 1x 21 / 8那么AB=( )(A ) 6( B )8(C ) 9(D ) 109. 若直线y kx2 与双曲线 x2y 26的右支交于不同的两点,那么k 的取值范围是 ()15 , 15 0, 1515 ,015, 1 (A )(3 3 )( B )( 3 )( C )(3 )( D )(3 )10. 试在抛物线 y24x上求一点 P ,使其到焦点 F 的距离与到A2,1 的距离之和最小,则该点坐标为()1,11,12, 2 22,2 2(A )4(B )4( C )( D )11.在长方体 ABCD-A BCD 中,如果 AB=BC=1, AA =2,那么 A 到直线A C 的距离为()11 11112 63 62 36(A ) 3( B ) 2(C )3( D )3x 2y 2 112. 已知点 1、a 2b 2x2 分别是椭圆的左、右焦点,过1且垂直于 轴的直线与椭圆交于、 两F FFA B点,若△ ABF 2 为正三角形,则该椭圆的离心率e 为( )1213(A ) 2( B ) 2(C ) 3(D )3二、填空题(每小题 4 分,共 4 小题,满分 16 分)13. 已知 A ( 1,- 2, 11)、 B ( 4, 2,3)、 C ( x , y , 15)三点共线,则 x y =___________.14. 已知当抛物线型拱桥的顶点距水面2 米时,量得水面宽 8 米 . 当水面升高 1 米后,水面宽度是 ________米 .x 2 y 215. 如果椭圆 3619的弦被点 (4 , 2) 平分,则这条弦所在的直线方程是___________.16. ①一个命题的逆命题为真,它的否命题也一定为真;②在ABC 中,“B 60 ”是“A, B, C三个角成等差数列”的充要条件.x 1x y 3③ y 2 是 xy2 22的充要条件;④“ am <bm ”是“ a <b ”的充分必要条件 .以上说法中,判断 错误 的有 ___________.三、解答题(共 6 小题,满分 74 分)17. (本题满分 12 分)设 p:方程 x 2mx 1 0 有两个不等的负根, q:方程4x 24(m 2) x 1 0无实根,若 p 或 q 为真, p 且 q 为假,求m的取值范围.18. (本题满分 12 分)F -2 2,0 、F22,0已知椭圆C 的两焦点分别为1 2,长轴长为6,⑵已知过点( 0, 2)且斜率为 1 的直线交椭圆 C 于 A 、 B 两点 , 求线段 AB 的长度 ..19. (本题满分 12 分)如图,已知三棱锥 O ABC 的侧棱 OA ,OB , OC 两两垂直,且OA 1,OBOC 2, E 是OC 的中点 .( 1)求异面直线 BE 与 AC 所成角的余弦值;( 2)求直线 BE 和平面 ABC 的所成角的正弦值 .20. (本题满分 12 分)在平面直角坐标系 x O y中,直线 l 与抛物线y 2= 2 x相交于 、 两点 .A B( 1)求证:命题“如果直线 l 过点 T ( 3, 0),那么OA OB= 3”是真命题; ( 2)写出( 1)中命题的逆命题,判断它是真命题还是假命题,并说明理由 .P21. (本题满分 14 分)ADC B如图,棱锥 P — ABCD 的底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA=AD=2 , BD=22.( 1)求证: BD ⊥平面 PAC ;( 2)求二面角 P —CD — B 余弦值的大小;( 3)求点 C 到平面 PBD 的距离 .22. (本题满分 12 分)x 2 y 20)2b 2 1(a bA 、B 为两个顶点,如图所示, F 1、F 2 分别为椭圆 C :a的左、右两个焦点, 3 )(1,已知椭圆 C 上的点2 到 F 1、 F 2 两点的距离之和为 4. ( 1)求椭圆 C 的方程和焦点坐标;(2)过椭圆 C 的焦点 F 2 作 AB 的平行线交椭圆于 P 、Q 两点,求△ F 1PQ 的面积 .高二年级理科数学选修2-1 期末试卷参考答案一、选择题:题号 12 3 45 6 7 8 9 10 11 12 答案CAABCABBDACD二、填空题: 13、 214、4 215、 x 2 y 8 016 、③④三、解答题:m 2 4 017 、解: 若方程 x 2mx 1 0 有两个不等的 根,x 1 x 2m0 ,⋯⋯⋯⋯ 2 分所以 m2 ,即p : m2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分若方程 4x24( m 2) x 1无 根,16(m 2) 2 16 0 ,⋯⋯⋯⋯ 5 分即 1m 3 ,所以 p :1 m 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分因pq真,p, q至少一个 真,又 p q假, p, q至少一个 假.所以 p, q 一真一假,即“ p 真 q 假”或“ p 假 q 真”. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分m 2m 2所以 m 或1 m 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1 m 3 或 所以m3 或 1 m 2 .故 数m的取 范 (1,2] U [3,) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分18、解: ⑴由 F 1-22,0 、 F 22 2,0, 6得:c2 2, a3所以 b 1x 2 y 2 1∴ 方程91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分x 2 y 2⑵ A(x 1, y 1), B( x 2 , y 2 ) , 由⑴可知 方程91①,1∵直 AB 的方程yx 2 ②⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分把②代入①得化 并整理得10 x 236x 27 0x 1x 218, x 1 x 227⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分∴ 510AB2182 4 27 6 3(1 1)( 5 2 ) 5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分又1019、解: ( 1)以 O 原点 , OB、 OC 、 OA 分 x 、 y、 z 建立空 直角坐 系 .有 A(0,0,1) 、 B(2,0,0)、 C(0,2,0) 、 E(0,1,0). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分uuur(0,1,0) (2, uuur(0,2, 1)EB (2,0,0)1,0), ACuuur uuur2 2 ,COS<EB, AC>555⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2 所以异面直BE与 AC 所成角的余弦5ur( 2) 平面ABC 的法向量 n 1 ( x, y, z),uur uuurur uuurn 1知 : n 1 AB2x z 0;ABuruuuruuruuuruurn 1AC 知: n 1 AC 2 y z 0.取 n 1(1,1,2),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分⋯⋯⋯ 8 分cos EB, n 12 1 0305 630,⋯⋯⋯⋯⋯⋯⋯10 分30 故和平面ABC的所成角的正弦30⋯⋯⋯⋯ 12 分BE20、 明: ( 1)解法一: 点T(3,0)的直 l 交抛物 y 2 =2x 于点 A( x , y ) 、 B( x , y ).1122当直 l的 率下存在 , 直 l 的方程 x =3, 此 , 直 l与抛物 相交于A(3, 6) 、B(3, - 6 ),∴ OA OB 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分当直 l 的 率存在 , 直 l 的方程 y =k ( x - 3),其中 k ≠0.y 2 2x1 1yk (x 3)得 ky -2y - 6k =0, y 1y 2=- 6.1 ,又∵ x 1= 2 yx 2= 2 y 2 ,2221( y 1 y 2 )2y 1 y 2=3.7 分 ∴ OA OB =x 1x 2+y 1y 2= 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯上所述 , 命 “ ...... ”是真命 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分解法二: 直 l的方程 my =x - 3 与 y2=2x 立得到 y 2-2my-6=0OA OB =x 1x 2+y 1y 2=(my 1+3) (my 2+3)+ y 1y 2=(m 2+1) y 1y 2+3m(y 1+y 2)+9=(m 2+1) × (-6)+3m × 2m+9= 3⋯⋯⋯8分 ( 2)逆命 是:“ 直l交抛物 y 2=2x 于 A 、 B 两点 , 如果 OA OB3 , 那么 直 点T(3,0). ” ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1命 是假命 .例如:取抛物 上的点 A(2,2),B(2 ,1), 此 OA OB3 =3,2直 AB 的方程 y=3( x +1), 而 T(3,0) 不在直 AB 上 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分211 2 2OAOB 31 2或 y 1 2=2,如果点 :由抛物 y =2x 上的点A(x, y) 、 B( x , y ) 足, 可得 y y =- 6.y1 2=- 6,可 得直AB 点 (3,0);如果1y 2=2, 可 得直 AB 点 ( - 1,0), 而不 点 (3,0).y yy21、解:方法一: :⑴在R t △ BAD 中, AD =2,BD =2 2, ∴ AB=2, ABCD 正方形,因此BD ⊥ AC.∵ PA ⊥平面 ABCD , BD 平面 ABCD ,∴ BD ⊥PA .又∵ PA ∩ AC=A ∴ BD ⊥平面 PAC.解:( 2)由 PA ⊥面 ABCD ,知 AD PD 在平面 ABCD 的射影,又 CD ⊥ AD , ∴CD ⊥ PD ,知∠ PDA 二面角 P — CD — B 的平面角 . 又∵ PA =AD ,∴∠ PDA= 450 .( 3)∵ PA=AB=AD=2,∴ PB=PD=BD= 2 2, C 到面 PBD 的距离 d , z11 ? S PBD ?dP由 V P? SBCD? PABCDV C PBD ,有 33,1 ? 1 22 2 1 ? 1 ( 2 2 )2 ? sin 600 ? d d 23即 3 23 2 ,得3方法二: :( 1)建立如 所示的直角坐 系,AA ( 0, 0,0)、 D ( 0,2, 0)、 P ( 0, 0,2) .⋯⋯⋯⋯⋯⋯ 2 分D y在 R t △ BAD 中, AD =2,BD = 2 2 ,∴ AB=2.∴B ( 2, 0, 0)、 C ( 2,2, 0),BCx∴ AP(0,0,2), AC ( 2,2,0), BD ( 2,2,0)∵ BD?AP0,BD?AC,即 BD ⊥ AP , BD ⊥AC ,又 AP ∩ AC=A ,∴ BD ⊥平面 PAC . ⋯⋯⋯⋯ 4 分解:( 2)由( 1)得PD(0,2, 2), CD ( 2,0,0) .平面 PCD 的法向量n1( x, y, z) , n 1 ? PD 0,n 1 ?CD 0 ,0 2 y2z 0 x 0 即2x0 0,∴y z故平面PCD 的法向量可取n1(0,1,1)∵ PA ⊥平面 ABCD ,∴AP ( 0,01)平面 ABCD 的法向量 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分cosn 1 ? AP 2n 1 ? AP2二面角 P —CD — B 的大小,依 意可得. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分( 3)由(Ⅰ)得PB (2,0,2), PD(0,2, 2) , 平面 PBD 的法向量 n2(x, y, z) ,2x0 2z 0n 2 ? PB 0,n 2 ? PD 0 ,即 02y 2 z,∴ x=y=z ,故可取n2(1,1,1). ⋯⋯⋯⋯⋯ 11 分dn 2 ? PC 2 3n 23∵PC (2,2, 2),∴ C 到面 PBD 的距离⋯⋯⋯⋯⋯⋯⋯ 14 分3)1 (23 )21(1,b 222、解:( 1)由 知: 2a = 4 ,即 a = 2, 将点2代入 方程得 22,解得 b 2 = 3x 2y 21∴ c 2 = a 2- b 2= 4- 3 = 1 ,故 方程435 分,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 焦点 F 1、 F 2 的坐 分 ( -1, 0)和( 1, 0)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分k PQ33( x 1) ( 2)由(Ⅰ)知A( 2,0), B(0, 3)k ABy, 2, ∴ PQ 所在直 方程2,y 3 1)( x2x 2 y 2 18 y24 3 y 9 0由43得y 1y 23, y 1 y 29P (x 1, y 1), Q (x 2, y 2),28 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分y 1 y 2 ( y 1 y 2 )2 4 y 1 y 23 4 9 21482SF 1PQ1 y 1 y 21 221 21F 1F 222 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分22。

高二年级数学选修2-1模块测试试卷4

高二年级数学选修2-1模块测试试卷4

高二年级理科数学选修2-1期末试卷(4)第Ⅰ卷( 共64分)一.选择题(每小题只有一个正确答案,每小题4分,共48分)1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .2>3C .2x-1=0D .这是一棵大树。

2.若向量(1,0,z )与向量(2,1,2)的夹角的余弦值为32,则z 等于( ) (A)0 (B)1 (C)-1 (D)23. 若命题“p 或q ”为真,“非p ”为真,则 ( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假4.双曲线1y -x 22=的渐近线方程是( )A x y D x 2y C 2x yB x y =±=±=±=5.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)6.双曲线19-1622=y x 的焦点坐标是( )。

(A )(±3, 0) (B ) (±5, 0) (C )(203±, 0) (D )(0, 203±) 7. x>2是24x >的 ( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件8. 直线y=kx +2和椭圆1422=+y x 有且仅有一个公共点,则k 等于( )。

(A )32 (B )±32 (C )34 (D )±34 9.抛物线2-x y =的准线方程是( ). A.321=x B. 2=y C. 41=y D. 2-=y 10.抛物线x y 122=上与焦点到准线的距离是( )A 、2B 、3C 、4D 、611. 已知4||=AB ,点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ,则||PA 的最大值和最小值分别是 ( )A .5、3B .10、2C .5、1D .6、412. 已知椭圆1162522=+y x 的两个焦点为1F 、2F ,弦AB 过点1F ,则△2ABF 的周长为( ) (A )10 (B )20 (C )241(D ) 414二.填空题 (每小题4分,共16分)13.若空间向量b a ⊥则=∙b a14. 椭圆1162522=+y x 的离心率等于__________。

(推荐)高二年级理科数学选修2-1期末试卷

(推荐)高二年级理科数学选修2-1期末试卷
高二年级理科数学选修2-1期末试卷
(测试时间:120分钟 满分150分)
注意事项:答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案
写在答题纸上对应题目的空格内,答案写在试卷上无效.本卷考试结束后,上交答题纸.
一、选择题(每小题5 分,共12小题,满分60分)
1.已知命题 ,其中正确的是()
(A) (B)
(C) (D)
2. 抛物线 的焦点坐标是()
(A)( ,0)(B)(- ,0)(C)(0, )(D)(0,- )
3.设 ,则 是 的()
(A)充分但不必要条件(B)必要但不充分条件
(C)充要条件(D)既不充分也不必要条件
4.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度。.
19.(本题满分12分)
如图,已知三棱锥 的侧棱 两两垂直,
且 , , 是 的中点。
(1)求异面直线 与 所成角的余弦值;
(2)求直线BE和平面 的所成角的正弦值。
20.(本题满分12分)
在平面直角坐标系 O 中,直线 与抛物线 =2 相交于A、B两点。
那么 = ( )
(A)6(B)8(C)9(D)10
9. 若直线 与双曲线 的右支交于不同的两点,那么 的取值范围是()
(A)( )(B)( ) (C)( ) (D)( )
10.试在抛物线 上求一点P,使其到焦点F的距离与到 的距离之和最小,则该点
坐标为()
(A) (B) (C) (D)
11. 在长方体ABCD-A B C D 中,如果AB=BC=1,AA =2,那么A到直线A C的距离为()

苏教版高中数学选修2-1-第一学期高二期末考试理科试题及答案

苏教版高中数学选修2-1-第一学期高二期末考试理科试题及答案

徐州市2010-2011学年度第一学期期末考试高二数学(理)试题一、填空题:本大题共14小题,每题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.抛物线24y x =的焦点坐标是 ▲ .2.命题“2,10x x ∀∈>R +”的否定是 ▲ .3.过点()3,2A 且与直线210x y -+=平行的直线方程是 ▲ .4.已知直线1l :230x my ++=与直线2l :310x y --=相互垂直,则实数m 等于 ▲ .5.已知正四棱柱的底面边长是3,侧面的对角线长是为 ▲ .6.已知点()8,6A -与圆22:25C x y =+,P 是圆C 上任意一点,则AP 的最小值是 ▲ .7.已知双曲线1422=-y m x 的一条渐近线方程为x y =,则实数m 等于 ▲ . 8.棱长为1的正方体的外接球的表面积为 ▲ .9.曲线()232f x x x =-在1x =处的切线方程为 ▲ .10.已知向量()()2,3,2,1,5,1=-=--a b ,则m +a b 与23-a b 相互垂直的充要条件为 ▲ . 11.椭圆()222210x y a b a b=>>+的右焦点为1F ,右准线为1l ,若过点1F 且垂直于x 轴的弦的弦长等于点1F 到1l 的距离,则椭圆的离心率是 ▲ .12.设,αβ为两个不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若,,,m n l m l n αα⊂⊂⊥⊥,则l α⊥;②若,,l m m n αα⊥⊥P ,则l n P ;③若,l αβα⊂P ,则l βP ;④若,l l αβ⊥P ,则αβ⊥.其中正确命题的序号是 ▲ .13.设F 为抛物线28x y =的焦点,点,,A B C 在此抛物线上,若FA FB FC =++0u u u r u u u r u u u r ,则FA FB FC =++u u u r u u u r u u u r ▲ .14.如图,有一块半椭圆形的钢板,其长半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,则梯形ABCD 的面积S 的最大值为 ▲ . 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知过点()1,4A -的圆的圆心为()3,1C .⑴求圆C 的方程;⑵若过点()2,1B -的直线l 被圆C 截得的弦长为45,求直线l 的方程.16.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 是正方形,PA ⊥平面ABCD ,2PA AB ==,(第14题图)且,E F 分别是,BC CD 的中点.⑴求证:平面PEF ⊥平面PAC ;⑵求三棱锥P EFC -的体积.17.(本小题满分14分) 椭圆22143x y +=的左、右焦点分别为12,F F ,一条直线l 经过点1F 与椭圆交于,A B 两点. ⑴求2ABF ∆的周长;⑵若l 的倾斜角为4π,求2ABF ∆的面积.18.(本小题满分16分)某种型号的汽车在匀速行驶中每小时耗油量()L p 关于行驶速度()km /h v 的函数解析式可以表示为:()3138012012800080p v v v =-+<≤.已知甲、乙两地相距100km ,设汽车的行驶速度为(km /h)x ,从甲地到乙地所需时间为()h t ,耗油量为()L y .⑴求函数()t g x =及()y f x =;⑵求当x 为多少时,y 取得最小值,并求出这个最小值.19.(本小题满分16分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,AC BC = 2BD AE ==,M 是AB 的中点.建立适当的空间直角坐标系,解决下列问题:⑴求证:CM EM ⊥;⑵求CM 与平面CDE 所成角的大小.20.(本小题满分16分)已知函数()1ln sin g x x x θ=+g 在[)1,∞+上为增函数,且()0,θ∈π,()f x mx =- ()1ln m x m x--∈R . ⑴求θ的值;⑵若函数()()y f x g x =-在[)1,∞+上为单调函数,求实数m 的取值范围;⑶设()2e h x x=,若在[]1,e 上至少存在一个0x ,使得()()()000f x g x h x ->成立,求实数m 的取值范围. 徐州市2010-2011学年度第一学期期末考试高二数学(理)答案与评分标准一、填空题:1.()1,02.2,10x x ∃∈R +≤3.240x y --=4.65.726.57.48.3π9.0x y -=10.171311.1212.②③④13.12142 二、解答题: 15.⑴圆C 半径r 即为AC ,所以5r AC =,……………2分 所以圆C 的方程为()()223125x y --=+.……………………………………6分⑵圆心C 到直线l8分当直线l 垂直于x 轴时,方程为2x =,不满足条件,所以直线l 的斜率存在,10分设直线l 的方程为()12y k x =-+,即210kx y k ---=,=12k =-,所以直线l 的方程为20x y +=.…14分16.⑴连结BD ,因为ABCD 是正方形,所以AC BD ⊥,因为E ,F 分别是BC ,CD 的中点,所以EF BD P ,所以EF AC ⊥,………………………4分因为PA ⊥平面ABCD ,EF ⊂平面ABCD ,所以EF PA ⊥,因为PA AC A =I ,所以PAC EF 平面⊥,因为EF ⊂平面PEF ,所以平面PEF ⊥平面PAC .…………………………8分 ⑵11111123323P EFC EFC V S PA -∆=⋅=⨯⨯⨯⨯=.……………………………………14分 17.由椭圆的定义,得12122,2AF AF a BF BF a +=+=,又AB BF AF =+11,所以,2ABF ∆的周长a BF AF AB 422=++=.又因为42=a ,所以2=a ,故2ABF ∆点周长为8.………………………………6分 ⑵由条件,得)0,1(1-F ,因为AB 的倾斜角为4π,所以AB 斜率为1, 故直线AB 的方程为1+=x y .………………………………………………………8分由221,1,43y x x y =+⎧⎪⎨+=⎪⎩消去x ,得09672=--y y ,……………………………………10分 设),(,),(2211y x B y x A ,解得12362362,y y +-==, 所以,2121211122122222ABF S F F y y ∆=⋅-=⨯⨯=.…………………………14分 18.⑴从甲地到乙地汽车的行驶时间为()()1000120t g x x x ==<≤,………2分 则()313100812800080y f x pt x x x ⎛⎫===-+⋅ ⎪⎝⎭()2180015012012804x x x =+-<≤.………………………………………8分 ⑵332280080640640x x y x x -'=-=,由0y '=,得80x =,列出下表: x ()0,8080 ()80,120 ()f x ' -0 + ()f x ] 极小值11.25 Z所以,当80x =时,y 取得极小值也是最小值11.25.…………………………15分答:当汽车的行驶速度为80km/h 时,耗油量最少为11.25L .…………………16分19.⑴分别以,CB CA 所在直线为,x y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系C xyz -.…………………………………………2分设AE a =,则()(),,0,0,2,M a a E a a --,所以()(),,0,,,CM a a EM a a a =-=-u u u u r u u u u r ,………4分所以()()00CM EM a a a a a ⋅=⨯-⨯⨯-=++u u u u r u u u u r ,所以CM EM ⊥.…………………………8分⑵()()0,2,,2,0,2CE a a CD a a =-=u u u r u u u r ,设平面CDE 的法向量(),,x y z =n ,则有20,220,ay az ax az -+=⎧⎨+=⎩即2,,z y x z =⎧⎨=-⎩令1y =,则()2,1,2=-n ,…………………12分 21022cos ,23a a CM CM a CM ⨯--⨯⨯⋅===-⨯++u u u u r u u u u r u u u u r n n n,…………………14分 所以,直线CM 与平面CDE 所成的角为45︒.…………………………………16分20.⑴由题意,()2110sin g x x x θ'=-+g ≥在[)1,∞+上恒成立,即2sin 10sin x x θθ⋅-⋅≥. 因为()0,θ∈π,所以sin 0θ>,故sin 10x θ⋅-≥在[)1,∞+上恒成立,因为sin 1y x θ=⋅-是增函数,所以只要1sin 10θ⋅-≥,即sin 1θ≥,所以sin 1θ=,因为()0,θ∈π,所以2θπ=.…………………………………3分 ⑵由⑴得,()1ln g x x x =+,所以()()2ln m f x g x mx x x-=--. 令()()()2ln m F x f x g x mx x x =-=--,则()222mx x m F x x -'=+. 因为()F x 在其定义域内为单调函数,所以220mx x m -+≥或者220mx x m -+≤在[)1,∞+上恒成立,…………5分220mx x m -+≥等价于()212m x x +≥,即221x m x +≥在[)1,∞+上恒成立, 而22211112x x x x x x==⋅++≤,当且仅当1x =是等号成立,所以1m ≥.…7分对于220mx x m -+≤在[)1,∞+上恒成立,设()22x mx x m ϕ=-+,则①当0m =时,20x -≤在[)1,∞+上恒成立; ②()0,11,1220,m m m ϕ⎧<⎪⎪<⎨⎪⎪=-<⎩解得0m <. 所以0m ≤.综上,m 的取值范围是(][),01,-∞∞+U .…………………………………………10分 ⑶设()()()()2e 2ln m H x f x g x h x mx x x x=--=---. ①当0m ≤时,因为[]1,x e ∈,所以10m x x ⎛⎫- ⎪⎝⎭≤,且2e 2ln 0x x --<, 所以()0H x <,所以在[]1,e 上不存在一个0x ,使得()()()000f x g x h x ->成立.…………12分②当0m >时,()222222e 22e m mx x m H x m x x x x -'=-=++++, 因为[]1,e x ∈,所以2e 20x -≥,又20mx m >+,所以()0H x '>在[]1,e 上恒成立,所以()H x 在[]1,e 上是单调增函数,()()max e 4e m H x H e m ==--. 所以只要e 40e m m -->,解得24e e 1m >-. 故m 的取值范围是24e ,e 1⎛⎫∞ ⎪-⎝⎭+.…………………………………………………16分。

高中数学选修2-1期末考试试题及答案(理科)

高中数学选修2-1期末考试试题及答案(理科)

高二期末考试数学试题一.选择题(每小题5分;满分60分)1.设n m l ,,均为直线;其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤; ②22,sin cos 1x R x x ∃∈+>;下列判断正确的是( )。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.已知12,F F 是椭圆的两个焦点;过1F 且与椭圆长轴垂直的弦交椭圆与A ;B 两点; 则2ABF ∆是正三角形;则椭圆的离心率是( )A22 B 12 C 33 D 135.过抛物线28y x =的焦点作倾斜角为045直线l ;直线l 与抛物线相交与A ;B 两点;则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中;方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+b y a x (b a >>0) 的两个焦点F 1;F 2;点P 在椭圆上;则12PF F ∆的面积 最大值一定是( )A 2a B ab C 22a a b - D 22b a b -8.已知向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直;则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中;E 是棱11A B 的中点;则1A B与1D E所成角的余弦值为( )A .510B .1010C .55D .10510.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ;B 两点;过原点与线段AB 中点的连线的斜率为22;则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点;若621=+y y ;则21P P 的值为 ( )A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点;顶点为焦点的椭圆方程为 ( ) A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线;对平面ABC 外一点O ;给出下列表达式:OCOB y OA x OM 31++=其中x ;y 是实数;若点M 与A 、B 、C 四点共面;则x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点;且与抛物线相交于A ;B 两点;则AB等于___15.若命题P :“∀x >0;0222<--x ax ”是真命题 ;则实数a 的取值范围是___.16.已知90AOB ∠=︒;C 为空间中一点;且60AOC BOC ∠=∠=︒;则直线OC 与平面AOB 所成角的正弦值为___.AE y x D CB三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。

高二理科数学选修2-1全册综合测试卷 含答案

高二理科数学选修2-1全册综合测试卷 含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( )A .(116,0)B .(-116,0) C .(0,1)D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-3,0)C .(-12,0)D .(-60,-12) 5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题: ①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( ) A .1 B .2 C .3 D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( )A .2B .3C .4D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( ) ①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1.A .①③B .②④C .①②③D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上) 13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件. 答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1). 答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k4<4. ∴4<4-k <16,∴-12<k <0. 答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确. 答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧m =15,n =12,λ=15.∴m =15,n =12. 答案 A8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p2, 由双曲线的左焦点在抛物线的准线上知, 3+p 216=p 24,且p >0,解得p =4. 答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a , 又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a3. 又|PF 2|≥c -a ,即2a3≥c -a . ∴c a ≤53.即e ≤53. 答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1). BC 1→=(2,0,2), ∴cos 〈EF →·BC 1→〉 =EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°. 答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12.答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1.答案 0≤a ≤1 15.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案22317.解 由|x -1|>m -1的解集为R ,知m -1<0, ∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数, ∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在.若p 假q 真,则⎩⎨⎧m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a2,直线x +by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R . 设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2), 则y 1x 1+y 2x 2=1.①因为y 1=kx 1-1,y 2=kx 2-1, 代入① ,得2k -(1x 1+1x 2)=1.②又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1. 所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧a -c =1,a +c =7,解得⎩⎨⎧a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).①由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧ n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为105.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3,3即所求二面角A1-BD-C1的余弦值为33.。

数学选修2-1期末考试卷及答案

数学选修2-1期末考试卷及答案

高二数学选修2-1期末考试卷一、选择题(每小题5 分,共10小题,满分50分)1、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件3、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、++-2121B 、 ++2121C 、 +-2121 D 、 +--2121 4、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、15、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为A 、平面B 、直线C 、圆D 、线段6、已知=(1,2,3), =(3,0,-1),=⎪⎭⎫ ⎝⎛--53,1,51给出下列等式: ①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为 A 、椭圆 B 、双曲线 C 、抛物线 D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的A 、充分必要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④a b =a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么b a ⋅= 。

高中数学人教A版选修2-1-高二上学期期末复习(三)理科数学试题.docx

高中数学人教A版选修2-1-高二上学期期末复习(三)理科数学试题.docx

高二数学期末复习 选修2-1模块测试B 一、选择题(60分)1.设b a p 、、是空间向量,则 “b y a x p+=,),(R y x ∈”是“b a p 、、共面”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件2.抛物线24x y =的准线方程是( )A .1=xB .1-=xC .161=y D .161-=y3.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B =( )A .+-a b cB .-+a b cC .-++a b cD .-+-a b c4.已知A,B,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A,B,C 一定共面的是( )A .OM OA OB OC =++ B .2OM OA OB OC =--C .1123OM OA OB OC =++ D .111333OM OA OB OC =++ 5.已知渐近方程为y=2x±的双曲线经过点(4,3),则双曲线的方程是 ( )A .2214y x -= B .2214y x += C .2214x y -= D .2214x y -= 6.已知(1,0,2),(6,21,2),a b a b λλμλμ=+=-,则与的值分别为( )A .11,52 B .5,2 C .11,52-- D .-5,-2 7.过点M(-2,0)的直线l 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P .若直线l 的斜率为1k (1k ≠0),直线OP 的斜率为2k ,则1k 2k 为( ) A .-2 B .2 C .12D .12-8.下列四个结论:①若p :2是偶数,q :3不是质数,那么q p ∧是真命题; ②若p :π是无理数,q :π是有理数,那么q p ∨是真命题; ③若p :2>3,q :8+7=15,那么q p ∨是真命题;④若p :每个二次函数的图象都与x 轴相交,那么p ⌝是真命题; 其中正确结论的个数是( ) A .1 B .2C .3D .49.双曲线24x -212y =1的焦点到渐近线的距离为( )A .23B .2C .3D .110.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D .22(1)(01)y x x =--<≤11.已知直线m 过点O (0,0,0),其方向向量是a =(1,1,1),则点Q (3,4,5)到直线m 的距离是( )A .1B .2C .3D .212.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( )A .3B .2C .5D .6二、填空题(20分)13.命题“.01,200<-∈∃x R x ”的否定为: .14.椭圆221123x y +=的焦点分别是12,F F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,则12PF PF 是的___________倍.15.已知点G 是ABC ∆的重心,O 是空间任一点,若,OA OB OC OG λλ++=则的值为_____16.有下列命题:①双曲线192522=-y x 与椭圆13522=+y x 有相同的焦点;②“-21<x <0”是“2x 2-5x -3<0”必要不充分条件;③若a 、b 共线,则a 、b 所在的直线平行;④若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;⑤R x ∈∀,0332≠+-x x .其中是真命题的有:_ ___.(把你认为正确命题的序号都填上)三、解答题(70分,本大题共5题,解答题应写出文字说明、演算步骤或证明过程.) 17.已知双曲线的离心率等于2,且与椭圆221259x y +=有相同的焦点,求此双曲线方程.18.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根.如果P ∨Q 为真命题,P ∧Q 为假命题,求实数a 的取值范围.19.E 是长方体ABCD-A 1B 1C 1D 1的棱长CC 1所在直线上一点,11112C E CC BC AB ====. 1)求异面直线D 1E 与B 1C 所成角的余弦值; 2)求点A 到直线B 1E 的距离;3)求直线AC 与平面D 1EB 1所成的角;4)求两平面B 1D 1E 与ACB 1所形成的锐二面角的余弦值; 5)求点A 到平面D 1EB 1的距离;20.抛物线x y42=上有两个定点A 、B 分别在对称轴的上、下两侧,F 为抛物线的焦点,并且|FA|=2,|FB|=5,在抛物线AOB 这段曲线上求一点P ,使△PAB 的面积最大,并求这个最大面积.baCEC1D1B1CDBAA121已知椭圆C :()222210x y a b a b+=>>的焦距是2,离心率是0.5;(1)求椭圆的方程;(2)求证:过点A (1,2)倾斜角为045的直线l 与椭圆C 有两个不同的交点;又记这两个交点为P 、Q ,试求出线段PQ 的中点M 的坐标。

高中数学人教A版选修2-1高二年级理科第一学期期末复习测试(二)

高中数学人教A版选修2-1高二年级理科第一学期期末复习测试(二)

2009-2010年合肥一中高二年级理科第一学期期末复习测试(二)一、选择题1.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q 函数y =的定义域是(][),13,-∞-+∞U ,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 2. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形3.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( )A .7B .47 C .27D .2574.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y = D .23x y -=或x y 92=5.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 6.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 7.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 8.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .39.已知一个空间几何体的三视图如图所示, 根据图中标出的尺寸(单位:cm ), 可得这个几何体的体积是 ( ) A .34cm B .35cmC .36cmD .37cm10.在△ABC 中,a,b,c 分别表示三内角A 、B 、C 所对的边的长,且C B A sin sin sin lg ,lg ,lg 成等差数列;直线0sin sin 2=-+a A y A x 与0sin sin 2=-+c C y B x 的位置关系是( )A 、重合B 、相交但不平行C 、垂直D 、平行11. 若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+表示区域的面积为( )A .34 B. 43 C. 12D. 1 二、填空题2侧视图12.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。

高二理科数学第二学期期末试题选修---

高二理科数学第二学期期末试题选修---

高二(理科)数学第二学期期末试题(一)(选修2-1,2-2,2-3,4-4)一、选择题(本大题共12个小题,每小题只有一个正确选项。

每小题4分,共48分) 1.复数ii-+11等于( ) A .i B .i - C .1- D .12. 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )A .8289A A B.8289A C C.8287A A D.8287A C3.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是A .12米/秒B .8米/秒C .6米/秒D .8米/秒 4.函数x x x f ln )(=,则 ( )A.在),0(∞上递增;B.在),0(∞上递减;C.在)1,0(e 上递增;D.在)1,0(e上递减5. 4)21(x -展开式中含x 项的系数 ( ) A .32 B. 4 C. -8 D. -326.A,B,C,D,E 五人站成一排,如果A,B 必须相邻且B 在A 的右边,那么不同排法种数有( ) A. 60种 B. 48种 C. 36种 D. 24种 7.()22sin cos d x x x ππ-+⎰的值为 ( )A .0B .2C .4D .4π8.点()3,1-P ,则它的极坐标是( )A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫ ⎝⎛-34,2π9. 设6件产品中有4件合格品2件不合格品,从中任意取2件,则其中至少一件是不合格品的概率为 ( )A .0.4B .0.5C .0.6D .0.7 10.函数xxy ln =的最大值为( )A .1-eB .eC .2eD .310 11.已知函数1)(23--+-=x ax x x f 在R 上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞YB .]3,3[-C .),3()3,(+∞--∞YD .)3,3(- 12.若1001002210100)32(x a x a x a a x ++++=+Λ,则2202410013599()()a a a a a a a a ++++-++++K K 的值为( )A .1B .1-C .0D .2 二、填空题(本大题共8个小题,每小题4分,共32分)13.i 为虚数单位,当复数mi m m +-)1(为纯虚数时,实数m 的值为 .14.在2017)32-x (的展开式中,各项系数的和为 . 15.在251(2)x x-的二项展开式中,x 的系数为 .16.已知随机变量1(6,)3B ξ:,)(ξD 随机变量ξ的方差,则)33(+ξD = .17.若下表数据对应的y 关于x 的线性回归方程为ˆ0.7yx a =+ ,则a = .18.如图,用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色,不同的涂色方案有 种.19.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),其余每个数是它下一行左右相邻两个数的和,如:11=12+12,12=13+16,13=14+112,......,则第7行第4个数(从左往右数)为 .20.的直线的左右焦点,过分别是双曲线1222221)0,0(1:,F b a by a x C F F >>=-l 与双曲线的左A B CDBA右两支分别交于M,N 两点。

高中数学人教A版选修2-1高二年级理科第一学期期末复习测试(二).docx

高中数学人教A版选修2-1高二年级理科第一学期期末复习测试(二).docx

2009-2010年合肥一中高二年级理科第一学期期末复习测试(二)一、选择题1.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件; 命题:q 函数12y x =--的定义域是(][),13,-∞-+∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 2. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形3.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B .47 C .27D .2574.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y = D .23x y -=或x y 92=5.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( ) A .2pB .pC .p 2D .无法确定 6.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( )A .1222=-y xB .1422=-y xC .13322=-y xD .1222=-y x 7.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 8.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .39.已知一个空间几何体的三视图如图所示, 根据图中标出的尺寸(单位:cm ), 可得这个几何体的体积是 ( ) A .34cm B .35cmC .36cmD .37cm10.在△ABC 中,a,b,c 分别表示三内角A 、B 、C 所对的边的长,且C B A sin sin sin lg ,lg ,lg 成等差数列;直线0sin sin 2=-+a A y A x 与0sin sin 2=-+c C y B x 的位置关系是( )A 、重合B 、相交但不平行C 、垂直D 、平行11. 若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+表示区域的面积为( )A .34 B. 43 C. 12D. 1 二、填空题12.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级理科数学选修2-1期末练习班级 姓名 座号 一、选择题1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是( )(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 3. 设a R ∈,则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件 (D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( )(A )2 (B )3 (C )4 (D )5 5.有以下命题:①如果向量,与任何向量不能构成空间向量的一组基底,那么,的关系是不共线; ②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。

其中正确的命题是 ( )(A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

若=,=,AA =1则下列向量中与相等的向量是( )(A ) ++-2121 (B )++2121(C )c b a +--2121 (D )c b a +-21217. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0) (C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0) 8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6, 那么AB =( )(A )6 (B )8 (C )9 (D )109. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) (A )(315,315-) (B )(315,0) (C )(0,315-) (D )(1,315--)C110.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为( )(A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2- 11.在直角坐标系中,)3,2(-A ,)2,3(-B 沿x 轴把直角坐标系折成0120的二面角,则此时线段AB 的长度为( )(A )52 (B )112 (C )25 (D )2412.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B )(C )13(D 二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。

14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

当水面升高1米后,水面宽度是________米。

15. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___________。

16.①一个命题的逆命题为真,它的否命题也一定为真;②在ABC ∆中,“︒=∠60B ”是“C B A ∠∠∠,,三个角成等差数列”的充要条件. ③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④“am 2<bm 2”是“a <b ”的充分必要条件.以上说法中,判断错误的有___________. 三、解答题17.设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.18.已知椭圆C 的两焦点分别为()()12F F 、,长轴长为6,⑴求椭圆C 的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。

.19.如图,已知三棱锥O ABC -的侧棱OA OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 的中点。

(1)求异面直线BE 与AC 所成角的余弦值; (2)求直线BE 和平面ABC 的所成角的正弦值。

20.已知双曲线过点P )4,23(-,它的渐近线方程为x y 34±= (1)求双曲线的标准方程;(2)设F 1和F 2是这双曲线的左、右焦点,点P 在这双曲线上,且|PF 1|·|PF 2|=32,求 ∠F 1PF 2的大小.21.如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,BD=22.(1)求证:BD ⊥平面PAC ;(2)求二面角P —CD —B 余弦值的大小; (3)求点C 到平面PBD 的距离.22. 如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by a x 的左、右两个焦点,A 、B 为两个顶点,已知椭圆C 上的点)23,1(到F 1、F 2两点的距离之和为4.(1)求椭圆C 的方程和焦点坐标;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P 、Q 两点,求△F 1PQ 的面积.高二年级理科数学选修2-1期末练习 参考答案一、选择题:二、填空题: 13、 2 14、24 15、 082=-+y x 16、③④ 三、解答题:17、解:若方程210x mx ++=有两个不等的负根,则212400m x x m ⎧∆=->⎨+=-<⎩, …………2分所以2m >,即:2p m >. ………………………………………………………3分若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<, …………5分 即13m <<, 所以:13p m <<. …………………………………………………6分 因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假.所以,p q 一真一假,即“p 真q 假”或“p 假q 真”. ……………………………8分所以213m m m >⎧⎨≤≥⎩或或213m m ≤⎧⎨<<⎩…………………………………………………10分所以3m ≥或12m <≤.故实数m 的取值范围为(1,2][3,)+∞ . …………………………………………12分18、解:⑴由()()12F F 、,长轴长为6得:3c a ==所以1b =∴椭圆方程为22191x y += …………………………………………………5分⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191x y += ①,∵直线AB 的方程为2y x =+ ②……………………………7分把②代入①得化简并整理得21036270x x ++= ∴12121827,510x x x x +=-=……………10分∴AB =……………………………12分19、解:(1)以为原点,、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系.则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E ……………………………3分(2,0,0)(0,1,0)(2,1,0),(0,2,1)EB AC =-=-=-COS<,EB AC>2,5==- ……………………………5分 所以异面直线BE 与AC 所成角的余弦为52……………………………6分 (2)设平面ABC 的法向量为1(,,),n x y z =则 11:20;n AB n AB x z ⊥⋅=-=知 11:20.n AC n AC y z ⊥⋅=-= 知取1(1,1,2)n =, ………8分则303065012,cos 1=+->=<n EB ,…………………10分 故BE 和平面ABC 的所成角的正弦值为3030…………12分 20.解(1)由渐近线方程知双曲线中心在原点,且渐近线上横坐标为23-的点P '的纵坐标绝对值为24424> ∴双曲线的焦点在x 轴上,设方程12222=-by a x ………………3分∵双曲线过点11618)4,23(22=-∴-ba P ① 又34=a b ②由①②得16,922==b a ,∴所求的双曲线方程为116922=-y x …………6分 (2)证|PF 1|=d 1,|PF 2|=d 2,则d 1·d 2=32又由双曲线的几何性质知|d 1-d 2|=2a=6…………8分362212221=-+∴d d d d 即有100236212221=+=+d d d d ………………10分又|F 1F 2|=2c=10 22212221221||||100||PF PF d d F F +=+==∴△PF 1F 2是直角三角形,︒=∠9021PF F ………………………………12分解法二(1)设双曲线方程为:22(0)916x y λλ-= ≠, 3分∵双曲线过点P )4,23(-,∴22(4916λ- =-= 1,∴所求的双曲线方程为116922=-y x …………6分 (2)与解法一相同.21、解:方法一:证:⑴在R t △BAD 中,AD =2,BD =22,∴AB =2,ABCD 为正方形,因此BD ⊥AC .∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .又∵PA ∩AC =A ∴BD ⊥平面PAC . 解:(2)由PA ⊥面ABCD ,知AD 为PD 在平面ABCD 的射影,又CD ⊥AD , ∴CD ⊥PD ,知∠PDA 为二面角P —CD —B 的平面角. 又∵PA =AD ,∴∠PDA=450 . (3)∵PA =AB =AD =2,∴PB =PD =BD =22 ,设C 由PBD C BCD P V V --=,有d S PA S PBD BCD ∙∙=∙∙∆∆3131即d ∙∙∙=⨯⨯⨯∙0260sin )22(21312222131,得=d 方法二:证:(1)建立如图所示的直角坐标系,则A (0,0,0)、D (0,2,0)、P (0,0,2).在R t △BAD 中,AD =2,BD =22,∴AB =2. ∴B (2,0,0)、C (2,2,0), ∴)0,2,2(),0,2,2(),2,0,0(-===∵0,0=∙=∙,即BD ⊥AP ,BD ⊥AC ,又AP ∩AC =A ,∴BD ⊥平面PAC . …4分 解:(2)由(1)得)0,0,2(),2,2,0(-=-=CD PD .设平面PCD 的法向量为),,(1z y x n =,则0,011=∙=∙CD n PD n , 即⎩⎨⎧=++-=-+00020220x z y ,∴⎩⎨⎧==z y x 0故平面PCD 的法向量可取为)1,1,0(1=n∵PA ⊥平面ABCD ,∴)01,0(=AP 为平面ABCD 的法向量. ……………………………7分 设二面角P —CD —B 的大小为θ,依题意可得22cos ==θ . ……………………………9分 (3)由(Ⅰ)得)2,2,0(),2,0,2(-=-=,设平面PBD 的法向量为),,(2z y x n =, 则0,022=∙=∙n n ,即⎩⎨⎧=-+=-+02200202z y z x ,∴x =y =z ,故可取为)1,1,1(2=n . ……11分∵)2,2,2(-=,∴C 到面PBD的距离为332==d …………………14分 22、解:(1)由题设知:2a = 4,即a = 2, 将点)23,1(代入椭圆方程得 1)(2122232=+b,解得b 2 = 3∴c 2 = a 2-b 2 = 4-3 = 1 ,故椭圆方程为13422=+y x , ……………………………5分 焦点F 1、F 2的坐标分别为(-1,0)和(1,0) ……………………………6分 (2)由(Ⅰ)知)3,0(),0,2(B A -,23==∴AB PQ k k , ∴PQ 所在直线方程为)1(23-=x y , 由⎪⎪⎩⎪⎪⎨⎧=+-=134)1(2322y x x y 得 093482=-+y y 设P (x 1,y 1),Q (x 2,y 2),则89,232121-=⋅-=+y y y y , …………………9分 221894434)(2122121=⨯+=-+=-∴y y y y y y.2212212212121211=⨯⨯=-⋅=∴∆y y F F S PQ F ………………………12分。

相关文档
最新文档